KR101423256B1 - Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein - Google Patents

Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein Download PDF

Info

Publication number
KR101423256B1
KR101423256B1 KR1020110120636A KR20110120636A KR101423256B1 KR 101423256 B1 KR101423256 B1 KR 101423256B1 KR 1020110120636 A KR1020110120636 A KR 1020110120636A KR 20110120636 A KR20110120636 A KR 20110120636A KR 101423256 B1 KR101423256 B1 KR 101423256B1
Authority
KR
South Korea
Prior art keywords
hyvv
protein
virus
recombinant
production
Prior art date
Application number
KR1020110120636A
Other languages
Korean (ko)
Other versions
KR20110131160A (en
Inventor
최창원
Original Assignee
배재대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배재대학교 산학협력단 filed Critical 배재대학교 산학협력단
Priority to KR1020110120636A priority Critical patent/KR101423256B1/en
Publication of KR20110131160A publication Critical patent/KR20110131160A/en
Application granted granted Critical
Publication of KR101423256B1 publication Critical patent/KR101423256B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 일차적으로 HYVV(Honeysuckle yellow vein virus, 인동초잎맥황화바이러스)의 C4 유전자를 PCR로 합성하고, 이를 대장균(Escherichia coli) 내 과대발현 되도록 유도하여 HYVV-C4 재조합(recombinant)단백질을 생산하는 공정을 제공하는 것이다. 이차적으로 이를 분리정제한 후 면역원(immunogen)으로 실험동물에 접종한 후, 다클론항체(polyclonal antibody)를 제조하기 위한 목적으로 공정을 제공하는 것이다. HYVV-C4단백질은 바이러스-숙주 상호작용에 다양한 역할을 한다고 알려져 있기 때문에, C4단백질의 항체를 제조하여 생산하면 생물학적, 분자유전학적, 면역학적 연구에 널리 활용할 수 있다. 따라서, 본 공정과정을 통하여 분리정제된 C4재조합단백질에 대한 다클론항체를 생산하면 바이러스-숙주 상호작용 연구 및 바이러스 진단키트 개발에 유용하게 활용할 수 있다.The present invention primarily relates to a process for producing HYVV-C4 recombinant protein by synthesizing C4 gene of Honeysuckle yellow vein virus (HYVV) and inducing it to overexpress in Escherichia coli . Secondly, it is separated and purified, then inoculated into an experimental animal with an immunogen, and then provided for the purpose of producing a polyclonal antibody. Since the HYVV-C4 protein is known to play a variety of roles in viral-host interactions, production and production of antibodies to the C4 protein can be widely used in biological, molecular, and immunological studies. Therefore, production of polyclonal antibodies to C4 purified recombinant proteins through this process can be useful for virus-host interaction studies and virus diagnostic kits.

Description

인동초잎맥황화바이러스 씨4유전자의 대장균내 발현 및 씨4재조합단백질에 대한 다클론항체 생산법{Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein}(Expression of Honeysuckle yellow vein virus (HYVV) -C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein}

본 발명은 HYVV(Honeysuckle yellow vein virus, 인동초잎맥황화바이러스)의 C4 유전자를 대장균(Escherichia coli) 내 발현을 유도하고 재조합(recombinant) C4단백질을 생산하여 이를 분리정제한 후, 이를 면역원(immunogen)으로 이용하여 실험동물에 접종한 후 다클론항체(polyclonal antibody)를 생산하기 위한 목적으로 공정을 제공하는 것이다.
The present invention relates to a method for inducing the expression of C4 gene of HYVV (Honeysuckle yellow vein virus) in Escherichia coli, producing recombinant C4 protein, isolating and purifying it, and then immunizing it with an immunogen And to provide a process for producing a polyclonal antibody after inoculation into an experimental animal.

최근 수년 동안 국내 여러 지역의 토마토 시설하우스에서 제미나이비러디과(Geminiviridae family), 베고모바이러스속(Begomovirus genus)으로 분류되고 있는 바이러스의 발병이 급속도로 확산되어 국내 토마토 농가에 심각한 경제적 손실을 초래하고 있다. 그 중에서 HYVV 및 TYLCV(Tomato yellow leaf curl virus)는 단일가닥 DNA로 구성된 단분절(monopartite) 지놈(genome)을 가진 베고모바이러스로서 담배가루이(Bemisia tabaci)에 의해 매개되어 전세계에 널리 분포되어 있다. 국내에서도 HYVV 및 TYLCV는 2008년도부터 전국적으로 확산되어 토마토 시설농가에 큰 피해를 주고 있으며, 다양한 유전적 변이종(isolate)이 단기간 내에 발생하여 빈번하게 보고되고 있으며 [Wang et al., 2011, Eur. J. Plant Pathol. 129:361-370; Kim et al., 2011, Virus Genes 42:117-127].
In recent years, the onset of viruses classified as Geminiviridae family and Begomovirus genus in tomato plant houses in various regions in Korea has been rapidly spreading, resulting in serious economic loss to domestic tomato farms have. Among them, HYVV and TYLCV (Tomato yellow leaf curl virus) are beemo viruses with a monopartite genome consisting of single-stranded DNA, and tobacco is widely distributed throughout the world as mediated by Rui (Bemisia tabaci) . In Korea, HYVV and TYLCV have been spreading nationwide since 2008, causing damage to tomato plant farms and various genetic isolates have been reported in a short time [Wang et al., 2011, Eur. J. Plant Pathol. 129: 361-370; Kim et al., 2011, Virus Genes 42: 117-127].

상기에 명시한 2종의 바이러스는 숙주범위가 좁고 상당히 중복되어 있으며, 특히 토마토에 나타나는 병징은 매우 유사하다. 현재까지 2종 바이러스가 동일한 포장이나 동일한 식물에서 동시에 발생한 보고는 없으나 만일 발생한다면 바이러스 복합체로부터 분류동정하는 것이 쉽지 않을 것이다.
The two viruses listed above have a narrow host range and are quite redundant, especially the symptoms that appear in tomatoes are very similar. To date, no two viruses have been reported in the same package or in the same plant at the same time.

HYVV는 일본에서 인동초(일반명: honeysuckle, 학명: Lonicera japonica)로부터 처음 보고되었다 [Osaki et al., 1979, Ann. Phytopathol. Soc. Jpn. 45:62-69]. 그 후 영국에서HYVV-[UK1](NC005807)과 HYVV-[UK2](AJ543429) 지놈의 염기서열이 보고되었고, 일본에서 HYVV-[Masuda](AB236325)과 HYVV-[Fukui](AB236321) 지놈의 염기서열이 보고되었다 [Ueda et al., 2008, Archives of Virology 153, 417-426]. 국내에서는 β satellite가 존재하지 않는 HYVV-[Jeju](FJ434943, 2763 nucleotide)와 HYVV-[DJ] (HQ189431, 2764 nucleotides)가 토마토로부터 보고되었으며 [Wang et al., 2011], 또한 β satellite(GQ495268, 1227 nucleotides)가 존재하는 HYVV-[Kr](GQ477135, 2763 nucleotides)도 인동초로부터 보고되었다 [Lee et al., 2011, Arch. Virol. 156:785-791]. 염기서열 동질성과 계통도에 근거하면 HYVV-[Jeju]와 HYVV-[DJ]는 각각 일본계 HYVV-[Masuda]와 89.4 및 92.8% 염기서열 동질성을 가지고 있으며, HYVV-[Kr]은 HYVV-[UK2]와 같은 계통으로 분류된다.
HYVV was first reported in Japan from honeydew (Honeysuckle, scientific name: Lonicera japonica) [Osaki et al., 1979, Ann. Phytopathol. Soc. Jpn. 45: 62-69). After that, the nucleotide sequences of HYVV- [UK1] (NC005807) and HYVV- [UK2] (AJ543429) were reported in the UK and in Japan, the nucleotide sequences of HYVV- [Masuda] (AB236325) and HYVV- [Fukui] (AB236321) The sequence has been reported [Ueda et al., 2008, Archives of Virology 153, 417-426]. In Korea, HYVV- [Jeju] (FJ434943, 2763 nucleotides) and HYVV- [DJ] (HQ189431, 2764 nucleotides) were reported from tomato [Wang et al., 2011] and β satellite (GQ495268 HYVV- [Kr] (GQ477135, 2763 nucleotides) in which 1227 nucleotides are present [Lee et al., 2011, Arch. Virol. 156: 785-791. HYVV- [UK2] and HYVV- [DJ] have 89.4 and 92.8% homology with Japanese HYVV- [Masuda] respectively, and HYVV- [Kr] And the like.

베고모바이러스는 숙주식물에 감염한 후 그 지놈에 코딩한 C4유전자가 발현하여 C4단백질을 합성한다. 단분절(monopartite) 지놈을 가진 베고모바이러스의 C4단백질은 바이러스 DNA 뿐만 아니라 다양한 종류의 단일가닥(single strand) 및 이중가닥(double strand) DNA 및 RNA에 비특이적(non specific)으로 잘 결합하는 것으로 널리 알려져 있다 [Teng et al., 2010, PLoS ONE 5(6):e11280; Amin et al., 2011, Mol. plant Microbe Interact. 24:973-983].
Begomoviruses infect host plants and express the C4 gene encoded in the genome to synthesize C4 protein. The C4 protein of the bee monkey virus with the monopartite genome is known to bind not only viral DNA but also a variety of single strand and double strand DNA and RNA in a non-specific manner [Teng et al., 2010, PLoS ONE 5 (6): e11280; Amin et al., 2011, Mol. plant Microbe Interact. 24: 973-983).

또한, 다른 종의 베고모바이러스인 Tomato leaf curl virus(ToLCV)-C4단백질은 PTGS의 억제자로서 역할이 알려져 있을 뿐만 아니라 숙주의 shaggy-like kinase (SISK)와 상호작용한다고 알려져 있다 [Dogra et al., 2009, Plant Mol. Biol. 71:2538]. 한편, 이분절 지놈 베고모바이러스인 African cassava mosaic virus (ACMV)와 Sri Lankan cassava mosaic virus(SLCMV)의 AC4단백질도 단분절 지놈 베고모바이러스의 C4와 마찬가지로 miRNA 및 siRNA와 결합함으로써 PTGS 억제자로서의 역할을 한다고 알려져 있다 [Vanitharani et al., 2004, J. Gen. Virol. 89: 2063-2074; Chellappan et al., 2005, Proc. Natl. Acad. Sci. USA 102:1038110386]. In addition, Tomato leaf curl virus (ToLCV) -C4 protein, another beemo virus, is known to act as an inhibitor of PTGS and is also known to interact with host shaggy-like kinase (SISK) [Dogra et al , 2009, Plant Mol. Biol. 71: 2538]. On the other hand, the segmented genome chopping parent virus, African cassava mosaic virus (ACMV) and Sri Lankan cassava The AC4 protein of the mosaic virus (SLCMV) is also known to act as a PTGS inhibitor by binding to miRNAs and siRNAs as well as C4 of the monoclonal genomic bee viral virus [Vanitharani et al., 2004, J. Gen. Virol. 89: 2063-2074; Chellappan et al., 2005, Proc. Natl. Acad. Sci. USA 102: 1038110386].

상기에 서술한 바와 같이 베고모바이러스의 C4단백질은 바이러스-숙주 상호작용에 다양한 역할을 하는 것으로 알려져 있다. 따라서, C4단백질의 생물학적, 분자유전학적, 면역학적 연구가 필요하다.
As described above, the C4 protein of beemo virus is known to play various roles in virus-host interaction. Therefore, biological, molecular, and immunological studies of C4 proteins are needed.

상기와 같은 필요성을 해결하기 위해서, 본 발명에서는 단분절 베고모바이러스인 HYVV의 C4 재조합단백질을 생산하는 방법과 이에 대한 항체를 제조하는 방법이 절대적으로 필요하다. 이하 본 발명의 해결 수단을 더 상세히 설명한다.
In order to solve the above-mentioned necessity, it is absolutely necessary to produce a C4 recombinant protein of HYVV, a monosaccharide bee viral virus, and a method of producing an antibody thereto. Hereinafter, the solution of the present invention will be described in more detail.

상기와 같은 목적을 달성하기 위해서, 본 발명에서는 HYVV-C4유전자를 PCR을 통하여 증폭하고 이를 pET28a 벡터에 클로닝(cloning)한 후 대장균에 형질전환(transformation)시켰다. 형질전환된 대장균(E. coli) 콜로니(colony)를 선발하여 배양한 후 재조합단백질을 발현시키기 위해 다양한 농도의 IPTG를 첨가하여 최적조건을 결정하였다. HYVV-C4에 대한 항체를 제조하기 위해 재조합단백질을 분리정제를 시도하였다. 이를 위해 변성조건에서 Ni-NTA resin 크로마토그래피(chromatography)를 실시하여 HYVV-C4-6X His 융합단백질(fusion protein)을 용리(elution)하였다. 상기와 같은 방법으로 획득된 HYVV-C4 재조합단백질은 실험동물용 쥐에 3회 주사하여 채혈한 후 항혈청(antiserum)을 분리하고 이로부터 면역글로블린(immunoglobulin G; IgG)을 순수 분리정제하여 다클론항체를 획득하였다.
In order to achieve the above object, in the present invention, the HYVV-C4 gene was amplified by PCR, cloned into a pET28a vector, and then transformed into Escherichia coli. E. coli colony transformants were selected and cultured. Optimum conditions were determined by adding various concentrations of IPTG to express the recombinant proteins. The recombinant proteins were separated and purified to prepare antibodies against HYVV-C4. For this, HYVV-C4-6X His fusion protein was eluted by Ni-NTA resin chromatography under denaturing conditions. The HYVV-C4 recombinant protein obtained by the above method was injected into an animal rat three times to collect an antiserum, and purified and purified immunoglobulin G (IgG) .

본 과제에서는 HYVV에 감염된 식물에서 바이러스를 탐색하고 상호작용 연구에 보편적으로 활용되는 항체의 생산공정을 제공하여 바이러스 진단키트 개발 및 바이러스-숙주 상호작용 연구에 유용하게 사용할 수 있다. 이하 본 발명의 구체적 방법을 실시예를 들어 상세히 설명한다. 그러나 본 발명의 권리범위는 하기 실시예에 한정되는 것은 아니다.
This task can be used to develop a virus diagnostic kit and to study virus-host interaction by providing the production process of antibody that is commonly used to search for viruses in plants infected with HYVV and to study interaction. Hereinafter, specific methods of the present invention will be described in detail with reference to examples. However, the scope of the present invention is not limited to the following examples.

도1(좌)는 표적유전자 DNA를 삽입하여 표적단백질을 생산하기 위해 이용되는 pET-28a 벡터의 지도이다 (좌). 도1(우)는 pET-28a 벡터의 크기를 확인하기 위하여 전기영동을 실시한 후 ethidium bromide로 염색한 아가로스젤(agarose gel)
도2는 HYVV-C4 유전자를 PCR 반응을 통해 증폭한 후 크기를 확인하기 위하여 전기영동을 실시한 후 ethidium bromide로 염색한 아가로스젤(agarose gel)
도3은 제한효소 EcoRI과 SalI으로 절단한 pET-28a 벡터 DNA(lane1)와 동일한 제한효소로 절단한 증폭된 표적유전자 C4(lane 2)
도4는 벡터내로 표적유전자를 삽입한 재조합벡터 pET-HYVV-C4
도5는 제한효소 절단을 통해서 표적유전자가 재조합벡터 pET-HYVV-C4내에 존재하는 가를 확인함
도6은 PCR 합성을 통해서 표적유전자가 재조합벡터 pET-HYVV-C4내에 존재하는 가를 확인함
도7은 HYVV-C4 단백질 발현을 유도하기 위해 배지에 다양한 농도의 IPTG를 처리한 후 37℃에서 4시간 배양함 (lanes 1-5: 대장균 용해물의 수용성 분획, lanes 6-7: 대장균 용해물의 불용성 분획)
도8은 변성조건에서 Ni-NTA resin 크로마토그라피(chromatography)를 통해서 HYVV-C4 재조합단백질 분리정제함
도9는 HYVV-C4 재조합단백질에 대한 쥐의 항혈청을 생산한 후 다양한 농도의 HYVV-C4 및 TYLCV-C4 재조합단백질에 대한 교차반응(cross-reactivity)을 웨스턴블롯(Western blot)을 통해 검정함. M: protein ladder, lanes 1-4 HYVV-C4 재조합단백질 (10, 5, 1, 0.5㎍), lanes 5-8 TYLCV-C4 재조합단백질 (10, 5, 1, 0.5㎍)
도10은 HYVV-C4 재조합단백질에 대한 항혈청으로부터 분리정제한 IgG의 SDS-PAGE. Lanes 1: 정상쥐 혈청, lanes 2-5: rat HYVV-C4 antiserum
도 11은 쥐의 항혈청으로부터 분리정제한 IgG를 1차항체로 다양한 농도의 HYVV-C4 재조합단백질에 대해서 SDS-PAGE/ 웨스턴블롯(Western blot)을 실시한 결과 관찰된 교차반응(cross-reactivity). M: protein ladder, lanes 1-4: HYVV-C4 재조합단백질 (10, 5, 1, 0.5㎍)
Fig. 1 (left) is a map of the pET-28a vector used to produce the target protein by inserting the target gene DNA (left). In Fig. 1 (right), agarose gel stained with ethidium bromide was subjected to electrophoresis to confirm the size of the pET-28a vector.
FIG. 2 shows the results of amplification of HYVV-C4 gene by PCR, electrophoresis in order to confirm its size, agarose gel stained with ethidium bromide,
Fig. 3 shows the amplified target gene C4 (lane 2) cleaved with the same restriction enzyme as pET-28a vector DNA (lane1) digested with restriction enzymes EcoRI and SalI.
Fig. 4 shows the results of the transformation of the recombinant vector pET-HYVV-C4
FIG. 5 shows that the target gene is present in the recombinant vector pET-HYVV-C4 through restriction enzyme cleavage
Figure 6 confirms whether the target gene is present in the recombinant vector pET-HYVV-C4 through PCR synthesis
FIG. 7 shows the results of treatment of HYVV-C4 protein with various concentrations of IPTG, followed by incubation at 37 DEG C for 4 hours (lanes 1-5: soluble fraction of E. coli lysate, lanes 6-7: E. coli lysate Of the insoluble fraction)
FIG. 8 shows the separation and purification of HYVV-C4 recombinant protein by Ni-NTA resin chromatography under denaturing conditions
Figure 9 shows the cross-reactivity of HYVV-C4 and TYLCV-C4 recombinant proteins at various concentrations after Western blot analysis after producing rat antiserum against HYVV-C4 recombinant protein. M: protein ladder, lanes 1-4 HYVV-C4 recombinant protein (10, 5, 1, 0.5 g), lanes 5-8 TYLCV-C4 recombinant protein (10,
Fig. 10 shows SDS-PAGE of IgG separated and purified from antiserum against HYVV-C4 recombinant protein. Lanes 1: Normal rat serum, lanes 2-5: rat HYVV-C4 antiserum
FIG. 11 shows cross-reactivity observed by SDS-PAGE / Western blotting of various concentrations of HYVV-C4 recombinant protein using IgG separated and purified from mouse antiserum as a primary antibody. M: protein ladder, lanes 1-4: HYVV-C4 recombinant protein (10, 5, 1, 0.5 g)

{실시예} {Example}

1. 바이러스 및 바이러스 지놈 DNA1. Virus and virus genomic DNA

본 발명에 활용된 바이러스는 충남 당진으로부터 분리한 HYVV-[DJ](HQ189431) isolate이다. 그 지놈전체 DNA를 함유한 pGEM T-Easy [Wang et al., 2011, Eur. J. Plant Pathol. 129:361-370]를 하기에 명기된 PCR 반응의 주형으로 사용하였다.
The virus used in the present invention is HYVV- [DJ] (HQ189431) isolate isolated from Dangjin, Chungnam Province. PGEM T-Easy containing the entire DNA of the genome [Wang et al., 2011, Eur. J. Plant Pathol. 129: 361-370] was used as a template for the PCR reaction described below.

2. PCR 합성2. PCR Synthesis

(1) HYVV-C4 단백질 유전자 특이적 프라이머(primer) (1) HYVV-C4 protein gene-specific primer

PCR 증폭을 위해 다음과 같은 HYVV-C4 단백질 유전자의 특정 염기서열을 프라이머로 활용하였다. For PCR amplification, a specific base sequence of the following HYVV-C4 protein gene was used as a primer.

- forward primer: 5’-GAATTCATGGGAGCCCTCATCTCCAC-3’   - forward primer: 5'-GAATTCATGGGAGCCCTCATCTCCAC-3 '

- reverse primer: 5’-GTCGACATATAGACAACGCCGATGACTTTGATC-3’   - reverse primer: 5'-GTCGACATATAGACAACGCCGATGACTTTGATC-3 '

(2) PCR 반응 (2) PCR reaction

상기에 명시한 HYVV-[DJ] 지놈 DNA를 주형으로 PCR을 실시하였다. 50㎕ PCR 반응액은 5㎕ 10X 완충액(Dakara Bio. Inc., Japan), 10㎕ DNA(최종농도: 10ng), 4㎕ 각각 2.5mM dNTPs, 1㎕ 각각 forward 및 reverse 프라이머(50 pmol), 3-9㎕ 25mM MgCl2(최종농도: 1.5-4.5mM), 0.5㎕(1U) ExTaq 중합효소로 구성되었다. PCR 반응은 DNA를 95℃에서 2분간 1 사이클 변성(denaturation)시킨 후에, 35 사이클 연속 반응(변성: 94℃에서 1분, annealing: 56℃에서 2분, 증폭: 72℃에서 3분)을 거쳐 마지막 72℃에서 7분 동안 처리하였다.
PCR was performed using the above-described HYVV- [DJ] genomic DNA as a template. 50 μl of the PCR reaction solution contained 5 μl of 10 × buffer (Dakara Bio, Inc., Japan), 10 μl of DNA (final concentration: 10 ng), 4 μl each of 2.5 mM dNTPs, 1 μl of forward and reverse primers -9㎕ 25mM MgCl 2 (final concentration: 1.5-4.5mM), 0.5㎕ (1U) ExTaq It was composed of polymerase. The PCR reaction was carried out by denaturation of the DNA at 95 ° C for 2 minutes, followed by 35 cycles of continuous reaction (denaturation at 94 ° C for 1 minute, annealing at 56 ° C for 2 minutes, amplification at 72 ° C for 3 minutes) Lt; RTI ID = 0.0 > 72 C < / RTI >

상기에 명시한 실험 결과, MgCl2 농도에 관계없이 표적 밴드인 C4 유전자가 합성되었고 그 유전자 DNA 밴드의 크기는 294bp로 관찰되었다(도 1).
As a result of the experiment described above, MgCl 2 Regardless of the concentration, the target band, the C4 gene, was synthesized and the size of the gene DNA band was 294 bp (Fig. 1).

3. HYVV-C4 유전자 pET28a 벡터 클로닝3. HYVV-C4 gene pET28a vector cloning

(1) pET28a 벡터  (1) pET28a vector

상기 2-(2)에 제시한 PCR 반응으로 증폭한 HYVV-C4 유전자 DNA를 pET28a 벡터에 클로닝하기 위해 Novagen(Germany)으로부터 구입하였다. pET28a 벡터 모식도와 벡터의 크기는 도2에 명시하였다. The HYVV-C4 gene DNA amplified by the PCR reaction described in 2- (2) above was purchased from Novagen (Germany) for cloning into the pET28a vector. The pET28a vector diagram and vector size are shown in FIG.

(2) 클로닝 (2) Cloning

표적 유전자 클로닝을 위해 상기 3-(1)에 명시한 pET28a 벡터(도3, lane1)와 2-(2)에서 합성한 HYVV-C4 DNA(도3, lane 2)를 동일한 2가지 제한효소 EcoRI과 SalI으로 절단한 후, 1.5㎕ C4 DNA, 2㎕ pET28a 벡터, 1㎕ 10x buffer, 5㎕ 증류수, 0.5㎕ T4 DNA ligase(Fermentas, Canada)를 혼합하여 16℃에서 ligation을 실시하였다. 혼합액 중 5㎕를 대장균(XL1-Blue) 형질전환에 이용하였고, kanamycin(30㎍/㎖)을 함유한 Luria-Bertani (LB)고체배지에 대장균을 도말한 후 형질전환된 콜로니를 선발하고, 이를 LB(+kanamycin) 액체배지에 접종하여 37℃ 온도에서 배양하였다. 저속원심분리하여 상층액은 제거한 후 침전물을 수확하고 High Speed Plasmid Kit(Geneaid, Taiwan)를 이용하여 제조사의 지침에 따라서 플라스미드를 분리하고 pET-HYVV-C4라고 명명하였다(도4).
For the target gene cloning, the pET28a vector (Fig. 3, lane 1) described in 3- (1) above and the HYVV-C4 DNA (Fig. 3, lane 2) synthesized in 2- (2) were ligated with the same two restriction enzymes EcoRI and SalI , 1.5 μl of C4 DNA, 2 μl of pET28a vector, 1 μl of 10 × buffer, 5 μl of distilled water and 0.5 μl of T4 DNA ligase (Fermentas, Canada) were mixed and ligation was performed at 16 ° C. Escherichia coli was plated on Luria-Bertani (LB) solid medium containing kanamycin (30 μg / ml), and 5 μl of the mixture was used for transformation of E. coli (XL1-Blue) The transformed colonies were selected and cultured at 37 ° C inoculated into LB (+ kanamycin) liquid medium. The supernatant was removed by low-speed centrifugation, and the precipitate was harvested. The plasmid was separated according to the manufacturer's instructions using a High Speed Plasmid Kit (Geneaid, Taiwan) and named pET-HYVV-C4 (FIG.

상기와 같이 실시하여 획득된 재조합 플라스미드(pET-HYVV-C4)에 표적유전자 C4가 제대로 삽입되었는가를 검정하기 위해 pET-HYVV-C4에 제한효소 EcoRI과 SalI으로 처리한 결과 표적유전자 크기의 DNA 밴드가 확인되었고(도5), pET-HYVV-C4 DNA를 주형으로 상기 2-(1)에 명시한 프라이머를 이용하여 PCR을 실시한 결과, C4 DNA가 합성되었다(도6). 또한, pET-HYVV-C4의 염기서열을 결정하여 표적유전자가 벡터에 제대로 삽입되어 코돈 프레임(codon frame)에 문제가 없음을 확인하였다.
To examine whether the target gene C4 was properly inserted into the recombinant plasmid (pET-HYVV-C4) obtained as described above, pET-HYVV-C4 was treated with restriction enzymes EcoRI and SalI, (Fig. 5). PCR was performed using pET-HYVV-C4 DNA as a template and the primer indicated in 2- (1) above, and C4 DNA was synthesized (Fig. 6). In addition, the nucleotide sequence of pET-HYVV-C4 was determined, and it was confirmed that the target gene was properly inserted into the vector and there was no problem in the codon frame.

4. 재조합단백질 발현 4. Recombinant protein expression

(1) IPTG 발현 유도 및 분석 (1) induction and analysis of IPTG expression

HYVV-C4 유전자를 대장균 내 발현을 유도하기 위해 pET-HYVV-C4를 함유한 대장균을 LB(+kanamycin) 액체배지에 OD600nm 값이 0.6이 될 때까지 배양한 후 IPTG(Isopropyl-β-D-thio-galactoside)를 농도별로 첨가하였다. Lac operon에 의해 조절되는 protein의 발현을 위해 lactose 대신 IPTG를 0.1-5mM(최종농도) 배지에 첨가하고 37℃에서 4시간 배양한 후 최적조건을 결정하였다. 시료별로 저속원심분리를 하고 침전된 대장균을 수확하고 이를 용해완충액(lysis buffer)에 녹인 후 초음파분해를 3회(30초/1회 및 1분 간격) 실시하였다. 분해된 시료는 저속원심분리한 후 상층액과 침전물 분획으로 각각 수확하였다. 또한, 상층액에 존재하는 총단백질은 수용성 분획(soluble fraction), 침전물은 불용성 분획(insoluble fraction)이라 명명하고, 불용성분획은 1X PBS(phosphate-buffered saline, pH7.4)에 녹인 후 SDS-PAGE 분석하였다.The HYVV-C4 coli genes containing a pET-HYVV-C4 to induce the expression in E. coli on LB (+ kanamycin) broth OD 600nm And then IPTG (Isopropyl-β-D-thio-galactoside) was added at a concentration of 0.6. For the expression of proteins regulated by Lac operon, IPTG was added to 0.1-5 mM (final concentration) medium instead of lactose and incubated at 37 ° C for 4 hours before optimal conditions were determined. Samples were subjected to low-speed centrifugation and the precipitated E. coli was harvested and dissolved in a lysis buffer, followed by sonication three times (30 sec / one time and one minute). The degraded samples were harvested as supernatant and sediment fractions after low-speed centrifugation. The insoluble fraction was dissolved in 1X PBS (phosphate-buffered saline, pH 7.4), and analyzed by SDS-PAGE. The total amount of protein in the supernatant was determined as a soluble fraction and the precipitate as an insoluble fraction. Respectively.

- 용해완충액: 10mM imidazole, 300mM NaCl, 50mM NaH2PO4, pH8.0- lysis buffer: 10mM imidazole, 300mM NaCl, 50mM NaH 2 PO 4, pH8.0

(2) HYVV-C4-6X His 융합단백질 분리정제 (2) Purification of HYVV-C4-6X His fusion protein

HYVV-C4-6X His 융합단백질 분리정제는 변성조건(8M Urea)에서 Ni-NTA resin(Qiagen, USA) 크로마토그래피를 이용하여 용리하였다.Purification of HYVV-C4-6X His fusion protein was eluted using Ni-NTA resin (Qiagen, USA) chromatography under denaturing conditions (8M Urea).

- 용리완충액은 6M guanidine hydrochloride + 0.2M actic acid   The elution buffer was 6 M guanidine hydrochloride + 0.2 M actic acid

(3) SDS-PAGE 분석: 분자량 및 과대발현 조사  (3) SDS-PAGE analysis: Molecular weight and overexpression

상기와 같이 추출된 분획물 뿐만 아니라 분리정제 과정의 각 단계가 완료될 때 마다 시료를 확보하여 변성완충액을 [Laemmli, 1970, Nature 227:680-685] 첨가하고 3-5분간 가열한 후 변성된 시료를 준비된 젤에 적재하여 15% SDS-PAGE 전기영동을 실시하였다. 전기영동이 완료된 후 젤은 Coomassie blue 용액(methanol: glacial acetic acid: water, 5:1:5, v/v/v 혼합액에 0.05% Coommasie brilliant blue R-250를 용해시킴)으로 염색하여 단백질을 분석하였다.
After each step of the separation and purification process as well as the fraction thus extracted was completed, a sample was secured and the denaturation sample was heated for 3-5 minutes by adding a denaturing buffer [Laemmli, 1970, Nature 227: 680-685] Was loaded on the prepared gel and subjected to 15% SDS-PAGE electrophoresis. After the electrophoresis was completed, the gel was stained with Coomassie blue solution (methanol: glacial acetic acid: water, 5: 1: 5, 0.05% Coommasie brilliant blue R-250 dissolved in v / v / v mixture) Respectively.

상기와 같이 방법으로 SDS-PAGE 분석한 결과, HYVV-C4 재조합단백질은 불용성 분획에서 첨가된 IPTG 농도와 상관없이 과대발현(overexpression)되었고, 분자량은 약 16.3kDa으로 관찰되었다(도7). 따라서, 다단계의 세척을 통해 분리정제된 HYVV-C4 재조합단백질(도8)은 정량 후 실험동물에 주사하기 위한 항원으로 준비되었다.As a result of SDS-PAGE analysis as described above, the HYVV-C4 recombinant protein was overexpressed regardless of the IPTG concentration added in the insoluble fraction, and the molecular weight was observed to be about 16.3 kDa (FIG. 7). Thus, HYVV-C4 recombinant protein (FIG. 8) isolated and purified through multi-step washing was prepared as an antigen for injection into experimental animals after quantification.

5. 재조합단백질에 대한 항혈청 생산 및 다클론항체 정제5. Production of antiserum against recombinant protein and polyclonal antibody purification

(1) 항혈청 생산  (1) Production of antiserum

- 항원: 분리정제된 HYVV-C4 재조합단백질   - Antigen: isolated purified HYVV-C4 recombinant protein

- 실험동물 : Sprague-Dawley 쥐 (6주령) 수컷  - Animals: Sprague-Dawley rats (6 weeks old) male

- 주사 3회 (2주 간격) 및 채혈(주사 후 1주일)  - 3 injections (every 2 weeks) and blood collection (1 week after injection)

1차 주사: 재조합단백질 (농도 100㎍) + complete adjuvant → 채혈    Primary injection: Recombinant protein (100 μg concentration) + complete adjuvant → Blood collection

2차 주사: 재조합단백질 (농도 50㎍) + complete adjuvant → 채혈    Secondary injection: Recombinant protein (concentration 50 μg) + complete adjuvant → Blood collection

3차 주사: 재조합단백질 (농도 50㎍) → 채혈    Third injection: Recombinant protein (concentration 50 μg) → blood sampling

(2) 재조합 HYVV-C4단백질에 대한 항체의 항원탐색: Western blot  (2) Antigenic screening of recombinant HYVV-C4 protein for antibodies: Western blot

HYVV-C4 재조합단백질을 1X PBS 완충액으로 희석(10㎍, 5㎍, 1㎍, 0.5㎍)한 후 변성완충액을 첨가하고 3-5분간 가열한 후 변성된 시료를 준비된 젤에 적재하여 SDS-PAGE 전기영동을 실시하였다. 전기영동이 완료된 후 젤은 염색하지 않고 면역학적 분석을 위해 전기이동(electro-transfer) 방법으로 단백질을 nitrocellulose membrane(NCM)으로 이동시켰다. NCM은 비특이적 반응을 억제하기 위해 5% 무지방 분유(nonfat milk)를 1X PBS에 녹인 블로킹 용액(blocking solution)에 담그어 교반기위에서 1시간 동안 처리한 후 0.03% Tween-20이 함유된 1x PBS 완충액으로 세척하였다. 일차항체(primary antibody)는 HYVV-C4 재조합단백질에 대한 항혈청 혹은 IgG를 1X PBS로 희석(1:1,000, V/V)한 후 사용하였고, 이차 항체는 goat anti-rat alkaline phosphatase conjugate(Sigma Co., USA)를 희석 (1: 30,000, v/v)한 후 사용하였다. 일차 및 이차항체는 각각 1시간씩 반응시켰고, 각 단계 후 3회 세척하였다. 마지막으로 항원-항체반응을 육안으로 관찰하기 위해 NCM은 nitroblue tetrazoilium(NBT)/ 5-bromo-4-chloro-3-indolylphosphate(BCIP)가 함유된 발색완충액에 처리하여 발색시켰다. The HYVV-C4 recombinant protein was diluted with 1 × PBS buffer (10 μg, 5 μg, 1 μg, 0.5 μg), and the denaturation buffer was added. After heating for 3-5 minutes, the denatured sample was loaded on the prepared gel and analyzed by SDS-PAGE Electrophoresis was performed. After the electrophoresis was completed, the gel was transferred to nitrocellulose membrane (NCM) by electro-transfer method for immunological analysis without staining. In order to inhibit nonspecific reactions, NCM was immersed in a blocking solution of 5% nonfat milk dissolved in 1 × PBS, treated for 1 hour on a stirrer, and then washed with 1 × PBS buffer containing 0.03% Tween-20 And washed. Primary antibody was prepared by diluting antiserum or IgG against HYVV-C4 recombinant protein in 1X PBS (1: 1,000, V / V). The secondary antibody was a goat anti-rat alkaline phosphatase conjugate (Sigma Co.). , USA) was diluted (1: 30,000, v / v) before use. The primary and secondary antibodies were reacted for 1 hour each and washed three times after each step. Finally, to observe the antigen-antibody reaction visually, NCM was treated with color development buffer containing nitroblue tetrazoilium (NBT) / 5-bromo-4-chloro-3-indolylphosphate (BCIP).

- 발색완충액: 100 mM Tris, 100mM NaCl, 5mM MgCl2, pH 9.5
- color development buffer: 100 mM Tris, 100mM NaCl, 5mM MgCl 2, pH 9.5

상기의 명시된 방법으로 재조합단백질을 탐색한 결과, 이질적인 TYLCV-C4 재조합단백질(대조구)과 비교하여 동질적인 HYVV-C4 재조합단백질과 보다 강하게 반응하였다. 그리고 HYVV-C4 항혈청 탐색의 한계는 HYVV-C4 재조합단백질 항원 1㎍까지 가능하였다(도9)As a result of searching for the recombinant protein by the above-mentioned method, it reacted more strongly with the homologous HYVV-C4 recombinant protein as compared with heterogeneous TYLCV-C4 recombinant protein (control). The limits of the HYVV-C4 antiserum search were up to 1 μg of HYVV-C4 recombinant protein antigen (Figure 9)

(3) 다클론항체 IgG 분리정제 (3) Purification of polyclonal antibody IgG

항혈청으로부터 TYLCV-C4-IgG를 분리정제하기 위하여 Millipore사로부터 Montage Antibody Purification Kit 및 Prosep-G media를 구입하여 제조사의 지침에 따라 다음과 같이 시도하였다. 먼저 항혈청을 PROSEP-G media를 이용하여 10㎖ 부착완충액(binding buffer)A와 평형화(equlibration)한 후, 0.22㎛ Sterflip-GP 장치를 이용하여 항혈청에 존재하는 불순물을 제거하였다. 여과된 항혈청은 부착완충액A으로 희석(1:1, v/v)하여 spin column에 적재하고 150g에서 20분 동안 원심분리하였다. spin column에서 탈부착된 불순물을 제거하기 위해 10㎖ 부착완충액(binding buffer)A를 첨가한 후 200g에서 2분 동안 원심분리하였고, 부착된 IgG는 10㎖ 용리완충액B2로 용리한 후, pH를 중성으로 유지시키기 위해서 1.3㎖ 중화완충액C가 들어있는 새로운 spin column으로 옮겼다. 5분 동안 500g에서 원심분리 후 IgG를 함유한 상층액을 모아 Amicon Ultra-15 centrifugal filter 장치를 이용하여 탈염(desalting) 및 농축하였다. In order to isolate and purify TYLCV-C4-IgG from the antiserum, Montage Antibody Purification Kit and Prosep-G media were purchased from Millipore and tried as follows according to the manufacturer's instructions. First, the antiserum was equilibrated with 10 ml of binding buffer A using PROSEP-G media, and impurities in the antiserum were removed using a 0.22 μm Sterflip-GP apparatus. The filtered antiserum was diluted (1: 1, v / v) with attachment buffer A, loaded on a spin column, and centrifuged at 150 g for 20 min. In order to remove the detached impurities from the spin column, 10 ml of binding buffer A was added, followed by centrifugation at 200 g for 2 minutes. The attached IgG was eluted with 10 ml of elution buffer B2, And transferred to a new spin column containing 1.3 ml of neutralization buffer C to keep it. After centrifugation at 500 g for 5 min, the supernatant containing IgG was collected and desalted and concentrated using an Amicon Ultra-15 centrifugal filter device.

- 부착완충액A: 1.5M glycine-NaOH, 3M NaCl, 0.1% sodium azide, pH 9.0  - Adhesion buffer A: 1.5 M glycine-NaOH, 3 M NaCl, 0.1% sodium azide, pH 9.0

- 용리완충액B2: 0.2M glycine-HCl, 0.1% sodium azide, pH 2.5  Elution buffer B2: 0.2 M glycine-HCl, 0.1% sodium azide, pH 2.5

- 중화완충액C: 1M Tris-HCl, 0.1% sodium azide, pH 9.0
- Neutralizing buffer C: 1 M Tris-HCl, 0.1% sodium azide, pH 9.0

상기의 명시된 방법으로 항혈청으로부터 IgG를 분리하여(도10) 동질적인 HYVV-C4 재조합단백질을 탐색한 결과, 항혈청보다는 IgG가 항원과 보다 강하고 선명하게 반응하였다. 그리고 TYLCV-C4 항혈청 탐색의 한계는 항원 0.5㎍까지 가능하였다(도11).IgG was isolated from the antiserum by the above-described method (FIG. 10). As a result, homologous HYVV-C4 recombinant protein was detected and IgG was more strongly and vigorously reacted with the antigen than antiserum. The limit of the TYLCV-C4 antiserum search was possible up to 0.5 μg of antigen (FIG. 11).

상기의 결과에서 고안된 HYVV-C4 재조합단백질에 대한 다클론항체 생산은 바이러스-숙주 상호작용 연구 및 HYVV 감염식물로부터 바이러스를 판별하는데 적용할 수 있다.
The production of polyclonal antibodies to the HYVV-C4 recombinant proteins devised from the above results can be applied to virus-host interaction studies and to identify viruses from HYVV-infected plants.

삭제delete

<110> Paichai University Industry-Academic Cooperation Foundation <120> Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein <130> 13P130861 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 294 <212> DNA <213> Honeysuckle yellow vein virus(HYVV) <400> 1 tcaatataga caacgccgat gactttgatc ctgagttgat tgcctcggca tatgcgtcgt 60 tggcagactg gcaacctcct ctagctgatc ttccatcgac ttggaaaact ccagaatcaa 120 tgacgtctcc gtctttttcc atgtaggtct taacgtccga cgagctttta gctccctgaa 180 tgttcggatg gaaatgtgct gacctggatg gggatacgag atcgaagaat cgttgatttg 240 tgcatctgta ttttccctcg aattggatga ggatgtggag atgagggctc ccat 294 <210> 2 <211> 97 <212> PRT <213> Honeysuclke yellow vein virus(HYVV) <400> 2 Met Gly Ala Leu Ile Ser Thr Ser Ser Ser Asn Ser Arg Glu Asn Thr 1 5 10 15 Asp Ala Gln Ile Asn Asp Ser Ser Ile Ser Tyr Pro His Pro Gly Gln 20 25 30 His Ile Ser Ile Arg Thr Phe Arg Glu Leu Lys Ala Arg Arg Thr Leu 35 40 45 Arg Pro Thr Trp Lys Lys Thr Glu Thr Ser Leu Ile Leu Glu Phe Ser 50 55 60 Lys Ser Met Glu Asp Gln Leu Glu Glu Val Ala Ser Leu Pro Thr Thr 65 70 75 80 His Met Pro Arg Gln Ser Thr Gln Asp Gln Ser His Arg Arg Cys Leu 85 90 95 Tyr <110> Paichai University Industry-Academic Cooperation Foundation <120> Expression of Honeysuckle yellow vein virus (HYVV) -C4 gene in          Escherichia coli and production of polyclonal antibody against          the recombinant TYLCV-C4 protein <130> 13P130861 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 294 <212> DNA <213> Honeysuckle yellow vein virus (HYVV) <400> 1 tcaatataga caacgccgat gactttgatc ctgagttgat tgcctcggca tatgcgtcgt 60 tggcagactg gcaacctcct ctagctgatc ttccatcgac ttggaaaact ccagaatcaa 120 tgacgtctcc gtctttttcc atgtaggtct taacgtccga cgagctttta gctccctgaa 180 tgttcggatg gaaatgtgct gacctggatg gggatacgag atcgaagaat cgttgatttg 240 tgcatctgta ttttccctcg aattggatga ggatgtggag atgagggctc ccat 294 <210> 2 <211> 97 <212> PRT <213> Honeysuclke yellow vein virus (HYVV) <400> 2 Met Gly Ala Leu Ile Ser Thr Ser Ser Ser Ser Ser Glu Asn Thr   1 5 10 15 Asp Ala Gln Ile Asn Asp Ser Ser Ile Ser Tyr Pro His His Gly Gln              20 25 30 His Ile Ser Ile Arg Thr Phe Arg Glu Leu Lys Ala Arg Arg Thr Leu          35 40 45 Arg Pro Thr Trp Lys Lys Thr Glu Thr Ser Leu Ile Leu Glu Phe Ser      50 55 60 Lys Ser Met Glu Asp Gln Leu Glu Glu Val Ala Ser Leu Pro Thr Thr  65 70 75 80 His Met Pro Arg Gln Ser Thr Gln Asp Gln Ser His Arg Arg Cys Leu                  85 90 95 Tyr    

Claims (5)

HYVV-[DJ]의 전체 게놈을 포함하는 pGEM T-Easy 벡터를 주형으로 하여, 정방향 프라이머로 5'-GAATTCATGGGAGCCCTCATCTCCAC-3'와 역방향 프라이머로 5'-GTCGACATATAGACAACGCCGATGACTTTGATC-3' 을 이용하여 중합효소연쇄반응을 실시하는 서열번호 1의 염기서열을 갖는 HYVV-C4 DNA를 증폭하는 단계;
상기 증폭된 HYVV-C4 DNA를 EcoRI 과 SalI의 제한효소로 처리한 후, pET28a 벡터에 도입하여 플라스미드 pET-HYVV-C4를 제조하는 단계;
상기 pET-HYVV-C4로 E.coli를 형질전환시키는 단계;
상기 형질전환된 E.coli를 0.1-5 mM의 IPTG를 포함한 배지에서 35-38℃, 3-5시간 동안 배양하는 단계;
를 포함하는 서열번호 2의 아미노산 서열을 갖는 HYVV-C4 단백질의 생산방법.
PCR was performed using 5'-GAATTCATGGGAGCCCTCATCTCCAC-3 'as a forward primer and 5'-GTCGACATATAGACAACGCCGATGACTTTGATC-3' as a reverse primer, using the pGEM T-Easy vector containing the entire genome of HYVV- [DJ] Having the nucleotide sequence of SEQ ID NO: 1 Amplifying HYVV-C4 DNA;
Preparing a plasmid pET-HYVV-C4 by treating the amplified HYVV-C4 DNA with a restriction enzyme of EcoRI and SalI and then introducing it into a pET28a vector;
Transforming E. coli with pET-HYVV-C4;
Culturing the transformed E. coli at 35-38 DEG C for 3-5 hours in a medium containing 0.1-5 mM IPTG;
Having the amino acid sequence of SEQ ID NO: 2 Production method of HYVV-C4 protein.
제 1항에 따라 HYVV-C4 단백질을 생산하는 단계;
상기 생산된 HYVV-C4 단백질을 크로마토그래피를 이용하여 정제하는 단계;
상기 정제된 HYVV-C4 단백질을 마우스에 주입하여 항혈청을 생산하는 단계;
상기 생산된 항혈청에서 다클론 항체를 분리 정제하는 단계;
를 포함하는 HYVV-C4 에 대한 다클론 항체의 제조방법.
Producing a HYVV-C4 protein according to claim 1;
Purifying the produced HYVV-C4 protein using chromatography;
Injecting the purified HYVV-C4 protein into a mouse to produce antiserum;
Separating and purifying the polyclonal antibody in the produced antiserum;
Lt; RTI ID = 0.0 &gt; HYVV-C4. &Lt; / RTI &gt;
삭제delete 삭제delete 삭제delete
KR1020110120636A 2011-11-18 2011-11-18 Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein KR101423256B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110120636A KR101423256B1 (en) 2011-11-18 2011-11-18 Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110120636A KR101423256B1 (en) 2011-11-18 2011-11-18 Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein

Publications (2)

Publication Number Publication Date
KR20110131160A KR20110131160A (en) 2011-12-06
KR101423256B1 true KR101423256B1 (en) 2014-07-30

Family

ID=45499686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110120636A KR101423256B1 (en) 2011-11-18 2011-11-18 Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein

Country Status (1)

Country Link
KR (1) KR101423256B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430805B1 (en) * 2012-05-03 2014-08-14 성균관대학교산학협력단 Viral genome sequences of Tomato yellow leaf curl virus Korea isolate DNA-A and Honeysuckle yellow vein mosaic virus Korea isolate beta-satellite DNA and infection systems to plants using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hazem Sawalha. 2nd Conference on Biotechnology Research and Applications in Palestine, 페이지 92 (2010) *
Hazem Sawalha. 2nd Conference on Biotechnology Research and Applications in Palestine, 페이지 92 (2010)*
Yuan Wang 등. Eur J Plant Pathol. Vol. 129, No. 3, 페이지 361-370 Published online 2010.12.23) *
Yuan Wang 등. Eur J Plant Pathol. Vol. 129, No. 3, 페이지 361-370 Published online 2010.12.23)*

Also Published As

Publication number Publication date
KR20110131160A (en) 2011-12-06

Similar Documents

Publication Publication Date Title
CN110951756B (en) Nucleic acid sequence for expressing SARS-CoV-2 virus antigen peptide and its application
US10766949B2 (en) Method for preparing whole bovine-derived broadly neutralizing antibody against serotype O foot-and-mouth disease virus
KR101423260B1 (en) Expression of Tomato yellow leaf curl virus(TYLCV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein
CN113999861B (en) Preparation method and application of polyclonal antibody of adeno-associated virus capsid protein conservation region
CA2745620C (en) Transformed soybean plant which accumulates vaccine, and use thereof
CN113502276B (en) Application of isocitrate dehydrogenase in improving formaldehyde absorption and metabolism capacity of plants
KR101423256B1 (en) Expression of Honeysuckle yellow vein virus(HYVV)-C4 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C4 protein
CN113527474A (en) Monoclonal antibody for resisting new coronavirus N protein and application thereof
CN116063419B (en) Plant immune activating protein PmSCR1 and application thereof
CN106701687B (en) Hybridoma cell strain and rabies virus phosphoprotein monoclonal antibody generated by same
CN113929755B (en) Plant immune activating protein secreted by downy mildew of grape, primer and application
de Andrade et al. Practical use of tobravirus-based vector to produce SARS-CoV-2 antigens in plants
CN110204615B (en) Toxoplasma gondii ubiquitin activating enzyme 1 (TgUba 1) polyclonal antibody and preparation method and application thereof
KR101406740B1 (en) Expression of Tomato yellow leaf curl virus(TYLCV)-C2 gene in Escherichia coli and production of polyclonal antibody against the recombinant TYLCV-C2 protein
KR20170013174A (en) Method for producing Polyclonal antibody against recombinant protein of mistletoe lectin B chain
CN112458063B (en) Monoclonal antibody hybridoma cell strain for resisting chicken SAMHD1 protein, monoclonal antibody and application thereof
Nguyen et al. Expression and purification of thioredoxin-his 6-ZmDREB2. 7 fusion protein in Escherichia coli for raising antibodies
KR20170013181A (en) Method for producing Polyclonal antibody against recombinant protein of mistletoe lectin A chain
Kiefer et al. Production and secretion of functional full-length SARS-CoV-2 spike protein in Chlamydomonas reinhardtii
CN116925226B (en) anti-MSLN antibodies, methods and uses
CN110872355B (en) Anti-amantadine AMD single-chain antibody scFv and preparation method and application thereof
JP6962541B2 (en) DNA that has the function of increasing protein expression, and mutant hygromycin B phosphotransferase
Nguyen et al. Expression and purification of thioredoxin-his
CN115925915A (en) Monoclonal antibody A5 of Talaromyces marneffei colp6 and preparation method and application thereof
CN117624374A (en) High pathogenicity coronavirus receptor binding domain heteromultimeric proteins and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170605

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180524

Year of fee payment: 5