KR101400725B1 - Purification method of bace-1 protein - Google Patents

Purification method of bace-1 protein Download PDF

Info

Publication number
KR101400725B1
KR101400725B1 KR1020110127788A KR20110127788A KR101400725B1 KR 101400725 B1 KR101400725 B1 KR 101400725B1 KR 1020110127788 A KR1020110127788 A KR 1020110127788A KR 20110127788 A KR20110127788 A KR 20110127788A KR 101400725 B1 KR101400725 B1 KR 101400725B1
Authority
KR
South Korea
Prior art keywords
protein
bace
buffer
cell pellet
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020110127788A
Other languages
Korean (ko)
Other versions
KR20130061465A (en
Inventor
임병우
이보람
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020110127788A priority Critical patent/KR101400725B1/en
Publication of KR20130061465A publication Critical patent/KR20130061465A/en
Application granted granted Critical
Publication of KR101400725B1 publication Critical patent/KR101400725B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1136General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by reversible modification of the secondary, tertiary or quarternary structure, e.g. using denaturating or stabilising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/23Aspartic endopeptidases (3.4.23)
    • C12Y304/23046Memapsin 2 (3.4.23.46), i.e. beta-secretase 1 or BACE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 단백질의 정제방법에 관한 것이다.
상기와 같은 본 발명에 따르면, 알츠하이머 질병의 원인으로 알려진 BACE-1(β-secretase) 단백질을 대장균을 이용하여 과다발현 시킨 후 재접힘(refolding) 및 Fast Protein Liquid Chromatography (FPLC)를 이용해서 정제하는 BACE-1 단백질의 정제방법 및 상기 단백질 정제방법에 의하여 정제된 BACE-1(β-secretase) 단백질을 제공함으로써, 알츠하이머 질병의 예방 및 치료를 위한 약학조성물의 개발 등에 유용하게 활용될 수 있는 효과가 있다.
The present invention relates to a method for purifying a protein.
According to the present invention, BACE-1 (β-secretase) protein known as a cause of Alzheimer's disease is overexpressed using E. coli and then purified using refolding and Fast Protein Liquid Chromatography (FPLC) By providing a BACE-1 protein purification method and a BACE-1 (beta-secretase) protein purified by the protein purification method, an effect that can be effectively utilized for the development of a pharmaceutical composition for prevention and treatment of Alzheimer's disease have.

Description

BACE-1 단백질의 정제방법{PURIFICATION METHOD OF BACE-1 PROTEIN}Purification method of BACE-1 protein {PURIFICATION METHOD OF BACE-1 PROTEIN}

본 발명은 단백질의 정제방법에 관한 것으로서, 더욱 상세하게는 알츠하이머 질병의 원인으로 알려진 BACE-1(β-secretase) 단백질을 대장균을 이용하여 과다발현 시킨 후 재접힘(refolding) 및 Fast Protein Liquid Chromatography (FPLC)를 이용한 단백질 순수정제에 관한 것이다.
The present invention relates to a method for purifying a protein, and more particularly, to a method for purifying a protein by overexpressing BACE-1 (β-secretase) protein known as a cause of Alzheimer's disease using E. coli and then refolding and Fast Protein Liquid Chromatography FPLC). ≪ / RTI >

최근 들어 알츠하이머 질병의 발병을 포함 여러 생물학적 경로(pathway)의 관한 연구가 활발히 진행되고 있다. 현재 Amyloid Precursor Protein(APP)로 알려진 단백질을 잘라 Aβ42 펩타이드를 만들어 결국은 아밀로이드 플라그의 형성을 유발하는 BACE-1(β-secretase) 단백질의 역할이 규명되었다. 따라서 알츠하이머 질병을 다루기 위한 약물을 개발하기 위해서 BACE-1 단백질의 특이적 억제자(specific inhibitor)의 개발을 위한 연구가 활발히 진행 중이다. Recently, studies on various biological pathways including the onset of Alzheimer's disease have been actively conducted. A protein known as Amyloid Precursor Protein (APP) was cut to form Aβ42 peptide, and the role of BACE-1 (β-secretase) protein, which ultimately leads to the formation of amyloid plaques, was identified. Therefore, studies are underway to develop a specific inhibitor of BACE-1 protein to develop drugs for dealing with Alzheimer's disease.

현재, 인간의 평균수명이 증가함에 따라 노화와 관련된 많은 질병으로 인해 고통을 겪는 인구가 상당한 속도로 증가하고 있다. 특히, 신경퇴화성 관련 질병이 증가하고 있는 추세이며 이러한 질병의 치료 및 예방을 위한 연구가 전 세계적으로 진행 중이다. 알츠하이머 질병은 치매에 의해 일어나는 가장 흔한 노화와 관련된 질병 중 하나로, 유엔에서는 80세 이상의 노인의 수가 2050년까지 3억 7천만 명까지 늘어날 것으로 보고 있으며 현재 85세 이상의 노인 중 50% 이상이 알츠하이머 질병으로 인해 고통을 받고 있는 것으로 파악되고 있다. 또한 많은 사람들이 지속적인 치료를 받고 있으며 이에 상당한 재원이 투입되고 있는 실정이다.Currently, as the average life span of humans increases, the population suffering from many diseases related to aging is increasing at a considerable rate. In particular, neurodegenerative diseases are on the rise, and researches for the treatment and prevention of these diseases are underway worldwide. Alzheimer's disease is one of the most common aging-related diseases caused by dementia. In the United Nations, the number of elderly people over 80 is expected to increase to 370 million by 2050, and more than 50% of elderly people over 85 years old are now suffering from Alzheimer's disease It is understood that they suffer. In addition, many people are receiving continuous treatment and considerable resources are being invested.

알츠하이머 질병의 발병은 60-70세 사이에서 여러 징후들이 보이며 점진적으로 나타나며, 가장 먼저 나타나는 징후로는 인식능력(cognitive function)의 감소이다. 알츠하이머 질병의 가장 주된 원인 중의 하나는 뇌에서 발현되는 아밀로이드 베타(Aβ) 펩타이드이다. 아밀로이드 베타 펩타이드는 단백질 분해효소인 BACE-1(β-secretase 또는 Beta-site APP-cleaving enzyme)와 γ-secretase에 의해 형성된다. 이렇게 생성된 아밀로이드 베타 펩타이드는 세포의 외부표면으로 이동을 하고 그곳에서 뭉쳐지고 노인성 플라그(senile plaque)라고 불리는 덩어리를 형성하게 된다. 아밀로이드 베타는 크게 Aβ40와 Aβ42 두 가지 형태로 나타나며 이는 γ-secretase의 절단 부위에 따라 결정된다. 둘 중 후자의 형태가 노인성 플라그에서 더 흔하게 발견되고 있으며 더 치명적인 것으로 알려져 있다. 즉, BACE-1 단백질과 γ-secretase의 활성을 막는 것이 아밀로이드 베타의 형성을 막는 유일한 방법이라 할 수 있겠다. 따라서 이러한 활성을 막을 단백질이나 합성물 (compound)의 새로운 발견이 알츠하이머 질병을 연구하는 데에 있어서 주된 목표라고 할 수 있겠다.The onset of Alzheimer's disease is gradual, with several indications between the ages of 60 and 70, with the first sign of a decrease in cognitive function. One of the major causes of Alzheimer's disease is the amyloid beta (Aβ) peptide expressed in the brain. Amyloid beta peptide is formed by protease BACE-1 (β-secretase or Beta-site APP-cleaving enzyme) and γ-secretase. The resulting amyloid beta peptide migrates to the outer surface of the cell where it forms a lump, called a senile plaque. Amyloid beta appears in two forms, Aβ40 and Aβ42, which are determined by the cleavage site of γ-secretase. The latter form is more commonly found in geriatric plaques and is said to be more fatal. In other words, blocking the activity of BACE-1 protein and γ-secretase is the only way to prevent the formation of amyloid beta. Therefore, a new discovery of proteins or compounds that inhibit these activities is a major goal in studying Alzheimer's disease.

알츠하이머 질병을 막기 위한 치료적 방법으로써 BACE-1 단백질과 γ-secretase의 억제에 관한 연구가 활발히 진행되고 있는 가운데 이러한 질병을 다루기 위한 부작용이 없는 약물을 개발하는 데에 관심이 모아지고 있으며 이와 관련된 실험 역시 활발히 진행 중이다(Citron M. Beta-secretase as a target for the treatment of Alzheimer's disease. J. Neurosci. Res. 2002. 70(3):373-9). 유전자 결핍 동물모델 실험에서는 BACE-1 단백질이 아밀로이드 베타 형성에 핵심적인 역할을 한다고 규명한 바 있다. BACE-1 단백질의 생성유전자를 결여시킨 유전자결핍 마우스 실험에서는 아밀로이드 베타를 생성하지 못했다. 하지만 일반적인 마우스에서는 그와 상반되는 결과를 얻었다(Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, Freedman SB, Frigon NL, Games D, Hu K, Johnson-Wood K, Kappenman KE, Kawabe TT, Kola I, Kuehn R, Lee M, Liu W, Motter R, Nichols NF, Power M, Robertson DW, Schenk D, Schoor M, Shopp GM, Shuck ME, Sinha S, Svensson KA, Tatsuno G, Tintrup H, Wijsman J, Wriqht S, McConloque L. BACE knockout mice are healthy despite lacking the promary bate-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 2001. 10(12):1317-24). 이러한 사실들로 미루어 보아 BACE-1 단백질은 알츠하이머 질병을 치료하기 위한 약물개발연구에 있어서 필수적인 타깃이라고 할 수 있다. There have been many studies on the inhibition of BACE-1 protein and γ-secretase as a therapeutic method to prevent Alzheimer's disease. There is a growing interest in developing drugs that have no side effects to deal with these diseases. (Citron M. Beta-secretase as a target for treatment of Alzheimer's disease. J. Neurosci. Res. 2002. 70 (3): 373-9). Gene-deficient animal model studies have demonstrated that BACE-1 protein plays a key role in amyloid beta formation. A gene-deficient mouse experiment lacking the BACE-1 protein production gene failed to generate amyloid beta. However, in general mice, the opposite results were obtained (Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, Freedman SB, Frigon NL, Games D, Hu K, Johnson-Wood K, Kappenman KE, Kawabe TT, Kola I, Kuehn R, Lee M, Liu W, Motter R, Nichols NF, Power M, Robertson DW, Schenk D, Schoor M, Shopp GM, Shuck ME, Sinha S, Svensson KA, Tatsuno G, Tintrup H , Wijsman J, Wriqht S, and McConloque L. BACE knockout mice are often associated with the promise of bate-secretase activity in the brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet 2001. 10 (12): 1317-24). Based on these facts, the BACE-1 protein is an essential target for drug development studies to treat Alzheimer's disease.

이에 본 발명자는 알츠하이머 질병을 다루기 위한 타깃으로 BACE-1(β-secretase) 유전자의 클로닝을 통한 유전자 재조합 기술을 이용하여 대장균에서 단백질을 과다발현 시켰으며, 재접힘(refolding) 및 여러 column을 이용하여 정제에 성공하였다. 현재 BACE-1 단백질의 순수정제에 대한 특허는 전무한 상황이며, 더 나아가 BACE-1 단백질의 순수 정제기술은 알츠하이머 질병을 다루기 위한 기초자료로 활용될 수 있다고 판단하여 본 발명을 완성하게 되었다.Thus, the present inventors have over-expressed the protein in E. coli using a recombinant technology through cloning of the BACE-1 (β-secretase) gene as a target for dealing with Alzheimer's disease, and refolding and using various columns The tablet was successful. Currently, there is no patent on the pure purification of BACE-1 protein. Furthermore, it is determined that pure purification technology of BACE-1 protein can be used as basic data for treating Alzheimer's disease, and thus the present invention has been completed.

한편, 단백질 정제에 관한 종래기술로는 한국등록특허 제10-0841599호(칼슘 이온-결합 단백질의 정제방법), 한국등록특허 제10-0236768호(씨형 간염 바이러스의 특이항원인 유비엔에스4 단백질의 정제방법) 등이 있다.
On the other hand, Korean Patent No. 10-0841599 (purification method of calcium ion-binding protein) and Korean Patent No. 10-0236768 (Ubiquin-4 protein, a specific antigen of hepatitis virus, ).

본 발명의 목적은, 알츠하이머 질병의 원인으로 알려진 BACE-1(β-secretase) 단백질을 대장균을 이용하여 과다발현 시킨 후 재접힘(refolding) 및 Fast Protein Liquid Chromatography (FPLC)를 이용해서 정제하는 BACE-1 단백질의 정제방법을 제공함에 있다.It is an object of the present invention to provide a BACE-1 (β-secretase) protein which is known to cause Alzheimer's disease and is over-expressed using E. coli and then refolded and purified using Fast Protein Liquid Chromatography (FPLC) 1 < / RTI > protein.

또한, 본 발명의 다른 목적은 상기 단백질 정제방법에 의하여 정제된 BACE-1(β-secretase) 단백질을 제공함에 있다.
Another object of the present invention is to provide a BACE-1 (β-secretase) protein purified by the protein purification method.

상기 목적을 달성하기 위하여, 본 발명은 (1) 발현벡터 pET28-MHL에 BACE-1(β-secretase) 유전자(gene)를 삽입시키는 단계;와 (2) 상기 (1)단계에 의해 제조된 pET28-MHL 벡터로 형질전환된 대장균을 제조하는 단계;와 (3) 상기 (2)단계에 의해 제조된 형질전환체를 배양하고, BACE-1 단백질의 생산을 유도하는 단계;와 (4) 상기 (3)단계에 의해 형질전환체가 자란 배지를 원심분리하여 세포펠렛을 얻는 단계;와 (5) 상기 (4)단계에 의해 얻어진 세포펠렛에 용해버퍼(lysis buffer)를 첨가한 후 초음파 분쇄기를 사용하여 세포벽을 파괴한 다음 원심분리하여 세포펠렛을 수득하는 단계;와 (6) 상기 (5)단계에 의해 수득한 세포펠렛에 가용화버퍼(solubilization buffer)를 첨가하여 섞어준 후 세포 잔해물을 걸러주는 단계;와 (7) 상기 (6)단계에 의해 여과된 가용화버퍼 용액에 BACE-1 단백질의 재접힘(refolding)을 위한 재접힘 버퍼를 첨가하여 BACE-1 단백질의 재접힘을 유도하는 단계;와 (8) 상기 (7)단계에 의해 BACE-1 단백질이 포함된 버퍼를 농축튜브를 이용해 농축시키는 단계; 및 (9) 상기 (8)단계에 의해 수득된 농축액을 이온교환 크로마토그래피 또는 젤-여과 크로마토그래피 하는 단계;를 포함하는 BACE-1 단백질의 정제방법을 제공한다. (1) a step of inserting a BACE-1 (β-secretase) gene into an expression vector pET28-MHL; and (2) a step of introducing pET28 (3) culturing the transformant prepared in (2) above to induce production of BACE-1 protein, and (4) culturing the transformant prepared in And (5) adding a lysis buffer to the cell pellet obtained in the step (4), and then using an ultrasonic disintegrator to remove the cell pellet from the cell pellet, (6) adding a solubilization buffer to the cell pellet obtained in the step (5), mixing the cell pellet and filtering the cell debris; And (7) adding the BACE-1 protein to the solubilized buffer solution filtered by the step (6) Folding the BACE-1 protein in a concentration buffer by adding the refold buffer for refolding to induce refolding of the BACE-1 protein; and (8) concentrating the buffer containing the BACE-1 protein by the step (7) step; And (9) ion-exchange chromatography or gel-filtration chromatography of the concentrate obtained in the step (8).

상기 (1)단계에서 사용되는 BACE-1 유전자는 53 내지 441번째 아미노산 서열부분 또는 58 내지 441번째 아미노산 서열부분을 중합효소연쇄반응(polymerase chain reaction, PCR)에 의해 증폭시킨 것을 특징으로 한다. The BACE-1 gene used in the above step (1) is characterized in that the 53 to 441th amino acid sequence portion or the 58th to 441st amino acid sequence portion is amplified by a polymerase chain reaction (PCR).

상기 (6)단계에서 사용되는 가용화 버퍼는 Tris-HCl, 요소(urea) 및 β-메르캅토에탄올(β-mercaptoethanol)로 이루어지는 것을 특징으로 한다. The solubilization buffer used in the step (6) is characterized by comprising Tris-HCl, urea and? -Mercaptoethanol.

상기 (7)단계에서 사용되는 재접힘 버퍼는 Tris-HCl, 산화된 글루타치온(oxidized glutathione) 및 환원된 글루타치온(reduced glutathione)으로 이루어지는 것을 특징으로 한다.The refolding buffer used in the step (7) is characterized by comprising Tris-HCl, oxidized glutathione, and reduced glutathione.

상기 (9)단계에서 이온교환 크로마토그래피는 Tris-HCl, 요소(urea) 및 염화나트륨(NaCl)으로 이루어지는 용출버퍼를 이용하여 BACE-1 단백질을 용출하는 것을 특징으로 한다.
The ion exchange chromatography in the step (9) is characterized in that the BACE-1 protein is eluted using an elution buffer composed of Tris-HCl, urea and sodium chloride (NaCl).

또한, 본 발명은 상기 단백질 정제방법에 의하여 정제된 BACE-1 단백질을 제공한다.
In addition, the present invention provides a purified BACE-1 protein by the above protein purification method.

상기와 같은 본 발명에 따르면, 알츠하이머 질병의 원인으로 알려진 BACE-1(β-secretase) 단백질을 대장균을 이용하여 과다발현 시킨 후 재접힘(refolding) 및 Fast Protein Liquid Chromatography (FPLC)를 이용해서 정제하는 BACE-1 단백질의 정제방법 및 상기 단백질 정제방법에 의하여 정제된 BACE-1(β-secretase) 단백질을 제공함으로써, 알츠하이머 질병의 예방 및 치료를 위한 약학조성물의 개발 등에 유용하게 활용될 수 있는 효과가 있다.
According to the present invention, BACE-1 (β-secretase) protein known as a cause of Alzheimer's disease is overexpressed using E. coli and then purified using refolding and Fast Protein Liquid Chromatography (FPLC) By providing a BACE-1 protein purification method and a BACE-1 (beta-secretase) protein purified by the protein purification method, an effect that can be effectively utilized for the development of a pharmaceutical composition for prevention and treatment of Alzheimer's disease have.

도 1 은 본 발명의 BACE1 gene의 클로닝을 위하여 pET28-MHL 벡터를 DNA agarose gel에서 확인한 것과 BseR1 제한효소에 의한 벡터의 잘라짐을 DNA ararose gel에서 확인한 것.
도 2 는 본 발명의 BACE1 gene이 벡터 내부로 클로닝된 것을 DNA agarose에서 확인한 것.
도 3 은 본 발명의 BACE1 단백발의 재접힘을 위해 재접힘 버퍼를 첨가하고, 각 우레아의 농도별로 단백질 심플을 취하여 SDS-PAGE에서 확인한 것.
도 4 는 본 발명의 BACE1 단백의 정제를 위해 이온교환 크로마토그래피와 젤 여과 크로마토그래피를 이용하여 정제하고, 이를 SDS-PAGE에서 확인한 것.
FIG. 1 shows the pET28-MHL vector in the DNA agarose gel for cloning of the BACE1 gene of the present invention and the DNA cut by the BseR1 restriction enzyme in the DNA ararose gel.
FIG. 2 shows the DNA agarose in which the BACE1 gene of the present invention was cloned into the vector.
Fig. 3 shows the results of SDS-PAGE of protein simple for each urea concentration by adding a refold buffer to refold the BACE1 protein of the present invention.
FIG. 4 shows the purification of the BACE1 protein of the present invention by purification using ion exchange chromatography and gel filtration chromatography, which was confirmed by SDS-PAGE.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 알츠하이머 질병의 예방 및 치료를 위한 약학조성물의 개발 등에 유용하게 활용될 수 있는 BACE-1 단백질의 정제방법 및 상기 정제방법으로 정제된 BACE-1 단백질을 제공한다. The present invention provides a method for purifying BACE-1 protein and purification of BACE-1 protein, which can be effectively utilized for the development of pharmaceutical compositions for the prevention and treatment of Alzheimer's disease.

본 발명의 BACE-1 단백질의 정제방법은 유전자 클로닝과 재접힘 (refolding)을 이용하여 순수정제된 BACE-1 단백질 정제방법을 제공함으로써 노인성 알츠하이머 질병의 예방 및 치료에 활용할 수 있는 단백질을 제공한다. The BACE-1 protein purification method of the present invention provides purified BACE-1 protein purified using gene cloning and refolding, thereby providing a protein that can be used for prevention and treatment of senile Alzheimer's disease.

또한, 본 발명에 따른 BACE-1 단백질은 해당 용도에 따라 약학적으로 허용 가능한 단백질의 안정화에 기여하는 버퍼와 함께 독립적으로 사용되며, 다른 합성물 (compound)과의 결합을 확인하기 위해 적합한 기타 모든 형태로 사용될 수 있다.In addition, the BACE-1 protein according to the present invention may be used independently with a buffer contributing to the stabilization of a pharmaceutically acceptable protein according to the purpose of use, and may be any other suitable form for confirming the binding with other compounds .

본 발명 따른 BACE-1 단백질은 알라닌, 시스테인, 아스파트산, 글루탐산, 페닐알라닌, 글라이신, 히스티딘, 아이소류신, 라이신, 류신, 메티오닌, 아스파라긴, 프롤린, 글루타민, 아르기닌, 세린, 트레오닌, 발린, 트립토판, 타이로신 등 20여 가지의 아미노산으로 이루어져 있고, -80℃조건에서 안정적이며, 변성되지 않는다. The BACE-1 protein according to the present invention is useful for the treatment and / or prophylaxis of cancer, such as alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, It is stable at -80 ℃ and is not denatured.

본 발명에 따른 BACE-1 단백질은 인클루젼 바디형태로 발현된다. 단백질은 전사 후 단백질 접힘이라는 과정을 통해 3차구조로 접혀지게 되고, 이 과정에서 단백질 고유의 특징과 기능이 나타나게 된다. 이 과정에서 고유의 접힘이 제대로 이루어지지 않아 뭉쳐지게 되며 인클루젼 바디로 형성이 되기도 한다. 즉, 인클루젼 바디란 폴리펩타이드의 잘못된 접힘현상에 의해 고밀로 뭉쳐져 있는 상태를 말하는 것으로, 인클루젼 바디로 발현된 단백질의 잘못된 접힘현상을 올바르게 되돌려 놓는 것이 재접힘(refolding)이다. 재접힘을 위한 단백질 변성에 우레아와 구아니딘 염화수소가 사용되며, 재접힘 과정 중에 발생하는 산화반응을 없애기 위해서 항산화제인 글루타치온이 사용될 수 있다. 이는 단백질 용해 도중에 산화에 의한 비특이적 이황화결합을 막아주기 위함이다.
The BACE-1 protein according to the present invention is expressed in an encapsulated body form. Protein is folded into a tertiary structure through the process of protein folding after transcription, and protein-specific features and functions are revealed in this process. In this process, the original folding is not done properly and it is formed as an inclusion body. In other words, the inclusion body refers to a state where the polypeptide tightly folds due to a false folding phenomenon, and refolding correctly restores the false folding of the protein expressed by the inclusion body. Urea and guanidine hydrogen chloride are used for protein denaturation for refolding, and glutathione, an antioxidant, can be used to eliminate the oxidation reaction that occurs during refolding. This is to prevent nonspecific disulfide bonding by oxidation during protein dissolution.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예Example 1. 실험준비 1. Experimental preparation

(1) 사용 배지(1) Usage medium

본 실험에서 액체배지는 LB배지(Luria-Bertani media)와 TB배지(Terrific Broth media)를 사용하였으며 E.coli(대장균) 세포의 콜로니를 확인하기 위해 LB agar 고체배지를 사용하였다. LB배지와 TB배지 및 LB agar 고체배지는 모두 50㎍/㎖ 농도의 kanamycin항생제를 포함시켰다. 이는 본 실험에서 사용한 pET28-MHL 벡터 내에 포함하고 있는 kanamycin 항생제 내성부위의 존재에 따른 것이다.
In this experiment, LB medium (Luria-Bertani media) and TB medium (Terrific Broth media) were used as the liquid medium. LB agar solid medium was used to identify colonies of E. coli cells. Both LB medium and TB medium and LB agar solid medium contained kanamycin antibiotic at a concentration of 50 μg / ml. This is due to the presence of the kanamycin antibiotic resistance site contained in the pET28-MHL vector used in this experiment.

(2) 세포 및 배양조건(2) Cell and culture conditions

본 실험에서는 DH5α E.coli 세포(Stratagene)와 BL21(DE3) E.coli(Stratagene) 세포를 사용하였다. 세포의 배양조건은, 고체배지의 경우 세포 콜로니 형성을 위해서 37℃ 조건에서 배양하였으며, 액체배지의 경우 37℃, 220rpm 조건에서 배양하였다. 그리고 E.coli의 대량 배양을 위해서 독자시스템인 LEX system(액체배지에 직접 산소를 공급해주는 시스템)을 이용하였다.In this experiment, DH5α E. coli (Stratagene) and BL21 (DE3) E. coli (Stratagene) cells were used. The culture conditions of the cells were incubated at 37 ° C for the formation of cell colonies in the case of the solid medium and at 37 ° C and 220rpm for the liquid medium. For the mass culture of E. coli , we used our own LEX system (a system that supplies oxygen directly to the liquid medium).

(3) BACE-1(β-secretase) 유전자(gene)의 준비(3) Preparation of BACE-1 (β-secretase) gene

본 실험에서 사용된 BACE-1 gene은 53-441과 58-441의 아미노산 서열 부분을 중합효소 연쇄반응법 (Polymerase Chain Reaction)에 의해 증폭되었다.
The BACE-1 gene used in this experiment was amplified by Polymerase Chain Reaction (PCR) of the amino acid sequences of 53-441 and 58-441.

실시예 2. BACE-1(β-secretase) 유전자(gene)의 클로닝Example 2. Cloning of BACE-1 (β-secretase) gene

(1) pET28-MHL벡터의 준비 및 제한효소에 의한 벡터의 잘림 확인(1) Preparation of pET28-MHL vector and cleavage of vector by restriction enzyme

본 실험에서 사용된 pET28-MHL벡터는 미리 준비한 DH5α E.coli 세포 60㎕와 벡터 2.5㎕를 넣고 얼음 속에서 15분 반응 시킨 후 42℃의 물에서 1분 동안 열 충격을 가하였다. 그리고 3분 동안 얼음 속에서 반응 시키고 SOC배지 500㎕를 넣고 37℃, 650rpm에서 한 시간 동안 배양시키는 방법으로 형질전환(Transformation)시켜 벡터를 세포 내부로 삽입하였으며, 형질전환된 E.coli 세포는 LB agar 고체배지에 도말하였다. 16~18시간 동안 배양 시킨 후 콜로니를 확인하고, 콜로니 하나를 50㎍/㎖의 kanamycin을 함유한 3㎖의 액체배지에 넣고 16~18시간 동안 배양하였다. 배양된 세포를 원심분리기를 이용하여 모은 후 플라스미드 벡터를 용출하였다. 그 다음, 멸균수 15㎕, 용출된 벡터 30㎕, 제한효소 BseR1 1㎕, 버퍼 5㎕를 넣고 2시간 동안 37℃조건에서 둔 후 용출버퍼를 이용하여 벡터를 용출하였다. (도 1. 참조)
The pET28-MHL vector used in this experiment was prepared by adding 60 μl of DH5α E. coli cells and 2.5 μl of the vector prepared in advance. After reacting in ice for 15 minutes, the pET28-MHL vector was heat-shocked at 42 ° C for 1 minute. Then, the cells were reacted in ice for 3 minutes, 500 μl of SOC medium was added, and the cells were transformed by incubation at 37 ° C. and 650 rpm for 1 hour. The transformed E. coli cells were transformed into LB agar solid medium. Colonies were identified after culturing for 16 to 18 hours, and one colony was added to 3 ml of a liquid medium containing 50 μg / ml of kanamycin and cultured for 16 to 18 hours. The cultured cells were collected using a centrifuge and the plasmid vector was eluted. Then, 15 μl of sterilized water, 30 μl of the eluted vector, 1 μl of the restriction enzyme BseR1 and 5 μl of the buffer were added and the mixture was allowed to stand at 37 ° C. for 2 hours, and the vector was eluted with the elution buffer. (See Fig. 1)

(2) pET28-MHL 벡터 내로 BACE-1 gene의 삽입(2) insertion of BACE-1 gene into pET28-MHL vector

BseR1 제한효소에 의해 잘려진 벡터 내부로 중합효소 연쇄 반응법에 의하여 증폭된 BACE-1 gene의 삽입을 위하여 미리 준비한 1㎕의 BACE-1 gene을 넣어 둔 튜브에 벡터 8.5㎕를 DNA 연결효소와 잘 섞은 벡터 2㎕를 넣고 상온에 1시간 동안 반응 시킨 후 37℃에서 20분간 더 반응시켰다. BACE-1 gene이 삽입된 벡터는 미리 준비한 DH5α E.coli 세포 60㎕와 벡터 2.5㎕를 넣고 얼음 속에서 15분 반응 시킨 후 42℃의 물에서 1분 동안 열 충격을 가하였다. 그리고 3분 동안 얼음 속에서 반응 시키고 SOC배지 500㎕를 넣고 37℃, 650rpm에서 한 시간 동안 배양시키는 방법으로 형질전환(Transformation)시켜 벡터를 세포 내부로 삽입하였으며, 이를 고체배지에 도말 후 16~18시간 동안 배양시켜 콜로니를 확인하였다. 콜로니 10개씩 임의로 선정하여 콜로니 중합효소 연쇄반응법 (Polymerase Chain reaction)을 이용하여 증폭시켰다. 중합효소 연쇄반응법에 의해 증폭된 BACE1 gene을 1.5%의 agarose를 포함하는 DNA agarose gel에서 전기영동하여 확인하였다.(도 2. 참조)
To insert the BACE-1 gene amplified by the polymerase chain reaction into the vector truncated by the BseR1 restriction enzyme, 8.5 μl of the vector was mixed well with DNA ligase in a tube containing 1 μl of the BACE-1 gene prepared previously 2 μl of the vector was reacted at room temperature for 1 hour, followed by further reaction at 37 ° C for 20 minutes. BACE-1 gene inserted vector was prepared by adding 60 μl of DH5α E. coli cells and 2.5 μl of vector, and reacting in ice for 15 minutes, followed by thermal shock at 42 ° C for 1 minute. Then, the cells were reacted in ice for 3 minutes, 500 μl of SOC medium was added, and the cells were transformed by incubating the cells at 37 ° C. and 650 rpm for 1 hour. The vectors were inserted into the cells, Lt; / RTI > for a period of time to identify colonies. Ten colonies were randomly selected and amplified using the Polymerase Chain reaction. The BACE1 gene amplified by polymerase chain reaction was confirmed by electrophoresis on DNA agarose gel containing 1.5% agarose (see Figure 2).

