KR101423291B1 - Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy - Google Patents

Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy Download PDF

Info

Publication number
KR101423291B1
KR101423291B1 KR1020130082661A KR20130082661A KR101423291B1 KR 101423291 B1 KR101423291 B1 KR 101423291B1 KR 1020130082661 A KR1020130082661 A KR 1020130082661A KR 20130082661 A KR20130082661 A KR 20130082661A KR 101423291 B1 KR101423291 B1 KR 101423291B1
Authority
KR
South Korea
Prior art keywords
propellant
calibration curve
sample
stabilizer
stabilizer content
Prior art date
Application number
KR1020130082661A
Other languages
Korean (ko)
Inventor
이미선
박민호
이병철
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020130082661A priority Critical patent/KR101423291B1/en
Application granted granted Critical
Publication of KR101423291B1 publication Critical patent/KR101423291B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a method for analyzing contents of a stabilizing agent contained in a propelling charge using a near-infrared spectroscopy. When utilizing the present invention, a large quantity of the stabilizing agent can be analyzed, since a swift measurement and an easy carrying of a device are possible. Moreover, the present invention does not require an additional test reagent and a use of an additional apparatus, thus reducing costs thereof.

Description

근적외선 분광분석법을 활용한 추진장약 안정제 함량 분석 방법{Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy}Technical Field [0001] The present invention relates to a method for analyzing the content of propellant stabilizer using near-infrared spectroscopy (hereinafter referred to as "near-infrared spectroscopy"

본 발명은 근적외선 분광분석법을 이용한 추진장약 안정제 함량을 측정하는 방법에 관한 발명이다.The present invention relates to a method for measuring the content of propellant stabilizer using near-infrared spectroscopy.

추진장약은 포탄을 추진시켜서 발사하기 위하여 폭발시키는 장약이다. 이러한 추진장약에 주로 사용되는 원료는 니트로셀룰로오즈(Nitrosellulose)이다. 니트로셀룰로오즈는 질산에스테르 화합물로서 자연 분해 시 발생되는 열의 축적으로 자연발화 위험을 가지고 있다. 자연발화를 억제시키는 방법으로 추진제의 분해 생성물에 의한 자동촉매 반응을 억제할 수 있는 안정제(Stabilizer)를 첨가하여 분해를 지연시킬 수 있다. 안정제는 크게 유기안정제와 무기안정제로 나눌 수 있다. 유기안정제에는 디페닐아민(Diphenylamine)과 에틸센트랄라이트(Ethylcentralite) 등이 있고, 무기안정제에는 Na2CO3, NaHCO3, CaCO3 등이 있다. 안정제는 추진제 내에서 일어나는 산화반응 및 분해반응의 지시제로서의 역할을 하고, 함량 측정을 통해 추진제의 저장 안정성을 판단하는 지표로 활용된다. 군에서는 아래의 표 1과 같이 안정제 함량에 따라 저장등급을 부여하고 조치하고 있다.
A propulsion charge is a charge that explodes to propel the shell to launch. Nitrosellulose is the main raw material used for such propellant charge. Nitrocellulose is a nitrate ester compound and has the risk of spontaneous ignition due to accumulation of heat generated during spontaneous decomposition. Decomposition can be delayed by adding a stabilizer that can suppress the auto-catalytic reaction by decomposition products of the propellant to suppress spontaneous ignition. Stabilizers can be broadly divided into organic stabilizers and inorganic stabilizers. Organic stabilizers include diphenylamine and ethyl centralite, and inorganic stabilizers include Na 2 CO 3 , NaHCO 3 , and CaCO 3 . The stabilizer serves as an indicator of the oxidation and decomposition reactions occurring in the propellant, and is used as an indicator for determining the storage stability of the propellant through the measurement of the content. In the group, storage grade is given according to the stabilizer content as shown in Table 1 below, and measures are taken.

저장등급Storage rating 안정제함량(%)Stabilizer content (%) 조 치 방 안Action room AA 0.3% 이상0.3% or more 계속 저장Keep saving CC 0.2% ∼ 0.29%0.2% to 0.29% 1년내 소모Consumed within one year DD 0.2% 미만Less than 0.2% 60일내 폐기Disposal within 60 days

(저장등급 및 조치 방안)
(Storage Rating and Measures)

또한, 군에서는 아래와 같은 주기로 안정제 함량을 측정하고 있다.
In the group, the stabilizer content is measured at the following cycle.

구 분division 시험주기(0.3% 도래)Test cycle (0.3%) 시 험 시 기Test period 국내생산Domestic production 군 원Soldier 국내생산Domestic production 군 원Soldier 포 병 탄Poplar 약 15년About 15 years 약 35년About 35 years 10년10 years 30년30 years 박 격 포Night foil 약 30년About 30 years 약 50년About 50 years 25년25 years 45년45 years

(제조년도 경과에 따른 안정제 함량 분석 시험주기)
(Test period for stabilizer content analysis according to the year of manufacture)

구 분division 안정제 함량Stabilizer content 0.2 ~ 0.29%0.2 to 0.29% 0.3 ~ 0.49%0.3 to 0.49% 0.5% 이상0.5% or more 시험주기Test cycle 1년1 year 3년3 years 5년5 years

(안정제 함량별 재시험 주기)
(Retest cycle by stabilizer content)

