KR101413958B1 - magnetic nanoparticle manufacture method with multi functional group - Google Patents

magnetic nanoparticle manufacture method with multi functional group Download PDF

Info

Publication number
KR101413958B1
KR101413958B1 KR1020130058953A KR20130058953A KR101413958B1 KR 101413958 B1 KR101413958 B1 KR 101413958B1 KR 1020130058953 A KR1020130058953 A KR 1020130058953A KR 20130058953 A KR20130058953 A KR 20130058953A KR 101413958 B1 KR101413958 B1 KR 101413958B1
Authority
KR
South Korea
Prior art keywords
group
magnetic nanoparticles
magnetic
silane
base
Prior art date
Application number
KR1020130058953A
Other languages
Korean (ko)
Inventor
장형구
신진근
Original Assignee
고센바이오비드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고센바이오비드 주식회사 filed Critical 고센바이오비드 주식회사
Priority to KR1020130058953A priority Critical patent/KR101413958B1/en
Application granted granted Critical
Publication of KR101413958B1 publication Critical patent/KR101413958B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention relates to a method for manufacturing magnetic nanoparticles having a multi-functional group, comprising a step for treating the surface of magnetic nanoparticles with a base; and a step for coating the magnetic nanoparticles, whose surface is treated, with a base and the multi-functional group with silane. According to the present invention, the magnetic nanoparticles having a multi-functional group has high dispersibility by applying a negative (-) charge to the surface of the particle treated with a base, and a base is not treated with silane-coating. Therefore, the present invention has an effect for maintaining dispersibility, increasing reactivity and stability, providing magnetic nanoparticles at a high yield rate, reducing costs, and mass-producing in a simple method.

Description

다 작용기를 가지는 자성나노입자 제조방법{magnetic nanoparticle manufacture method with multi functional group}[0001] The present invention relates to a method for manufacturing a magnetic nanoparticle having a polyfunctional group,

본 발명은 다 작용기를 가지는 자성나노입자 제조방법으로, 보다 상세하게는, 자성나노입자를 염기 처리하여 높은 분산성을 얻고, 실란 코팅 시 염기 환경을 미리 제공하여 기존보다 높은 수율과 안정성을 얻을 수 있도록 자성나노입자의 표면처리 방법과 다 작용기를 갖는 실란 코팅 방법을 포함하는 다 작용기를 가지는 자성나노입자 제조방법에 관한 것이다.
The present invention relates to a method for producing a magnetic nanoparticle having a polyfunctional group, and more particularly, to a method for producing a magnetic nanoparticle having a multi-functional group, To a method for preparing a magnetic nanoparticle having a polyfunctional group and a silane coating method having a multifunctional group.

자성나노입자란 자성을 띄는 물질로서 극미세 영역의 물질이다. 자성나노입자는 구조적, 자기적 특성 때문에 다양하게 응용될 수 있는데, MRI 조영제, 생체진단 기기, 위조방지잉크, 스피커 내부의 기기 조절 장치 등이 그 예이다. 대부분 전기를 사용하는 장치가 많은 실생활에서, 자기에 의해 조절이 가능한 자성나노입자의 도입은 편리함을 주고 비용 절감에 효과적이다.Magnetic nanoparticles are magnetic substances that are extremely minute regions. Magnetic nanoparticles can be applied in a variety of applications due to their structural and magnetic properties, such as MRI contrast agents, bio-diagnostic devices, anti-fake inks, and device control devices within speakers. In most practical applications where many electric devices are used, the introduction of magnetically tunable magnetic nanoparticles is convenient and cost effective.

bio 분야의 응용되는 자성나노입자들은 각각의 용도에 맞게 다양한 작용기를 함께 결합시킬 수 있다. 그 중 생체 진단 시약이나 DNA, RNA분리 정제, MRI 조영제 등은 생체 환경에서 안정성이 요구되는 수산화기(OH), 아민기(NH2), 카르복실기(COOH) 등의 작용기를 결합시켜 반응성과 안정성을 높인다. 각각의 작용기는 생체 내 특이적 결합이나 안정성을 고려하여 선택 되어진다. The magnetic nanoparticles used in the bio field can bind various functional groups together for each use. Among them, bio-diagnostic reagents, DNA, RNA separation and purification, and MRI contrast agents enhance the reactivity and stability by binding functional groups such as hydroxyl group (OH), amine group (NH 2 ) and carboxyl group (COOH) . Each functional group is selected in consideration of specific binding or stability in vivo.

자성나노입자는 응용시 자기장에 민감해야 하기 때문에 입자 하나하나를 분산시키는 처리 과정이 필요하다. 자성현탁액은 자성나노입자를 용매에 분산시킨 것으로 자기장의 세기와 방향에 따라 조절이 가능하다. 자성현탁액 조제 시 자성나노입자가 용매 내에서 응집하지 않도록 하는 처리 기술은 매우 중요하다.Since magnetic nanoparticles must be sensitive to magnetic fields during their application, it is necessary to dispose the particles one by one. Magnetic suspensions are magnetic nanoparticles dispersed in a solvent and can be adjusted according to the strength and direction of the magnetic field. The treatment technique for preventing the magnetic nanoparticles from aggregating in the solvent during the preparation of the magnetic suspension is very important.

실란 코팅은 자성나노입자 표면에 실리카를 도입하는 기술로서 주로 사용되는 시약으로는 테트라에틸 오소실리케이트(TEOS;tetraethyl orthosilicate), 아미노프로필메톡시-실란(APS;aminopropyl trimetoxy-silane), 실란 폴리에틸렌글리콜 카르복실산 (silane PEG carboxylic acid)등이 있다.Silane coating is a technique for introducing silica to the surface of magnetic nanoparticles. As a reagent mainly used, tetraethyl orthosilicate (TEOS), aminopropyl trimethoxy-silane (APS), silane polyethylene glycol And silane PEG carboxylic acid.

실란 코팅은 염기 환경 하에서 이루어지는데 용매에 암모니아(NH4OH) 등의 염기를 첨가하여 염기상태를 유지시키고 실란 코팅을 한다. 이때 반응 속도가 매우 빨라 여러 문제점이 발생하게 되는데 입자를 둘러싼 벽 두께의 차이, 복수 개의 입자가 같이 코팅되는 점, 실리카끼리 뭉치는 현상, 입자가 국부적으로 코팅되는 현상 등이 이에 속한다. The silane coating is performed under a basic environment. A base such as ammonia (NH 4 OH) is added to the solvent to maintain the base state and silane coating is performed. At this time, the reaction speed is very high, which causes various problems such as a difference in the wall thickness surrounding the particles, a coating of a plurality of particles, a phenomenon of bundles of silica, and a phenomenon in which particles are locally coated.

실란 코팅의 문제점을 해결하기 위한 연구진들의 연구는 다양하다. 최근 자성나노입자의 표면을 산으로 개질해 분산력을 높인 후 실리카를 도입하는 방법이 소개되었다.(대한민국 특허청 공개특허 제10-2013-0000453호) 그러나 이 방법은 염기 환경 하에서 이루어지는 실란 코팅과 이어지기 위해 등전점을 지나야하는 단점이 있다. 실란 코팅 시 산에서 염기의 환경으로 가는 급속한 변화는 자성나노입자의 안정성을 저하, 얻고자 하는 자성나노입자의 수율을 떨어뜨리게 된다.
The researchers' work to solve the problem of silane coating is diverse. Recently, a method of introducing silica after modifying the surface of magnetic nanoparticles with an acid by increasing the dispersing power has been introduced (Korean Patent Publication No. 10-2013-0000453). However, this method has a problem that a silane coating, There is a disadvantage that it must pass the isoelectric point. Rapid changes from acid to base environment in silane coating deteriorate the stability of the magnetic nanoparticles and decrease the yield of the magnetic nanoparticles to be obtained.

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 입자에 먼저 염기처리를 해놓으면 분산성과 안정성을 그대로 유지하면서 실란 코팅을 할 수 있는 것을 기술적 과제로 한다. The present invention provides a method for preparing a magnetic nanoparticle having a polyfunctional group, wherein a silane coating can be performed while maintaining dispersibility and stability when the particles are first treated with a base.

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 자성나노입자의 표면에 다 작용기(-OH, -NH2, -COOH등) 실란 코팅함으로써 bio 분야와 전기전자, 공업 응용 분야에 기본 입자를 제공하는 것을 기술적 과제로 한다. In the method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention, a polyfunctional group (-OH, -NH 2 , -COOH, etc.) silane coating is applied to the surface of magnetic nanoparticles to form basic particles in the bio field, The technical problem is to provide.

또한, 본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 기존과 다르게 간단한 방법을 사용하여 대량생산이 가능함으로써 낮은 생산단가로 고품질의 제품을 제공하는 것을 기술적 과제로 한다.
The present invention also provides a method for producing a magnetic nanoparticle having a polyfunctional group, which can be mass-produced by using a simple method, thereby providing a high-quality product with a low production cost.

상기 목적을 달성하기 위하여, In order to achieve the above object,

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은, The method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention comprises:

(a) 자성나노입자의 표면을 염기처리하는 단계; (a) base treating the surface of the magnetic nanoparticles;

(b) 염기 표면 처리된 자성나노입자를 다 작용기 실란 코팅하는 단계; 를 과제의 해결 수단으로 한다.
(b) coating the surface-treated magnetic nanoparticles with a polyfunctional silane; As a solution to the problem.

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 입자에 염기를 처리하면 입자표면에 (-)전하가 부여되어 높은 분산성을 가지는 효과를 가진다.In the method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention, when a particle is treated with a base, a (-) charge is imparted to the surface of the particle to have a high dispersibility.