실시예3. BACE-1(β-secretase) 단백질의 정제Example 3. Purification of BACE-1 (β-secretase) protein

(1) BACE-1 gene을 포함한 세포콜로니의 확인(1) Identification of cell colonies including BACE-1 gene

BACE-1 gene이 클로닝된 세포를 대량으로 배양하기 위해서, 위 과정에서 생성된 콜로니를 임의로 3개 선정하여 50㎍/㎖의 kanamycin을 함유한 3㎖의 LB배지에 잘 풀어 37℃, 220rpm의 조건에서 16~18시간 배양하였다. 배양된 세포는 원심분리기를 이용하여 모은 후 용출버퍼를 이용하여 벡터를 용출하였다. BACE-1 gene을 포함한 용출된 벡터는 BACE-1 단백질의 대량 발현을 위해, 미리 준비한 BL21(DE3) E.coli 세포 60㎕와 벡터 2.5㎕를 넣고 얼음 속에서 15분 반응 시킨 후 42℃의 물에서 1분 동안 열 충격을 가하였다. 그리고 3분 동안 얼음 속에서 반응 시키고 SOC배지 500㎕를 넣고 37℃, 650rpm에서 한 시간 동안 배양시키는 방법으로 형질전환(Transformation)시켜 벡터를 세포 내부로 삽입하였다. 형질전환된 세포는 고체배지에 도발하여 16~18시간 배양시켜 콜로니를 확인하였다.
In order to cultivate large quantities of BACE-1 gene cloned cells, three colonies generated in the above procedure were arbitrarily selected and loosely dissolved in 3 ml of LB medium containing 50 μg / ml of kanamycin and cultured at 37 ° C. and 220 rpm For 16-18 hours. The cultured cells were collected using a centrifuge, and the vector was eluted using an elution buffer. To elucidate the BACE-1 gene expression, 60 ㎕ of BL21 (DE3) E. coli cells and 2.5 ㎕ of the vector were added to the BACE-1 gene for mass expression, followed by reaction in ice for 15 minutes. Lt; / RTI > for 1 minute. Then, the cells were reacted in ice for 3 minutes, and 500 μl of SOC medium was added thereto. The cells were transformed by incubating the cells at 37 ° C. and 650 rpm for one hour. The transformed cells were incubated in solid medium for 16-18 hours to identify colonies.

(2) BL21(DE3) E.coli의 대량 배양(2) Bulk culture of BL21 (DE3) E. coli

세포를 대량 배양하기 위해, 위 과정에서 자란 콜로니를 선별하여 50㎍/㎖의 kanamycin을 함유한 50㎖ LB배지에 잘 풀어 37℃, 220rpm의 조건에서 16~18시간 동안 배양하였다. 배양된 배양액은 50㎍/㎖의 kanamycin을 함유한 2L의 TB 배지에 넣고 LEX system으로 37℃조건에서 OD600값이 0.9~1에 이를 때 까지 배양하였다. 배양 후 1mM의 IPTG (Isopropyl β-D-1-thiogalactopyranoside)를 넣고 37℃에서 3~5시간 동안 단백질의 생산을 유도시켰다. 세포가 자란 TB배지는 4℃, 7,000rpm조건에서 10분 동안 원심분리하여 세포를 얻었다. 얻어진 세포펠렛은 -80℃에 보관하였다가 실험에 사용하였다.
In order to mass-cultivate the cells, the colonies grown in the above procedure were selected and cultured in a 50 ml LB medium containing 50 μg / ml of kanamycin at 37 ° C and 220 rpm for 16-18 hours. The cultured medium was put into 2 L of TB medium containing 50 μg / ml of kanamycin and cultured at 37 ° C. in an LEX system until the OD 600 reached 0.9-1. After incubation, 1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) was added and the production of protein was induced at 37 ° C. for 3 to 5 hours. Cells grown on TB medium were centrifuged at 4 ° C and 7,000 rpm for 10 minutes to obtain cells. The obtained cell pellet was stored at -80 ° C and used for the experiment.

(3) BL21(DE3) E.coli세포의 용해(3) Lysis of BL21 (DE3) E. coli cells

BACE-1 단백질의 재접힘을 위해서, 세포펠렛에 용해버퍼(50mM Tris-HCl, pH 7.5, 1mM EDTA, 100mM NaCl) 150㎖와 RNase 4㎕, 그리고 PMSF·Benzamidine 솔루션을 넣어주었다. 세포펠렛이 잘 풀리도록 한 다음, 초음파 분쇄기를 사용하여 세포벽을 깨준 후 4℃, 15,500rpm의 조건에서 40분 동안 원심분리하였다. 세포펠렛을 용해버퍼 (50mM Tris-HCl, pH 7.5, 1mM EDTA, 100mM NaCl) 150㎖에 넣고 잘 풀어준 후 4℃, 15,500rpm의 조건에서 40분 동안 원심분리하였다. 세포펠렛을 용해버퍼(50mM Tris-HCl, pH 7.5, 1mM EDTA, 100mM NaCl) 150㎖에 넣고 0.5%의 TritonX-100을 첨가한 후 잘 풀어준 다음 4℃, 15,500rpm의 조건에서 40분 동안 원심분리하였다. 마지막으로 TritonX-100만 첨가하지 않은 같은 조건에서 세포펠렛을 얻었다.
To refold the BACE-1 protein, 150 ml of dissolution buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl), 4 μl of RNase and PMSF · Benzamidine solution were added to the cell pellet. Cell pellets were allowed to loosen well, and then the cell wall was broken using an ultrasonic disintegrator, followed by centrifugation at 4 ° C and 15,500 rpm for 40 minutes. The cell pellet was dissolved in 150 ml of dissolution buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl) and centrifuged at 4 ° C and 15,500 rpm for 40 minutes. The cell pellet was added to 150 ml of dissolution buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl), and 0.5% TritonX-100 was added thereto. The cell pellet was centrifuged at 4 ° C and 15,500 rpm for 40 minutes Respectively. Finally, cell pellets were obtained under the same conditions without addition of Triton X-100 alone.

(4) BACE-1 단백질의 재접힘(refolding)(4) refolding of BACE-1 protein

BACE-1 단백질의 재접힘을 위해서, 세포펠렛을 Solubilization버퍼(50mM Tris-HCl, pH 9.0, 8M urea(sigma), 10mM β-mercaptoethanol) 75㎖에 넣고, 마그네틱 바를 넣은 다음 4℃, 250rpm의 속도로 하루 동안 저어주었다. 세포잔해물들을 걸러주기 위해 미리 멸균된 거즈를 사용하여 걸러주었다. 거즈를 이용하여 여과된 solubilization버퍼에 재접힘버퍼(20mM Tris-HCl, pH 9.0, 0.5mM oxidized glutathione, 1.25mM reduced glutathione) 75㎖을 첨가하여 BACE-1 단백질의 재접힘을 유도하였다. 처음 우레아 농도를 8M로 하였으므로 재접힘 버퍼를 6M, 4M, 2M, 1M, 0.5M의 농도로 희석이 되도록 첨가하여 주었다. 1.2L의 BACE-1 단백질이 포함된 버퍼를 얻을 수 있었으며, 농축튜브를 이용하여 800㎖까지 농축하였다.(도 3. 참조)
To refold the BACE-1 protein, the cell pellet was placed in 75 ml of Solubilization buffer (50 mM Tris-HCl, pH 9.0, 8 M urea (sigma), 10 mM β-mercaptoethanol) For a day. They were screened with sterile gauze to filter cellular debris. The refolding of the BACE-1 protein was induced by adding 75 ml of refolding buffer (20 mM Tris-HCl, pH 9.0, 0.5 mM oxidized glutathione, 1.25 mM reduced glutathione) to the filtered solubilization buffer using gauze. Since the initial urea concentration was 8M, the refolding buffer was diluted to a concentration of 6M, 4M, 2M, 1M, and 0.5M. A buffer containing 1.2 L of BACE-1 protein was obtained and concentrated to 800 mL using a concentrated tube (see Figure 3.)

(5) 이온교환 크로마토그래피와 젤-여과 크로마토그래피를 이용한 BACE-1 단백질 정제(5) Purification of BACE-1 protein using ion-exchange chromatography and gel-filtration chromatography

BACE-1 단백질의 정제를 위하여 FPLC기기를 이용하여 정제하였다. 먼저, 이온교환 크로마토그래피 컬럼(GE_HiTrap™ 5ml Q-Sepharose HP)을 이용하여 정제를 하기 위해 전평형버퍼(20mM Tris-HCl, pH7.5, 0.4M urea)를 이용하여 컬럼을 평형화 시켜주었으며, 용출버퍼(20mM Tris-HCl, pH7.5, 0.4M urea, 0.5M NaCl)를 이용하여 용출시켰다. 용출된 각 분획을 SDS-PAGE를 이용하여 확인하였으며, BACE-1 단백질이 확인된 분획을 모아 농축튜브를 이용하여 5㎖의 양까지 농축시켰다. 젤-여과 크로마토그래피 수행을 위해 버퍼(20mM Tris-HCl, pH7.5, 0.4M urea)를 이용하여 컬럼을 평형화 시켜주었으며 단백질을 정제하였다. 각 분획을 SDS-PAGE를 이용하여 단백질의 여부를 확인하였고, 농축튜브를 이용하여 12.75㎎/㎖의 BACE1 단백질을 약 1.2㎖정제하였다.(도 4. 참조)
Purification of BACE-1 protein was performed using FPLC instrument. First, the column was equilibrated with a full equilibration buffer (20 mM Tris-HCl, pH 7.5, 0.4 M urea) for purification using an ion exchange chromatography column (GE_HiTrap ™ 5 ml Q-Sepharose HP) And eluted with buffer (20 mM Tris-HCl, pH 7.5, 0.4 M urea, 0.5 M NaCl). The eluted fractions were confirmed by SDS-PAGE, and the fractions in which the BACE-1 protein was identified were collected and concentrated to an amount of 5 ml using a concentrated tube. The column was equilibrated using a buffer (20 mM Tris-HCl, pH 7.5, 0.4 M urea) for gel-filtration chromatography and the protein was purified. Each fraction was analyzed for protein using SDS-PAGE, and about 1.2 ml of BACE1 protein was purified by using a concentrated tube (see FIG. 4).

본 발명의 실험결과는 mean±SE으로 나타내었으며, 각 group간의 통계적 유의성은 SPSS program(ver. 14.0, SPSS Inc., Chicago, IL, USA)을 이용하여 p<0.05 수준에서 Duncan의 다중비교법에 의해 분석하였다.
The test results of the present invention were expressed as mean ± SE. The statistical significance between the groups was analyzed by Duncan's multiple comparison method at p <0.05 level using SPSS program (ver. 14.0, SPSS Inc., Chicago, IL, USA) Respectively.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

(1) BseR1 제한효소를 이용하여 발현벡터 pET28-MHL에 BACE-1(β-secretase) 유전자(gene)를 삽입시키는 단계;
(2) 상기 (1)단계에 의해 제조된 pET28-MHL 벡터로 형질전환된 대장균을 제조하는 단계;
(3) 상기 (2)단계에 의해 제조된 형질전환체를 배양하고, BACE-1 단백질의 생산을 유도하는 단계;
(4) 상기 (3)단계에 의해 형질전환체가 자란 배지를 4℃, 7000rpm 조건에서 10분 동안 원심분리하여 세포펠렛을 얻는 단계;
(5) 상기 (4)단계에 의해 얻어진 세포펠렛에 용해버퍼(lysis buffer)를 첨가한 후 초음파 분쇄기를 사용하여 세포벽을 파괴한 다음 4℃, 15500rpm 조건에서 40분 동안 원심분리하여 세포펠렛을 수득하는 단계;
(6) 상기 (5)단계에 의해 수득한 세포펠렛에 Tris-HCl, 요소(urea) 및 β-메르캅토에탄올(β-mercaptoethanol)로 이루어진 pH 9.0의 가용화버퍼(solubilization buffer)를 첨가하여 섞어준 후 세포 잔해물을 걸러주는 단계;
(7) 상기 (6)단계에 의해 여과된 가용화버퍼 용액에 BACE-1 단백질의 재접힘(refolding)을 위한 Tris-HCl, 산화된 글루타치온(oxidized glutathione) 및 환원된 글루타치온(reduced glutathione)으로 이루어진 pH 9.0의 재접힘 버퍼를 첨가하여 BACE-1 단백질의 재접힘을 유도하는 단계;
(8) 상기 (7)단계에 의해 BACE-1 단백질이 포함된 버퍼를 농축튜브를 이용해 농축시키는 단계; 및
(9) 상기 (8)단계에 의해 수득된 농축액을 Tris-HCl, 요소(urea) 및 염화나트륨(NaCl)으로 이루어지는 pH 7.5의 용출버퍼를 이용하여 이온교환 크로마토그래피 하는 단계;를 포함하는 BACE-1 단백질의 정제방법.













(1) inserting a BACE-1 (β-secretase) gene into an expression vector pET28-MHL using a BseR1 restriction enzyme;
(2) preparing E. coli transformed with the pET28-MHL vector produced by the step (1);
(3) culturing the transformant prepared in (2) above to induce production of BACE-1 protein;
(4) obtaining a cell pellet by centrifugation of the medium in which the transformant has grown by the above step (3) at 4 DEG C and 7000 rpm for 10 minutes;
(5) The lysate buffer was added to the cell pellet obtained in the above step (4), and then the cell wall was disrupted using an ultrasonic mill, followed by centrifugation at 4 ° C and 15500 rpm for 40 minutes to obtain a cell pellet ;
(6) The cell pellet obtained in the above step (5) was added with a solubilization buffer of pH 9.0 consisting of Tris-HCl, urea and? -Mercaptoethanol, Filtering the post cell debris;
(7) The pH of the solubilized buffer solution filtered by the above step (6) is adjusted to a pH comprised of Tris-HCl, oxidized glutathione and reduced glutathione for refolding BACE-1 protein 9.0 refold buffer to induce refolding of the BACE-1 protein;
(8) concentrating the buffer containing the BACE-1 protein by using the concentration tube by the step (7); And
(9) ion exchange chromatography using an elution buffer having a pH of 7.5 consisting of Tris-HCl, urea and sodium chloride (NaCl), and concentrating the concentrate obtained in the step (8) A method for purifying a protein.













삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020110127788A 2011-12-01 2011-12-01 Purification method of bace-1 protein Active KR101400725B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110127788A KR101400725B1 (en) 2011-12-01 2011-12-01 Purification method of bace-1 protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110127788A KR101400725B1 (en) 2011-12-01 2011-12-01 Purification method of bace-1 protein

Publications (2)

Publication Number Publication Date
KR20130061465A KR20130061465A (en) 2013-06-11
KR101400725B1 true KR101400725B1 (en) 2014-05-30

Family

ID=48859574

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110127788A Active KR101400725B1 (en) 2011-12-01 2011-12-01 Purification method of bace-1 protein

Country Status (1)

Country Link
KR (1) KR101400725B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119242613A (en) * 2024-08-07 2025-01-03 内蒙古工业大学 A preparation method of disaccharide hydrolase GenA derived from Enterococcus faecalis CTB

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Protein Pept Lett. 2008,15(2):131-43. *

Also Published As

Publication number Publication date
KR20130061465A (en) 2013-06-11

Similar Documents

Publication Publication Date Title
US11905536B2 (en) Anti-inflammatory peptides and composition comprising the same
Wu et al. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder
Hook et al. The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity
ES2366830T3 (en) NEW FUNGICAL PROTEINS AND NUCELIC ACIDS THAT CODIFY THE SAME.
Pinti et al. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer
Wagstaff et al. Molecular characterisation of endogenous snake venom metalloproteinase inhibitors
ES2974567T3 (en) Manufacture of recombinant clostridium botulinum neurotoxins
EP3524618B1 (en) Gla domains as targeting agents
WO2014061735A1 (en) NOVEL HIGH-FUNCTIONING ENZYME HAVING ALTERED HUMAN β-HEXOSAMINIDASE B SUBSTRATE SPECIFICITY, AND HAVING PROTEASE RESISTANCE APPLIED THERETO
NO323627B1 (en) Idanone compounds and their use to inhibit cell proliferation.
CN102448981B (en) Methylglyoxal-scavenging compounds and their use for the prevention and treatment of pain and/or hyperalgesia
Hakim et al. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom
KR101400725B1 (en) Purification method of bace-1 protein
Bruinzeel et al. Recombinant insect cell expression and purification of human β-secretase (BACE-1) for X-ray crystallography
Kuzmichev et al. Role of histone deacetylase complexes in the regulation of chromatin metabolism
ES2539284T3 (en) Production procedure of mature VWF from the VWF propeptide
US7335758B2 (en) Catalytic domain of ADAM33 and methods of use thereof
KR20140037526A (en) Composition for prevention and treatment of alzheimer&#39;s diease
Ludt et al. Characterization of a cDNA encoding Lens culinaris glycolate oxidase and developmental expression of glycolate oxidase mRNA in cotyledons and leaves
US20070142277A1 (en) Bace455, an alternative splice variant of the human beta-secretase
Janssens et al. Specific regulation of protein phosphatase 2A PR72/B′′ subunits by calpain
JP2009532038A (en) Transcription factor modulator
US20130288948A1 (en) Establishment of motif comprising acidic amino acid, capable of stabilizing protein in cells, and applicable to protein therapy, control of differentiation/undifferentiation of cell and antibody therapy
KR20100134883A (en) Pharmaceutical composition for preventing or treating neurodegenerative diseases
JP2011529459A (en) Recombinant preparation of bromelain inhibitor and bromelain inhibitor precursor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20111201

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130717

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20140127

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20130717

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20140127

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20130917

Comment text: Amendment to Specification, etc.

PX0701 Decision of registration after re-examination

Patent event date: 20140319

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

Patent event date: 20140227

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20140127

Comment text: Decision to Refuse Application

Patent event code: PX07011S01I

Patent event date: 20130917

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140522

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140522

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170522

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180521

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20200504

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20210524

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20230321

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20240716

Start annual number: 11

End annual number: 11