추진장약의 안정제 함량을 측정하기 위한 시험은 스팀증류법에 의한 자외선 가시광선 분광분석법을 사용하고 있으며 분쇄, 가열, 추출 희석 등의 전처리 과정이 필요하여 발당 6시간의 장시간이 소요되고, 시약 및 기자재 사용으로 발당 26,000원의 비용이 필요하다. 따라서 장기 저장 탄약 및 전쟁예비물자(War Reserved Stock For Allies) 인수에 따른 지속적 증가하는 시험물량의 적체 현상이 나타난다. 이와 더불어 분쇄에 따른 분진, 독성 및 인화성인 가성소다와 에탄올의 사용으로 실험자에게 유해한 영향을 끼치며, 추진장약의 가열에 따른 화재의 위험성이 상시 존재한다. 인체의 유해한 시약의 사용을 제한, 시험시간 단축 및 소요비용을 절감하는 것이 본 발명의 목적이다.The test to measure the stabilizer content of the propellant charge uses ultraviolet visible light spectrophotometry by steam distillation method and it takes 6 hours long for the pretreatment such as grinding, heating, dilution of extract, etc., and it takes a long time to use the reagent and equipment It costs 26,000 won per call. As a result, there is an ever-increasing accumulation of test volume due to the acquisition of long-term storage ammunition and war reserve stock for allies. In addition, the use of dust, toxic and flammable caustic soda and ethanol due to crushing has a detrimental effect on the experimenter, and there is always a risk of fire due to heating of the propulsion charge. It is an object of the present invention to limit the use of harmful reagents in the human body, shorten the test time, and reduce the cost.

다 수의 표준시료를 기존의 스팀증류법에 의한 자외선 가시광선 분광분석법으로 안정제 함량을 도출하고 대상시료에 근적외선을 조사하여 측정된 스펙트럼과 농도의 상관관계를 이용한 검량선을 개발하여 미지 시료를 측정 시 결과값을 예측한다. The stabilizer content was determined by ultraviolet visible spectrophotometry using a conventional steam distillation method, and a calibration curve using the relationship between the measured spectra and concentration was obtained by irradiating the target sample with near infrared rays. Estimate the value.

근적외선 분광분석법을 활용하면 비파괴시험으로 신속한 측정 및 기기휴대가 용이하여 현장시험 가능으로 다량을 분석할 수 있고, 시험 시약 및 기자재의 사용이 불필요하여 비용을 절감하는 효과가 있다.NIR spectroscopy can be used for non-destructive testing, which makes it possible to carry out rapid measurement and portability of equipment, thereby enabling a large amount of analysis to be carried out in the field and reducing the cost by eliminating the use of test reagents and equipment.

도 1은 근적외선 분광기의 측정장치 구성도 및 측정원리를 나타내는 개략도이다.
도 2는 추진장약의 최초 근적외선 스펙트라이다.
도 3은 추진장약의 전처리 스펙트라이다.
도 4는 검량선(실제값 대 예측값)이다.
도 5는 자외선 가시광선 분광분석법의 스팀증류 장치도이다.
도 6은 근적외선 분광분석 시험절차도이다.
Fig. 1 is a schematic view showing a measuring apparatus configuration diagram and a measurement principle of a near-infrared ray spectroscope.
Fig. 2 is the initial near-infrared spectrum of the propellant charge.
Figure 3 is a pretreatment spectra of propellant charge.
4 is a calibration curve (actual value versus predicted value).
5 is a diagram of a steam distillation apparatus of ultraviolet visible ray spectroscopy.
6 is a diagram of a near infrared ray spectroscopy test procedure.

본 발명은,According to the present invention,

1) 검량선 개발에 사용할 추진장약 표준시료를 선정하는 단계;1) selecting standard pilot charges to be used for the calibration curve development;

2) 상기 추진장약 표준시료의 근적외선 스펙트럼을 측정하는 단계;2) measuring a near-infrared spectrum of the propulsion charge standard sample;

3) 스팀분석법을 통한 자외선 가시광선 분석법을 이용하여 상기 추진장약 표준시료의 안정제 함량을 측정하는 단계;3) measuring the stabilizer content of the propellant charge standard sample using ultraviolet visible light analysis through steam analysis;

4) 상기 추진장약 표준시료의 근적외선 스펙트럼과 안정제 함량의 상관관계에 대한 검량선을 개발하는 단계;4) developing a calibration curve for the correlation between the near infrared spectrum of the propulsion charge standard sample and the stabilizer content;

5) 상기 검량선의 유효성을 검증하는 단계;5) verifying the validity of the calibration curve;

6) 추진장약 미지시료의 근적외선 스펙트럼을 측정하는 단계; 및6) measuring the near-infrared spectrum of the unknown sample; And

7) 상기 검량선과 상기 추진장약 미지시료의 근적외선 스펙트럼을 이용하여 상기 추진장약 미지시료의 안정제 함량을 측정하는 단계; 를 포함하는 추진장약의 안정제 함량 측정방법을 제공한다.
7) measuring the stabilizer content of the propellant unknown sample using the calibration curve and the near-infrared spectrum of the propellant unknown sample; The method comprising the steps of:

이하 본 발명의 분석방법의 각 단계에 대하여 설명한다.Each step of the analysis method of the present invention will be described below.

1) 검량선 개발에 사용할 추진장약 표준시료 선정 단계에서 니트로셀룰로오즈를 주성분으로 하는 원통형 단기 추진장약의 시료를 250개 이상(각 50 내지 100g) 선정한다. 상기 추진장약 표준시료는 동일 탄종으로 준비하고 유효한 검량선의 개발을 위해서는 안정제 농도별로 고루 분포된 샘플로써 안정제 함량대별(0.2 내지 0.39% / 0.4 내지 0.69% / 0.7% 이상) 각각 최소 25개 이상이 필요하다. 동일 탄종으로 준비해야 하는 이유는 탄종별로 구성된 성분과 함량, 알갱이 형태가 다르기 때문에 근적외선 스펙트럼의 형태 및 변화 패턴이 달라진다. 따라서 탄종별로 검량선은 각각 개발, 사용해야 하며 방법은 동일하다.1) Select 250 or more samples (50 to 100 g each) of cylindrical short-term propellant charges containing nitrocellulose as the main component in the pilot sample selection stage to be used for the calibration curve development. In order to develop an effective calibration curve, it is necessary to prepare at least 25 each of stabilizer content (0.2 to 0.39% / 0.4 to 0.69% / 0.7% or more) Do. The reason for preparing the same type of coal is that the type and pattern of change of the near-infrared spectrum are different because the constituents, contents, and granular forms are different. Therefore, each calibration curve should be developed and used, and the method is the same.

2) 추진장약 표준시료의 근적외선 스펙트럼 측정단계에서 상기 추진장약 표준시료에 근적외선을 조사하여 스펙트럼을 획득한다. 이 때, 반사법에 의한 스펙트럼을 획득할 수 있다. 근적외선 스펙트럼은 X축은 파수(파장의 역수, 단위는 cm-1)이며, Y축은 리플렉턴스(reflectance)로 하며, 본 발명에서 측정 파수는 4,000cm-1 내지 10,000cm-1(파장 1,000nm 내지 2,500nm)일 수 있다.2) In the near-infrared spectrum measurement step of the propulsion charge standard sample, the spectrum is obtained by irradiating near-infrared rays to the propulsion charge standard sample. At this time, the spectrum by the reflection method can be obtained. Near infrared spectra and X-axis represents a wave number (reciprocal, and the unit is cm -1 in wavelength), and a Y-axis reflective capacitance (reflectance), the measurement frequency in the present invention is 4,000cm -1 to 10,000cm -1 (wavelength of 1,000nm to 2,500 nm).

3) 추진장약 표준시료의 안정제 함량을 측정하는 단계에서 상기 추진장약 표준시료를 스팀증류법에 의한 자외선 가시광선 분광분석법으로 안정제 함량 값을 도출할 수 있다. 추진장약 표준시료의 안정제 함량 측정은 안정제의 종류에 따라 그 측정 방법을 달리할 수 있다. 3) In the step of measuring the stabilizer content of the propulsion charge standard sample, the stabilizer content value can be derived from the propulsion charge standard sample by ultraviolet visible spectral analysis by steam distillation. The measurement of the stabilizer content of the propulsion charge standard sample can be made differently depending on the type of stabilizer.

안정제의 종류는 디페닐아민(Diphenylamine), 에틸센트랄라이트(Ethylcentralite), Na2CO3, NaHCO3, CaCO3 등이 될 수 있다. Type of stabilizer and the like can be diphenylamine (Diphenylamine), ethyl Central light (Ethylcentralite), Na 2 CO 3 , NaHCO 3, CaCO 3.

4) 검량선을 개발하는 단계에서 근적외선 분광기를 제어하는 소프트웨어에 상기 방법으로 도출한 안정제 함량을 입력하여 시료의 근적외선 스펙트럼과 안정제 함량을 매칭 시킨다. 상기 추진장약 표준시료의 근적외선 스펙트럼과 안정제 함량의 매칭이 완료되면 검량선을 개발하는데, 시료의 농도와 스펙트럼의 변화를 동시에 이용하는 PLS(Partial Least Squares Regression, 부분최소자승회귀분석법) 알고리즘과 C-V-Set-Validation 수처리 방법을 사용하고, Original Spetra(최초 근적외선 스펙트라) 정보의 질적 향상을 위해 SNV(Standard Normal Variate), Ncl(Normalization by closure), dg1(1st Derivative Saviltzky-Golay 9points), Kmu(Kubelka Munk) 중 1개 이상을 사용하여 베이스라인을 보정해주고 분석에 필요한 정보는 증폭, 불필요한 정보는 버리기 위하여 Pretreated Spectra(전처리 스펙트라)를 사용한다. C-V-Set-Validation 수처리 방법은 Calibration과 Validation 직선을 임의로 일치하도록 작성하는 방법으로 Calibration과 Validation 자료 수의 적정비율은 2 : 1 이며 데이터 세트가 전 농도 범위에 걸쳐 균일하게 분포해야 한다.4) In the step of developing the calibration curve, the stabilizer content derived from the above method is input to the software that controls the near-infrared spectroscope, and the near infrared spectrum of the sample is matched with the stabilizer content. After the matching of the near infrared spectrum and the stabilizer content of the propulsion charge standard sample is completed, a calibration curve is developed. Partial least squares regression (PLS) algorithm and CV-Set- (Standard Normal Variate), Ncl (Normalization by Closure), dg1 (1st Derivative Saviltzky-Golay 9points) and Kmu (Kubelka Munk) to improve the quality of original Spetra information using the validation water treatment method. Use more than one to calibrate the baseline, amplify the information needed for analysis, and use the Pretreated Spectra to discard any unnecessary information. C-V-Set-Validation The water treatment method is a method to make the calibration and the validation lines arbitrarily match. The proper ratio of the number of calibration and validation data is 2: 1 and the data set should be uniformly distributed over the whole concentration range.

5) 검량선의 유효성을 검증하는 단계에서 검량선의 정확도를 높이기 위해 내·외부 검증 작업을 시행한다. 내부 검증작업은 검량선의 유효성 판단을 위한 수치 확인으로 Chemometric software를 통해 산출된다. SEC, SEP, Q-value, r-value, Consistency 등이 있으며 유효성 판단 기준은 하기의 표 4와 같다.
5) In the step of verifying the validity of the calibration curve, internal and external verification work shall be carried out to increase the accuracy of the calibration curve. Internal verification work is a numerical check for the validity of the calibration curve and is calculated through Chemometric software. SEC, SEP, Q-value, r-value, and Consistency. The validity criteria are shown in Table 4 below.

구 분division 기준범위Reference range 비 고Remarks SEC
(Standard Error of Calibration)
SEC
(Standard Error of Calibration)
0.1 이하0.1 or less 0에 근접시 유효Valid at close to 0
SEP
(Standard Error of Prediction)
SEP
(Standard Error of Prediction)
0.1 이하0.1 or less 0에 근접시 유효Valid at close to 0
ConsistencyConsistency 80 ~ 12080-120 100에 근접시 유효Valid at close to 100 r-value(regression coefficient)r-value (regression coefficient) 0.9 이상0.9 or more 1에 근접시 유효Valid in close proximity to 1 Q-value(Quality value)Q-value (Quality value) 0.75 이상0.75 or more 1에 근접시 유효Valid in close proximity to 1

(유효 검량선 판단 기준)
(Criteria for determining effective calibration curve)

상기 수치가 기준범위에 포함되면 사용가능한 검량선으로 판단하며 범위를 벗어나는 경우 개발단계로 다시 돌아가서 Pretreatment 종류와 Primary PCs, Secondary PCs 수를 수정하여 재검증한다.If the above values are included in the reference range, it is judged to be usable calibration curve. If it is out of the range, go back to the development step and re-verify the Pretreatment type and the number of Primary PCs and Secondary PCs.

상기 내부 검증작업이 완료되면 외부 검증작업을 실시한다. 상기 추진장약 표준시료의 약 10%를 검증시료로 선정한다. 선정된 검증시료를 근적외선 분광분석법으로 시험하고 도출된 결과 값과 실제 값의 오차를 확인한다. 근적외선 분광분석법과 자외선 가시광선 분광분석법 시험결과 값의 오차가 ±0.10% 이하인 경우 적합, ±0.10% 초과인 경우 부적합으로 판단하고 검증시료의 90%가 적합으로 판단될 경우, 검량선의 사용가능성은 입증되고 내·외부 검증 작업이 완료된다. 적합성이 떨어질 경우 외부 검증 자료를 다시 검량선에 추가적으로 포함시켜 개발하고 내·외부 검증을 반복한다. 상기의 과정을 통해 개발된 검량선은 유효성이 인정되어 사용 가능하나 근적외선 분광분석법은 통계화학적 방법으로 오차을 좁히고 정확한 데이터를 얻기 위해 지속적인 자료 입력과 검량선의 업데이트가 필요하다.When the internal verification operation is completed, an external verification operation is performed. Approximately 10% of the above pilot charge standard sample is selected as the verification sample. Test the selected test sample with near infrared spectrometry and check the error between the resultant value and the actual value. If the difference between the results of near-infrared spectroscopy and ultraviolet visible spectroscopy is less than ± 0.10%, if it is more than ± 0.10%, it is judged to be not suitable. If 90% of the test sample is judged to be suitable, And internal / external verification work is completed. If the conformity is deteriorated, the external verification data is added to the calibration curve again, and the internal and external verification are repeated. Although the calibration curve developed through the above process can be used for validity, near infrared spectroscopy requires constant data input and calibration curve update in order to narrow the error by statistical chemical method and obtain accurate data.

6) 추진장약 미지시료의 근적외선 스펙트럼을 측정하는 단계에서는 안정제 함량을 모르는 추진장약의 근적외선 스펙트럼을 측정한다. 6) In the step of measuring the near-infrared spectrum of unknown propellant charge, the near-infrared spectrum of the propellant charge, which does not know the stabilizer content, is measured.

7) 검증이 완료된 검량선과 상기 측정한 추진장약 미지시료의 근적외선 스펙트럼을 이용하여 추진장약 미지시료의 안정제 함량을 계산할 수 있다. 추진장약 미지시료의 안정제 함량이 0.5% 이상일 경우 해당 시료의 안정제 함량을 결과 값으로 확정하고, 0.5% 미만일 경우 해당 시료의 안정제 함량을 스팀증류법에 의한 자외선 가시광선 분광분석법을 사용하여 측정한다.
7) The stabilizer content of unknown propellant can be calculated by using the near-infrared spectrum of the verified calibration line and the measured propellant unknown sample. If the stabilizer content of the unknown sample is 0.5% or more, the stabilizer content of the sample is determined as the result. If the content of the stabilizer is less than 0.5%, the stabilizer content of the sample is measured by ultraviolet visible light spectrometry using steam distillation.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시 예를 제시한다. 그러나 하기의 실시 예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시 예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

실시 예 1. 근적외선 분광분석법을 이용한 155밀리 8호 추진장약 내 안정제 함량 측정방법Example 1. Measurement of Stabilizer Contents in a 155 millisecond Excavation Charge by Near Infrared Spectroscopy

(1) 추진장약 표준시료 준비 (1) Standard preparation of propulsion charge standard

2008년부터 2012년까지 지상형, 이그루, 지하형 탄약고 등 다양한 환경 및 조건에서 저장된 155밀리 8호 추진장약 402개를 수집하였다.(개당 100g)
From 2008 to 2012, we collected a total of 402 155-mile-eight propulsion charges (100g per piece) stored in various environments and conditions, including ground-type, IGU, and underground ammunition.

(2) 근적외선 스펙트럼 획득(2) Acquisition of near-infrared spectrum

각각의 시료를 원형 그대로 Petri dish에 50 ~ 100g 정도 담아 근적외선을 조사하여 스캔했다. 측정 파수는 4,000cm-1 내지 10,000cm-1(파장 1,000nm 내지 2,500nm)이었다. 근적외선 조사 3회를 1set으로 설정하여 시료당 3개의 근적외선 스펙트럼을 획득했다. 여기서 근적외선 분광기는 Buchi사의 FT-NIRFlex N-500 모델을 사용하였고, 이 기기에서 사용하는 소프트웨어는 NIRWare Management Console, NIRWare Operator, NIRCal 이다.
Each sample was irradiated with near infrared rays in a Petri dish containing 50 ~ 100g of the original sample. Measuring wave number was 4,000cm -1 to 10,000cm -1 (wavelength of 1,000nm to 2,500nm). Three near infrared rays were set to one set and three near infrared spectra were obtained per sample. Here, the near infrared ray spectrometer uses Buchi FT-NIRFlex N-500 model, and the software used in this device is NIRWare Management Console, NIRWare Operator, and NIRCal.

(3) 추진장약 표준시료의 자외선 가시광선 분광분석시험(3) Ultraviolet visible light spectroscopy test of propulsion charge standard sample

근적외선 스펙트럼을 얻은 시료는 스팀증류법에 의한 자외선 가시광선 분광분석시험을 통하여 안정제 함량을 도출하였다. Ultraviolet ray visible spectroscopy analysis of the samples obtained near infrared spectra revealed the stabilizer content.

안정제의 농도별(1.5 / 3.0 / 4.5 / 6.0 ppm) 표준용액을 제조, 흡광도를 측정하여 흡광계수 및 1차 회귀직선식을 작성하였다.A standard solution (1.5 / 3.0 / 4.5 / 6.0 ppm) was prepared according to the concentration of the stabilizer and the absorbance was measured to prepare the extinction coefficient and linear regression equation.

도 5와 같이 시료 2.5g에 가성소다(50%-NaOH) 50ml와 에틸알콜(95%) 100ml를 증류 플라스크에 넣고 냉각관을 조립하여 맨틀위에서 30분 동안 가열하고 식힌 후 1000ml 비이커에 50ml의 에틸알콜을 넣고 증류장치를 조립하여 5L 스팀발생 플라스크의 한쪽 끝을 증류플라스크의 내용물에 담그고 증류 플라스크의 한쪽 끝을 증류액을 받을 비이커의 에틸알콜 용액에 담갔다.As shown in FIG. 5, 50 ml of caustic soda (50% -NaOH) and 100 ml of ethyl alcohol (95%) were placed in a distillation flask, and a cooling tube was assembled and heated on the mantle for 30 minutes. The alcohol was added and the distillation apparatus was assembled. One end of the 5L steam generating flask was immersed in the contents of the distillation flask, and one end of the distillation flask was immersed in an ethyl alcohol solution of a beaker to receive the distillate.

스팀에 의해 증류되어 에틸알콜이 담긴 비이커의 증류액이 ±25ml가 될 때까지 증류하였다. 여기서 증류속도는 7 ~ 9ml/분이 되도록 스팀을 조절했고, 비이커에 받는 증류액의 온도는 실온을 유지했다.The distillate was distilled by steam until the distillate of the beaker containing ethyl alcohol became ± 25 ml. Here, the distillation rate was adjusted to 7 to 9 ml / min, and the temperature of the distillate received in the beaker was maintained at room temperature.

증류가 끝나면 아답터와 응축관을 에틸알콜로 세척하고 비이커에 모았다. 비이커의 용액을 1L 부피 플라스크에 옮기고 에틸알콜로 표선까지 희석한 후 20ml를 피펫으로 취해 100ml 부피 플라스크로 옮기고 에틸알콜로 표선까지 희석했다. 이 용액을 자외선 가시광선 분광광도계를 사용하여 285nm에서 흡광도를 측정하고 아래의 계산식에 의해 안정제 함량을 산출했다. After distillation, the adapter and condenser were washed with ethyl alcohol and collected in a beaker. The beaker solution was transferred to a 1 L volumetric flask and diluted with ethyl alcohol to the indicated line. 20 ml of the solution was pipetted into a 100 ml volumetric flask and diluted to the mark with ethyl alcohol. The absorbance of this solution was measured at 285 nm using an ultraviolet visible light spectrophotometer, and the stabilizer content was calculated by the following equation.

Figure 112013063276541-pat00001
Figure 112013063276541-pat00001

Figure 112013063276541-pat00002
Figure 112013063276541-pat00002

D : 안정제 흡광계수, C : 표준용액의 농도D: Stabilizer extinction coefficient, C: Concentration of standard solution

A : 표준용액의 흡광도, A' : 추출용액의 농도A: absorbance of standard solution, A ': concentration of extract solution

시료무게 : 20mL 피펫으로 취했을 때의 시료의 mg 단위 무게
Sample weight: mg unit of sample when taken with 20mL pipette

(4) 검량선 개발(4) Calibration curve development

근적외선 스펙트럼과 안정제의 함량을 획득한 후에는 근적외선 분광기 제어 컴퓨터에서 NIRWare Management Console에서 스펙트럼에 안정제 함량을 입력하여 매칭시키는 작업을 실시했다. 준비한 시료의 매칭 작업이 완료하여 NIRCal에서 검량선을 아래 표의 데이터 처리 방법으로 작성하였다.
After obtaining the near infrared spectrum and the stabilizer content, NIRWare Management Console in the near infrared spectroscopy control computer entered the stabilizer content into the spectrum and matched. After the matching of the prepared samples was completed, calibration curves were prepared by NIRCal using the data processing method shown in the table below.

구 분division AA BB



데이터 처 리




Data processing
PLS(Partial Least Squares Regression)Partial Least Squares Regression (PLS) PLS(Partial Least Squares Regression)Partial Least Squares Regression (PLS)
C-V-Set-Validation (C : V = 2 : 1) C-V-Set-Validation (C: V = 2: 1) C-V-Set-Validation (C : V = 2 : 1) C-V-Set-Validation (C: V = 2: 1)

Pretreatment


Pretreatment
Ncl
(Normalization by closure)
Ncl
(Normalization by closure)


SNV(Standard Normal Variate)


SNV (Standard Normal Variate)
dg1 (1st Derivative Saviltzky-Golay 9points)dg1 (1st Derivative Saviltzky-Golay 9points)
설 정
조 건

Set
Condition
WavelengthsWavelengths 4000 ~ 10,0004000 to 10,000 4000 ~ 10,0004000 to 10,000
Primary PCsPrimary PCs 1010 1313 Secondary PCsSecondary PCs 1 ~ 81 to 8 1 ~ 121 to 12 range(%)range (%) 0.25 ~ 1.060.25 to 1.06 0.25 ~ 1.060.25 to 1.06

(개발된 검량선(A,B)의 데이터 처리 및 설정 조건)
(Data processing and setting conditions of the developed calibration curve (A, B))

(5) 검량선 내·외부 검증(5) Calibration curve internal / external verification

상기의 데이터 처리 및 설정조건을 달리한 검량선 A, B를 작성 후 내·외부 검증을 실시하였다. 우선 내부 산출 수치에 따른 검증은 아래 표와 같다.Calibration curves A and B with different data processing and setting conditions were prepared and internal / external verification was performed. First, verification based on internal calculation values is shown in the following table.

구 분division SECSEC SEPSEP ConsistencyConsistency RR R2 R 2 Q-valueQ-value SlopeSlope BiasBias AA 0.06350.0635 0.06250.0625 101.78101.78 0.93610.9361 0.87630.8763 0.81970.8197 0.87630.8763 BB 0.06820.0682 0.05770.0577 118.22118.22 0.93160.9316 0.86790.8679 0.81520.8152 0.86790.8679

(내부 검증 자료)
(Internal verification data)

상기 표에 따르면 내부 검증 결과는 검량선 A, B 모두 사용 가능하다고 판단된다. 내부 검증이 완료되면 추진장약 표준시료 중 일부 시료를 선정하여 외부 검증을 실시하는데 하기 표는 외부 검증 결과이다.
According to the above table, it is judged that the internal verification results can be used for both the calibration curves A and B. When the internal verification is completed, some of the pilot samples are selected for external verification. The following table shows the external verification results.

구 분division 안정제 함량Stabilizer content AA BB 결과값Result value 오차(절대값)Error (absolute value) 판 단 Judgment 결과값Result value 오차(절대값)Error (absolute value) 판 단 Judgment NO. 1NO. One 0.30.3 0.270.27 0.030.03 적 합Suitable 0.290.29 0.010.01 적 합Suitable NO. 2NO. 2 0.320.32 0.270.27 0.050.05 적 합Suitable 0.390.39 0.070.07 적 합Suitable NO. 3NO. 3 0.330.33 0.290.29 0.040.04 적 합Suitable 0.280.28 0.050.05 적 합Suitable NO. 4NO. 4 0.380.38 0.410.41 0.030.03 적 합Suitable 0.420.42 0.040.04 적 합Suitable NO. 5NO. 5 0.390.39 0.380.38 0.010.01 적 합Suitable 0.440.44 0.050.05 적 합Suitable NO. 6NO. 6 0.400.40 0.390.39 0.010.01 적 합Suitable 0.350.35 0.050.05 적 합Suitable NO. 7NO. 7 0.400.40 0.440.44 0.040.04 적 합Suitable 0.480.48 0.080.08 적 합Suitable NO. 8NO. 8 0.410.41 0.430.43 0.020.02 적 합Suitable 0.440.44 0.030.03 적 합Suitable NO. 9NO. 9 0.420.42 0.420.42 00 적 합Suitable 0.390.39 0.030.03 적 합Suitable NO. 10NO. 10 0.420.42 0.370.37 0.050.05 적 합Suitable 0.470.47 0.050.05 적 합Suitable NO. 11NO. 11 0.430.43 0.470.47 0.040.04 적 합Suitable 0.500.50 0.070.07 적 합Suitable NO. 12NO. 12 0.430.43 0.390.39 0.040.04 적 합Suitable 0.390.39 0.040.04 적 합Suitable NO. 13NO. 13 0.440.44 0.360.36 0.080.08 적 합Suitable 0.360.36 0.080.08 적 합Suitable NO. 14NO. 14 0.450.45 0.360.36 0.090.09 적 합Suitable 0.400.40 0.050.05 적 합Suitable NO. 15NO. 15 0.460.46 0.400.40 0.060.06 적 합Suitable 0.450.45 0.010.01 적 합Suitable NO. 16NO. 16 0.470.47 0.500.50 0.030.03 적 합Suitable 0.490.49 0.020.02 적 합Suitable NO. 17NO. 17 0.480.48 0.450.45 0.030.03 적 합Suitable 0.440.44 0.040.04 적 합Suitable NO. 18NO. 18 0.490.49 0.540.54 0.050.05 적 합Suitable 0.540.54 0.050.05 적 합Suitable NO. 19NO. 19 0.490.49 0.410.41 0.080.08 적 합Suitable 0.400.40 0.090.09 적 합Suitable NO. 20NO. 20 0.510.51 0.430.43 0.080.08 적 합Suitable 0.460.46 0.050.05 적 합Suitable NO. 21NO. 21 0.510.51 0.570.57 0.060.06 적 합Suitable 0.560.56 0.050.05 적 합Suitable NO. 22NO. 22 0.530.53 0.500.50 0.030.03 적 합Suitable 0.510.51 0.020.02 적 합Suitable NO. 23NO. 23 0.530.53 0.580.58 0.050.05 적 합Suitable 0.580.58 0.050.05 적 합Suitable NO. 24NO. 24 0.550.55 0.540.54 0.010.01 적 합Suitable 0.540.54 0.010.01 적 합Suitable NO. 25NO. 25 0.550.55 0.540.54 0.010.01 적 합Suitable 0.580.58 0.030.03 적 합Suitable NO. 26NO. 26 0.560.56 0.520.52 0.040.04 적 합Suitable 0.550.55 0.010.01 적 합Suitable NO. 27NO. 27 0.630.63 0.610.61 0.020.02 적 합Suitable 0.630.63 00 적 합Suitable NO. 28NO. 28 0.630.63 0.600.60 0.030.03 적 합Suitable 0.610.61 0.020.02 적 합Suitable NO. 29NO. 29 0.970.97 0.990.99 0.020.02 적 합Suitable 0.940.94 0.030.03 적 합Suitable NO. 30NO. 30 0.990.99 0.990.99 00 적 합Suitable 0.940.94 0.050.05 적 합Suitable

(외부 시료를 통한 검증 자료)
(Verification data through external sample)

외부 검증 결과 30개 시료 중 30개 모두 오차 ±0.10% 내로 검량선의 유효성이 확인 되었다.
As a result of the external verification, the validity of the calibration curve was confirmed within 30 ± 30% of all samples with an error of ± 0.10%.

(6) 추진장약 미지시료의 안정제 함량 분석(6) Analysis of stabilizer content of unknown

검량선의 내·외부 검증을 통하여 정확한 예측능력과 신뢰성이 입증되어 자외선 가시광선 분광분석법을 대체하여 사용하기에 무리가 없음을 알게 되었다. 근적외선 분광분석법은 유기용매를 사용하는 추출 단계 및 시간 소모적인 분쇄단계가 불필요하여 '12년 추진장약 안정제 분석시험 대상 시료채취 시 현장에서 시험하였다.It is proved that the accuracy and reliability of the calibration curve can be verified through internal and external verification of the calibration curve, and it is found that there is no problem in using it as a substitute for ultraviolet visible spectral analysis. NIR spectroscopy was performed on site during the sampling period of the 12-year propellant stabilizer analysis test sample, since the extraction step using an organic solvent and the time-consuming pulverization step were unnecessary.

1000nm 이상 2500nm 이하의 파장대역에서 근적외선 스펙트럼을 측정하여 분석한 결과 시료의 안정제 함량이 0.5% 미만의 경우에는 추가로 스팀증류법에 의한 자외선 가시광선 분광분석법 병행하여 추진장약의 저장안전성을 높였다. 대상은 155밀리 8호 추진장약 178개 시료 이며 시험결과 63개는 0.5%이상으로 결과값을 적용하고, 113개는 0.5% 미만으로 자외선 가시광선 분석법을 병행하여 안정제 함량을 확정하였다.
The near infrared spectrum was measured in the wavelength range of 1000 nm to 2500 nm. When the stabilizer content of the sample was less than 0.5%, the storage stability of the propellant charge was further enhanced by ultraviolet visible spectrophotometry by steam distillation method. The target of the test was 178 samples of 155mm 8 guns. The test results were applied to more than 0.5% of 63 samples, and 113 samples were less than 0.5%, and ultraviolet visible spectrophotometry was used to confirm the stabilizer content.

S100: 검량선 개발에 사용할 추진장약 표준시료 준비단계
S200: 추진장약 표준시료의 근적외선 스펙트럼 측정단계
S300: 추진장약 표준시료의 안정제 함량 측정단계
S400: 검량선 개발 단계
S500: 검량선 검증 단계
S600: 미지시료의 안정제 함량 측정 단계
S100: Preparatory pilot sample preparation stage for calibration curve development
S200: Measurement step of near-infrared spectrum of propulsion charge standard sample
S300: Stabilizer content measurement step of pilot charge standard sample
S400: Calibration curve development step
S500: Calibration curve verification step
S600: Stabilizer content measurement step of unknown sample

Claims (4)

1) 검량선 개발에 사용할 추진장약 표준시료를 선정하는 단계;
2) 상기 추진장약 표준시료의 근적외선 스펙트럼을 측정하는 단계;
3) 스팀분석법을 통한 자외선 가시광선 분석법을 이용하여 상기 추진장약 표준시료의 안정제 함량을 측정하는 단계;
4) 상기 추진장약 표준시료의 근적외선 스펙트럼과 안정제 함량의 상관관계에 대한 검량선을 개발하는 단계;
5) 상기 검량선의 유효성을 검증하는 단계;
6) 추진장약 미지시료의 근적외선 스펙트럼을 측정하는 단계; 및
7) 상기 검량선과 상기 추진장약 미지 시료의 근적외선 스펙트럼을 이용하여 상기 추진장약 미지시료의 안정제 함량을 측정하는 단계; 를 포함하며 상기 추진장약의 안정제는 디페닐 아민(Diphenylamine)이며 1000nm 이상 2500nm 이하의 파장대역에서 반사법으로 측정하는 추진장약의 안정제 함량 측정방법.
1) selecting standard pilot charges to be used for the calibration curve development;
2) measuring a near-infrared spectrum of the propulsion charge standard sample;
3) measuring the stabilizer content of the propellant charge standard sample using ultraviolet visible light analysis through steam analysis;
4) developing a calibration curve for the correlation between the near infrared spectrum of the propulsion charge standard sample and the stabilizer content;
5) verifying the validity of the calibration curve;
6) measuring the near-infrared spectrum of the unknown sample; And
7) measuring the stabilizer content of the unknown propellant using the calibration curve and the near-infrared spectrum of the propellant unknown sample; Wherein the stabilizer of the propellant charge is diphenylamine and is measured by a reflection method in a wavelength band of 1000 nm or more and 2500 nm or less.
제1항에 있어서,
상기 4) 단계는 부분최소자승회귀분석(Partial Least Squares Regression) 알고리즘에 의하여 행하는 것을 특징으로 하는 추진장약의 안정제 함량 측정방법.
The method according to claim 1,
Wherein the step 4) is performed by a partial least squares regression algorithm.
삭제delete 삭제delete
KR1020130082661A 2013-07-15 2013-07-15 Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy KR101423291B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130082661A KR101423291B1 (en) 2013-07-15 2013-07-15 Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130082661A KR101423291B1 (en) 2013-07-15 2013-07-15 Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy

Publications (1)

Publication Number Publication Date
KR101423291B1 true KR101423291B1 (en) 2014-07-28

Family

ID=51743036

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130082661A KR101423291B1 (en) 2013-07-15 2013-07-15 Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy

Country Status (1)

Country Link
KR (1) KR101423291B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141154B1 (en) * 2019-10-28 2020-08-05 조선대학교산학협력단 Non-destructive Quality Evaluation Method of Sweet Potatoes Using Near Infrared and Chemometrics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063264A (en) * 1992-06-19 1994-01-11 Iseki & Co Ltd Method for forming calibration curve in near infrared analysis
KR20040089251A (en) * 2003-04-11 2004-10-21 학교법인 순천향대학 Method for measuring vitamin content contained in rice bran and brown rice using near infrared spectroscopy
KR20100001401A (en) * 2008-06-27 2010-01-06 대한민국(관리부서:농촌진흥청) Non-destructive analysis method of fresh tea leaves by near infrared spectroscopy
KR20110085084A (en) * 2010-01-19 2011-07-27 경기도 Non-destructive analysis method for determining protein contents of wet-brown rices by near infrared spectroscopy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063264A (en) * 1992-06-19 1994-01-11 Iseki & Co Ltd Method for forming calibration curve in near infrared analysis
KR20040089251A (en) * 2003-04-11 2004-10-21 학교법인 순천향대학 Method for measuring vitamin content contained in rice bran and brown rice using near infrared spectroscopy
KR20100001401A (en) * 2008-06-27 2010-01-06 대한민국(관리부서:농촌진흥청) Non-destructive analysis method of fresh tea leaves by near infrared spectroscopy
KR20110085084A (en) * 2010-01-19 2011-07-27 경기도 Non-destructive analysis method for determining protein contents of wet-brown rices by near infrared spectroscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141154B1 (en) * 2019-10-28 2020-08-05 조선대학교산학협력단 Non-destructive Quality Evaluation Method of Sweet Potatoes Using Near Infrared and Chemometrics

Similar Documents

Publication Publication Date Title
Wang et al. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy
Mantanus et al. Moisture content determination of pharmaceutical pellets by near infrared spectroscopy: method development and validation
Moffat et al. Meeting the International Conference on Harmonisation’s Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tabletsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of either The Royal Society of Chemistry or the Editor of The Analyst.
Utry et al. Mass specific optical absorption coefficient of HULIS aerosol measured by a four-wavelength photoacoustic spectrometer at NIR, VIS and UV wavelengths
CN105765381B (en) For the method and system for the gas concentration for measuring the gas of dissolving in a liquid
CN105008898A (en) System for and method of combined LIBS and IR absorption spectroscopy investigations
CN103018195A (en) Method for determination of PCTFE content in PBX explosive by near infrared spectrum
CN104111264A (en) Methods for quickly detecting content of heavy metal elements in rice and evaluating comprehensive pollution index of heavy metal elements
Strlič et al. Non-destructive characterisation of iron gall ink drawings: Not such a galling problem
Cooper et al. Calibration transfer of near‐IR partial least squares property models of fuels using virtual standards
CN104897595A (en) Method for simultaneously measuring contents of HMX, RDX and TNT in PBX explosive by ultraviolet spectrometry
Dai et al. On-line UV-NIR spectroscopy as a process analytical technology (PAT) tool for on-line and real-time monitoring of the extraction process of Coptis Rhizome
Trautner et al. Quantification of the vulcanizing system of rubber in industrial tire rubber production by laser-induced breakdown spectroscopy (LIBS)
Kessler et al. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets
KR101423291B1 (en) Method of Analyzing Stabilizer Contained in Propellant Using Near-Infrared Spectroscopy
Yu et al. Response surface methodology for optimizing LIBS testing parameters: A case to conduct the elemental contents analysis in soil
Xie et al. An approach to detecting diphenylamine content and assessing chemical stability of single-base propellants by near-infrared reflectance spectroscopy
US20210055315A1 (en) Slope spectroscopy standards
Risoluti et al. The detection of cannabinoids in veterinary feeds by microNIR/chemometrics: a new analytical platform
Townsend et al. The Determination of Total THC and CBD Content in Cannabis Flower by Fourier Transform Near Infrared Spectroscopy
Risoluti et al. Development of a “single-click” analytical platform for the detection of cannabinoids in hemp seed oil
Wei et al. Excited state dynamics of BODIPY-based acceptor–donor–acceptor systems: A combined experimental and computational study
Casanova et al. Evaluation of limits of detection in laser-induced breakdown spectroscopy: Demonstration for food
CN113075184B (en) Rhodamine B solution relative fluorescence emission intensity standard substance, and preparation method and application thereof
Dunko et al. Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant