KR101402012B1 - Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method - Google Patents

Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method Download PDF

Info

Publication number
KR101402012B1
KR101402012B1 KR1020120044221A KR20120044221A KR101402012B1 KR 101402012 B1 KR101402012 B1 KR 101402012B1 KR 1020120044221 A KR1020120044221 A KR 1020120044221A KR 20120044221 A KR20120044221 A KR 20120044221A KR 101402012 B1 KR101402012 B1 KR 101402012B1
Authority
KR
South Korea
Prior art keywords
diblock copolymer
internal structure
metal
particles
block
Prior art date
Application number
KR1020120044221A
Other languages
Korean (ko)
Other versions
KR20130121210A (en
Inventor
석상일
임상혁
임충선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020120044221A priority Critical patent/KR101402012B1/en
Publication of KR20130121210A publication Critical patent/KR20130121210A/en
Application granted granted Critical
Publication of KR101402012B1 publication Critical patent/KR101402012B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/08Homopolymers or copolymers of vinyl-pyridine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 내부구조가 제어된 디블록공중합체 입자의 제조 방법에 관한 것으로, 보다 구체적으로 디블록공중합체를 공통용매에 용해하여 용액화하는 단계 및 용액화된 블록공중합체 용액에 비용매를 적가하여 입자를 침전법으로 생성시키는 단계를 포함하여 디블록공중합체 입자를 제조함으로써, 내부구조를 가지는 입자형태를 나타낼 수 있으며, 또한, 내부구조가 제어된 디블록 공중합체 입자를 주형으로 사용하여 생성되는 금속산화물 입자를 제조할 수 있는 내부구조가 제어된 디블록공중합체 입자의 제조방법에 관한 것이다. More particularly, the present invention relates to a method for preparing a diblock copolymer having an internal structure controlled by dissolving a diblock copolymer in a common solvent and dissolving the same in a common solvent, And forming the particles by a precipitation method to produce a diblock copolymer particle. The diblock copolymer particles can be produced by using the diblock copolymer particles whose internal structure is controlled, as a template To a process for producing a diblock copolymer particle having an internal structure capable of producing metal oxide particles.

Description

침전법을 이용한 내부구조를 가지는 디블록공중합체 입자의 제조방법{PREPARATION METHOD FOR DIBLOCK COPOLYMER NANOPARTICLES HAVING INTERNAL STRUCTURE VIA PRECIPITATION METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for preparing a diblock copolymer having an internal structure using a precipitation method,

본 발명은 내부구조가 제어된 디블록공중합체 (diblock copolymer) 입자의 제조 방법에 관한 것으로, 보다 구체적으로 디블록공중합체를 공통용매(common solvent)에 용해하여 용액화하는 단계 및 용액화된 블록공중합체 용액에 비용매(non-solvent)를 적가하여 입자를 침전법으로 생성시키는 단계를 포함하여 디블록공중합체 입자를 제조함으로써, 내부구조를 가지는 입자형태를 나타낼 수 있으며, 또한, 내부구조가 제어된 디블록 공중합체 입자를 주형(template)으로 사용하여 생성되는 금속산화물 입자를 제조할 수 있는 내부구조가 제어된 디블록공중합체 (diblock copolymer) 입자의 제조방법에 관한 것이다.
The present invention relates to a method for preparing diblock copolymer particles whose internal structure is controlled, and more particularly to a method for preparing a diblock copolymer by dissolving a diblock copolymer in a common solvent for solution, And a step of adding the non-solvent to the copolymer solution to produce particles by a precipitation method. By producing the diblock copolymer particles, a particle shape having an internal structure can be exhibited, To a process for producing diblock copolymer particles having an internal structure controlled to produce metal oxide particles using the controlled diblock copolymer particles as a template.

모양, 크기, 형태 및 구조가 제어된 미세 입자는 반사 방지막용 확산 필러, CMP(chemical mechanical polishing) 용 슬러리, 콜로이드 광결정용 빌딩 블록 (building block), 촉매 담지체, 약물 전달용 담지체등 다양한 분야에 적용된다. 특히 미세 입자의 외형적인 모양 및 크기 뿐 아니라 내부 구조가 제어된 입자는 입자 자체의 1차적인 효과와 더불어 내부 구조에 의한 효과를 추가할 수 있어서 다양한 기능성을 가질 수 있다. 또한, 내부 구조가 제어된 미세 입자는 동일한 형태의 내부 구조가 없는 미세 입자에 비하여 보다 넓은 표면적을 가질 수 있고, 기능성 물질을 내부 구조속의 특정 블록에 저장할 수 있으며, 다양한 형태의 내부 구조를 가질 수 있어 기존의 입자가 가지는 기능에 추가적인 기능성을 부여 할 수 있어 응용 분야에 대한 잠재력이 매우 큰 입자이다. Fine particles controlled in shape, size, shape and structure can be used in various fields such as diffusion filler for antireflection coating, slurry for chemical mechanical polishing (CMP), building block for colloidal photonic crystal, catalyst carrier, . Especially, the shape and size of the fine particles as well as the particles whose internal structure is controlled can have various functions because they can add the effect of the internal structure together with the primary effect of the particles themselves. In addition, fine particles having an internal structure controlled can have a larger surface area than fine particles having no internal structure of the same type, can store functional materials in a specific block in the internal structure, and can have various types of internal structures It is a particle with a great potential for application fields because it can give additional functionality to the functions of existing particles.

Shimomura et. al (Adv. Mater., 2005, 17, 2062-2065, Soft Matter, 2008, 4, 1302-0305, Soft Matter, 2010, 6, 1253-1257)은 블록공중합체를 공통용매에 녹인 후 비용매를 소량 첨가하여 투명한 용액을 만든 후, 교반이 없이 천천히 공통용매를 증발시켜 입자형태의 블록공중합체를 만드는 것에 관하여 보고하였다. 상기 제조방법은 균일한 입자를 생성하기 위해, 교반이 없이 천천히 공통용매를 증발시켜야됨으로 공정시간이 매우 길고 양산화가 어려운 단점이 있다. Shimomura et. (Soft Matter, 2008, 4, 1302-0305, Soft Matter, 2010, 6, 1253-1257) were prepared by dissolving the block copolymer in a common solvent, A small amount of a solution was prepared to make a transparent solution, and then slowly evaporating the common solvent without stirring to produce a block copolymer in the form of particles. In this method, since the common solvent must be slowly evaporated without stirring to produce uniform particles, the process time is very long and mass production is difficult.

종래에는 내부 구조가 제어된 블록 공중합체는 주로 필름 형태에서 많이 이루어져 왔다. 예를 들면, 대한민국 공개특허 제10-2009-0081532호(특허문헌1)에는 폴리스티렌-폴리메틸메타크릴레이트 블록공중합체 및 나노입자를 기판에 스핀코팅하여 실린더형 폴리메틸메타크릴레이트 도메인을 형성하는 나노실린더형 템플레이트 및 나노 점 어레이 제조방법을 나타내고 있으며, 대한민국 공개특허 제10-2010-0022323호(특허문헌2)에는 자기조립블록공중합체 및 금속나노입자 전구체 용액의 비율을 조절하여 2차원으로 배열된 나노점 및 나노선을 제조하는 자기조립 이중블록 공중합체를 이용한 금/산화티탄 복합나노구조체의 제조방법 및 이에 따라 제조된 2차원 배열된 금/산화티탄 나노점 및 나노선을 개시하고 있으나, 주로 내부 구조를 가지는 필름 형태의 블록 공중합체에 금속 나노입자 전구체를 첨가하여 금속 나노입자를 배열하는 것과 관련된 것이다. Conventionally, a block copolymer having an internal structure controlled has mainly been formed in a film form. For example, Korean Laid-Open Patent Application No. 10-2009-0081532 (Patent Document 1) discloses a method of spin-coating polystyrene-polymethyl methacrylate block copolymer and nanoparticles on a substrate to form a cylindrical polymethyl methacrylate domain (Patent Document 2) discloses a nanocylindrical template and a method of manufacturing a nano-dot array. In Korean Patent Laid-Open No. 10-2010-0022323, a ratio of a self-assembled block copolymer and a metal nanoparticle precursor solution is adjusted, Titanium complex nanostructures using a self-assembled diblock copolymer to produce nanoparticles and nanowires, and two-dimensionally arranged gold / titanium oxide nanoparticles and nanowires prepared therefrom, Related to the arrangement of metal nanoparticles by adding a metal nanoparticle precursor to a film-type block copolymer having mainly an internal structure A.

또한, 대한민국 특허공개공보 제10-2008-0127691호(특허문헌3)에서는 나노입자/블록 공중합체 복합체의 제조 방법에 관하여 개시하고 있으며, 유기리간드를 가지는 나노입자와 블록 공중합체의 특정 블록과의 친화성을 제어하여 특정 블록에 유기리간드를 가지는 나노입자가 캡슐화(encapsulation)되도록 하는 방법에 관한 것을 나타내었다. Korean Patent Laid-Open Publication No. 10-2008-0127691 (Patent Document 3) discloses a method for producing a nanoparticle / block copolymer complex, and relates to a method for producing a nanoparticle / block copolymer composite comprising a nanoparticle having an organic ligand and a specific block And controlling the affinity to encapsulate nanoparticles having an organic ligand in a specific block.

그러나 나노입자를 캡슐화하기 위해서는 공통용매를 증발시키는 방법을 이용하였으며, 이러한 방법은 공통용매를 증발시키는 공정 중에 입자들이 응집될 수 있으므로 입도 분포가 커지고, 용매의 증발공정이 추가됨으로써 공정시간 및 비용이 증가되는 문제가 발생할 수 있다. However, in order to encapsulate nanoparticles, a method of evaporating a common solvent is used. In this method, since the particles can be aggregated during the process of evaporating the common solvent, the particle size distribution is increased and the evaporation process of the solvent is added. There may arise an increase in the number of users.

입자화하기 위하여 에멀젼 액적을 형성하고 에멀젼 액적에서 용매를 증발 시키는 방법을 이용하였다. 또한 상기 액적에 계면활성제를 도입하여 액적의 모양을 변형시킬 수 있음을 개시하였다. 하지만 계면활성제를 이용하여 에멀젼 액적을 만들 경우, 균일한 액적을 만들기 힘들고 액적 내부의 용매를 증발 시키는 공정 중 생성된 액적간의 충돌로 인한 회합을 피할 수 없어 입도의 분포가 커지고 용매의 증발 공정이 추가되는 단점이 예상된다.
A method of forming an emulsion droplet to be granulated and evaporating the solvent in the emulsion droplet was used. It is also disclosed that a surfactant can be introduced into the droplet to change the shape of the droplet. However, when emulsion droplets are prepared using a surfactant, it is difficult to form uniform droplets, and due to the collision between the droplets generated during the process of evaporating the solvent inside the droplets, it is impossible to avoid the aggregation and the evaporation process of the solvent is added Is expected.

대한민국 공개특허 제10-2009-0081532호Korea Patent Publication No. 10-2009-0081532 대한민국 공개특허 제10-2010-0022323호Korean Patent Publication No. 10-2010-0022323 대한민국 특허공개공보 제10-2008-0127691호Korean Patent Laid-Open Publication No. 10-2008-0127691

본 발명은 공정이 용이하고 양산성이 있는 내부구조를 가지는 디블록공중합체 입자의 제조방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a process for producing diblock copolymer particles having an internal structure that is easy to process and mass-producible.

또한, 본 발명은 상기의 내부구조를 가지는 디블록공중합체 입자를 주형으로 사용하여 생성되는 내부구조를 가지는 금속산화물 입자의 제조방법을 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide a method for producing a metal oxide particle having an internal structure produced by using diblock copolymer particles having the internal structure as a template.

상기와 같은 목적을 달성하기 위한 본 발명에 따르면, 하기 식 1과 식 2를 만족하는 A-B형 디블록공중합체를 하기 식 3을 만족하는 공통용매에 용해하여 용액화하는 단계; 및 용액화된 A-B형 디블록공중합체 용액에 하기 식 4를 만족하는 비용매를 교반하면서 적가하는 단계;를 포함하는 것을 특징으로 한다. According to an aspect of the present invention, there is provided a process for producing a diblock copolymer, comprising the steps of: dissolving an A-B type diblock copolymer satisfying the following formula 1 and formula 2 in a common solvent satisfying the following formula 3 to form a solution; And dropping the non-solvent satisfying the following formula (4) into the solution of the A-B type diblock copolymer solution while stirring.

δB -δA≥3 [식 1]? B -? A? 3 [Formula 1]

δA ≤ 19 [식 2]? A? 19 [Formula 2]

δA < δ(공통용매)+1 < δB [식 3]? A <? (common solvent) + 1 <? B [Formula 3]

δB - δ(비용매) ≥3 [식 4]隆 B - 隆 (nonself) ≥ 3 [Equation 4]

(상기 δA, δB는 A블록과 B블록으로 형성된 A-B 형의 디블록공중합체의 A블록 및 B블록의 용해도 상수이고, δ(공통용매) 및 δ(비용매)는 공통용매 및 비용매의 용해도 상수이다.)(隆 A and 隆 B are solubility constants of the A block and B block of the AB type diblock copolymer formed of the A block and the B block, and 隆 (common solvent) and 隆 (non-solvent) are solubilities It is a constant.)

상기 디블록공중합체 입자의 내부구조는 실린더형 또는 양파형으로 형성되며, 상기 비용매는 톨루엔, 헥산, 헵탄, 옥탄, 노난, 데칸, 도데칸을 1종 또는 2종 이상을 포함하는 것을 특징으로 한다. The internal structure of the diblock copolymer particles is formed into a cylindrical shape or an onion shape, and the non-solvent includes one or more of toluene, hexane, heptane, octane, nonane, decane and dodecane .

또한, 내부구조를 가지는 디블록공중합체 입자의 제조방법은 금속산화물 전구체를 투입하여 금속산화물로 전환하는 단계;를 추가로 더 포함하는 하는 것을 특징으로 한다. In addition, a method for preparing a diblock copolymer particle having an internal structure may further include the step of converting a metal oxide precursor into a metal oxide.

상기 금속산화물 전구체는 Al, Si, Ti, Ba, Zr, Sn, W, Ni, Cu 또는 Zn를 포함하는 금속염화물, 금속알콕사이드, 금속알카노에이트, 금속카르복실산염, 유기금속착화합물 중에서 선택되는 1종 또는 2종 이상이며, 금속산화물로 전환은 소성 또는 촉매에 의해 금속산화물로 전환되는 것을 특징으로 한다. Wherein the metal oxide precursor is selected from the group consisting of metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates, and organometallic complexes including metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates and metal complexes including Al, Si, Ti, Ba, Zr, Sn, W, Or two or more species, and the conversion to a metal oxide is characterized by being converted into a metal oxide by calcination or a catalyst.

또한, 상기의 내부구조를 가지는 디블록공중합체 입자의 제조방법으로 제조되는 내부구조를 가지는 디블록공중합체 입자를 전자전달체로 채택한 무기반도체 감응형 태양전지 또는 리튬이차전지인 전자기기를 제공하는 것을 특징으로 한다.The present invention also provides an inorganic semiconductor-sensitive solar cell or an electronic device using the lithium secondary battery, wherein the diblock copolymer particles having an internal structure prepared by the process for producing the diblock copolymer particles having the above internal structure are employed as an electron carrier .

본 발명의 침전법을 이용한 내부구조를 가지는 디블록공중합체 입자의 제조방법에 따르면, 실린더 또는 양파형 내부구조를 가지는 디블록공중합체 입자를 제조할 수 있는 장점이 있다. According to the method for producing a diblock copolymer particle having an internal structure using the precipitation method of the present invention, diblock copolymer particles having a cylinder or onion type internal structure can be advantageously produced.

또한, 침전법을 사용하여 제조함으로써 불필요한 공통용매 증발 등의 공정이 감소함에 따라, 제조공정이 용이하여 양산성이 있으며, 제조시간 및 제조비용이 절감되는 장점이 있다. In addition, since the unnecessary steps such as evaporation of common solvent are reduced by the precipitation method, the production process is easy, mass production is possible, and manufacturing time and manufacturing cost are reduced.

또한, 본 발명에 따른 내부구조를 가지는 디블록공중합체 입자를 주형으로 사용하여 내부구조를 가지는 금속산화물을 제조할 수 있는 장점이 있다.
Also, there is an advantage that a metal oxide having an internal structure can be produced by using the diblock copolymer particles having an internal structure according to the present invention as a template.

도 1은 본 발명에 따른 실시예 1에 의해 제조된 디블록공중합체 입자의 주사전자현미경 사진을 나타낸 것이며, 도 2는 본 발명에 따른 실시예 1에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 3은 본 발명에 따른 실시예 2에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 4는 본 발명에 따른 실시예 3에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 5는 본 발명에 따른 실시예 4에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 6은 본 발명에 따른 실시예 5에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 7은 본 발명에 따른 실시예 6에 의해 제조된 디블록공중합체 입자의 주사전자현미경 사진을 나타낸 것이며, 도 8은 본 발명에 따른 실시예 6에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 9은 본 발명에 따른 비교예 1에 의해 제조된 디블록공중합체 입자의 투과전자현미경 사진을 나타낸 것이다.
도 10은 본 발명에 따른 실시예 7에 의해 제조된 이산화티탄 금속산화물 입자의 투과전자현미경 사진을 나타낸 것이다.
FIG. 1 is a scanning electron micrograph of the diblock copolymer particles prepared in Example 1 according to the present invention. FIG. 2 is a graph showing the transmittance of electrons of the diblock copolymer particles prepared in Example 1 according to the present invention FIG.
3 is a transmission electron microscope photograph of the diblock copolymer particles prepared in Example 2 according to the present invention.
4 is a transmission electron microscope photograph of the diblock copolymer particles prepared in Example 3 according to the present invention.
5 is a transmission electron microscope photograph of the diblock copolymer particles prepared in Example 4 according to the present invention.
6 is a transmission electron micrograph of the diblock copolymer particles prepared in Example 5 according to the present invention.
FIG. 7 is a SEM photograph of the diblock copolymer particles prepared in Example 6 according to the present invention, and FIG. 8 is a SEM photograph of the diblock copolymer particles prepared in Example 6 according to the present invention. FIG.
9 is a transmission electron microscope photograph of the diblock copolymer particles produced by Comparative Example 1 according to the present invention.
10 is a transmission electron microscope photograph of the titanium dioxide metal oxide particles prepared in Example 7 according to the present invention.

이하, 본 발명의 침전법을 이용한 내부구조를 가지는 디블록공중합체 입자의 제조방법에 대하여 바람직한 실시형태 및 물성측정 방법을 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이고, 첨부된 특허 청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다. Hereinafter, preferred embodiments and methods for measuring properties of a diblock copolymer particle having an internal structure using the precipitation method of the present invention will be described in detail. The present invention may be better understood by the following examples, which are for the purpose of illustrating the present invention and are not intended to limit the scope of protection defined by the appended claims.

상기 목적을 달성하기 위하여 본 발명은 하기 식 1과 식 2를 만족하는 A-B형 디블록공중합체를 하기 식 3을 만족하는 공통용매에 용해하여 용액화하는 단계; 및 용액화된 A-B형 디블록공중합체 용액에 하기 식 4를 만족하는 비용매를 교반하면서 적가하는 단계;를 포함하는 것을 특징으로 한다. In order to accomplish the above object, the present invention provides a process for producing a diblock copolymer, comprising the steps of: dissolving an A-B type diblock copolymer satisfying the following formula 1 and formula 2 in a common solvent satisfying the following formula 3 to form a solution; And dropping the non-solvent satisfying the following formula (4) into the solution of the A-B type diblock copolymer solution while stirring.

δB - δA≥3 [식 1]? B -? A? 3 [Formula 1]

δA ≤ 19 [식 2]? A? 19 [Formula 2]

δA < δ(공통용매)+1 <δB [식 3]? A <? (common solvent) + 1 <? B [Formula 3]

δB - δ(비용매) ≥3 [식 4]隆 B - 隆 (nonself) ≥ 3 [Equation 4]

(상기 δA, δB는 A블록과 B블록으로 형성된 A-B 형의 디블록공중합체의 A블록 및 B블록의 용해도 상수이고, δ(공통용매) 및 δ(비용매)는 공통용매 및 비용매의 용해도 상수이다.)(隆 A and 隆 B are solubility constants of the A block and B block of the AB type diblock copolymer formed of the A block and the B block, and 隆 (common solvent) and 隆 (non-solvent) are solubilities It is a constant.)

또한 본 발명은 상기 제조한 내부구조를 가지는 디블록공중합체 입자에 금속산화물 전구체를 투입하여 금속산화물로 전환하는 단계를 더 포함하여 제조되는 내부구조를 가지는 금속산화물 입자의 제조방법을 제공하는 것이다.  The present invention also provides a method for preparing metal oxide particles having an internal structure, which further comprises the step of introducing a metal oxide precursor into the diblock copolymer particles having the internal structure and converting the metal oxide precursor into a metal oxide.

또한 본 발명은 상기 내부구조를 가지는 금속산화물을 전자전달체로 채택한 무기반도체 감응형 태양전지 및 배터리용 음극소재로 사용하는 이차전지 등의 에너지소자를 제공할 수도 있다.
The present invention may also provide an energy device such as an inorganic semiconductor sensing type solar cell employing a metal oxide having an internal structure as an electron carrier and a secondary battery used as a cathode material for a battery.

이하 본 발명에 대하여 구체적으로 살피면 다음과 같다. Hereinafter, the present invention will be described in detail.

상기 목적을 달성하기 위하여, 본 발명은 디블록공중합체를 공통용매(common solvent)에 용해하여 용액화하는 단계 및 용액화된 디블록공중합체 용액에 비용매(non-solvent)를 교반하면서 적가하여 입자를 침전법으로 생성시키는 단계를 포함하는 것을 특징으로 한다. In order to achieve the above object, the present invention provides a process for producing a diblock copolymer, which comprises dissolving a diblock copolymer in a common solvent and dissolving the same in a common solvent, and adding a non-solvent dropwise to the solution of the diblock copolymer solution while stirring Thereby forming particles by a precipitation method.

또한 내부구조를 가지는 금속산화물 입자를 형성하기 위하여, 상기 내부구조를 가지는 디블록공중합체 분산용액에 금속산화물 전구체, 촉매 및 용매를 첨가하여 반응시키는 단계 및 상기 디블록공중합체를 제거하는 단계를 포함하는 것을 특징으로 한다.Also, in order to form metal oxide particles having an internal structure, a step of adding a metal oxide precursor, a catalyst and a solvent to a diblock copolymer dispersion solution having the internal structure to react, and a step of removing the diblock copolymer .

침전법을 통해서 내부구조를 가지는 디블록공중합체 입자를 형성하기 위해서는 A블록과 B블록으로 형성된 A-B 형의 디블록공중합체의 A블록 및 B블록의 용해도 상수 (solubility parameter (δ): 단위 = MPa0 .5)의 차이가 3 이상이고, 즉, δB-δA≥3인 것이 바람직하고, A 블록의 용해도 상수가 19 이하인 것, 즉 δA ≤ 19 인 A-B형 디블록공중합체인 것이 바람직하다. In order to form the diblock copolymer particles having an internal structure through the precipitation method, the solubility parameter (delta) of the A block and B block of the AB type diblock copolymer formed of the A block and the B block: unit = MPa and a difference of 0. 5) 3 or more, that is, that the δB-δA≥3 and preferably, not more than the solubility constant of the a block 19, that is preferably ≤ 19 δA of AB-type diblock copolymer.

상기 용해도 상수의 차이를 만족하는 예로는 polymer handbook 등에 기재된 중합체를 참고하면 알 수 있으며, 일예로는 스티렌(δ18.3)-아크릴로니트릴(δ25.7)블록공중합체, 스티렌(δ18.3)-비닐피리딘(δ25)블록공중합체, 알파메틸스티렌(~δ18)-비닐피리딘(δ25)블록공중합체 등 많은 디블록공중합체를 예로들 수 있지만 상기 용해도상수의 차이에 해당하는 디블록공중합체라면 이에 한정하는 것은 아니다.Examples of satisfying the above solubility constants are styrene (delta 18.3) -acrylonitrile (delta 25.7) block copolymer, styrene (delta 18.3) Block copolymers such as vinylpyridine (δ25) block copolymer, α-methylstyrene (δ18) -vinylpyridine (δ25) block copolymer, and the like. However, if the diblock copolymer corresponds to the difference in solubility constants But is not limited thereto.

또한, 상기의 용해도 변수가 서로 상이한 A 및 B의 블록단위를 갖는 블록공중합체는 디블록공중합체가 바람직하나, 삼중블록공중합체, 랜덤블록공중합체, 그래프트블록공중합체 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수도 있다. The block copolymers having block units A and B differing in solubility parameter from each other are preferably diblock copolymers, but may be triblock copolymers, random block copolymers, graft block copolymers, and combinations thereof May be used.

상기 디블록공중합체는 블록간의 인력, 구성되는 블록의 반복단위의 부피변화, 공통용매 및 비용매에 따라서 실린더형, 양파형 등의 당업계에서 일반적으로 적용될 수 있는 통상적인 분자구조로 설계될 수 있다. The diblock copolymer may be designed to have a typical molecular structure generally applicable in the art, such as the attraction between blocks, the volume change of repeating units of constituent blocks, the type of cylinder, onion type, etc., depending on the common solvent and non-solvent have.

상기 공통용매는 A-B 디블록공중합체의 각 블록을 용해할 수 있는 용매로, δA < δ공통용매+1 <δB 인 용매를 의미한다.The common solvent means a solvent capable of dissolving each block of the A-B diblock copolymer and having a delta A < delta common solvent + 1 < delta B.

일예로 폴리스티렌(δ18.3)-폴리비닐피리딘(δ25) 디블록공중합체의 경우, 클로로포름(δ18.7), THF(테트라하이드로퓨란)(δ19) 등의 것을 예로들 수 있지만 이에 한하지 않고, 이러한 용매는 고분자의 용해도 지수와 같이 Polymer Handbook 등의 다양한 문헌에 기재되어 있으므로 이를 활용하면 된다.Examples of the polystyrene (delta 18.3) -polyvinylpyridine (delta 25) diblock copolymer include chloroform (delta 18.7) and THF (tetrahydrofuran) (delta 19) Such solvents are described in various documents such as the Polymer Handbook, as well as the solubility index of the polymer.

본 발명에서 상기 비용매는 A-B 디블록공중합체의 B 블록의 용해도 상수와 비용매의 용해도 상수의 차이가 3이상인, 즉, δB-δ(비용매)≥3을 만족하는 용매를 의미하는 것으로, 이 또한 상기 공통용매와 같이, Polymer Handbook 등의 다양한 문헌에 기재되어 있으므로 이를 활용하면 된다.In the present invention, the non-solvent means a solvent in which the difference between the solubility constant of the B block of the AB diblock copolymer and the solubility constant of the non-solvent is 3 or more, that is, the solvent satisfies? B-? (Non-solvent)? 3, Also, since they are described in various documents such as the Polymer Handbook as in the case of the common solvent, they can be utilized.

일예로 폴리스티렌-폴리비닐피리딘 디블록공중합체의 경우 비용매로, 톨루엔(δ18.2), 헥산(δ14.9), 헵탄(δ15.2), 옥탄(δ15.5), 노난(δ15.6), 데칸(δ15.8), 도데칸(δ16)등을 예로 들 수 있지만 이에 한정하는 것은 아니다.
For example, in the case of the polystyrene-polyvinylpyridine diblock copolymer, toluene (delta 18.2), hexane (delta 14.9), heptane (delta 15.2), octane (delta 15.5) ), Decane (? 15.8), dodecane (? 16), and the like.

또한, 내부구조를 가지는 디블록공중합체 입자를 형성하기 위하여, 상기 디블록공중합체 100중량부에 대하여, 공통용매를 100 내지 100,000중량부 포함하는 것이 바람직하고, 보다 바람직하게는 500 내지 10,000중량부 포함하는 것이 효과적이며, 비용매는 100 내지 100,000중량부 포함하는 것이 바람직하다. In order to form the diblock copolymer particles having an internal structure, the common solvent is preferably contained in an amount of 100 to 100,000 parts by weight, more preferably 500 to 10,000 parts by weight, per 100 parts by weight of the diblock copolymer And it is preferable that the non-solvent contains 100 to 100,000 parts by weight.

상기 공통용매 및 비용매의 함량이 상기 하한의 범위를 벗어나는 경우, 점도가 높아 공정이 어렵고 입자의 뭉침이 발생할 수 있으며, 상기 상한의 범위를 벗어나는 경우, 농도가 묽어 수율이 저하되는 문제가 발생할 수 있다. 따라서, 상기의 최적의 함량으로 공통용매 및 비용매를 포함하여 실린더 또는 양파형태를 가지는 내부구조를 가지는 디블록공중합체 입자를 제조할 수 있다.
If the content of the common solvent and the non-solvent is out of the lower limit, the process may be difficult due to the high viscosity and aggregation of the particles may occur. If the content is out of the upper limit range, have. Therefore, diblock copolymer particles having an internal structure having a cylinder or onion form including a common solvent and non-solvent can be prepared at the optimal contents.

상기 내부구조를 가지는 금속산화물 입자의 제조방법에 있어서, 상기 디블록공중합체 분산용액에 첨가되는 금속산화물 전구체로부터 금속산화물로 전환하는 것은 소성하거나 촉매에 의해 반응시켜 형성할 수 있다. In the method for producing the metal oxide particles having the internal structure, the conversion from the metal oxide precursor added to the diblock copolymer dispersion solution to the metal oxide may be performed by baking or reacting with a catalyst.

상기 금속산화물 전구체는 Al, Si, Ti, Ba, Zr, Sn, W, Ni, Cu 또는 Zn를 포함하는 금속염화물, 금속알콕사이드, 금속알카노에이트, 금속카르복실산염, 유기금속착화합물 중에서 선택되는 1종 또는 2종 이상을 예로 들수 있으며, 이 분야에 사용되는 금속전구체라면 제한되지 않는다.  Wherein the metal oxide precursor is selected from the group consisting of metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates, and organometallic complexes including metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates and metal complexes including Al, Si, Ti, Ba, Zr, Sn, W, Or two or more species, and the metal precursors used in this field are not limited.

상기 소성의 경우에는 산소 분위기하에서 100~1000℃의 범위에서 수행하는 것으로, 금속산화물로 전환하는 것과 동시에 내부구조를 가지는 디블록공중합체를 제거할 수도 있고, 먼저 금속산화물로 전환한 후, 내부구조를 가지는 디블록공중합체를 가열하여 산화시켜 제거하는 수단 등을 모두 포함할 수 있다. 상기 소성 온도가 100℃ 미만일 경우에는 충분히 디블록공중합체가 제거되지 않는 문제가 발생할 수 있으며, 1000℃ 초과일 경우에는 불필요한 에너지가 소요되어 공정비용이 상승하는 문제가 발생할 수 있다. In the case of the above firing, it is carried out in an oxygen atmosphere at a temperature in the range of 100 to 1000 ° C. In this case, the diblock copolymer having an internal structure can be removed at the same time as the metal oxide is converted. And a means for heating and oxidizing and removing the diblock copolymer. If the calcination temperature is less than 100 ° C, the diblock copolymer may not be sufficiently removed. If the calcination temperature is more than 1000 ° C, unnecessary energy may be required and the process cost may increase.

또한, 상기 촉매에 의해 금속산화물 전구체가 금속산화물로 전환되는 경우, 공통용매로 내부구조를 가지는 디블록공중합체만 선택적으로 녹여내어 제거할 수 있으며, 상기 촉매는 질산, 염산, 황산, 초산, 3-mercaptopropionic acid, 개미산, 옥살산 등의 산 또는 암모니아수, NaOH, KOH, 등의 염기 중에서 선택되는 1종 이상을 포함할 수 있다.When the metal oxide precursor is converted to a metal oxide by the catalyst, only the diblock copolymer having an internal structure as a common solvent can be selectively dissolved and removed, and the catalyst can be removed by nitric acid, hydrochloric acid, sulfuric acid, -mercaptopropionic acid, formic acid, and oxalic acid, or ammonia water, and bases such as NaOH, KOH, and the like.

내부구조를 가지는 디블록공중합체 분산용액에 금속산화물 전구체, 촉매 및 용매를 첨가하여 반응시키는 단계에서 사용하는 용매로는 물, 메탄올, 에탄올, 프로판올, 이소프로필알콜, 부틸알콜, 이소부틸알콜, t-부틸알콜, 에탄디올, 프로판디올, 부탄디올, 펜탄디올, 글리세롤, 메틸셀로솔브, 디아세톤알콜에서 선택되는 1종 이상이다.Examples of the solvent used in the step of adding the metal oxide precursor, the catalyst and the solvent to the diblock copolymer dispersion solution having the internal structure and reacting include water, methanol, ethanol, propanol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, t -Butyl alcohol, ethanediol, propanediol, butanediol, pentanediol, glycerol, methylcellosolve, and diacetone alcohol.

본 발명에서 내부구조를 가지는 디블록공중합체의 제거는 공통용매를 이용하여 선택적으로 녹여 내거나 소결과정을 통해 선택적으로 태우는 과정을 통해 이루어지는 것을 특징으로 하는 내부구조를 가지는 금속산화물 입자를 제조한다.
In the present invention, the removal of the diblock copolymer having an internal structure is carried out by selectively melting using a common solvent or selectively burning through a sintering process to produce a metal oxide particle having an internal structure.

이하의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. The present invention will be described in more detail with reference to the following examples and comparative examples.

내부구조를 가지는 디블록공중합체입자 제조방법Process for producing diblock copolymer particles having internal structure

[실시예 1][Example 1]

20 mg의 폴리스티렌(δ18.3)-폴리-2-비닐피리딘(δ25) 블록공중합체(분자량: 248k-b-195k, 분자량 분포 (PDI) = 1.08)을 50 mL 의 THF(δ19)에 녹인 용액을 100 rpm으로 교반을 하면서 75 mL의 헵탄(δ15.2)을 적가하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 주사전자현미경(SEM,필립스 S-20S, FEG) 사진 및 투과전자현미경(TEM, Tecnai GII, FEI)은 도 1 및 도 2에 나타내었다. 주사전자현미경 사진은 생성된 디블록공중합체 입자가 구형의 입자형태로 존재하며 투과전자현미경 사진은 생성된 구형의 입자가 내부구조(실린더 형태)를 가지는 디블록공중합체 입자임을 잘 나타낸다.
A solution obtained by dissolving 20 mg of a polystyrene (delta 18.3) -poly-2-vinylpyridine (delta 25) block copolymer (molecular weight: 248 k-b-195 k, molecular weight distribution (PDI) = 1.08) in 50 mL of THF Was stirred at 100 rpm while 75 mL of heptane (? 15.2) was added dropwise to prepare diblock copolymer particles having an internal structure. A scanning electron microscope (SEM, Philips S-20S, FEG) photograph and a transmission electron microscope (TEM, Tecnai GII, FEI) of the resulting diblock copolymer particles are shown in FIG. 1 and FIG. SEM photographs show that the resulting diblock copolymer particles are present in the form of spherical particles, and the transmission electron micrographs show that the resulting spherical particles are diblock copolymer particles having an internal structure (cylindrical form).

[실시예 2][Example 2]

20mg의 폴리스티렌(δ18.3)-폴리-2-비닐피리딘(δ25) 블록공중합체(분자량: 248k-b-195k, 분자량 분포(PDI) = 1.08)을 40 mL 의 THF(δ19)에 녹인 용액을 100 rpm으로 교반을 하면서 30 mL의 옥탄(δ15.5)을 적가하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 투과전자현미경은 도 3에 나타내었다. 투과전자현미경 사진은 생성된 구형의 입자가 내부구조를 가지는 디블록공중합체 입자임을 잘 나타낸다.
A solution obtained by dissolving 20 mg of a polystyrene (delta 18.3) -poly-2-vinylpyridine (delta 25) block copolymer (molecular weight: 248 k-b-195 k, molecular weight distribution (PDI) = 1.08) in 40 mL of THF While stirring at 100 rpm, 30 mL of octane (隆 15.5) was added dropwise to prepare diblock copolymer particles having an internal structure. The transmission electron microscope of the resulting diblock copolymer particles is shown in Fig. The transmission electron microscope photograph shows that the spherical particles produced are diblock copolymer particles having an internal structure.

[실시예 3][Example 3]

상기 실시예 2에서 옥탄 대신 데칸(δ15.8)를 적가하는 것을 제외하고 동일하게 실시하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 투과전자현미경은 도 4에 나타내었다. 투과전자현미경 사진은 생성된 구형의 입자가 내부구조를 가지는 디블록공중합체 입자임을 잘 나타낸다.
Diblock copolymer particles having an internal structure were prepared in the same manner as in Example 2 except that decane (delta 15.8) was added dropwise instead of octane. The transmission electron microscope of the resulting diblock copolymer particles is shown in Fig. The transmission electron microscope photograph shows that the spherical particles produced are diblock copolymer particles having an internal structure.

[실시예 4][Example 4]

상기 실시예 2에서 옥탄 대신 도데칸(δ16)를 적가하는 것을 제외하고 동일하게 실시하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 투과전자현미경은 도 5에 나타내었다. 투과전자현미경 사진은 생성된 구형의 입자가 내부구조를 가지는 디블록공중합체 입자임을 잘 나타낸다.
Diblock copolymer particles having an internal structure were prepared in the same manner as in Example 2 except that dodecane (delta 16) was added dropwise instead of octane. The transmission electron microscope of the resulting diblock copolymer particles is shown in Fig. The transmission electron microscope photograph shows that the spherical particles produced are diblock copolymer particles having an internal structure.

[실시예 5][Example 5]

20 mg의 폴리스티렌(δ18.3)-폴리-2-비닐피리딘(δ25) 블록공중합체(분자량: 248k-b-195k, 분자량 분포(PDI) = 1.08)을 20 mL 의 클로로포름(δ18.7)에 녹인 용액을 100 rpm으로 교반을 하면서 28 mL의 도데칸(δ16)을 적가하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 투과전자현미경은 도 6에 나타내었다. 투과전자현미경 사진은 생성된 구형의 입자가 내부구조를 가지는 디블록공중합체 입자임을 잘 나타낸다.
20 mg of a polystyrene (? 18.3) -poly-2-vinylpyridine (? 25) block copolymer (molecular weight: 248 k-b-195 k, molecular weight distribution (PDI) = 1.08) was dissolved in 20 mL of chloroform The dissolved solution was stirred at 100 rpm while 28 mL of dodecane (δ16) was added dropwise to prepare diblock copolymer particles having an internal structure. The transmission electron microscope of the resulting diblock copolymer particles is shown in Fig. The transmission electron microscope photograph shows that the spherical particles produced are diblock copolymer particles having an internal structure.

[실시예 6][Example 6]

20 mg의 폴리스티렌(δ18.3)-폴리-2-비닐피리딘(δ25) 블록공중합체(분자량: 8.2k-b-8.3k, 분자량 분포(PDI) = 1.09)을 6 mL의 클로로포름(δ18.7)에 녹인 용액을 100 rpm으로 교반을 하면서 14 mL의 도데칸(δ16)을 적가하여 내부구조를 가지는 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 주사전자현미경사진과 투과전자현미경은 도 7과 도 8에 나타내었다. 주사전자현미경 사진은 생성된 디블록공중합체 입자가 구형의 형태를 나타냄을 보여주고 투과전자현미경 사진은 생성된 구형의 입자가 내부구조(양파구조)를 가지는 디블록공중합체 입자임을 잘 나타낸다.
20 mg of a polystyrene (? 18.3) -poly-2-vinylpyridine (? 25) block copolymer (molecular weight: 8.2 kb-8.3 k, molecular weight distribution (PDI) = 1.09) was dissolved in 6 mL of chloroform The dissolved solution was stirred at 100 rpm and 14 mL of dodecane (δ16) was added dropwise to prepare diblock copolymer particles having an internal structure. The scanning electron microscope and transmission electron microscope of the resulting diblock copolymer particles are shown in FIG. 7 and FIG. SEM photographs show that the resulting diblock copolymer particles exhibit spherical shapes and transmission electron micrographs show that the resulting spherical particles are diblock copolymer particles having an internal structure (onion structure).

[비교예 1][Comparative Example 1]

10 mg의 폴리스티렌(δ18.3)-폴리-2-비닐피리딘(δ25) 블록공중합체(분자량: 248k-b-195k, 분자량 분포(PDI) = 1.08)을 10 mL 의 클로로포름(δ18.7)에 녹인 용액을 100 rpm으로 교반을 하면서 100 mL의 1-부탄올(δ23.3)을 적가하여 디블록공중합체 입자를 제조하였다. 생성된 디블록공중합체 입자의 투과전자현미경은 도 9에 나타내었다. 생성된 디블록공중합체 입자가 구형의 입자형태로 존재하지만 투과전자현미경 사진에서 생성된 구형의 입자가 내부구조를 가지지 않는 디블록공중합체 입자임을 보여준다.
10 mg of a polystyrene (? 18.3) -poly-2-vinylpyridine (? 25) block copolymer (molecular weight: 248 k-b-195 k, molecular weight distribution (PDI) = 1.08) was dissolved in 10 mL of chloroform The dissolved solution was stirred at 100 rpm and 100 mL of 1-butanol (δ23.3) was added dropwise to prepare diblock copolymer particles. The transmission electron microscope of the resulting diblock copolymer particles is shown in Fig. The resulting diblock copolymer particles are present in the form of spherical particles, but spherical particles produced by transmission electron microscopy show that they are diblock copolymer particles having no internal structure.

내부구조를 가지는 금속산화물 나노입자 제조방법METHOD FOR MANUFACTURING METAL OXIDE NANOPARTICLES HAVING INSIDE

[실시예 7][Example 7]

상기 실시예 5에서 제조된 내부구조를 가지는 디블록공중합체입자 용액에 1 mL의 티타늄디이소프로폭시드비스아세틸아세토네이트(알드리치사)를 첨가 하여 5시간 교반한 후, 원심분리하고 500℃ 퍼니스에서 1시간 동안 소결하여 내부구조를 가지는 이산화티탄 입자를 만들었다. 생성된 이산화티탄 입자의 투과전자현미경 사진은 도 10에 나타내었으며 내부구조를 가지는 다공성의 이산화티탄입자가 형성됨을 보여준다.1 mL of titanium diisopropoxide bisacetylacetonate (Aldrich) was added to the diblock copolymer particle solution having the internal structure prepared in Example 5, and the mixture was stirred for 5 hours, centrifuged, For 1 hour to form titanium dioxide particles having an internal structure. A transmission electron microscope photograph of the produced titanium dioxide particles is shown in Fig. 10, showing that porous titanium dioxide particles having an internal structure are formed.

따라서, 도 1 내지 도 10에 나타난 바와 같이, 디블록공중합체를 공통용매에 용해하여 용액화하는 단계 및 용액화된 블록공중합체 용액에 비용매를 적가하여 입자를 침전법으로 생성시키는 단계를 포함하여 디블록공중합체 입자를 제조함으로써, 실린더 구조 또는 양파구조를 갖는 내부구조를 가지는 입자형태를 제조할 수 있었다. Therefore, as shown in Figs. 1 to 10, the step of dissolving the diblock copolymer in a common solvent to form a solution, and a step of adding the non-solvent to the solution of the solution of the block copolymer to form particles by a precipitation method To prepare diblock copolymer particles, a particle shape having an internal structure having a cylinder structure or an onion structure could be produced.

이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 균등물을 사용할 수 있으며, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서, 상기 기재 내용은 하기의 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.
While the present invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Accordingly, the above description should not be construed as limiting the scope of the present invention defined by the limits of the following claims.

Claims (8)

하기 식 1과 식 2를 만족하는 스티렌-아크릴로니트릴 블록공중합체, 스티렌-비닐피리딘 블록공중합체 및 알파메틸스티렌-비닐피리딘 블록공중합체 중에서 선택되는 A-B형 디블록공중합체를 하기 식 3을 만족하는 공통용매에 용해하여 용액화하는 단계; 및 상기 용액화된 A-B형 디블록공중합체 용액에 하기 식 4를 만족하는 비용매를 교반하면서 적가하는 단계;를 포함하는 것을 특징으로 하는 실린더형 또는 양파형으로 형성되는 내부구조를 가지는 디블록공중합체 입자의 제조방법.
δB-δA≥3 [식 1]
δA ≤ 19 [식 2]
δA < δ(공통용매)+1 <δB [식 3]
δB - δ(비용매) ≥3 [식 4]
(상기 δA, δB는 A블록과 B블록으로 형성된 A-B 형의 디블록공중합체의 A블록 및 B블록의 용해도 상수이고, δ(공통용매) 및 δ(비용매)는 공통용매 및 비용매의 용해도 상수이며, 용해도 상수(solubility parameter (δ): 단위 = MPa0.5)이다.)
An AB type diblock copolymer selected from a styrene-acrylonitrile block copolymer, a styrene-vinylpyridine block copolymer and an alpha methyl styrene-vinyl pyridine block copolymer satisfying the following formulas 1 and 2 satisfies the following formula 3 And dissolving the solution in a common solvent to form a solution; And dropping the non-solvent which satisfies the following formula (4) into the solution of the AB type diblock copolymer solution while stirring the solution. The diblock copolymer having an internal structure formed in a cylindrical or onion type A method for producing coalesced particles.
? B -? A? 3 [Formula 1]
? A? 19 [Formula 2]
? A <? (common solvent) + 1 <? B [Formula 3]
隆 B - 隆 (nonself) ≥ 3 [Equation 4]
(隆 A and 隆 B are solubility constants of the A block and B block of the AB type diblock copolymer formed of the A block and the B block, and 隆 (common solvent) and 隆 (non-solvent) are solubilities Constant and the solubility parameter (δ): unit = MPa 0.5 ).
삭제delete 제 1항에 있어서,
상기 비용매는 톨루엔, 헥산, 헵탄, 옥탄, 노난, 데칸, 도데칸을 1종 또는 2종 이상을 포함하는 내부구조를 가지는 디블록공중합체 입자의 제조방법.
The method according to claim 1,
Wherein the non-solvent comprises an internal structure comprising one or more of toluene, hexane, heptane, octane, nonane, decane, and dodecane.
제 1항에 있어서,
상기 내부구조를 가지는 디블록공중합체 입자의 제조방법은 금속산화물 전구체를 투입하여 금속산화물로 전환하는 단계;를 추가로 더 포함하는 내부구조를 가지는 디블록공중합체 입자의 제조방법.
The method according to claim 1,
The method for producing a diblock copolymer particle having the internal structure further comprises the step of introducing a metal oxide precursor to convert the metal oxide precursor into a metal oxide.
제 4항에 있어서,
상기 금속산화물 전구체는 Al, Si, Ti, Ba, Zr, Sn, W, Ni, Cu 또는 Zn를 포함하는 금속염화물, 금속알콕사이드, 금속알카노에이트, 금속카르복실산염, 유기금속착화합물 중에서 선택되는 1종 또는 2종 이상인 내부구조를 가지는 디블록공중합체 입자의 제조방법.
5. The method of claim 4,
Wherein the metal oxide precursor is selected from the group consisting of metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates, and organometallic complexes including metal chlorides, metal alkoxides, metal alkanoates, metal carboxylates and metal complexes including Al, Si, Ti, Ba, Zr, Sn, W, Wherein the diblock copolymer particles have an internal structure of at least two kinds or more.
제 4항에 있어서,
상기 금속산화물로 전환은 소성 또는 촉매에 의해 금속산화물로 전환되는 내부구조를 가지는 디블록공중합체 입자의 제조방법.
5. The method of claim 4,
Wherein the conversion into the metal oxide is an internal structure that is converted into a metal oxide by firing or by a catalyst.
제 1항 및 제 3항 내지 제 6항 중에서 선택되는 어느 한 항의 제조방법으로 제조되는 내부구조를 가지는 디블록공중합체 입자를 전자전달체로 채택한 전자기기.
6. An electronic device in which a diblock copolymer particle having an internal structure prepared by the production method of any one of claims 1 and 3 to 6 is adopted as an electron carrier.
제 7항에 있어서,
상기 전자기기는 무기반도체 감응형 태양전지 또는 리튬이차전지인 것을 특징으로 하는 전자기기.
8. The method of claim 7,
Wherein the electronic device is an inorganic semiconductor sensitive solar cell or a lithium secondary battery.
KR1020120044221A 2012-04-27 2012-04-27 Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method KR101402012B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120044221A KR101402012B1 (en) 2012-04-27 2012-04-27 Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120044221A KR101402012B1 (en) 2012-04-27 2012-04-27 Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method

Publications (2)

Publication Number Publication Date
KR20130121210A KR20130121210A (en) 2013-11-06
KR101402012B1 true KR101402012B1 (en) 2014-06-02

Family

ID=49851476

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120044221A KR101402012B1 (en) 2012-04-27 2012-04-27 Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method

Country Status (1)

Country Link
KR (1) KR101402012B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108836A (en) * 2008-04-14 2009-10-19 이화여자대학교 산학협력단 The preparation method of 2D arrays of titania nanoparticles using self-assembly of diblock copolymer and sol-gel process
KR20100069105A (en) * 2008-12-16 2010-06-24 삼성전자주식회사 Manufacturing method of nano particles/block copolymer complex

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090108836A (en) * 2008-04-14 2009-10-19 이화여자대학교 산학협력단 The preparation method of 2D arrays of titania nanoparticles using self-assembly of diblock copolymer and sol-gel process
KR20100069105A (en) * 2008-12-16 2010-06-24 삼성전자주식회사 Manufacturing method of nano particles/block copolymer complex

Also Published As

Publication number Publication date
KR20130121210A (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Jiang et al. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties
Yu et al. The design and synthesis of hollow micro‐/nanostructures: present and future trends
Kickelbick Introduction to hybrid materials
Salavati-Niasari et al. Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor
Wang et al. Epitaxial growth of shape-controlled Bi2Te3− Te heterogeneous nanostructures
KR102421529B1 (en) Method and material for lithium ion battery anodes
Wang et al. Enhanced performance of “flower‐like” Li4Ti5O12 motifs as anode materials for high‐rate lithium‐ion batteries
Azadmanjiri et al. 2D layered organic–inorganic heterostructures for clean energy applications
Yousef et al. Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane
Liu et al. Self-assembled hierarchical yolk–shell structured NiO@ C from metal–organic frameworks with outstanding performance for lithium storage
Cook et al. Tuning porosity and surface area in mesoporous silicon for application in Li-ion battery electrodes
KR20130122290A (en) Method for preparing metal oxide nanoparticles
Pan et al. Hierarchical self-assembly of conjugated block copolymers and semiconducting nanorods into one-dimensional nanocomposites
Wei et al. Ethylenediamine-enabled sustainable synthesis of mesoporous nanostructured Li2FeIISiO4 particles from Fe (III) aqueous solution for Li-ion battery application
KR101318939B1 (en) Method of preparing silicon nanoparticles and method for preparing dispersions containing silicon nanoparticles
Baiju et al. Hydrothermal synthesis, dielectric properties of barium titanate, cobalt doped barium titanate, and their graphene nanoplatelet composites
Mane et al. Synthesis and structural, morphological, compositional, optical and electrical properties of DBSA-doped PPy–WO3 nanocomposites
CN100436529C (en) Interface modifier of organic polymer and iron inorganic composite materials and its preparation
Boehm et al. Porous mixed-metal oxide Li-ion battery electrodes by shear-induced co-assembly of precursors and tailored polymer particles
Takai et al. Pt nanoworms: creation of a bumpy surface on one-dimensional (1D) Pt nanowires with the assistance of surfactants embedded in mesochannels
KR101402012B1 (en) Preparation method for diblock copolymer nanoparticles having internal structure via precipitation method
KR101402068B1 (en) Preparation method for diblock copolymer nanoparticles via precipitation method
JP6089822B2 (en) Method for producing electrode material for lithium secondary battery
KR101908092B1 (en) hollow spherical lithium-transition metal-silicate composites, pereparation method thereof, and Cathode Active Material for lithium secondary batteries comprising the same
KR101754018B1 (en) Metal Oxides Fabrication Method With the Core and Shell Structure Of Metal Oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee