KR101417869B1 - Contrast agent coated with phosphate-polymer and method for preparing the same - Google Patents

Contrast agent coated with phosphate-polymer and method for preparing the same Download PDF

Info

Publication number
KR101417869B1
KR101417869B1 KR1020120036332A KR20120036332A KR101417869B1 KR 101417869 B1 KR101417869 B1 KR 101417869B1 KR 1020120036332 A KR1020120036332 A KR 1020120036332A KR 20120036332 A KR20120036332 A KR 20120036332A KR 101417869 B1 KR101417869 B1 KR 101417869B1
Authority
KR
South Korea
Prior art keywords
polymer
phosphate
iron oxide
contrast agent
oxide nanoparticles
Prior art date
Application number
KR1020120036332A
Other languages
Korean (ko)
Other versions
KR20130113822A (en
Inventor
채규윤
치충 록
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Priority to KR1020120036332A priority Critical patent/KR101417869B1/en
Publication of KR20130113822A publication Critical patent/KR20130113822A/en
Application granted granted Critical
Publication of KR101417869B1 publication Critical patent/KR101417869B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1842Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a phosphate or a phosphonate, not being a phospholipid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제 및 이의 제조방법에 관한 것이다. 본 발명의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 체내 안정성 및 생체 적합성이 뛰어나며, 안정적으로 모든 장기를 조영할 수 있으며, 특히 그동안 조영이 매우 어려웠던 림프절까지 조영할 수 있다. The present invention relates to a contrast agent comprising iron oxide nanoparticles coated with a phosphate-bonded polymer and a method for producing the same. The iron oxide nanoparticles coated with the phosphate-bonded polymer of the present invention are excellent in stability in the body and biocompatibility, can stably display all organs, and particularly can display lymph nodes which have been difficult to visualize in the meantime.

Description

인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제 및 이의 제조방법 {Contrast agent coated with phosphate-polymer and method for preparing the same}TECHNICAL FIELD The present invention relates to a contrast agent coated with a phosphate-coated polymer and a method for preparing the same,

본 발명은 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제 및 이의 제조방법에 관한 것이다.
The present invention relates to a contrast agent comprising iron oxide nanoparticles coated with a phosphate-bonded polymer and a method for producing the same.

대표적인 단층 촬영 영상 기술인 자기공명 영상은 비침습적으로 3차원 영상을 얻을 수 있는 방법으로, 대조도와 공간 해상도(spatial resolution)가 뛰어나 질병의 진단을 위해 널리 사용되고 있다. Magnetic resonance imaging (MRI), which is a typical CT imaging technique, is a non-invasive method for acquiring 3D images, and is widely used for diagnosing diseases because of its excellent contrast and spatial resolution.

MRI는 양성자에서 나오는 신호를 측정하여 나타낸 것으로, 인체에 비침습적인 방법으로 진단하였으나, MRI를 위한 조영제(contrast agent)를 사용하면 진단의 민감도와 특이도를 증가시킬 수 있음이 밝혀진 이후, 최근에는 MRI 혈관 조영술, 관류영상에 이르기까지 MRI 조영제의 적용영역이 확대되고 있다.MRI is a measure of the signal from a proton that has been diagnosed by a noninvasive method in the human body. However, since it has been shown that using a contrast agent for MRI can increase the sensitivity and specificity of the diagnosis, MRI angiography and perfusion imaging have been expanding the scope of application of MRI contrast agents.

MRI 조영제는 생체 내 주입(injection) 후 강력한 외부 자기장과 고주파 에너지에 의해 발생하는 T1, T2 완화시간(relaxation time)의 변화에서 오는 차이를 감지하여 정상 조직과 비정상 조직의 대조도를 증강시킴으로써 국소부위의 해부학적 혹은 기능적 영역에 대한 영상화를 가능케 하는 화학 물질로, 일반적으로 MRI 조영제는 상자성(paramagnetic) 조영제와 초상자성 조영제로 구분된다 (Eur. Radiol. 11: 2319, 2001).MRI contrast agents enhance the contrast between normal and abnormal tissues by sensing the difference in the changes in T1 and T2 relaxation time caused by strong external magnetic field and high frequency energy after in vivo injection, (MRI) is a chemical that allows imaging of anatomical or functional areas of the brain, usually a paramagnetic contrast agent and a superficial contrast agent (Eur. Radiol. 11: 2319, 2001).

상자성 조영제는 T1 강조 영상에서 증강된(밝은) 신호를 나타내기 때문에 양성(positive) 조영제로도 불리며, 가돌리늄(Gd), 망간(Mn) 등의 상자성 전이금속 이온을 이용하여 제조된다. 이러한 상자성 조영제는 이온 자체의 독성이 강하기 때문에 저분자인 DTPA(diethylene triamine pentaacetic acid), DOTA(1,4,7,10-tetraazacyclododecane N,N',N'',N'''-tetraacetic acid) 등의 착화합제나 착화합이 가능한 기능그룹(예: 카르복실기)이 달려있는 생체 친화적인 고분자와의 착화합물 형태로 구현된다. 상자성 조영제는 T1 완화시간 및 T2 완화시간을 줄일 수 있어 T1 조영제 및 T2 조영제 모두로 사용이 가능하다 (Nano Lett. 6: 2427, 2006; Acad. Radiol. 9: S20, 2002). 상자성 조영제는 주로 T1 조영제로 사용되며, 이들의 조영증강 효과는 주로 물 분자와 수화(hydration)하여 T1 완화 시간을 짧게 하는 내구(inner sphere) 기여로 발생하며 일부는 물 분자가 확산에 의해 조영제 스스로가 만들어 내는 자기장에 영향을 받아 자기이완 증강이 발생하는 외구(out sphere) 기여로 발생하기도 한다. 하지만 이러한 상자성 조영제는 생체 독성이 심하며 mM 수준의 영상이 가능하기 때문에 μM 수준의 고감도 영상이 가능한 초상자성 조영제에 대한 관심이 보다 높다 (Nano Lett. 6: 2427, 2006; Nat. Med. 13: 95, 2007).Paramagnetic contrast agents are also referred to as positive contrast agents because they exhibit enhanced (bright) signals on T1-weighted images and are made using paramagnetic metal ions such as gadolinium (Gd) and manganese (Mn). These paramagnetic contrast agents are low toxic, such as DTPA (diethylene triamine pentaacetic acid), DOTA (1,4,7,10-tetraazacyclododecane N, N ', N' ', N' '' - tetraacetic acid) And a biocompatible polymer having a functional group (for example, a carboxyl group) capable of being immobilized. 6, 2427, 2006; Acad. Radiol. 9: S20, 2002) can be used as both T1 and T2 contrast agents because they can reduce T1 relaxation time and T2 relaxation time. The paramagnetic contrast agent is mainly used as a T1 contrast agent and its enhancement effect is mainly caused by the contribution of the inner sphere which shortens the T1 mitigation time by hydration with water molecules and partly because the water molecule diffuses itself by the contrast agent And may be caused by the contribution of the out-sphere, which is affected by the magnetic field generated by the magnetic field, resulting in self relaxation enhancement. However, these paramagnetic contrast agents are highly biotoxic and capable of imaging at a level of mM, so they are more interested in the supernatant contrast agent capable of high sensitivity imaging at the μM level (Nano Lett., 6: 2427, 2006; , 2007).

임상에 널리 사용되는 초상자성 조영제는 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트(maghemite, Fe2O3)와 같은 산화철(superparamagnetic iron oxide, SPIO)로 대표되는 초상자성 나노입자(nanoparticle)를 기반으로 제조되며 음성(negative) 조영제로 구분된다. 이들은 수십 나노미터 이하의 크기를 갖는 균일한 입자로 제조하여 안정한 콜로이드 형태로 이루어져 있는 산화철 용액 (ferrofluid)으로 제조되어 체내로 투입된다. 초상자성 조영제를 포함하고 있는 조직은 외구 기전에 따라 주변부와의 자화율(susceptibility) 차이에서 발생하는 물 분자 내 양성자 위치에서의 국부 자기장을 왜곡시켜 양성자들이 더욱 빠르게 탈위상(dephasing)하게 만들어 T2 이완이 증강된(T2 이완 시간의 감소) 영상을 획득할 수 있다.Superparamagnetic contrast agents widely used in clinical practice are superparamagnetic nanoparticles represented by superparamagnetic iron oxide (SPIO) such as magnetite (Fe 3 O 4 ) or maghemite (Fe 2 O 3 ) And is classified as a negative contrast agent. They are made of uniform particles with a size of several tens of nanometers or less and made into a ferrofluid in a stable colloid form and put into the body. Tissue containing the supernatant contrast agent is distorted by the local magnetic field at the proton position in the water molecule caused by the susceptibility difference with the peripheral part according to the external environment, so that the proton is dephasing more rapidly, An enhancement (reduction in T2 relaxation time) image can be obtained.

초상자성 조영제는 천연 고분자인 덱스트란(dextran)이나 덱스트란의 유도체로 표면코팅이 되어 있는 것들이 상용화 되어 있으며, 이러한 덱스트란 등이 코팅된 초상자성 조영제는 일반적으로 공침법(co-precipitation method; CPM)을 통하여 제조된다 (IEEET. Magn. 17: 1247, 1981). 이를 간단히 설명하면, Fe3+/Fe2+ 이온과 저분자량의 덱스트란이 존재하는 상태에서 순간적으로 염기성 용액을 넣어주어 산화철 나노입자가 침전되게 한 후, 원심분리(centrifugation)와 겔 여과(gel filtration)를 통해 크기 선별 공정과 투석을 거쳐 최종적으로 초상자성 조영제를 제조한다 (Magnet. Reson. Med. 29: 599, 1993). 이러한 공침법에 기반한 제조 방법은 조영제의 핵심 부분인 초상자성 나노입자가 상온에서 합성되어 대체로 결정성이 낮고 다양한 크기로 분포하는 문제를 갖고 있다. 반면, 1990년대 초반 개발된 열분해법(thermal decomposition method; TDM)은 합성 이후 크기 선별 공정 없이 고결정성의 나노입자를 합성할 수 있게 해 주는 방법이다 (Angew. Chem. Int. Edit. 46: 4630, 2007; J. Am. Chem. Soc. 126: 273, 2004). 이 방법에서는, 일반적으로 Fe3 + 이온을 포함하고 있는 전구체 (precursor)를 사용하여 200℃ 이상의 고온에서 가열을 하여 초상자성 나노입자를 합성하며, 용매, 전구체, 리간드의 종류 및 양, 열분해 시의 온도변화 등과 같은 공정 변수에 따라 원하는 크기를 1 nm 수준으로 정교하게 조절할 수 있다는 장점이 있다 (Nat. Mater. 3: 891, 2004; J. Am. Chem. Soc. 124: 8204, 2002).The superficial magnetic contrast agents are commercially available that are surface coated with dextran or derivatives of dextran, which are natural polymers. The super-magnetic contrast agents coated with dextran and the like are generally used as a co-precipitation method (CPM ) (IEEET Magn. 17: 1247, 1981). Briefly, in the presence of Fe 3+ / Fe 2+ ions and low molecular weight dextran, a basic solution is added momentarily to precipitate iron oxide nanoparticles, followed by centrifugation and gel filtration (Magnet. Reson. Med. 29: 599, 1993). The manufacturing method based on this coprecipitation method has a problem that super-magnetic nanoparticles, which are a core part of the contrast agent, are synthesized at room temperature and are generally low in crystallinity and distributed in various sizes. On the other hand, the thermal decomposition method (TDM) developed in the early 1990s is a method for synthesizing highly crystalline nanoparticles without size selection process after synthesis (Angew. Chem. Int. 2007; J. Am. Chem. Soc. 126: 273, 2004). In this method, super-magnetic nano particles are synthesized by heating at a high temperature of 200 ° C. or higher using a precursor containing Fe 3 + ions in general. The kind and amount of the solvent, precursor and ligand, (Nat. Mater. 3: 891, 2004; J. Am. Chem. Soc. 124: 8204, 2002), the desired size can be precisely controlled according to process parameters such as temperature change.

열분해 방법에 의해 합성된 고감도 초상자성 나노입자가 생체 내로 주입하여 사용하는 조영제로 적합하기 위해서는 수용상에서의 분산이 매우 중요하다. 즉, 초상자성 나노입자가 효과적인 조영제로 이용되기 위해서는 높은 포화자기도를 가지면서 작고 균일한 안정된 마그네틱 산화철 용액으로 제조되어야 한다. 이 산화철 용액은 Fe3O4나 Fe2O3와 같은 마그네틱 나노입자의 콜로이드 분산용액으로 매우 강한 자기장 하에서도 액체 상태를 유지할 수 있어야 한다. 그러나, 순수한 초상자성 산화철 입자는, 소수성이면서 부피 대 표면적의 비가 크기 때문에 입자들 간에 소수성 인력(hydrophobic interaction)이 강하고 이로 인해 응집이 잘 일어나 클러스트(cluster)를 형성하고, 충분히 안정하지 않으면 본래 구조가 변해서 자기적인 특성이 변할 수 있고, 생체 환경에 노출되게 되면 빠르게 생분해가 일어날 수 있으며, 순수한 산화철 자체만으로는 독성이 있어 인체에 유해하므로 조영제로서의 이용에 제한이 따르는 문제가 있다.Dispersion in the aqueous phase is very important in order to be suitable as a contrast agent to be injected into a living body by highly sensitive superparamagnetic nanoparticles synthesized by a pyrolysis method. That is, in order to use the super-magnetic nanoparticles as an effective contrast agent, the magnetic nanoparticles should be made of a small and uniform stable magnetic iron oxide solution having a high saturation magnetism. This iron oxide solution is a colloidal dispersion solution of magnetic nanoparticles such as Fe 3 O 4 or Fe 2 O 3 and should be able to maintain a liquid state under a very strong magnetic field. However, since pure super magnetic iron oxide particles are hydrophobic and have a large ratio of volume to surface area, hydrophobic interaction is strong between the particles, which results in agglomeration and formation of clusters. If the particles are not sufficiently stable, And the biodegradation may occur rapidly. When pure iron oxide itself is toxic by itself, it is harmful to the human body, so there is a problem that it is limited to use as a contrast agent.

따라서, 이러한 문제를 개선하고 상기 초상자성 나노입자를 포함하는 산화철 용액의 안정성을 유지시키기 위해서는 입자의 표면 개질이 요구된다. 이러한 표면 개질에는 표면 리간드 치환법(exchange method)과 표면 리간드 부가법(addition method)이 널리 사용되고 있다 (J. Am. Chem. Soc. 127: 12387, 2005; Science 307: 538, 2005; Chem. Mat. 19: 3870, 2007).Therefore, in order to solve such a problem and maintain the stability of the iron oxide solution containing the super-magnetic nanoparticles, surface modification of the particles is required. The surface ligand exchange method and the surface ligand addition method are widely used for such surface modification (J. Am. Chem. Soc. 127: 12387, 2005; Science 307: 538, 2005; 19: 3870, 2007).

표면 리간드 치환법은 초상자성 나노입자 표면의 소수성 부분을 친수성 리간드로 치환하는 방법이다. 이때 사용 가능한 친수성 리간드는 카르복실기(carboxyl group)나 다이하이드로페닐기(dihydroxyphenyl group)를 포함하고 있으면 리간드 교환 후 자성체와의 안정한 결합을 유지할 수 있다. 표면 리간드의 교환을 통해 자성 나노입자가 수용상에도 안정하게 분산될 수 있게 된다.The surface ligand substitution method is a method of replacing the hydrophobic part of the surface of the superpowder nanoparticles with a hydrophilic ligand. At this time, if the hydrophilic ligand usable includes a carboxyl group or a dihydroxyphenyl group, it can maintain stable binding with the magnetic material after ligand exchange. The magnetic nanoparticles can be stably dispersed in the receiving phase through the exchange of surface ligands.

초상자성 나노입자를 수용상에 안정하게 분산시키기 위한 또 다른 방법인 표면 리간드 부가법은 소수성 나노입자를 코팅할 수 있는 양친매성 고분자를 사용하여 이루어진다. 이때 사용될 수 있는 고분자로는 폴리(비닐 알코올)(poly(vinyl alcohol)), 플루오닉(Pluonic) 계열의 상용 계면활성제뿐만 아니라 합성 양친매성 고분자도 가능하다 (Chem. Mat. 19: 3870, 2007; J.Mat. Chem. 17: 2695, 2007; J. Colloid Interf. Sci. 319: 429, 2008; Biomaterials 29: 2548, 2008; J.Magn. Magn. Mater. 317: 34, 2007; Advanced Functional Materials 18: 258, 2008; Angew. Chem. Int. Edit. 46: 8836, 2007). 섞이지 않는 수상(양친매성 고분자 포함 부분)과 유기상(소수성 초상자성 나노입자 포함 부분)을 강제로 유화시키고 그 액적의 크기를 나노 수준으로 낮춘 상태에서 유기 용매를 증발시키게 되면 수용상에 안정하게 분산된 초상자성 나노 조영제가 만들어진다.The surface ligand addition method, which is another method for stably dispersing the supernatant magnetic nanoparticles in a water phase, is carried out by using an amphipathic polymer capable of coating the hydrophobic nanoparticles. The polymer which can be used herein is not only poly (vinyl alcohol), Pluonic series commercial surfactants but also synthetic amphipathic polymers (Chem. Mat. 19: 3870, 2007; 317: 34, 2007, Advanced Functional Materials 18 (2007), J. Mol. Inter. Sci. 319: 429, 2008, Biomaterials 29: 2548, 2008, J. Magn. : 258, 2008, Angew Chem. Int. Edit. 46: 8836, 2007). When the organic solvent is evaporated by forcibly emulsifying the water phase (including the amphipathic polymer) and the organic phase (including the hydrophobic super-magnetic nanoparticles) and reducing the size of the droplet to the nano level, A super-magnetic nano-contrast agent is made.

현재까지 몇 가지의 조직 특이적 조영제들이 상용화 되어 있다. 예로, 혈관용 조영제(미국 Epix社의 MS325), 간·췌장용 조영제(미국 Advanced Magnetics社의 Ferridex 및 Combidex), 소화기관용 조영제(미국 Advanced Magnetics社의 Gastromark 와 Pharmacyclic社의 Gadolite), 종양세포용 조영제(노르웨이 Nycomed Amersham社의 Teslascan) 등이 있으나, 현재까지 림프절을 효과적으로 확인할 수 있는 MRI 조영제의 개발은 미진한 상태다. 그러나 대부분의 암이 전이에 있어 림프절 전이를 거친다는 점을 고려할 때 암의 림프절 전이 진단에 효과적인 림프절 MRI 조영제의 개발은 매우 중요하다. To date, several tissue-specific contrast agents have been commercialized. Examples include contrast media (MS325 from Epix, USA), liver and pancreas contrast media (Ferridex and Combidex from Advanced Magnetics, USA), gastrointestinal contrast agents (Gastromark from Advanced Magnetics of the US and Gadolite from Pharmacyclic) (Teslascan, Nycomed Amersham, Norway). However, the development of MRI contrast agents that can identify lymph nodes effectively is not yet clear. However, considering that most cancers undergo lymph node metastasis, the development of lymph node MRI contrast agents that are effective in the diagnosis of cancer metastasis is very important.

이에 본 발명자들은 림프절까지 조영이 가능한 새로운 조영제를 찾기 위한 연구를 계속한 결과, 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제가 림프절까지 효과적으로 조영할 수 있음을 확인함으로써 본 발명을 완성하였다.
Therefore, the present inventors continued to search for a new contrast agent capable of imaging lymph nodes, and as a result, confirmed that the contrast agent containing iron oxide nanoparticles coated with a phosphate-linked polymer can effectively enhance the lymph nodes, thereby completing the present invention Respectively.

국내특허출원번호 : 10-2009-7009975Domestic patent application number: 10-2009-7009975

본 발명의 목적은 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제를 제공하는 것이다. It is an object of the present invention to provide a contrast agent comprising iron oxide nanoparticles coated with a phosphate-bonded polymer.

본 발명의 또 다른 목적은 상기 조영제의 제조 방법을 제공하는 것이다.
It is still another object of the present invention to provide a method for producing the contrast agent.

상기 목적을 달성하기 위하여, 본 발명은 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제를 제공한다. In order to achieve the above object, the present invention provides a contrast agent comprising iron oxide nanoparticles coated with a phosphate-bonded polymer.

또한 본 발명은 상기 조영제의 제조 방법을 제공한다.
The present invention also provides a method of producing the contrast agent.

본 발명의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 체내 안정성 및 생체 적합성이 뛰어나며, 안정적으로 모든 장기를 조영할 수 있으며, 특히 그동안 조영이 매우 어려웠던 림프절까지 조영할 수 있다.
The iron oxide nanoparticles coated with the phosphate-bonded polymer of the present invention are excellent in stability in the body and biocompatibility, can stably display all organs, and particularly can display lymph nodes which have been difficult to visualize in the meantime.

도 1 은 인산염이 부착된 폴리에틸렌글리콜(PEG)의 제조 과정을 나타낸 도이다.
도 2는 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 제조 과정을 나타낸 도이다.
도 3은 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 XPS 측정 결과를 나타낸 도이다 ((a) C1s, (b) O1s, (c) P2p, (d) Fe2p).
도 4는 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 EDX 측정 결과를 나타낸 도이다.
도 5는 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 FT-IR 측정 결과를 나타낸 도이다 (인산염이 부착된 고분자로 리간드 치환이 일어나기 전(a), 후(b)).
도 6은 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 TEM 사진을 나타낸 도이다 (인산염이 부착된 고분자로 리간드 치환이 일어나기 전(a), 후(b)).
도 7은 인산염이 부착된 고분자로 코팅된 산화철 나노입자의 세포 독성을 나타낸 도이다.
도 8은 인산염이 부착된 고분자로 코팅된 산화철 나노입자를 이용하여 세포 내 MR 사진을 나타낸 도이다 ((a) T1-weighted, (b) T2-weighted).
도 9는 인산염이 부착된 고분자로 코팅된 산화철 나노입자를 이용하여 마우스의 림프절의 MR 사진을 나타낸 도이다.
Brief Description of the Drawings Fig. 1 is a diagram showing a process for producing phosphate-adhered polyethylene glycol (PEG).
FIG. 2 is a view illustrating a process for preparing iron oxide nanoparticles coated with a phosphate-adhered polymer.
FIG. 3 is a graph showing XPS measurement results of iron oxide nanoparticles coated with a phosphate-adhered polymer ((a) C1s, (b) O1s, (c) P2p, and (d) Fe2p.
4 is a graph showing the EDX measurement results of the iron oxide nanoparticles coated with the phosphate-adhered polymer.
FIG. 5 is a graph showing FT-IR measurement results of iron oxide nanoparticles coated with phosphate-adhered polymer (before and after (a) and (b) before ligand substitution with a phosphate-attached polymer).
FIG. 6 is a TEM photograph showing the iron oxide nanoparticles coated with the phosphate-adhered polymer (before and after (a) and (b) before the ligand substitution with the phosphate-attached polymer).
FIG. 7 is a graph showing cytotoxicity of iron oxide nanoparticles coated with a phosphate-adhered polymer. FIG.
FIG. 8 shows intracellular MR images using iron oxide nanoparticles coated with phosphate-adhered polymer ((a) T1-weighted, (b) T2-weighted).
FIG. 9 is an MR photograph of a lymph node of a mouse using iron oxide nanoparticles coated with a phosphate-adhered polymer. FIG.

이하 본 발명에 대하여 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에서 용어, "자기공명영상" 이란 시료에 낮은 전자기 에너지를 조사(irradiate) 후에 물 분자로부터 나온 자기공명영상 신호를 검출하는 의학 영상화 방법으로서, 혈류역학을 기반으로 하며 자기공명신호의 변화를 이용한다는 점에서, 분자과학에 기반을 두며 방사성 동위원소를 이용하는 양전자 방사 단층 촬영(PET) 과 차이가 있다.As used herein, the term "magnetic resonance imaging" refers to a medical imaging method for detecting a magnetic resonance imaging signal from a water molecule after irradiating a sample with low electromagnetic energy, which is based on hemodynamics, It differs from positron emission tomography (PET), which uses radioisotopes based on molecular sciences, in terms of its use.

본 발명에서 용어, "조영제"란 기관, 진단을 목적으로 하여 혈관 및/또는 조직이 보다 잘 보이도록 인위적으로 대조도의 차를 만들어 영상으로 나타내기 위해서 사용되는 제제를 말한다. 조영제는 연구 대상 표면의 가시도 및 대조도를 증가시킴으로써, 질환 및/또는 손상의 존재 여부 및 그 정도를 결정할 수 있다. In the present invention, the term "contrast agent" refers to an agent used for visualizing blood vessels and / or tissues by making a difference in artificial contrast so that blood vessels and / or tissues can be seen more easily. Contrast agents can determine the presence and degree of disease and / or damage by increasing the visibility and contrast of the surface under study.

상기 조영제는, 생체의 장기 진단 시 체내의 조직 근처에서 T1 또는 T2 이완 시간 (relaxation time)을 줄여서 조영 효과를 높여주는 것을 특징으로 한다. The contrast agent is characterized by enhancing the contrast effect by reducing T1 or T2 relaxation time near the tissue in the body at the time of organ diagnosis for a living body.

일 양태로서, 본 발명은 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 조영제를 제공한다. In one aspect, the present invention provides a contrast agent comprising iron oxide nanoparticles coated with a phosphate-linked polymer.

상기 조영제는 초상자성 조영제인 것을 특징으로 한다. Wherein the contrast agent is a supernatant contrast agent.

본 발명의 조영제는 생체 및 세포의 모든 부위 (예를 들어, 혈관, 간, 비장, 췌장, 소화기관, 암세포, 거식세포 등)를 조영할 수 있으며, 특히 림프절을 조영할 수 있다. The contrast agent of the present invention is capable of imaging all parts of the living body and cells (for example, blood vessels, liver, spleen, pancreas, digestive organs, cancer cells, macrophages, etc.), and particularly lymph nodes can be visualized.

상기 나노입자는 직경이 1 nm내지 1,000 nm이며, 바람직하게는 1 nm 내지 200 nm, 가장 바람직하게는 1 nm 내지 20 nm이다. 상기 나노입자의 크기가 200 nm를 초과할 경우, 조영제로서의 기능성이 떨어진다. The nanoparticles have a diameter of 1 nm to 1,000 nm, preferably 1 nm to 200 nm, and most preferably 1 nm to 20 nm. When the size of the nanoparticles exceeds 200 nm, the functionality as a contrast agent drops.

상기 고분자는 이에 제한되지 않으나, 친수성 폴리 아미노산, 친수성 비닐계열 고분자, 폴리에테르이미드 등 다양한 고분자가 활용될 수 있으며, 폴리에틸렌글리콜(Polyethyleneglycol, PEG), 폴리아크릴산(Polyacrylic acid, PAA), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리비닐알콜(Polyvinylalcohol, PVA), 젤라틴(Gelatin), 덱스트란(Dextran), 키토산(Chitosan) 및 플루란(Pullulan) 등을 포함하며, 바람직하게는 폴리에틸렌글리콜(Polyethyleneglycol, PEG)이다. Various polymers such as hydrophilic polyamino acid, hydrophilic vinyl-based polymer and polyetherimide may be used, and examples thereof include polyethyleneglycol (PEG), polyacrylic acid (PAA), polyvinylpyrrolidone Polyvinylpyrrolidone (PVP), polyvinylalcohol (PVA), gelatin, dextran, chitosan, and pullulan, and preferably polyethylene glycol (Polyethyleneglycol, PEG).

상기 고분자의 평균 분자량은 이에 제한되지 않으나, 100 Da 내지 50,000 Da일 수 있으며, 바람직하게는 200 내지 20000 Da이다. 분자량이 100 Da 미만일 경우에는 산화철을 코팅하기에 충분한 사슬 길이가 되지 못하기 때문에 응집이 일어나 균일한 입자를 얻을 수 없고, 50,000 Da 을 초과할 경우에는 고분자끼리의 응집이 일어나는 문제점이 있어 바람직하지 못하다.The average molecular weight of the polymer is not limited thereto, but may be 100 Da to 50,000 Da, and preferably 200 to 20000 Da. When the molecular weight is less than 100 Da, the chain length is not sufficient enough to coat iron oxide, so that it is difficult to obtain uniform particles due to agglomeration. When the molecular weight exceeds 50,000 Da, agglomeration of polymers occurs, which is not preferable .

상기 나노입자의 자성물질은 이에 제한되지 않으나, 망간 산화물(MnO), 망간 페라이트(MnFe2O4), 철-백금 합금(Fe-Pt alloy), 코발트-백금 합금(Co-Pt alloy) 및 코발트(Co) 등이 이용될 수 있으며, 바람직하게는 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트(maghemite, Fe2O3)와 같은 산화철(superparamagnetic iron oxide, SPIO)이다. The magnetic material of the nanoparticles is not limited thereto, but may be selected from the group consisting of MnO, MnFe 2 O 4 , Fe-Pt alloy, Co-Pt alloy, (Co), and the like, and preferably superparamagnetic iron oxide (SPIO) such as magnetite (Fe 3 O 4 ) or maghemite (Fe 2 O 3 ).

본 발명의 조영제는 상기 나노입자를 약학적으로 허용되는 담체에 포함할 수 있다. 조영제 조성물에 사용 가능한 담체로는 의약 분야에서 통상적으로 사용되는 담체 및 비히클(vehicle)을 포함하며, 예로 알루미나, 솔비톨, 덱스트란, 염, 물, 전해질 등을 들 수 있으나 이에 제한되지 않는다. 또한, 본 발명의 조영제는 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.The contrast agent of the present invention may contain the nanoparticles in a pharmaceutically acceptable carrier. Examples of the carrier that can be used in the contrast agent composition include a carrier and a vehicle commonly used in the medical field, including, but not limited to, alumina, sorbitol, dextran, salt, water, electrolyte and the like. In addition, the contrast agent of the present invention may further include a lubricant, a wetting agent, an emulsifier, a suspending agent, a preservative, etc. in addition to the above components.

본 발명에 따른 조영제는 비경구 투여를 위한 수용성 용액으로 제조할 수 있다. 바람직하게는 한스 용액(Hank’s solution), 링거 용액(Ringer’s solution) 또는 물리적으로 완충된 염수와 같은 완충용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카르복시메틸셀룰로오스, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다. 본 발명의 조영제의 다른 바람직한 양태는 수성 또는 유성 현탁액의 멸균 주사용 제제의 형태일 수 있다. 이러한 현탁액은 적합한 분산제 또는 습윤제(예를 들면, 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형화할 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매 중의 멸균 주사 용액 또는 현탁액(예를 들면, 1,3-부탄디올 중의 용액)일 수 있다. 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링거 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 비휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 비휘발성 오일을 사용할 수 있다.The contrast agent according to the present invention can be prepared as an aqueous solution for parenteral administration. Preferably, a buffer solution such as Hank's solution, Ringer's solution or physically buffered saline can be used. Aqueous injection suspensions may contain a substrate capable of increasing the viscosity of the suspension, such as sodium carboxymethylcellulose, sorbitol or dextran. Other preferred embodiments of contrast agents of the present invention may be in the form of sterile injectable preparations of aqueous or oily suspensions. Such suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents (e. G., Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent (for example, a solution in 1,3-butanediol). Vehicles and solvents that may be used include mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, nonvolatile oils are conventionally used as a solvent or suspending medium. Non-volatile oils with low irritation, including synthetic mono- or diglycerides, can be used for this purpose.

상기 본 발명에 따른 조영제 조성물을 생체 또는 시료에 투여하고, 상기 생체 또는 시료로부터 발산되는 신호를 감지하여 영상을 수득할 수 있다. 이를 통해 원하는 특정 표적 부위의 암 또는 특정 질병의 진단, 생체 신호의 메카니즘 연구 또는 줄기세포의 분화 연구 등에 적용 가능한 생체 이미징 용도로 이용 가능할 것이다.The contrast agent composition according to the present invention may be administered to a living body or a sample, and an image may be obtained by sensing a signal emitted from the living body or the sample. Thus, the present invention can be used for biomedical applications applicable to diagnosis of cancer or specific disease of a desired target site, study of mechanism of bio-signal, or study of differentiation of stem cells.

본 발명에서 용어, "투여"는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 유용한 투여량 및 특정 투여 방식은 연령, 체중 및 치료될 특정 부위 뿐만 아니라 사용되는 특정 조영제, 고려되는 진단 용도 및 제제의 형태 (예를 들어, 현탁액, 에멀젼, 마이크로스피어, 리포좀 등)와 같은 인자에 따라 달라질 것이며, 이는 당업자에게 이미 명백할 것이다. 전형적으로, 투여량은 낮은 수준으로 투여하고, 원하는 진단 효과가 달성될 때까지 증가시킨다. 영상화는 당업자에게 공지된 기술을 이용하여 수행한다. 일반적으로, 조영제의 멸균 수용액은 1 kg(체중) 당 약 0.01 내지 약 1.0 mmole의 투여량 범위 (투여량 범위의 모든 조합 및 하위 조합, 및 이에 포함되는 특정 투여량 포함)로 환자에게 투여할 수 있다.The term "administering" as used herein means introducing a given substance into a patient in any suitable manner, with useful dosages and the particular mode of administration being dependent upon the age, body weight and the particular site to be treated, Will vary depending on factors such as the nature of the drug, the diagnostic use and the form of the agent (e.g., suspension, emulsion, microsphere, liposome, etc.), as will be apparent to those skilled in the art. Typically, doses are administered at low levels and increased until the desired diagnostic effect is achieved. Imaging is performed using techniques known to those skilled in the art. Generally, a sterile aqueous solution of contrast agent can be administered to a patient in a dosage range of from about 0.01 to about 1.0 mmole per kg (body weight), including all combinations and subcombinations of the dosage range, and the particular dose included therein have.

상기 조영제를 생체 또는 시료에 주입하는 단계는 의약 분야에서 통상적으로 이용되는 경로를 통해 투여될 수 있으며, 비경구 투여가 바람직하고 예를 들어 정맥 내, 복강 내, 근육 내, 피하 또는 국부 경로를 통하여 투여할 수 있다.
The step of injecting the contrast medium into a living body or a sample can be administered through a route commonly used in the medical field, and parenteral administration is preferred, and for example, intravenous, intraperitoneal, intramuscular, subcutaneous or local route Lt; / RTI >

또 다른 양태로써, 본 발명은 (a) 고분자의 말단에 인산염을 결합시키는 단계; 및 (b) 상기 (a) 단계의 리간드 치환법을 통해 인산염이 결합된 고분자로 산화철 나노입자를 코팅하는 단계;를 포함하는 조영제의 제조방법을 제공한다. In another aspect, the present invention provides a method for preparing a polymer, comprising: (a) binding a phosphate to a terminal of a polymer; And (b) coating the iron oxide nanoparticles with the phosphate-bound polymer through the ligand replacement method of step (a).

상기 (a) 단계는 고분자의 말단에 인삼염을 결합시키는 단계로, 본 발명의 일 실시예에서는, 먼저 고분자를 유기용매에 가하고, t-부톡사이드와 에틸 브로모아세테이트를 가한 후 반응시켜, α-하이드록실-ω-카르복실 고분자를 제조한다. 그 다음으로, α-하이드록실-ω-카르복실 고분자를 POCl3와 반응시켜 고분자-인산염 화합물을 제조한다. In step (a), the ginseng salt is bound to the end of the polymer. In one embodiment of the present invention, the polymer is first added to an organic solvent, t-butoxide and ethyl bromoacetate are added, -Hydroxyl-omega-carboxyl polymer. Next, the? -Hydroxyl-? -Carboxyl polymer is reacted with POCl 3 to prepare a polymer-phosphate compound.

상기 (b) 단계는 인산염이 결합된 고분자로 산화철 나노입자를 제조하는 단계로, 표면 리간드 치환법을 이용하여 제조한다. 본 발명의 일 실시예에서는, 산화철 나노입자를 유기용매에 가하여 녹이고, 상기 (a) 단계에서 제조한 고분자-인산염을 가하여 반응시켜, 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 제조한다. 상기 방법으로 제조된 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 수용액 상에서 안정하게 분산된다. The step (b) is a step of preparing iron oxide nanoparticles from a phosphate-bound polymer, which is prepared using a surface ligand substitution method. In one embodiment of the present invention, the iron oxide nanoparticles are dissolved in an organic solvent and reacted with the polymer-phosphate prepared in the step (a) to prepare iron oxide nanoparticles coated with the phosphate-bonded polymer. The iron oxide nanoparticles coated with the phosphate-bonded polymer prepared by the above method are stably dispersed in an aqueous solution.

상기 (a) 단계 및 (b) 단계의 유기용매는 이에 제한되지 않으나, 아세톤, 디클로로메탄, 디클로로에탄, 클로로포름, 에테르, 케톤, 벤젠, 에틸 아세테이트, 메탄올, 에탄올, 헥산, 사염화탄소, 톨루엔, 자일렌, THF(tetrahydrofuran), DMF(dimethylformamide), NMP(N-methyl-2-pyrrolidone), DMSO(dimethyl sulfoxide), DME (dimethylether) 등을 포함한다.
The organic solvent in the steps (a) and (b) is not limited to the above, but includes, but is not limited to, acetone, dichloromethane, dichloroethane, chloroform, ether, ketone, benzene, ethyl acetate, methanol, ethanol, hexane, carbon tetrachloride, toluene, , Tetrahydrofuran (THF), dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), and dimethylether (DME).

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예 및 실험예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments and experimental examples are provided to facilitate understanding of the present invention. However, the following examples and experimental examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples and experimental examples.

실시예Example 1. 인산염이  1. Phosphate 결합된Combined 고분자로 코팅된 산화철 나노입자의 합성  Synthesis of polymer-coated iron oxide nanoparticles

1-1. 인산염이 1-1. Phosphate 결합된Combined 고분자의 제조 Manufacture of Polymers

인산염이 결합된 고분자의 합성 과정을 도 1에 도시하였다.
The synthesis process of the phosphate-bonded polymer is shown in FIG.

(a). α-(a). α- 하이드록실Hydroxyl -ω--ω- 카르복실Carboxyl PEGPEG 의 제조Manufacturing

25℃에서 폴리에틸렌글라이콜(PEG, Polyethylene glycol, M n=2000, 25 g, 12.5 mmol)을 톨루엔 150ml에 용해시키고 포타슘 tert-부톡사이드(potassium tert-butoxide, 1.7 g, 15 mmol)를 가하여 반응하였다. 상기 반응 용액을 40 ml의 용액이 남을 때까지 환류시키면서 증류한 후, 남은 용액을 교반하면서 실온에서 식히고, 에틸 브로모아세테이트(ethyl bromoacetate, 3.4 mL, 16 mmol)를 가하고, 하룻밤 동안 반응시켰다. 그 후 필터를 통해 침전물을 제거하고, 여과액을 차가운 에테르를 이용하여 침전시켰다. 상기 과정을 통해 수득한 물질을 1M의 NaOH 50 ml에 녹인 후, 10 g의 NaCl을 첨가하였다. 상기 혼합물을 1시간 동안 교반한 후, pH가 3.0이 되도록 산성화시키고, 디클로로메탄 (CH2Cl2, 3×100 mL)을 이용하여 추출하였다. 유기 층을 무수 황산 마그네슘 (MgSO4)으로 건조시키고, 필터한 후, 차가운 에테르로 침전시키고, 진공(in vacuo)에서 건조시켰다. 순수한 α-하이드록실-ω-카르복실 PEG (α-hydroxyl-ω-carboxyl polyethylene glycol)를 DEAE-Sephadex A-25를 이용한 이온 교환 크로마토그래피를 통해 분리하고, NMR을 통해 확인하였다 Polyethylene glycol at 25 ℃ glycol (PEG, Polyethylene glycol, M n = 2000, 25 g, 12.5 mmol) was dissolved in 150ml of toluene and potassium tert- butoxide (potassium tert -butoxide, 1.7 g, 15 mmol) was added to the reaction Respectively. The reaction solution was distilled while refluxing until 40 ml of the solution remained. The remaining solution was cooled at room temperature with stirring, ethyl bromoacetate (3.4 mL, 16 mmol) was added, and the reaction was allowed to proceed overnight. The precipitate was then removed through a filter, and the filtrate was precipitated with cold ether. The material obtained through the above procedure was dissolved in 50 ml of 1 M NaOH, and then 10 g of NaCl was added. The mixture was stirred for 1 hour, then acidified to pH 3.0 and extracted with dichloromethane (CH 2 Cl 2 , 3 x 100 mL). After drying the organic layer over anhydrous magnesium sulfate (MgSO 4) and the filter, it precipitated with cold ether, and dried in vacuo (in vacuo). Pure α-hydroxyl-ω-carboxyl polyethylene glycol (PEG) was isolated by ion exchange chromatography using DEAE-Sephadex A-25 and confirmed by NMR

[1H NMR (500 MHz, CDCl3): δ 4.12 (s, -CH2 -COOH, 2H), 3.63 (s, PEG backbone).] [1 H NMR (500 MHz, CDCl 3): δ 4.12 (s, -CH 2 - COOH, 2H), 3.63 (s, PEG backbone).]

[13C NMR (125 MHz, CDCl3): δ 171.72, 72.78, 70.51, 69.22, 61.72.]
[ 13 C NMR (125 MHz, CDCl 3):? 171.72, 72.78, 70.51, 69.22, 61.72.]

(b). (b). PEGPEG -인산염 화합물의 제조- Preparation of Phosphate Compounds

5 mmol의 α-하이드록실-ω-카르복실 PEG를 1시간 동안 진공 하에서 처리하고, 15ml의 무수 THF에 녹였다. 이를 격렬하게 교반하면서, 얼음 수조에서 POCl3 (0.6 mL, 6.35 mmol)을 한 방울씩 첨가하였다. 상기 반응을 통해 수득된 투명한 물질을 상온에서 밤새 교반하였다. 반응은 물을 첨가해주는 것을 통해 quench 되었고, 상기 물질은 클로로포름 (chloroform (3×20 mL))으로 추출하였다. 유기 층을 무수 황산 마그네슘 (MgSO4)으로 건조시키고, 필터한 후, 차가운 에테르로 침전시키고, 진공(in vacuo)에서 건조시켰다. 최종적으로 수득한 PEG-인산염 분자를 NMR을 통해 확인하였다. 5 mmol of [alpha] -Hydroxyl- [omega] -carboxyl PEG was treated under vacuum for 1 hour and dissolved in 15 ml of anhydrous THF. While vigorously stirring this, POCl 3 (0.6 mL, 6.35 mmol) was added dropwise. The transparent material obtained through the reaction was stirred at room temperature overnight. The reaction was quenched by addition of water and the material was extracted with chloroform (3 x 20 mL). After drying the organic layer over anhydrous magnesium sulfate (MgSO 4) and the filter, it precipitated with cold ether, and dried in vacuo (in vacuo). The finally obtained PEG-phosphate molecule was confirmed by NMR.

[1H NMR (500 MHz, CDCl3): δ 4.12 (s, -CH 2 -COOH, 2H), 3.63 (s, PEG backbone).] [1 H NMR (500 MHz, CDCl 3): δ 4.12 (s, -C H 2 -COOH, 2H), 3.63 (s, PEG backbone).]

[13C NMR (125 MHz, CDCl3): δ 172.20, 70.59, 68.77, 66.17, 63.80.]
[13 C NMR (125 MHz, CDCl 3): δ 172.20, 70.59, 68.77, 66.17, 63.80.]

1-2. 표면 1-2. surface 리간드Ligand 치환법을 통한 인산염이  Phosphates via displacement 결합된Combined 고분자로 코팅된 산화철 나노입자의 제조 Preparation of polymer-coated iron oxide nanoparticles

표면 리간드 치환법을 통한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 제조과정을 도 2에 도시하였다. 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 제조하기 위하여, 표면 리간드 치환법 (ligand exchange method)를 이용하였다. 보다 구체적으로는, 6nm크기의 Fe3O4 산화철 나노 입자를 제조하기 위하여, 기존에 알려져 있던 Fe(acac)3 의 열분해 및 리간드로 올레산을 쓰는 방법을 이용하여 제조하였다 (Weissleder, R. et al. Adv . Drug Delivery Rev . 1995, 16, 321., Kircher, M. F. et al. L. Cancer Res . 2003, 63, 8122., Rosler, A.; Vandermeulen, G. W. M. et al. Drug Delivery Rev. 2001, 53, 95., Huh, Y. M. et al. J. Am . Chem . Soc . 2005, 127, 12387.) 소수성에서 친수성으로 나노입자를 변환시키기 위해, 먼저 10 mg 의 Fe3O4 나노입자를 2 mL의 THF에 녹이고, 25 mg의 PEG-인산염 분자를 첨가하였다. 상기 반응물을 60 °C에서 12 시간 동안 가열한 후 THF를 제거하고, 5 mL의 물을 첨가한 다음, 이를 200 nm 실린지 필터로 여과하였다. 과량의 고분자를 제거하기 위하여 상기 생성물을 2 일간 탈염수에서 투석을 통해 정제하였고 (MW cutoff of 12 kDa), 감압 하에서 동결건조하였다. 최종적으로 수득한 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 수용액 상에서 안정하게 분산되었다.
A process for producing iron oxide nanoparticles coated with phosphate-bound polymer through surface ligand replacement is shown in FIG. To prepare iron oxide nanoparticles coated with a phosphate-bound polymer, a surface ligand exchange method was used. More specifically, Fe 3 O 4 having a size of 6 nm To prepare iron oxide nanoparticles, pyrolysis of previously known Fe (acac) 3 and oleic acid as a ligand were used (Weissleder, R. et al. Adv . Drug Delivery Rev. 1995, 16 , 321., Kircher, MF et al. L. Cancer Res . 2003, 63 , 8122., Rosler, A .; Vandermeulen, GWM et al. Drug Delivery Rev. 2001, 53 , 95. Huh, YM et al. J. Am . Chem . Soc . 2005, 127 , 12387.) To convert nanoparticles from hydrophobic to hydrophilic, first 10 mg of Fe 3 O 4 The nanoparticles were dissolved in 2 mL of THF and 25 mg of PEG-phosphate molecules were added. The reaction was heated at 60 ° C for 12 hours, then the THF was removed, 5 mL of water was added, and this was filtered through a 200 nm syringe filter. The product was purified through dialysis in demineralized water for 2 days (MW cutoff of 12 kDa) to remove excess polymer and lyophilized under reduced pressure. The finally obtained iron oxide nanoparticles coated with the phosphate-bound polymer were stably dispersed in an aqueous solution.

실험예Experimental Example 1. 인산염이  1. Phosphate 결합된Combined 고분자로 코팅된 산화철 나노입자의 특성 분석 Characterization of polymer-coated iron oxide nanoparticles

1-1. 1-1. XPSXPS 분석 analysis

상기 실시예 1에서 제조한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 표면을 분석하기 위하여, XPS (X-ray photoelectron spectroscopy) 측정기를 이용하여 분석하였다. 그 결과를 도 3에 나타내었다. The surface of the iron oxide nanoparticles coated with the phosphate-bonded polymer prepared in Example 1 was analyzed using an X-ray photoelectron spectroscopy (XPS) analyzer. The results are shown in Fig.

도 3에 나타낸 바와 같이, 6 nm크기의 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 전형적인 스펙트럼이 확인되었다. 이를 구체적으로 살펴보면, C 1s 스펙트럼 (도 3의 (a)) 결과, 285.2, 286.8 및 289.1 eV의 세 피크에서 broad shoulder가 나타났으며, 이것은 각각 C-C, C-O 및 COOH 그룹에 의한 것이다. 또한, O 1s 스펙트럼 (도 3의 (b))결과, 532.7, 531.2 및 529.8 eV에서 피크가 나타났으며, 이것은 C-O, P-O 및 메탈 옥사이드에 있는 산소에 의한 것이다. 또한, P 2p 스펙트럼 (도 3의 (c))결과, 132.5 및 133.5 eV에서 피크가 나타났으며, 이것은 P 2p3/2 및 P 2p1/2에 의한 것이다. 또한, Fe 2p 스펙트럼 (도 3의 (d)) 결과, 710 및 724 eV에서 피크가 나타났으며, 이것은 Fe-O 결합에 의한 것이고, Fe3O4의 스펙트럼의 전형적인 모습이다.
As shown in Fig. 3, a typical spectrum of iron oxide nanoparticles coated with a phosphate-bound polymer having a size of 6 nm was confirmed. Specifically, the C 1s spectrum (FIG. 3 (a)) showed a broad shoulder at the three peaks of 285.2, 286.8 and 289.1 eV, due to the CC, CO and COOH groups, respectively. The O 1s spectrum (FIG. 3 (b)) also showed peaks at 532.7, 531.2, and 529.8 eV, due to the presence of oxygen in CO, PO and metal oxides. Furthermore, it was P 2p spectra (Fig. (C) a 3) a peak is observed in the results, 132.5 and 133.5 eV, which is caused by the P 2p3 / 2 and 2p1 P / 2. In addition, as a result of the Fe 2p spectrum (Fig. 3 (d)), peaks were observed at 710 and 724 eV, which is due to the Fe-O bond and is typical of the spectrum of Fe 3 O 4 .

1-2. 1-2. EDXEDX 분석 analysis

상기 실시예 1에서 제조한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 표면을 분석하기 위하여, EDX detector (Horiba)를 갖춘 Hitachi FE-SEM을 이용하여 EDX (Energy dispersive X-ray spectroscopy)를 분석하였다. 그 결과를 도 4에 나타내었다. To analyze the surface of the iron oxide nanoparticles coated with the phosphate-bound polymer prepared in Example 1, EDX (energy dispersive X-ray spectroscopy) was analyzed using a Hitachi FE-SEM equipped with an EDX detector (Horiba) Respectively. The results are shown in Fig.

도 4에 나타낸 바와 같이, 인산염이 산화철 나노입자의 표면에 코팅된 것을 확인하였다. As shown in FIG. 4, it was confirmed that the phosphate was coated on the surface of the iron oxide nanoparticles.

1-3. 1-3. FTFT -- IRIR 분석 analysis

상기 실시예 1에서 제조한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 표면을 분석하기 위하여, FT-IR(Shimadzu IRPrestige-21)을 이용하여 분석하였다. 그 결과를 도 5에 나타내었다. The surface of the iron oxide nanoparticles coated with the phosphate-bound polymer prepared in Example 1 was analyzed using FT-IR (Shimadzu IRPrestige-21). The results are shown in Fig.

도 5에 나타낸 바와 같이, 리간드 치환 전 (도 5의 (a))과 후 (도 5의 (b))에 밴드의 차이가 있음을 확인하였다. 특히, 리간드 치환 전의 올레산으로 코팅된 산화철 나노 입자는 올레일 사슬의 대칭적인 및 비대칭적인 C-H에 의해 2852 및 2923cm-1에서 강한 흡수 밴드를 보여주었으나, 리간드 치환에 의해 인산염이 결합된 고분자로 코팅된 산화철 나노입자에서는 상기 밴드의 세기가 약해지는 것을 확인하였다. 또한, 1735 cm??1 (C=O)에서의 새로운 흡수 밴드를 통해 카르복실산 그룹이 존재하며, 이를 통해 나노입자 표면에서 리간드 치환이 이루어질 수 있음을 확인하였다.
As shown in Fig. 5, it was confirmed that there was a band difference before (Fig. 5 (a)) and after (Fig. 5 (b)) of the ligand substitution. In particular, the iron oxide nanoparticles coated with oleic acid before ligand replacement showed a strong absorption band at 2852 and 2923 cm -1 due to the symmetrical and asymmetric CH of the oleyl chain, but were coated with a phosphate-linked polymer by ligand substitution It was confirmed that the intensity of the band was weakened in the iron oxide nanoparticles. Also, 1735 cm? A new absorption band at ? 1 (C = O) indicates that the carboxylic acid group is present and that the ligand substitution can be made at the nanoparticle surface.

1-4. 1-4. TEMTEM 분석 analysis

상기 실시예 1에서 제조한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 형태를 분석하기 위하여, 100 kV에서 Hitachi H7650 TEM을 이용하여 TEM (투과전자현미경, Transmission electron microscopy) 사진을 촬영하였다. 그 결과를 도 6에 나타내었다. In order to analyze the morphology of the iron oxide nanoparticles coated with the phosphate-bonded polymer prepared in Example 1, a TEM (transmission electron microscopy) photograph was taken using a Hitachi H7650 TEM at 100 kV. The results are shown in Fig.

도 6에 나타낸 바와 같이, 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 리간드 치환 전 (도 6의 (a))과 후 (도 6의 (b))에 코어 사이즈에 현저한 변화가 없으며, 수용액 상에서 어떠한 뭉침 없이 안정하게 분산되어 있음을 확인하였다.As shown in Fig. 6, the iron oxide nanoparticles coated with the phosphate-bound polymer had no significant change in core size before (Fig. 6 (a)) and after (Fig. 6 Were dispersed stably without any aggregation.

이상의 실험 결과를 통하여, 실시예 1의 제조방법에 의해 산화철 나노입자에 인산염이 결합된 고분자가 효율적으로 코팅되었으며, 상기 산화철 나노입자는 6nm의 미세하고 균일한 크기로 수용액 상에서 고르게 분산되어 있음을 확인하였다.
From the above experimental results, it was confirmed that the phosphate-bonded polymer was efficiently coated on the iron oxide nanoparticles by the manufacturing method of Example 1, and that the iron oxide nanoparticles were uniformly dispersed in the aqueous solution with a fine and uniform size of 6 nm Respectively.

실험예Experimental Example 2. 세포 독성 조사 2. Cytotoxicity investigation

실시예 1에서 제조한 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 세포독성을 확인하기 위하여, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 어세이를 수행하였다. 보다 구체적으로는, 마우스 대식세포 (RAW 264.7)를 96웰 플레이트에 세포 농도가 1×104 cells/well이 될 때까지, 37℃, 5% CO2 의 조건에서 배양하였다. 최종 농도가 50, 100, 150 및 200 μg ml-1 인 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 상기 세포에 첨가하고, 48시간 동안 배양하였다. 상기 세포를 PBS를 이용하여 2번 세척하고, 새 배지를 다시 채운 후, MTT 시약을 이용하여 세포 독성을 확인하였으며, 이를 도 7에 나타내었다. To confirm the cytotoxicity of the iron oxide nanoparticles coated with the phosphate-bound polymer prepared in Example 1, an MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) Respectively. More specifically, mouse macrophages (RAW 264.7) were cultured in 96-well plates at 37 ° C and 5% CO 2 until the cell concentration reached 1 × 10 4 cells / well. Iron oxide nanoparticles coated with a phosphate-bound polymer having a final concentration of 50, 100, 150 and 200 μg ml -1 were added to the cells and cultured for 48 hours. The cells were washed twice with PBS, replenished with fresh medium, and then cytotoxicity was confirmed using MTT reagent, which is shown in FIG.

도 7에 나타낸 바와 같이, 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 200 μg ml-1의 고농도에서도 세포 독성을 나타내지 않았다. 상기 농도는 종래에 마우스 MRI 조영제로 이용되는 철의 농도를 초과하는 것이다. 따라서, 상기 결과를 통하여 본 발명의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 세포 독성이 없어 조영제로 이용될 수 있음을 확인하였다.
As shown in FIG. 7, the iron oxide nanoparticles coated with the phosphate-bound polymer did not show cytotoxicity even at a high concentration of 200 μg ml -1 . The concentration is in excess of the concentration of iron conventionally used as a mouse MRI contrast agent. Accordingly, it was confirmed from the above results that the iron oxide nanoparticles coated with the phosphate-bonded polymer of the present invention are not cytotoxic and can be used as a contrast agent.

실험예Experimental Example 3. 자기공명 영상 촬영 3. MR imaging

MR 시스템은 모션 아티팩트(motion artifact)를 최소화하고, 마우스 복부 (abdomen)의 MR 이미징을 스캐닝하는 동안 호흡 마취를 유지하기 위해 디자인되었다. 멀티슬라이스 스핀 에코 T 1-weighted 이미지 (repetition time [TR], 361.5 ms; echo time [TE], 11 ms; flip angle [FA], 180º; number of signals acquired, 25; field of view [FOV], 25.6X25.6 mm; matrix size, 256X256; slice thickness, 0.5 mm; interslice distance, 0.5 mm; acquisition time, 10 minutes 20 seconds) 및 refocused 에코 T 2-weighted 이미지 (TR, 3500 ms; TE, 36 ms; FA, 180º; number of signals acquired, 6; FOV, 25.6X25.6 mm; matrix size, 256X256; slice thickness, 0.5 mm; interslice distance, 0.5 mm; acquisition time, 11 minutes 12 seconds)와 함께 turbo rapid acquisition을 포함하는 MR 이미지가 수득되었다.
The MR system is designed to minimize motion artifacts and maintain respiratory anesthesia while scanning MR imaging of the abdomen of the mouse. Fourier transform (Fourier transform) of a multi-slice spin echo T 1 -weighted image (TR), 361.5 ms; echo time [TE], 11 ms; (TR, 3500 ms; TE, 36 ms; 25.6 x 25.6 mm; matrix size, 256 x 256; slice thickness, 0.5 mm; interslice distance, 0.5 mm; acquisition time, 10 minutes 20 seconds) and a refocused echo T 2 -weighted image FOV, 25.6 x 25.6 mm; matrix size, 256 x 256; slice thickness, 0.5 mm; interslice distance, 0.5 mm; acquisition time, 11 minutes 12 seconds) MR images were obtained.

3-1. 세포 내 (3-1. Intracellular ( inin vitrovitro )에서의 ) In MRMR 촬영 shooting

실시예 1에서 제조된 인산염이 결합된 고분자로 코팅된 산화철 나노입자의 MRI 조영제로서의 응용 가능성을 확인하기 위하여, 철 농도를 조절하여 자궁암 세포 (Hela cell) 또는 Raw264.7 세포를 이용하여, 세포 내에서의 MR 촬영을 수행하였다. 대조군으로는 상업적으로 이용되고 있는 산화철 MR 조영제인 Feridex를 이용하였다. 그 결과를 도 8에 나타내었다. In order to confirm the applicability of the iron oxide nanoparticles coated with the phosphate-bound polymer prepared in Example 1 as an MRI contrast agent, the iron concentration was adjusted so that cervical cancer cells (Hela cells) or Raw264.7 cells were used MR imaging was performed. Feridex, a commercially available iron oxide MR contrast agent, was used as a control. The results are shown in Fig.

도 8에 나타낸 바와 같이, 본 발명의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 크기 및 농도의존적인 T1-weighted 및 T2-weighted 자성 공명 조영제로서의 가능성을 나타내었다. 특히, 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 높은 철 농도에서 높은 T1-weighted 및 낮은 T2-weighted 신호 세기를 나타냈으며, 이를 통해 대조군인 feridex와 비교해서도 T1 및 T2 조영제 증진 물질로 이용될 수 있음을 확인하였다.
As shown in FIG. 8, the iron oxide nanoparticles coated with the phosphate-bonded polymer of the present invention showed the possibility of size-and concentration-dependent T 1 -weighted and T 2 -weighted magnetic resonance contrast agents. In particular, iron oxide nanoparticles coated with a phosphate-bonded polymer exhibited high T 1 -weighted and low T 2 -weighted signal intensities at high iron concentrations, indicating that T1 and T2 contrast enhancers As a result.

3-2. 생체 내 (3-2. In vivo inin vivovivo )에서의 ) In MRMR 촬영 shooting

10 nm보다 작은 크기의 초상자성 산화철 나노입자는 정맥으로 주입될 수 있으며, 이는 림프절을 검출하는데 이용될 가능성이 있는 물질로 판단되기에, 생체 내에서의 MR 촬영을 수행하였다. Superparamagnetic iron oxide nanoparticles of size less than 10 nm can be injected intravenously, which is considered to be a potential material for detecting lymph nodes, and MR imaging was performed in vivo.

세 마리의 Balb/C 마우스를 가스배출 시스템을 이용한 아이소플루레인(isoflurane, 1% in 100% oxygen)으로 마취하였다. MR 사진을 촬영하고, 꼬리 정맥을 통해 0.2 mmol의 철 농도 (Kg body weight)-1)의 인산염이 결합된 고분자로 코팅된 산화철 나노입자 (6 nm 또는 12 nm의 크기)를 주입하였다. 대조군으로는 상업적으로 이용되고 있는 산화철 MR 조영제인 Feridex를 이용하였다. 주입 24 시간 및 48 시간 후에 4.7-T animal MRI system (Pharmascan; Bruker, Ettlingen, Germany)을 이용하여 림프절의 T2-weighted MR 사진을 수득하였다. 그 결과를 도 9에 나타내었다. Three Balb / C mice were anesthetized with isoflurane (1% in 100% oxygen) using a gas evacuation system. MR images were taken and iron oxide nanoparticles (6 nm or 12 nm in size) coated with a phosphate-bonded polymer of 0.2 mmol of iron (Kg body weight) -1 ) were injected through the tail vein. Feridex, a commercially available iron oxide MR contrast agent, was used as a control. T 2 -weighted MR images of lymph nodes were obtained using a 4.7-T animal MRI system (Pharmascan; Bruker, Ettlingen, Germany) 24 hours and 48 hours after injection. The results are shown in Fig.

도 9에 나타낸 바와 같이, 대조군에 비하여, 6 nm 또는 12nm 크기의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 림프절에 축적되었으며, 주입 24시간 후에, 신호 세기의 현저한 감소를 나타냄을 확인하였다. 상기 결과를 통하여, 본 발명의 인산염이 결합된 고분자로 코팅된 산화철 나노입자는 매우 뛰어난 생체적합성을 가지고 있으며, 오랫동안 혈류 내에서 순환할 수 있음을 확인하였다.
As shown in Fig. 9, it was confirmed that the iron oxide nanoparticles coated with the phosphate-bonded polymer having a size of 6 nm or 12 nm were accumulated in the lymph nodes and showed a significant decrease in signal intensity after 24 hours of injection, as compared with the control group. From the above results, it was confirmed that the iron oxide nanoparticles coated with the phosphate-bonded polymer of the present invention have excellent biocompatibility and can circulate in the blood stream for a long time.

Claims (8)

고분자와 t-부톡사이드 및 에틸브로모 아세테이트를 반응시켜 제조한 α-하이드록실-ω-카르복실 고분자를 인산염과 반응시켜 얻어진, 인산염이 결합된 고분자로 코팅된 산화철 나노입자를 포함하는 림프절 조영이 가능한 초상자성 T1 및 T2 조영제.
A lymphadenogram involving iron oxide nanoparticles coated with a phosphate-linked polymer, obtained by reacting an? -Hydroxyl-? -Carboxyl polymer prepared by reacting a polymer with t-butoxide and ethyl bromoacetate with a phosphate, Possible superparamagnetic T1 and T2 contrast agents.
삭제delete 삭제delete 제 1항에 있어서, 상기 고분자는 폴리에틸렌글리콜(Polyethyleneglycol, PEG), 폴리아크릴산(Polyacrylic acid, PAA), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리비닐알콜(Polyvinylalcohol, PVA), 젤라틴(Gelatin), 덱스트란(Dextran), 키토산(Chitosan) 및 플루란(Pullulan)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 림프절 조영이 가능한 초상자성 T1 및 T2 조영제.
The method of claim 1, wherein the polymer is selected from the group consisting of polyethyleneglycol (PEG), polyacrylic acid (PAA), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), gelatin, Dextran, Chitosan, and Pullulan. [Claim 10] The method according to claim 1, wherein the contrast agent is at least one selected from the group consisting of Dextran, Chitosan, and Pullulan.
제 1항에 있어서, 상기 고분자는 평균 분자량이 100 내지 50000 Da인 것을 특징으로 하는 림프절 조영이 가능한 초상자성 T1 및 T2 조영제.
2. The hyperlucent T1 and T2 contrast agent according to claim 1, wherein the polymer has an average molecular weight of 100 to 50000 Da.
제 1항에 있어서, 상기 산화철은 마그네타이트(magnetite, Fe3O4) 또는 마그헤마이트(maghemite, Fe2O3)인 것을 특징으로 하는 림프절 조영이 가능한 초상자성 T1 및 T2 조영제.
The method of claim 1, wherein the iron oxide is magnetite (magnetite, Fe 3 O 4) or MAG H. mite (maghemite, Fe 2 O 3) is capable of portrait lymph node imaging, characterized in that the magnetic T1 and T2 contrast agent.
제 1항에 있어서, 상기 나노입자는 1 내지 20 nm의 크기인 것을 특징으로 하는 림프절 조영이 가능한 초상자성 T1 및 T2 조영제.
2. The hyperlucent T1 and T2 contrast agent according to claim 1, wherein the nanoparticles have a size of 1 to 20 nm.
(a)고분자와 t-부톡사이드 및 에틸브로모 아세테이트를 반응시켜α-하이드록실-ω-카르복실 고분자를 제조하는 단계;
(b)상기 -하이드록실--카르복실 고분자를 인산염과 반응시켜 고분자의 말단에 인산염이 결합된 고분자-인산염 화합물을 제조하는 단계; 및
(c) 리간드 치환법을 통해 상기 (b) 단계의 고분자-인산염 화합물로 산화철 나노입자를 코팅하는 단계;를 포함하는 제1항 기재의 림프절 조영이 가능한 초상자성 T1 및 T2 조영제의 제조방법.
(a) reacting a polymer with t-butoxide and ethyl bromoacetate to prepare an? -hydroxyl-? -carboxyl polymer;
(b) reacting the -hydroxyl-carboxyl polymer with a phosphate to produce a phosphate-bound polymer-phosphate compound at the end of the polymer; And
(c) coating the iron oxide nanoparticles with the polymer-phosphate compound of step (b) through a ligand replacement method. < Desc / Clms Page number 19 >
KR1020120036332A 2012-04-06 2012-04-06 Contrast agent coated with phosphate-polymer and method for preparing the same KR101417869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120036332A KR101417869B1 (en) 2012-04-06 2012-04-06 Contrast agent coated with phosphate-polymer and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120036332A KR101417869B1 (en) 2012-04-06 2012-04-06 Contrast agent coated with phosphate-polymer and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20130113822A KR20130113822A (en) 2013-10-16
KR101417869B1 true KR101417869B1 (en) 2014-07-16

Family

ID=49634199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120036332A KR101417869B1 (en) 2012-04-06 2012-04-06 Contrast agent coated with phosphate-polymer and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101417869B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503281A (en) * 1994-07-27 1998-03-24 シリカ ゲル ゲス.エム.ビー.エイチ Superparamagnetic particles, their production and use
KR20120013519A (en) * 2010-08-05 2012-02-15 한화케미칼 주식회사 Preparation of Very Small and Uniform Sized Iron Oxide Nanoparticles and the MRI T1 Contrast Agents Using Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503281A (en) * 1994-07-27 1998-03-24 シリカ ゲル ゲス.エム.ビー.エイチ Superparamagnetic particles, their production and use
KR20120013519A (en) * 2010-08-05 2012-02-15 한화케미칼 주식회사 Preparation of Very Small and Uniform Sized Iron Oxide Nanoparticles and the MRI T1 Contrast Agents Using Thereof

Also Published As

Publication number Publication date
KR20130113822A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
Lu et al. Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates
US11324841B2 (en) Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity
Khandhar et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging
Marasini et al. Integration of gadolinium in nanostructure for contrast enhanced‐magnetic resonance imaging
Fang et al. Multifunctional magnetic nanoparticles for medical imaging applications
Hu et al. Inorganic nanoparticle-based T 1 and T 1/T 2 magnetic resonance contrast probes
Peng et al. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging
Xie et al. Iron oxide nanoparticle platform for biomedical applications
Huang et al. Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects
Li et al. Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots
Thomas et al. Innovative magnetic nanoparticles for PET/MRI bimodal imaging
Hou et al. Nanodiamond–Manganese dual mode MRI contrast agents for enhanced liver tumor detection
JP6174603B2 (en) Contrast agent for T2 * -weighted magnetic resonance imaging (MRI)
Hao et al. Developing Fe 3 O 4 nanoparticles into an efficient multimodality imaging and therapeutic probe
Salehipour et al. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents
Chen et al. Cy5. 5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas
Xue et al. 99mTc-labeled iron oxide nanoparticles for dual-contrast (T 1/T 2) magnetic resonance and dual-modality imaging of tumor angiogenesis
Liang et al. Ultrasmall gadolinium hydrated carbonate nanoparticle: an advanced T 1 MRI contrast agent with large longitudinal relaxivity
Khatik et al. “Magnus nano-bullets” as T1/T2 based dual-modal for in vitro and in vivo MRI visualization
Wang et al. Gd and Eu co-doped nanoscale metal–organic framework as a T1–T2 dual-modal contrast agent for magnetic resonance imaging
Jang et al. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles
Smeraldo et al. New strategies in the design of paramagnetic CAs
Antonelli et al. SPIO nanoparticles and magnetic erythrocytes as contrast agents for biomedical and diagnostic applications
Liu et al. Renal-clearable zwitterionic conjugated hollow ultrasmall Fe 3 O 4 nanoparticles for T 1-weighted MR imaging in vivo
Hu et al. Water-soluble and biocompatible MnO@ PVP nanoparticles for MR imaging in vitro and in vivo

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170518

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 5