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 염기 처리를 함으로써 자성나노입자를 염기 환경에 노출, 염기 환경을 미리 조성해 실란 코팅 시 자성나노입자가 기존보다 높은 수율과 안정성을 얻을 수 있는 효과를 가진다.The method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention is a method for producing a magnetic nanoparticle having a multifunctional group in which a magnetic nanoparticle is exposed to a base environment by a base treatment and a base environment is prepared in advance to obtain a magnetic nanoparticle having a higher yield and stability .

본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법은 입자의 분산성을 유지하면서 실란 코팅이 이루어짐으로써, 균일하지 못했던 코팅 벽 두께의 문제점 및 복수의 입자가 뭉쳐서 코팅되는 문제점을 개선할 수 있는 효과가 있다.
The method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention is a method for producing a magnetic nanoparticle having a multi-functional group, which is capable of improving the uniformity of the coating wall thickness and the problem of coalescence of a plurality of particles .

도 1은 본 발명에 따른 자성나노입자 제조방법을 보인 순서도.
도 2는 본 발명에 따라 자성나노입자에 산, 염기 처리를 하였을 때 표면에 (+), (-) 전하가 부여되어 분산성을 얻게 되는 것을 보여주는 그래프.
FIG. 1 is a flow chart showing a method of manufacturing magnetic nanoparticles according to the present invention. FIG.
FIG. 2 is a graph showing that when magnetic nanoparticles are subjected to acid and base treatment according to the present invention, (+) and (-) charges are imparted to the surface to obtain dispersibility.

이하 첨부된 도면을 참조하여 본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, a method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법의 일 실시 예를 보인 순서도이고, 도 2는 본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법에서 자성나노입자에 산, 염기 처리를 하였을 때 표면에 (+),(-)전하가 부여되어 분산성을 얻게 되는 것을 보여주는 그래프이다.
본 발명은 (a) 자성나노입자를 염기 처리하는 단계와, (b) 상기 염기 표면 처리된 자성나노입자를 다 작용기 실란 코팅하는 단계를 포함하여 이루어지는 제조방법이다.
FIG. 1 is a flow chart showing an embodiment of a method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention, and FIG. 2 is a flowchart showing a method for producing a magnetic nanoparticle having a polyfunctional group according to the present invention. (+) And (-) charges are imparted to the surface to obtain dispersibility.
The present invention is a method for producing a magnetic nanoparticle comprising: (a) treating the magnetic nanoparticles with a base; and (b) coating the surface-treated magnetic nanoparticles with a polyfunctional silane.

삭제delete

도 1과 같이 자성나노입자의 표면에 염기 처리하여 표면을 개질하고, 분산력을 높인다(a). 상기 염기 처리된 자성나노입자를 각각의 작용기(다 작용기)를 가지는 테트라에틸 오소실리케이트(TEOS;tetraethyl orthosilicate), 아미노프로필트리메톡시-실란(APS;aminopropyl trimetoxy-silane), 실란 폴리에틸렌글리콜 카르복실산(Silane PEG Carboxylic acid)로 코팅해(b) 본 발명에서 얻고자 하는 자성나노입자를 제조한다. As shown in FIG. 1, the surface of the magnetic nanoparticles is treated with a base to modify the surface, thereby increasing the dispersing power (a). The above-mentioned base-treated magnetic nanoparticles are mixed with tetraethyl orthosilicate (TEOS), aminopropyl trimethoxy-silane (APS), silane polyethylene glycol carboxylate (B) the magnetic nanoparticles to be obtained in the present invention are prepared by coating with (Silane PEG Carboxylic acid).

상기 자성나노입자는, 헤마타이트(α-Fe2O3), 마그네타이트(Fe3O4), 마그헤마이트(γ-Fe2O3), 삼산화이철(β-Fe2O3, ε-Fe2O3), 일산화철(FeO) 중 어느 하나 또는 선택된 복수개로 이루어진다. 이때 상기 자성나노입자는, Mg, Al, Ba, Cu, Ni, Co, Fe, Cr, Zn, Nb, Mo, Pd, Ag, Cd, W, Pt, Au 및 Sr 중 어느 하나 또는 선택된 복수개의 성분을 포함하여 이루어질 수도 있다.The magnetic nanoparticles, hematite (α-Fe 2 O 3) , magnetite (Fe 3 O 4), MAG H. boehmite (γ-Fe 2 O 3) , iron sesquioxide (β-Fe 2 O 3, ε-Fe 2 O 3 ), and iron oxide (FeO). The magnetic nanoparticles may be any one selected from Mg, Al, Ba, Cu, Ni, Co, Fe, Cr, Zn, Nb, Mo, Pd, Ag, Cd, W, Pt, . ≪ / RTI >

상기 염기는 암모니아, 수산화마그네슘, 수산화칼륨, 수산화칼슘, 수산화나트륨, 수산화바륨, 수산화알루미늄, 수산화철, 탄산수소나트륨, 탄산나트륨, 탄산칼슘, 탄산칼륨, 메틸아민, 아닐린 중 어느 하나 또는 선택된 복수개를 포함한다.The base includes any one selected from ammonia, magnesium hydroxide, potassium hydroxide, calcium hydroxide, sodium hydroxide, barium hydroxide, aluminum hydroxide, iron hydroxide, sodium hydrogen carbonate, sodium carbonate, calcium carbonate, potassium carbonate, methylamine and aniline.

또한, 상기 다 작용기는 수산화기(OH), 아민기(NH2), 카르복실기(COOH) 중 어느 하나 또는 선택된 복수개로 이루어진다.The polyfunctional group may be any one selected from a hydroxyl group (OH), an amine group (NH2), and a carboxyl group (COOH), or a plurality of selected ones.

이 외에도 싸이올기(SH), 에스터기(ester group), 에폭시기(epoxy group), 페닐기(phenyl group), 술폰기(sulphone), 알콕시기(alkoxy group), 알데히드(aldehyde), 케톤기(ketone) 등의 작용기도 결합시켜 응용할 수 있는데, 이들 다 작용기들은 주로 디스플레이, 필름 등의 분야에 응용된다.(SH), an ester group, an epoxy group, a phenyl group, a sulfone group, an alkoxy group, an aldehyde group, a ketone group, Etc. These multifunctional groups are mainly applied to fields of display, film and the like.

상기 테트라에틸 오소실리케이트(TEOS;tetraethyl orthosilicate) 코팅은 수산화기(OH)를 포함하는 것을 특징으로 하고 아미노프로필트리메톡시-실란(APS;aminopropyl trimetoxy-silane) 코팅은 아민기(NH2), 실란 폴리에틸렌글리콜 카르복실산(Silane PEG Carboxylic acid)은 카르복실기(COOH)를 포함한다.The tetraethyl orthosilicate (TEOS) coating is characterized by containing a hydroxyl group (OH), and the aminopropyl trimethoxy-silane (APS) coating is an amine group (NH2) Silane PEG Carboxylic acid includes a carboxyl group (COOH).

한편, 상기 아민기(NH2)는, 모노아민기(monoamine), 다이아민기(diamine), 트리아민기(triamine), 에틸렌 다이아민(ethylene diamine) 및 다이에틸렌트리아민(diethylenetriamine)으로 이루어진 군으로부터 선택된 어느 하나 또는 선택된 복수개로 이루어진다.Meanwhile, the amine group (NH 2 ) may be selected from the group consisting of monoamine, diamine, triamine, ethylene diamine, and diethylenetriamine. Or a plurality of selected ones.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 단지 본 발명에 따른 다 작용기를 가지는 자성나노입자 제조방법을 설명하기 위한 일 실시 예에 지나지 아니하는 것으로서, 본 발명의 범위가 이들 실시 예에 한정되지 않는 것은 물론이고, 단순한 작용기의 치환 등에 의해 동일한 효과를 얻게 되는 것 역시 본 발명의 기술적 범주에 속한다고 할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are merely examples for illustrating the method for producing magnetic nanoparticles having a polyfunctional group according to the present invention, and the scope of the present invention is not limited to these examples. Substitution, and the like, are also within the technical scope of the present invention.

실시 예 1.Example 1.

1-1 : 자성나노입자 제조 방법1-1: Manufacturing Method of Magnetic Nanoparticles

철 전구체, 용매, 배위자, 3차 증류수를 상온에서 혼합한 후 분산력을 증가시키기 위해 고분자 물질을 넣고 이 혼합물을 150 ~ 300℃로 가열하여 기 설정된 시간 동안 반응시킨다. 검은색으로 색이 변하면 원심분리기나 자성을 이용해 자성나노입자를 분리하고 극성용매로 세척해 얻어낸다.The iron precursor, the solvent, the ligand, and the third distilled water are mixed at room temperature, the polymer substance is added to increase the dispersing power, and the mixture is heated to 150~300 ° C. and reacted for a predetermined time. When the color changes to black, the magnetic nanoparticles are separated using a centrifuge or magnetism and washed with a polar solvent.

1-2 : 염기 표면 처리1-2: Base surface treatment

3L 둥근삼목용기(RBF;Round Bottle Flask)에 초상자성나노입자(SPM;superpara magnetic) 10g, 암모니아수(NH4OH) 50mL, 3차 증류수(DIW;deionized water) 2L 혼합 용액을 80℃로 가열, 교반하면서 3시간 동안 반응시킨다. 자성나노입자에 염기처리를 하였다.A mixed solution of 10 g of superpara magnetic (SPM), 50 mL of ammonia water (NH 4 OH) and 2 L of DIW (deionized water) was heated to 80 ° C. in a 3 L round bottle (RBF) The reaction is carried out for 3 hours with stirring. The magnetic nanoparticles were treated with base.

1-3 : 실란 코팅1-3: Silane Coating

3L 둥근삼목용기(RBF;Round Bottle Flask)에 염기 처리된 자성나노입자 10g, 에탄올(EtOH) 800mL, 3차 증류수(DIW;deionized water) 100mL 혼합용액을 30분 교반 후 테트라에틸 오소실리케이트(TEOS;tetraethyl orthosilicate) 10mL 천천히 투입, 6시간 반응시킨다. 에탄올(EtOH) washing해서 실란 코팅된 자성나노입자를 얻는다.
A mixed solution of 10 g of base-treated magnetic nanoparticles, 800 mL of ethanol (EtOH) and 100 mL of deionized water (DIW) in a 3 L round bottle (RBF) was stirred for 30 minutes and then tetraethylorthosilicate (TEOS; tetraethyl orthosilicate) is slowly added and reacted for 6 hours. Ethanol (EtOH) washes to obtain silane-coated magnetic nanoparticles.

실시 예 2.Example 2.

2-1 : 자성나노입자 제조 방법2-1: Manufacturing method of magnetic nanoparticles

철 전구체, 용매, 배위자, 3차 증류수를 상온에서 혼합한 후 분산력을 증가시키기 위해 고분자물질을 넣고 이 혼합물을 150 ~ 300℃로 가열하여 기 설정된 시간 동안 반응시킨다. 검은색으로 색이 변하면 원심분리기나 자성을 이용해 자성나노입자를 분리하고 극성용매로 세척해 얻어낸다.The iron precursor, the solvent, the ligand, and the third distilled water are mixed at room temperature, the polymer substance is added to increase the dispersing power, and the mixture is heated to 150~300 ° C. and reacted for a predetermined time. When the color changes to black, the magnetic nanoparticles are separated using a centrifuge or magnetism and washed with a polar solvent.

2-2 : 염기 표면 처리2-2: Base surface treatment

3L 둥근삼목용기(RBF;Round Bottle Flask)에 초상자성나노입자(SPM;superpara magnetic) 10g, 수산화나트륨(NaOH) 5g, 3차 증류수(DIW;deionized water) 2L 혼합 용액을 80℃로 가열, 교반하면서 3시간 동안 반응시킨다. 자성나노입자에 염기처리를 하였다.A mixed solution of 10 g of superpara magnetic powder (SPM), 5 g of sodium hydroxide (NaOH) and 2 L of DIW (deionized water) was heated to 80 ° C. in a 3 L round bottle (RBF) And reacted for 3 hours. The magnetic nanoparticles were treated with base.

2-3 : 실란 코팅2-3: Silane coating

3L 둥근삼목용기(RBF;Round Bottle Flask)에 염기 처리된 자성나노입자 10g, 에탄올(EtOH) 800mL, 3차 증류수(DIW;deionized water) 100ml 혼합용액을 30분 교반 후 테트라에틸 오소실리케이트(TEOS;tetraethyl orthosilicate) 10mL 천천히 투입, 6시간 반응시킨다. 에탄올(EtOH) washing해서 실란 코팅된 자성나노입자를 얻는다.
A mixed solution of 10 g of base-treated magnetic nanoparticles, 800 mL of ethanol (EtOH) and 100 mL of deionized water (DIW) in a 3 L round bottle (RBF) was stirred for 30 minutes and then tetraethylorthosilicate (TEOS; tetraethyl orthosilicate) is slowly added and reacted for 6 hours. Ethanol (EtOH) washes to obtain silane-coated magnetic nanoparticles.

실시 예 3.Example 3.

3-1 : 자성나노입자 제조 방법3-1: Manufacturing Method of Magnetic Nanoparticles

철 전구체, 용매, 배위자, 3차 증류수를 상온에서 혼합한 후 분산력을 증가시키기 위해 고분자물질을 넣고 이 혼합물을 150 ~ 300℃로 가열하여 기 설정된 시간 동안 반응시킨다. 검은색으로 색이 변하면 원심분리기나 자성을 이용해 자성나노입자를 분리하고 극성용매로 세척해 얻어낸다.The iron precursor, the solvent, the ligand, and the third distilled water are mixed at room temperature, the polymer substance is added to increase the dispersing power, and the mixture is heated to 150~300 ° C. and reacted for a predetermined time. When the color changes to black, the magnetic nanoparticles are separated using a centrifuge or magnetism and washed with a polar solvent.

3-2 : 염기 표면 처리3-2: Base surface treatment

3L 둥근삼목용기(RBF;Round Bottle Flask)에 초상자성나노입자(SPM;superpara magnetic) 10g, 암모니아수(NH4OH) 50mL, 3차 증류수(DIW;deionized water) 2L 혼합 용액을 80℃로 가열, 교반하면서 3시간 동안 반응시킨다. 자성나노입자에 염기처리를 하였다.A mixed solution of 10 g of superpara magnetic (SPM), 50 mL of ammonia water (NH 4 OH) and 2 L of DIW (deionized water) was heated to 80 ° C. in a 3 L round bottle (RBF) The reaction is carried out for 3 hours with stirring. The magnetic nanoparticles were treated with base.

3-3 : 아민기능기를 가진 실란 코팅3-3: Silane coating with amine functionality

3L 둥근삼목용기(RBF;Round Bottle Flask)에 염기 처리된 자성나노입자 10g, 에탄올(EtOH) 800mL, 3차 증류수(DIW;deionized water) 160mL 혼합용액을 30분 교반 후 아미노프로필트리메톡시-실란(Aminopropyltrimetoxy-silane,APS) 5mL을 천천히 투입, 3시간 반응시킨 후 에탄올(EtOH) washing한다. 아민 기능기를 가진 자성나노입자를 얻는다.
A mixed solution of 10 g of base-treated magnetic nanoparticles, 800 mL of ethanol (EtOH), and 160 mL of DIW (deionized water) in a 3 L round bottle (RBF) was stirred for 30 minutes and then treated with aminopropyltrimethoxy-silane (Aminopropyltrimethoxy-silane, APS) is slowly added, reacted for 3 hours and then washed with ethanol (EtOH). To obtain magnetic nanoparticles having an amine functional group.

실시 예 4.Example 4.

4-1 : 자성나노입자 제조 방법4-1: Manufacturing method of magnetic nanoparticles

철 전구체, 용매, 배위자, 3차 증류수를 상온에서 혼합한 후 분산력을 증가시키기 위해 고분자물질을 넣고 이 혼합물을 150 ~ 300℃로 가열하여 기 설정된 시간 동안 반응시킨다. 검은색으로 색이 변하면 원심분리기나 자성을 이용해 자성나노입자를 분리하고 극성용매로 세척해 얻어낸다.The iron precursor, the solvent, the ligand, and the third distilled water are mixed at room temperature, the polymer substance is added to increase the dispersing power, and the mixture is heated to 150~300 ° C. and reacted for a predetermined time. When the color changes to black, the magnetic nanoparticles are separated using a centrifuge or magnetism and washed with a polar solvent.

4-2 : 염기 표면 처리4-2: Base surface treatment

3L 둥근삼목용기(RBF;Round Bottle Flask)에 초상자성나노입자(SPM;superpara magnetic) 10g, 암모니아수(NH4OH) 50mL, 3차 증류수(DIW;deionized water) 2L 혼합 용액을 80℃로 가열, 교반하면서 3시간 동안 반응시킨다. 자성나노입자에 염기처리를 하였다.A mixed solution of 10 g of superpara magnetic (SPM), 50 mL of ammonia water (NH 4 OH) and 2 L of DIW (deionized water) was heated to 80 ° C. in a 3 L round bottle (RBF) The reaction is carried out for 3 hours with stirring. The magnetic nanoparticles were treated with base.

4-3 : 아민기능기를 가진 실란 코팅4-3: Silane coating with amine functionality

3L 둥근삼목용기(RBF;Round Bottle Flask)에 염기 처리된 자성나노입자 10g, 에탄올(EtOH) 800mL, 3차 증류수(DIW;deionized water) 160mL 혼합용액을 30분 교반 후 2-아미노에틸-3-아미노프로필트리메틸-실란(2-aminoethyl-3-aminopropyltrimethyl-silane) 5mL을 천천히 투입, 3시간 반응시킨 후 에탄올(EtOH) washing한다. 아민 기능기를 가진 자성나노입자를 얻는다.
A mixed solution of 10 g of base-treated magnetic nanoparticles, 800 mL of ethanol (EtOH) and 160 mL of DIW (deionized water) in a 3 L round bottle (RBF) was stirred for 30 minutes, 5 mL of 2-aminoethyl-3-aminopropyltrimethyl-silane is added slowly and reacted for 3 hours, followed by washing with EtOH. To obtain magnetic nanoparticles having an amine functional group.

Claims (9)

(a) 자성나노입자의 표면을 염기(basic)처리 하여 음전하를 부여하는 단계; 와,
(b) 상기 염기 처리 완료 후, 상기 염기 표면 처리된 자성나노입자를 다 작용기 실란 코팅하는 단계; 를 포함하는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
(a) subjecting the surface of the magnetic nanoparticles to a basic treatment to give a negative charge; Wow,
(b) after completion of the base treatment, coating the base surface-treated magnetic nanoparticles with a polyfunctional silane; Wherein the magnetic nanoparticles have a polyfunctional group.
제 1항에 있어서,
상기 자성나노입자는,
헤마타이트(α-Fe2O3), 마그네타이트(Fe3O4), 마그헤마이트(γ-Fe2O3), 삼산화이철(β-Fe2O3, ε-Fe2O3), 일산화철(FeO) 중 어느 하나 또는 선택된 복수개로 이루어지는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
The method according to claim 1,
The magnetic nano-
Hematite (α-Fe 2 O 3) , magnetite (Fe 3 O 4), MAG H. boehmite (γ-Fe 2 O 3) , iron sesquioxide (β-Fe 2 O 3, ε-Fe 2 O 3), one Iron oxide (FeO) or a plurality of selected ones.
제 1항에 있어서,
상기 자성나노입자는,
Mg, Al, Cr, Fe, Co, Ni, Cu, Zn, Sr, Nb, Mo, Pd, Ag, Cd, Ba, W, Pt, Au 중 어느 하나 또는 선택된 복수개의 성분을 포함하여 이루어지는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
The method according to claim 1,
The magnetic nano-
And at least one selected from Mg, Al, Cr, Fe, Co, Ni, Cu, Zn, Sr, Nb, Mo, Pd, Ag, Cd, Ba, W, Pt and Au. Wherein the magnetic nanoparticle has a polyfunctional group.
제 1항에 있어서,
상기 염기는,
암모니아, 수산화마그네슘, 수산화칼륨, 수산화칼슘, 수산화나트륨, 수산화바륨, 수산화알루미늄, 수산화철, 탄산수소나트륨, 탄산나트륨, 탄산칼슘, 탄산칼륨, 메틸아민, 아닐린 중 어느 하나 또는 선택된 복수개로 이루어지는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
The method according to claim 1,
The base,
Characterized in that it is made of at least one selected from ammonia, magnesium hydroxide, potassium hydroxide, calcium hydroxide, sodium hydroxide, barium hydroxide, aluminum hydroxide, iron hydroxide, sodium hydrogen carbonate, sodium carbonate, calcium carbonate, potassium carbonate, methylamine and aniline Wherein the magnetic nanoparticles have functional groups.
제 1항에 있어서,
상기 다 작용기는,
수산화기, 아민기, 카르복실기 중 어느 하나 또는 선택된 복수개로 이루어지는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
The method according to claim 1,
The multi-
A hydroxyl group, an amine group, and a carboxyl group, or a plurality of selected ones.
제 5항에 있어서,
상기 수산화기를 가진 실란은,
테트라에틸 오소실리케이트를 포함하는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
6. The method of claim 5,
The silane with the hydroxyl group,
A process for producing a magnetic nanoparticle having a polyfunctional group, characterized by comprising tetraethyl orthosilicate.
제 5항에 있어서,
상기 아민기는,
모노아민기, 다이아민기, 트리아민기, 에틸렌 다이아민 및 다이에틸렌트리아민으로 이루어진 군으로부터 선택된 어느 하나 또는 선택된 복수개로 이루어지는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
6. The method of claim 5,
The amine group,
Wherein the magnetic nanoparticles are composed of at least one selected from the group consisting of monoamine, diamine, triamine, ethylenediamine and diethylenetriamine.
제 7항에 있어서,
상기 아민기를 가진 실란은,
아미노프로필트리메톡시-실란을 포함하는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
8. The method of claim 7,
The silane having the amine group may be,
Wherein the nanoparticles have a polyfunctional group.
제 5항에 있어서,
상기 카르복실기를 가진 실란은,
실란 폴리에틸렌글리콜 카르복실산을 포함하는 것을 특징으로 하는 다 작용기를 가지는 자성나노입자 제조방법.
6. The method of claim 5,
The silane having a carboxyl group may be,
A process for producing a magnetic nanoparticle having a polyfunctional group, characterized by comprising silane polyethylene glycol carboxylic acid.
KR1020130058953A 2013-05-24 2013-05-24 magnetic nanoparticle manufacture method with multi functional group KR101413958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130058953A KR101413958B1 (en) 2013-05-24 2013-05-24 magnetic nanoparticle manufacture method with multi functional group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130058953A KR101413958B1 (en) 2013-05-24 2013-05-24 magnetic nanoparticle manufacture method with multi functional group

Publications (1)

Publication Number Publication Date
KR101413958B1 true KR101413958B1 (en) 2014-07-04

Family

ID=51740839

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130058953A KR101413958B1 (en) 2013-05-24 2013-05-24 magnetic nanoparticle manufacture method with multi functional group

Country Status (1)

Country Link
KR (1) KR101413958B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646610B1 (en) * 2015-05-28 2016-08-09 (주)바이오니아 High active magnetic silica nano particles for separating biomaterial and method for preparing the same
KR20170125503A (en) * 2016-05-04 2017-11-15 고려대학교 산학협력단 Si@CaCO3 microparticles as biohybrid materials for Separation and Purification
KR20190010264A (en) * 2017-07-21 2019-01-30 태이생명과학 주식회사 Chemical compound directly conjugated maghemite nanoparticles and preparation method thereof
WO2024029959A1 (en) * 2022-08-03 2024-02-08 삼성디스플레이 주식회사 Ink composition, film using same, and electrophoresis device and display device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500700A (en) * 1992-06-08 1996-01-23 バイオクエスト インコーポレイテッド Manufacture of controlled particle size inorganic particles for use as inorganic liposomes for separations, magnetic molecular switches, and medical applications
KR970705154A (en) * 1994-07-07 1997-09-06 아서 에스. 모겐스턴 HIGHLY DISPERSIVE MAGNETIC METAL OXIDE PARTICLES, PROCESSES FOR THEIR PREPARATION AND THEIR USE
KR20050021954A (en) * 2003-08-28 2005-03-07 도와 마이닝 가부시끼가이샤 Magnetic powder and method of producing the powder
KR20130000453A (en) * 2011-06-23 2013-01-03 주식회사 나노브릭 Method for treating surface of magnetic particle, magnetic complex and magnetic complex for labeling taget molecule manufactured by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500700A (en) * 1992-06-08 1996-01-23 バイオクエスト インコーポレイテッド Manufacture of controlled particle size inorganic particles for use as inorganic liposomes for separations, magnetic molecular switches, and medical applications
KR970705154A (en) * 1994-07-07 1997-09-06 아서 에스. 모겐스턴 HIGHLY DISPERSIVE MAGNETIC METAL OXIDE PARTICLES, PROCESSES FOR THEIR PREPARATION AND THEIR USE
KR20050021954A (en) * 2003-08-28 2005-03-07 도와 마이닝 가부시끼가이샤 Magnetic powder and method of producing the powder
KR20130000453A (en) * 2011-06-23 2013-01-03 주식회사 나노브릭 Method for treating surface of magnetic particle, magnetic complex and magnetic complex for labeling taget molecule manufactured by the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646610B1 (en) * 2015-05-28 2016-08-09 (주)바이오니아 High active magnetic silica nano particles for separating biomaterial and method for preparing the same
US10465184B2 (en) 2015-05-28 2019-11-05 Bioneer Corporation Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
US10724031B2 (en) 2015-05-28 2020-07-28 Bioneer Corporation Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
KR20170125503A (en) * 2016-05-04 2017-11-15 고려대학교 산학협력단 Si@CaCO3 microparticles as biohybrid materials for Separation and Purification
KR101938870B1 (en) * 2016-05-04 2019-04-10 고려대학교 산학협력단 Si@CaCO3 microparticles as biohybrid materials for Separation and Purification
KR20190010264A (en) * 2017-07-21 2019-01-30 태이생명과학 주식회사 Chemical compound directly conjugated maghemite nanoparticles and preparation method thereof
KR101970808B1 (en) 2017-07-21 2019-04-22 스노우화이트팩토리(주) Chemical compound directly conjugated maghemite nanoparticles and preparation method thereof
WO2024029959A1 (en) * 2022-08-03 2024-02-08 삼성디스플레이 주식회사 Ink composition, film using same, and electrophoresis device and display device comprising same

Similar Documents

Publication Publication Date Title
Sonmez et al. Synthesis and applications of Fe3O4/SiO2 core-shell materials
Ma et al. Preparation and characterization of monodisperse core–shell Fe3O4@ SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21
Li et al. Preparation of core‐shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin
Ma et al. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption
US20200265978A1 (en) Method of Manufacturing Superparamagnetic Nanocomposite and Superparamagnetic Nanocomposite Manufactured Using the Same
Zhang et al. Magnetic silica‐coated sub‐microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood
Mahtab et al. Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications
KR101413958B1 (en) magnetic nanoparticle manufacture method with multi functional group
US8557329B2 (en) Method for silica encapsulation of magnetic particles
Yang et al. One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles
CN100500277C (en) Hollow structured magnetic microsphere coated with mono-dispersed silicon dioxide and its preparation method
CN110215900B (en) Metal chelating magnetic microsphere and preparation method thereof
Jeong et al. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles
Liu et al. Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion
CN104229901A (en) Preparation method of magnetic ferroferric oxide nano particles
Li et al. Fabrication of sandwich structured devices encapsulating core/shell SiO2/Fe3O4 nanoparticle microspheres as media for magneto-responsive transmittance
Zhang et al. Preparation, characterization and catalytic activity of core–satellite Au/Pdop/SiO 2/Fe 3 O 4 magnetic nanocomposites
Long et al. Preparation of acid–base bifunctional core–shell structured Fe3O4@ SiO2 nanoparticles and their cooperative catalytic activity
CN101209860B (en) Method for preparing water-based Fe3O4 magnetic fluid
CN102500294B (en) Preparation method of chitosan coated manganese ferrite nano-particles
Khodadadi et al. Effect of PVA/PEG-coated Fe3O4 nanoparticles on the structure, morphology and magnetic properties
CN101388267B (en) Silicon dioxide magnetic composite particle and preparation
WO2009115176A2 (en) Magnetic nanoparticles and method for the production thereof
CN111063502B (en) Magnetic fluid with adjustable stability and preparation and recovery method thereof
CN105384196B (en) A kind of preparation method of cationic ferroferric oxide nano granules

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee