KR101398711B1 - Nitrogen containing compound and organic electronic device using the same - Google Patents

Nitrogen containing compound and organic electronic device using the same Download PDF

Info

Publication number
KR101398711B1
KR101398711B1 KR1020090016623A KR20090016623A KR101398711B1 KR 101398711 B1 KR101398711 B1 KR 101398711B1 KR 1020090016623 A KR1020090016623 A KR 1020090016623A KR 20090016623 A KR20090016623 A KR 20090016623A KR 101398711 B1 KR101398711 B1 KR 101398711B1
Authority
KR
South Korea
Prior art keywords
formula
compound
group
mmol
organic
Prior art date
Application number
KR1020090016623A
Other languages
Korean (ko)
Other versions
KR20100097797A (en
Inventor
박태윤
배재순
홍성길
이동훈
이대웅
전상영
김성소
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020090016623A priority Critical patent/KR101398711B1/en
Publication of KR20100097797A publication Critical patent/KR20100097797A/en
Application granted granted Critical
Publication of KR101398711B1 publication Critical patent/KR101398711B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 질소 함유 복소환 화합물 및 이를 이용한 유기전자소자를 제공한다. 본 발명에 따른 유기전자소자는 효율, 구동전압 및 수명 면에서 우수한 특성을 나타낸다.The present invention provides a nitrogen-containing heterocyclic compound and an organic electronic device using the same. The organic electronic device according to the present invention exhibits excellent characteristics in terms of efficiency, driving voltage and lifetime.

유기전자소자, 이미다졸, 인돌 Organic electronic element, imidazole, indole

Description

질소 함유 복소환 화합물 및 이를 이용한 유기전자소자{NITROGEN CONTAINING COMPOUND AND ORGANIC ELECTRONIC DEVICE USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a nitrogen-containing heterocyclic compound and an organic electronic device using the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 질소 함유 복소환 화합물 및 이를 이용한 유기전자소자에 관한 것이다.The present invention relates to a nitrogen-containing heterocyclic compound and an organic electronic device using the same.

본 명세서에서, 유기전자소자란 유기 반도체 물질을 이용한 전자소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 전자소자이다. In the present specification, an organic electronic device is an electronic device using an organic semiconductor material, and requires the exchange of holes and / or electrons between the electrode and the organic semiconductor material. The organic electronic device can be roughly classified into two types according to the operating principle as described below. First, an exciton is formed in an organic material layer by a photon introduced into an element from an external light source. The exciton is separated into an electron and a hole, and the electrons and holes are transferred to different electrodes to be used as a current source Is an electronic device. The second type is an electronic device that injects holes and / or electrons into an organic semiconductor material layer that interfaces with the electrode by applying a voltage or current to two or more electrodes, and operates by injected electrons and holes.

유기전자소자의 예로는 유기발광소자, 유기태양전지, 유기감광체(OPC) 드럼, 유기 트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질을 필요로 한다. 이하에서는 주로 유기발광소자에 대하여 구체적으로 설명하지만, 상기 유기전자소자들에서는 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질이 모두 유사한 원리로 작용한다. Examples of the organic electronic device include an organic light emitting device, an organic solar cell, an organic photoconductor (OPC) drum, and an organic transistor. These devices include an electron / hole injecting material, an electron / hole extracting material, Materials or luminescent materials. Hereinafter, the organic light emitting device will be described in detail, but in the organic electronic devices, the electron / hole injecting material, the electron / hole extracting material, the electron / hole transporting material, or the light emitting material all have a similar principle.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기발광소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함할 수 있다. 이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기발광소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다. In general, organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy. An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode and a cathode and an organic layer between them. Here, in order to increase the efficiency and stability of the organic light emitting device, the organic material layer may have a multi-layer structure composed of different materials and may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between two electrodes in the structure of the organic light emitting device, holes are injected into the anode, electrons are injected into the organic layer, electrons are injected into the organic layer, excitons are formed when injected holes and electrons meet, When it falls to a state, it becomes a light. Such an organic light emitting device is known to have characteristics such as self-emission, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high speed response.

유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키 기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트 보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다. A material used as an organic material layer in an organic light emitting device can be classified into a light emitting material and a charge transporting material such as a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on functions. The light emitting material can be classified into blue, green and red light emitting materials and yellow and orange light emitting materials necessary for realizing better natural color depending on the luminescent color. Further, a host / dopant system can be used as a light emitting material in order to increase the color purity and increase the luminous efficiency through energy transfer. The principle is that when a small amount of dopant having a smaller energy band gap and a higher luminous efficiency than a host mainly constituting the light emitting layer is mixed with the light emitting layer in a small amount, the excitons generated in the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host is shifted to the wavelength band of the dopant, the desired wavelength light can be obtained depending on the type of the dopant used.

전술한 유기발광소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 한다.In order to sufficiently exhibit the excellent characteristics of the organic light emitting device, a material constituting the organic material layer in the device such as a hole injecting material, a hole transporting material, a light emitting material, an electron transporting material, and an electron injecting material is supported by a stable and efficient material Should be preceded.

그 중, 전자수송 물질로는 유기 단분자 물질로서 전자에 대한 안정도와 전자 이동속도가 상대적으로 우수한 유기금속착제들이 바람직하다. 그 중에서 안정성이 우수하고 전자 친화도가 큰 Alq3가 가장 우수한 것으로 보고되었으나 청색 발광소자에 사용할 경우 엑시톤 디퓨전(exciton diffusion)에 의한 발광 때문에 색순도가 떨어지는 문제점이 있다. 또한, 산요(sanyo)사의 플라본(Flavon) 유도체 또는 치소(Chisso)사의 게르마늄 및 실리콘클로페타디엔 유도체 등이 알려져 있다.(일본공개특허공보 제1998-017860호, 일본공개특허공보 제 1999-087067호). Among them, organometallic complexes having a relatively high stability to electrons and an electron transfer rate as organic monomolecular materials are preferable as electron transporting materials. Among them, Alq 3 having excellent stability and high electron affinity has been reported to be the most excellent, but when used in a blue light emitting device, there is a problem that the color purity drops due to exciton diffusion. Flavon derivatives of sanyo or germanium and silicon clopetadiene derivatives of Chisso are known (Japanese Patent Laid-Open Publication No. 1998-017860, Japanese Laid-Open Patent Publication No. 1999-087067 ).

또한, 상기 유기 단분자 물질로는 스피로(Spiro)화합물에 결합된 PBD (2-biphenyl-4-yl-5-(4-t-butylphenyl)-1,3,4-oxadiazole)유도체와 정공차단능력과 우수한 전자 수송능력을 모두 가지고 있는 TPBI(2,2',2"-(benzene-1,3,5-triyl)- tris(1-phenyl-1H-benzimidazole)등이 있다(Adv. Mater. 10, 1998, 1136 & Tao et al, Appl. Phys. Lett. 77, 2000, 1575). 특히, LG화학에서 발표한 벤즈 이미다졸 유도체는 우수한 내구성으로 널리 알려져 있다.As the organic monomolecular substance, a PBD (2-biphenyl-4-yl-5- (4-t-butylphenyl) -1,3,4-oxadiazole) derivative bonded to a Spiro compound and a hole blocking ability (2,2 ', 2 "- (benzene-1,3,5-triyl) -tris (1-phenyl-1H-benzimidazole) which has both excellent electron transporting ability , 1998, 1136 & Tao et al, Appl. Phys. Lett., 77, 2000, 1575), and benzimidazole derivatives disclosed by LG Chem are widely known for their excellent durability.

상기 유기 단분자 물질을 전자 수송층으로 이용한 유기발광소자는 발광수명이 짧고, 보존내구성 및 신뢰성이 낮은 문제점들을 가지고 있다. 상기 발생되는 문제점들은 유기물질의 물리 또는 화학적인 변화, 유기물질의 광화학적 또는 전기화학적인 변화, 음극의 산화, 박리현상 및 내구성이 결여되어 있기 때문이다.Organic light emitting devices using the organic single molecular material as an electron transporting layer have short lifetime, low storage durability and low reliability. These problems are caused by physical or chemical changes of organic materials, photochemical or electrochemical changes of organic materials, oxidation and peeling of the cathodes, and durability.

따라서 유기발광소자에 이용되는 유기 단분자 물질의 구조를 변화시켜 임의의 발광색을 얻거나, 호스트 도펀트 시스템에 의한 여러 가지의 고효율을 얻는 방법을 이용한 유기발광소자들이 제안되고 있으나, 아직 만족스러운 휘도, 특성, 수명 및 내구성이 결여되어 있다.Therefore, organic light emitting devices using a method of obtaining arbitrary luminescent color by changing the structure of an organic monomolecular material used in an organic luminescent device or obtaining various high efficiencies by a host dopant system have been proposed, Characteristics, life span and durability.

상기 문제점들을 해결하는 것으로서, 예를 들면, 한국공개특허공보 2003-0067773호에는 벤즈이미다졸(benzimidazole) 바퀴 및 안트라센 (anthracene) 골격을 가지는 화합물이 기재되어 있다. For example, Korean Patent Publication No. 2003-0067773 discloses a compound having a benzimidazole ring and an anthracene skeleton.

그러나, 이러한 화합물을 이용한 유기 EL 소자보다도 더욱 향상된 발광 휘도 및 발광 효율, 수명 등을 갖는 새로운 재료의 개발이 계속 요구되고 있다.However, there is a continuing need for the development of new materials having improved luminescence brightness, luminescence efficiency, and lifetime, as compared with organic EL devices using such compounds.

본 발명자들은 질소 함유 복소환 화합물을 밝혀내었다. 또한, 질소 함유 복소환 화합물을 이용하여 유기 전자 소자의 유기물층을 형성하는 경우 소자의 효율 상승, 구동 전압 하강, 수명 연장, 안정성 상승 등의 효과를 나타낼 수 있다는 사실을 밝혀내었다. The present inventors have revealed a nitrogen-containing heterocyclic compound. In addition, when a nitrogen-containing heterocyclic compound is used to form an organic material layer of an organic electronic device, it has been found that the efficiency of the device can be increased, the driving voltage can be lowered, the lifetime can be increased,

이에 본 발명은 질소 함유 복소환 화합물 및 이를 이용한 유기 전자 소자를 제공하는 것을 목적으로 한다.Accordingly, it is an object of the present invention to provide a nitrogen-containing heterocyclic compound and an organic electronic device using the same.

본 발명은 하기 화학식 1의 질소 함유 복소환 화합물을 제공한다.The present invention provides a nitrogen-containing heterocyclic compound represented by the following general formula (1).

Figure 112009012177719-pat00001
Figure 112009012177719-pat00001

상기 화학식 1에 있어서, In Formula 1,

X1 내지 X6은 C 또는 N이고, X1 내지 X5 중 적어도 하나는 N이고, R1 내지 R10 중 적어도 하나는 하기 화학식 2로 표시되는 화합물이고, 나머지는 서로 같거 나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C6~C40의 아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 아미노기로 이루어진 군에서 선택되고, 인접한 R1 내지 R10의 치환기가 결합을 형성하여 치환된 축합 또는 비축합의 고리를 형성할 수도 있다. At least one of X 1 to X 6 is C or N, at least one of X 1 to X 5 is N, at least one of R 1 to R 10 is a compound represented by the following general formula (2), and the others are the same or different, A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, A C 2 to C 40 heterocycloalkyl group, a C 6 to C 40 aryl group and a C 2 to C 40 heteroaryl group; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, an aryl group of 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of C 6 ~ C 40 of the; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a heteroaryl group of 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of C 2 ~ C 40 of the; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group, is selected from the group consisting of C 6 ~ C 40 aryl group and C 2 ~ substituted or unsubstituted amino group by at least one group selected from the heteroaryl group consisting of C 40 in an adjacent R1 to The substituent of R10 may form a bond to form a substituted condensed or non-condensed ring.

Figure 112009012177719-pat00002
Figure 112009012177719-pat00002

상기 화학식 2에서, In Formula 2,

L1은 직접결합이거나; C1-C40의 알킬기, C2-C40의 알케닐기, C1-C40의 알콕시기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C2~C40의 알케닐렌기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C6~C40의 아릴렌기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C2~C40의 헤테로아릴렌기; C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C6~C40의 아릴아민기; 할로겐, 아미노기, 니트릴기, 니트로 기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C25~C40의 스피로기; 및 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C25~C40의 열린 스피로기로 이루어진 군에서 선택되며,L 1 is a direct bond; A C 1 -C 40 alkyl, C 2 -C 40 alkenyl group, C 1 -C 40 alkoxy groups of, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group with one or more groups selected from the group consisting of A C 2 to C 40 alkenylene group substituted or unsubstituted by a group; A halogen, an amino group, a nitrile group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ cycloalkyl group of C 40 of, C 2 ~ C 40 a heterocycloalkyl group of the aryl group, C 6 ~ C40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of a C 6 ~ C 40; A halogen, an amino group, a nitrile group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ cycloalkyl group of C 40 of, C 2 ~ C 40 a heterocycloalkyl group, a heteroaryl group of C 6 ~ C 40 aryl group and C 2 ~ C 40 by at least one group selected from the heteroaryl group consisting of a substituted or unsubstituted C 2 ~ C 40 of; Heterocycloalkyl group of C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ C 40 cycloalkyl group, C 2 ~ C 40 of, C 6 ~ C 40 A C 6 to C 40 arylamine group substituted or unsubstituted with at least one group selected from the group consisting of an aryl group of C 1 to C 40 and a heteroaryl group of C 2 to C 40 ; A halogen, an amino group, a nitrile group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ cycloalkyl group of C 40 of, C 2 ~ C 40 A C 25 to C 40 spiro group substituted or unsubstituted with at least one group selected from the group consisting of a heterocycloalkyl group, a C 6 to C 40 aryl group and a C 2 to C 40 heteroaryl group; And a halogen, an amino group, a nitrile group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ C 40 cycloalkyl group, C 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 open is selected from the group consisting of a spiro of the heteroaryl group substituted or unsubstituted with one or more groups selected from the group consisting of C 25 ~ C 40 of ,

Ar1은 수소; 중수소; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C1~C40의 알킬기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C3~C40의 시클로알킬기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C2~C40의 알케닐기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C3~C40의 알콕시기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 아미노기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C6~C40의 아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40 의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C2~C40의 헤테로아릴기; C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C25~C40의 스피로기; 및 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환 또는 비치환된 C25~C40의 열린 스피로기로 이루어진 군으로부터 선택된다.Ar 1 is hydrogen; heavy hydrogen; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl substituted with an aryl group by at least one group selected from the group consisting of or unsubstituted alkyl group of C 1 ~ C 40 of; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl substituted with an aryl group by at least one group selected from the group consisting of or unsubstituted C 3 ~ C 40 cycloalkyl group of; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl substituted with an aryl group by at least one group selected from the group consisting of or unsubstituted C 2 ~ C 40 alkenyl group a; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, alkoxy groups of 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of C 3 ~ C 40 of the; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 of the heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ substituted by at least one group selected from the heteroaryl group consisting of C 40 or unsubstituted amino group; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, an aryl group of 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of C 6 ~ C 40 of the; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a heteroaryl group of 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group unsubstituted or substituted with one or more groups selected from the group consisting of C 2 ~ C 40 of the; A C 25 to C 40 spiro group substituted or unsubstituted with at least one group selected from the group consisting of a C 6 to C 40 aryl group and a C 2 to C 40 heteroaryl group; And a halogen, an amino group, a nitrile group, a nitro group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 1 ~ C 40 alkoxy group, C 3 ~ C 40 cycloalkyl group, C 2 ~ C 40 heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C at least one selected from the heteroaryl group consisting of the 40 groups are selected from the open spiro group the group consisting of substituted or unsubstituted C 25 ~ C 40 of .

본 발명은 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기전자소자로서, 상기 유기물층 중 1 층 이상은 상기 질소 함유 복소환 화합물을 포함하는 것인 유기전자소자를 제공한다.The present invention provides an organic electronic device comprising a first electrode, a second electrode, and at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers contains the nitrogen-containing heterocyclic compound Wherein the organic electronic device is an organic electronic device.

본 발명에 따른 질소 함유 복소환 화합물은 유기발광소자를 비롯한 유기전자소자의 유기물층의 재료로서 사용될 수 있고, 이를 이용한 유기발광소자를 비롯한 유기전자소자는 효율 상승, 구동전압 하강, 수명 연장, 안정성 상승 등에서 우수한 특성을 나타낸다.The nitrogen-containing heterocyclic compound according to the present invention can be used as a material for an organic material layer of an organic electronic device including an organic light emitting device, and an organic electronic device including the organic light emitting device using the same can be used for an increase in efficiency, a decrease in driving voltage, And the like.

본 발명에 따른 질소 함유 복소환 화합물은 상기 화학식 1로 표시되는 것을 특징으로 한다. The nitrogen-containing heterocyclic compound according to the present invention is characterized by being represented by the above formula (1).

구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 1f로 표시되는 화합물로 이루어진 군으로부터 선택되는 것이 바람직하다. Specifically, the compound represented by the formula (1) is preferably selected from the group consisting of compounds represented by the following formulas (1a) to (1f).

Figure 112009012177719-pat00003
Figure 112009012177719-pat00003

Figure 112009012177719-pat00004
Figure 112009012177719-pat00004

Figure 112009012177719-pat00005
Figure 112009012177719-pat00005

Figure 112009012177719-pat00006
Figure 112009012177719-pat00006

Figure 112009012177719-pat00007
Figure 112009012177719-pat00007

Figure 112009012177719-pat00008
Figure 112009012177719-pat00008

상기 화학식 1a내지 1f에 있어서, In the above general formulas (1a) to (1f)

R1 내지 R14는 화학식 1의 R1 내지 R10의 정의와 같다. R1 to R14 have the same definitions as R1 to R10 in formula (1).

본 발명에 따른 상기 화학식 1로 표시되는 질소 함유 복소환 화합물에서, R1 내지 R10 중 적어도 하나는 상기 화학식 2로 나타내는 화합물이고, 나머지 중 적어도 하나는 아릴기인 것이 바람직하다. In the nitrogen-containing heterocyclic compound represented by Formula 1 according to the present invention, at least one of R 1 to R 10 is a compound represented by Formula 2, and at least one of R 1 to R 10 is preferably an aryl group.

본 발명에 따른 상기 화학식 1로 표시되는 질소 함유 복소환 화합물에서, R1 내지 R10 중 적어도 하나는 상기 화학식 2로 나타내는 화합물이고, 나머지 중 적어도 하나는 헤테로아릴기인 것이 바람직하다.In the nitrogen-containing heterocyclic compound represented by Formula 1 according to the present invention, it is preferable that at least one of R 1 to R 10 is a compound represented by Formula 2, and at least one of R 1 to R 10 is a heteroaryl group.

본 발명에 따른 상기 화학식 1로 표시되는 질소 함유 복소환 화합물에서, R1 내지 R10 중 적어도 하나는 상기 화학식 2로 나타내는 화합물이고, 나머지 중 적어도 하나는 아릴기 또는 헤테로아릴기로 치환된 아미노인 것이 바람직하다. In the nitrogen-containing heterocyclic compound represented by Formula 1 according to the present invention, at least one of R 1 to R 10 is a compound represented by Formula 2, and at least one of R 1 to R 10 is preferably an amino substituted with an aryl group or a heteroaryl group .

본 발명에 따른 상기 화학식 1로 표시되는 질소 함유 복소환 화합물에서, R1 내지 R10 중 적어도 하나는 상기 화학식 2로 나타내는 화합물이고, 나머지 중 적어도 하나는 수소인 것이 바람직하다.In the nitrogen-containing heterocyclic compound represented by Formula 1 according to the present invention, it is preferable that at least one of R1 to R10 is a compound represented by Formula 2 and at least one of the others is hydrogen.

본 발명에 따른 상기 화학식 1로 표시되는 질소 함유 복소환 화합물에서, R1 내지 R10 중 적어도 하나는 상기 화학식 2로 나타내는 화합물이고, 나머지 중 적어도 하나는 하기 화학식으로 이루어진 군으로부터 선택되는 것이 바람직하다.In the nitrogen-containing heterocyclic compound represented by Formula 1 according to the present invention, at least one of R 1 to R 10 is a compound represented by Formula 2, and at least one of R 1 to R 10 is preferably selected from the group consisting of:

Figure 112009012177719-pat00009
Figure 112009012177719-pat00009

상기 화학식에서 Z1 내지 Z3은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 아미노기; 니트릴기; 니트로기; C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C2~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클 로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 C6~C40의 아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 아미노기로 이루어진 군에서 선택된다.In the above formula, Z1 to Z3 are the same or different from each other and each independently hydrogen; heavy hydrogen; halogen; An amino group; A nitrile group; A nitro group; A C 1 to C 40 alkyl group; A C 2 to C 40 alkenyl group; A C 1 to C 40 alkoxy group; A C 3 to C 40 cycloalkyl group; A C 2 to C 40 heterocycloalkyl group; A C 6 to C 40 aryl group; A C 2 to C 40 heteroaryl group; A C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a substituted or unsubstituted aryl group, an aryl group of C 2 ~ C 40 of the heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group substituted with one or more groups selected from the group consisting of a C 6 ~ C 40; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a heteroaryl group of 2 ~ C 40 of the heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 substituted with one or more groups selected from the heteroaryl group consisting of C 2 ~ C 40; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group is selected from the group consisting of a C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group substituted with an amino group with one or more groups selected from the group consisting of a.

본 발명에 따른 질소 함유 복소환 화합물에서, 상기 화학식 2의 Ar1이 아릴기인 경우, 하기 화학식으로 이루어진 군으로부터 선택되는 것이 바람직하다.In the nitrogen-containing heterocyclic compound according to the present invention, when Ar 1 in Formula 2 is an aryl group, it is preferably selected from the group consisting of the following formulas.

Figure 112009012177719-pat00010
Figure 112009012177719-pat00010

상기 화학식에서 Z4는 각각 독립적으로 수소; 중수소; 할로겐; 아미노기; 니트릴기; 니트로기; C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C2~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 C6~C40의 아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 C2~C40의 헤테로아릴기; 수소, 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C3~C40의 시클로알킬기, C2~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C2~C40의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 아미노기로 이루어진 군에서 선택된다.In the above formulas, Z4 is each independently hydrogen; heavy hydrogen; halogen; An amino group; A nitrile group; A nitro group; A C 1 to C 40 alkyl group; A C 2 to C 40 alkenyl group; A C 1 to C 40 alkoxy group; A C 3 to C 40 cycloalkyl group; A C 2 to C 40 heterocycloalkyl group; A C 6 to C 40 aryl group; A C 2 to C 40 heteroaryl group; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, an aryl group of 2 ~ C 40 of the heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group substituted with one or more groups selected from the group consisting of a C 6 ~ C 40; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a heteroaryl group of 2 ~ C 40 of the heterocycloalkyl group, C 6 ~ C 40 aryl group and C 2 ~ C 40 substituted with one or more groups selected from the heteroaryl group consisting of C 2 ~ C 40; A C 1 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, a C 3 to C 40 cycloalkyl group, a C 2 to C 40 alkenyl group, a C 1 to C 40 alkoxy group, 2 ~ C 40 heterocycloalkyl group is selected from the group consisting of a C 6 ~ C 40 aryl group and C 2 ~ C 40 heteroaryl group substituted with an amino group with one or more groups selected from the group consisting of a.

또한, 상기 화학식 2의 L1은 하기 화학식으로 이루어진 군으로부터 선택되는 것이 바람직하다.The L 1 in the above formula (2) is preferably selected from the group consisting of the following formulas.

Figure 112009012177719-pat00011
Figure 112009012177719-pat00011

본 발명에 있어서, 알킬기는 탄소수 1 내지 40의 입체적 방해를 주지 않는 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기 및 헵틸기 등이 있으나, 이들에 한정되지 않는다.In the present invention, it is preferable that the alkyl group does not give steric hindrance of 1 to 40 carbon atoms. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl and heptyl.

시클로알킬기는 탄소수 3 내지 40의 입체적 방해를 주지 않는 것이 바람직하다. 구체적인 예로서 시클로펜틸기 또는 시클로헥실기가 더욱 바람직하다.It is preferable that the cycloalkyl group does not give a steric hinderance of 3 to 40 carbon atoms. As a specific example, a cyclopentyl group or a cyclohexyl group is more preferable.

알케닐기로는 탄소수 2 내지 40의 알케닐기가 바람직하며, 구체적으로 스틸베닐기(stylbenyl), 스티레닐기(styrenyl) 등의 아릴기가 치환된 알케닐기가 바람직하다.The alkenyl group is preferably an alkenyl group having 2 to 40 carbon atoms, specifically, an alkenyl group substituted with an aryl group such as a stilbenyl group or a styrenyl group.

알콕시기는 탄소수 1 내지 40의 알콕시기인 것이 바람직하다.The alkoxy group is preferably an alkoxy group having 1 to 40 carbon atoms.

아릴기의 예로는 페닐기, 나프틸기, 안트라세닐기, 비페닐기, 파이레닐기, 페릴렌기 및 이들의 유도체 등이 있으나, 이들에만 한정되는 것은 아니다.Examples of the aryl group include, but are not limited to, a phenyl group, a naphthyl group, an anthracenyl group, a biphenyl group, a pyrenyl group, a perylene group, and derivatives thereof.

아릴 아민기의 예로는 페닐아민, 나프틸아민, 비페닐아민, 안트라세닐아민, 3-메틸-페닐아민, 4-메틸-나프틸아민, 2-메틸-비페닐아민, 9-메틸-안트라세닐아민, 디페닐 아민기, 페닐 나프틸 아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이들에만 한정되는 것은 아니다.Examples of the arylamine group include phenylamine, naphthylamine, biphenylamine, anthracenylamine, 3-methyl-phenylamine, 4-methyl-naphthylamine, 2-methyl- Amine, a diphenylamine group, a phenylnaphthylamine group, a ditolylamine group, a phenyltolylamine group, a carbazole and a triphenylamine group, but is not limited thereto.

헤테로고리기의 예로는 피리딜기, 비피리딜기, 트리아진기, 아크리딜기, 티오펜기, 퓨란기, 이미다졸기, 옥사졸기, 티아졸기, 트리아졸기, 퀴놀리닐기, 이소퀴놀린기, 벤즈이미다졸기, 벤조씨아졸기, 벤조옥사졸기 등이 있으나, 이들에만 한정되는 것은 아니다.Examples of the heterocyclic group include a pyridyl group, bipyridyl group, triazine group, acridyl group, thiophene group, furan group, imidazole group, oxazole group, thiazole group, triazole group, quinolinyl group, isoquinoline group, A benzoxazole group, a benzoxazole group, and the like, but are not limited thereto.

할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.Examples of the halogen group include fluorine, chlorine, bromine or iodine.

스피로기는 2개의 고리 유기화합물이 1개의 원자와 연결된 구조로서, 예로는

Figure 112009012177719-pat00012
등이 있다. Spiro groups are structures in which two ring organic compounds are connected to one atom,
Figure 112009012177719-pat00012
.

열린 스피로기는 2개의 고리 유기화합물이 1개의 원자와 연결된 구조에서 한쪽 고리 화합물의 연결이 끊어진 상태의 구조로서, 예로는

Figure 112009012177719-pat00013
,
Figure 112009012177719-pat00014
등이 있다. An open spiro group is a structure in which two ring compounds are disconnected in a structure in which two ring organic compounds are connected to one atom,
Figure 112009012177719-pat00013
,
Figure 112009012177719-pat00014
.

상기 화학식 1에서 R1 내지 R10은 수소, 중수소, 알킬기, 나프틸, 페닐, 바이페닐 및 카바졸릴 중에서 선택된 하나이상으로 치환된 페닐; 페난트릴 또는 피리 딜이 치환된 피리딜; 두개의 페닐이 치환된 아미노기; 두개의 페닐이 치환된 피레닐; 두개의 페닐이 치환된 아이소퀴놀릴인기인 것이 더욱 바람직하다.R 1 to R 10 in the general formula (1) are phenyl, which is substituted with at least one member selected from the group consisting of hydrogen, deuterium, alkyl group, naphthyl, phenyl, biphenyl and carbazolyl; Pyridyl substituted with phenanthryl or pyridyl; An amino group substituted with two phenyls; Pyranyl substituted with two phenyl; More preferably, isoquinolyl substituted with two phenyls.

L1은 직접결합, 페닐렌, 나프틸렌, 피리딜렌, 바이페닐렌 또는 싸이엔일렌인 것이 바람직하다.L 1 is preferably a direct bond, phenylene, naphthylene, pyridylene, biphenylene or thienylene.

Ar1은 치환 또는 비치환된 페닐기, 치환 또는 비치환된 비페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라센기, 치환 또는 비치환된 파이렌기, 크라이센기, 테트라센기인 것이 더욱 바람직하다.Ar 1 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracene group, a substituted or unsubstituted pyrene group, a chrysene group or a tetracene group desirable.

상기 화학식 1a로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다. Specific examples of the compound represented by the formula (1a) include, but are not limited to, the following compounds.

화학식 1a-1 화학식 1a-2Formula 1a-1 Formula la-2

Figure 112009012177719-pat00015
Figure 112009012177719-pat00015

화학식 1a-3 화학식 1a-4Formula 1a-3 Formula 1a-4

Figure 112009012177719-pat00016
Figure 112009012177719-pat00016

화학식 1a-5 화학식 1a-6(1a-5)

Figure 112009012177719-pat00017
Figure 112009012177719-pat00017

화학식 1a-7 화학식 1a-8Formula 1a-7 Formula 1a-8

Figure 112009012177719-pat00018
Figure 112009012177719-pat00018

화학식 1a-9 화학식 1a-10(1a-9)

Figure 112009012177719-pat00019
Figure 112009012177719-pat00019

화학식 1a-11 화학식 1a-12(1a-11)

Figure 112009012177719-pat00020
Figure 112009012177719-pat00020

화학식 1a-13 화학식 1a-14(1a-13)

Figure 112009012177719-pat00021
Figure 112009012177719-pat00021

화학식 1a-15 화학식 1a-16(1a-15)

Figure 112009012177719-pat00022
Figure 112009012177719-pat00022

화학식 1a-17 화학식 1a-18Formula 1a-17 Formula la-18

Figure 112009012177719-pat00023
Figure 112009012177719-pat00023

화학식 1a-19 화학식 1a-20(1a-19)

Figure 112009012177719-pat00024
Figure 112009012177719-pat00024

화학식 1a-21 화학식 1a-22(1a-21)

Figure 112009012177719-pat00025
Figure 112009012177719-pat00025

화학식 1a-23 화학식 1a-24Formula 1a-23 Formula 1a-24

Figure 112009012177719-pat00026
Figure 112009012177719-pat00026

화학식 1a-25 화학식 1a-26Formula 1a-25 Formula 1a-26

Figure 112009012177719-pat00027
Figure 112009012177719-pat00027

화학식 1a-27 화학식 1a-28Formula 1a-27 Formula la-28

Figure 112009012177719-pat00028
Figure 112009012177719-pat00028

화학식 1a-29 화학식 1a-30(1a-29)

Figure 112009012177719-pat00029
Figure 112009012177719-pat00029

화학식 1a-31 화학식 1a-32Formula 1a-31 Formula 1a-32

Figure 112009012177719-pat00030
Figure 112009012177719-pat00030

화학식 1a-33 화학식 1a-34(1a-33)

Figure 112009012177719-pat00031
Figure 112009012177719-pat00031

화학식 1a-35 화학식 1a-36Formula 1a-35 Formula 1a-36

Figure 112009012177719-pat00032
Figure 112009012177719-pat00032

화학식 1a-37 화학식 1a-38Formula 1a-37 Formula 1a-38

Figure 112009012177719-pat00033
Figure 112009012177719-pat00033

화학식 1a-39 화학식 1a-40Formula 1a-39 Formula 1a-40

Figure 112009012177719-pat00034
Figure 112009012177719-pat00034

화학식 1a-41 화학식 1a-42(1a-41)

Figure 112009012177719-pat00035
Figure 112009012177719-pat00035

화학식 1a-43 화학식 1a-44Formula 1a-43 Formula 1a-44

Figure 112009012177719-pat00036
Figure 112009012177719-pat00036

화학식 1a-45 화학식 1a-46(1a-45)

Figure 112009012177719-pat00037
Figure 112009012177719-pat00037

화학식 1a-47 화학식 1a-48Formula 1a-47 Formula 1a-48

Figure 112009012177719-pat00038
Figure 112009012177719-pat00038

화학식 1a-49 화학식 1a-50Formula 1a-49 Formula 1a-50

Figure 112009012177719-pat00039
Figure 112009012177719-pat00039

상기 화학식 1b로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다. Specific preferred examples of the compound represented by the above formula (1b) include, but are not limited to, the following compounds.

화학식 1b-1 화학식 1b-2Formula 1b-1 Formula 1b-2

Figure 112009012177719-pat00040
Figure 112009012177719-pat00040

화학식 1b-3 화학식 1b-4Formula 1b-3 < EMI ID =

Figure 112009012177719-pat00041
Figure 112009012177719-pat00041

화학식 1b-5 화학식 1b-6Formula 1b-5 Formula 1b-6

Figure 112009012177719-pat00042
Figure 112009012177719-pat00042

화학식 1b-7 화학식 1b-8Formula 1b-7 Formula 1b-8

Figure 112009012177719-pat00043
Figure 112009012177719-pat00043

화학식 1b-9 화학식 1b-10Formula 1b-9 Formula 1b-10

Figure 112009012177719-pat00044
Figure 112009012177719-pat00044

화학식 1b-11 화학식 1b-121b-11 < EMI ID =

Figure 112009012177719-pat00045
Figure 112009012177719-pat00045

화학식 1b-13 화학식 1b-14Formula 1b-13 Formula 1b-14

Figure 112009012177719-pat00046
Figure 112009012177719-pat00046

화학식 1b-15 화학식 1b-16Formula 1b-15 Formula 1b-16

Figure 112009012177719-pat00047
Figure 112009012177719-pat00047

화학식 1b-17 화학식 1b-18Formula 1b-17 Formula 1b-18

Figure 112009012177719-pat00048
Figure 112009012177719-pat00048

화학식 1b-19 화학식 1b-20Formula 1b-19 Formula 1b-20

Figure 112009012177719-pat00049
Figure 112009012177719-pat00049

화학식 1b-21 화학식 1b-22Formula 1b-21 Formula 1b-22

Figure 112009012177719-pat00050
Figure 112009012177719-pat00050

화학식 1b-23 화학식 1b-24Formula 1b-23 Formula 1b-24

Figure 112009012177719-pat00051
Figure 112009012177719-pat00051

화학식 1b-25 화학식 1b-26Formula 1b-25 Formula 1b-26

Figure 112009012177719-pat00052
Figure 112009012177719-pat00052

화학식 1b-27 화학식 1b-28Formula 1b-27 Formula 1b-28

Figure 112009012177719-pat00053
Figure 112009012177719-pat00053

화학식 1b-29 화학식 1b-30Formula 1b-29 Formula 1b-30

Figure 112009012177719-pat00054
Figure 112009012177719-pat00054

화학식 1b-31 화학식 1b-32Formula 1b-31 Formula 1b-32

Figure 112009012177719-pat00055
Figure 112009012177719-pat00055

화학식 1b-33 화학식 1b-34Formula 1b-33 Formula 1b-34

Figure 112009012177719-pat00056
Figure 112009012177719-pat00056

화학식 1b-35 화학식 1b-36Formula 1b-35 Formula 1b-36

Figure 112009012177719-pat00057
Figure 112009012177719-pat00057

화학식 1b-37 화학식 1b-38Formula 1b-37 Formula 1b-38

Figure 112009012177719-pat00058
Figure 112009012177719-pat00058

화학식 1b-39 화학식 1b-40Formula 1b-39 Formula 1b-40

Figure 112009012177719-pat00059
Figure 112009012177719-pat00059

화학식 1b-41 화학식 1b-42Formula 1b-41 Formula 1b-42

Figure 112009012177719-pat00060
Figure 112009012177719-pat00060

화학식 1b-43 화학식 1b-44Formula 1b-43 Formula 1b-44

Figure 112009012177719-pat00061
Figure 112009012177719-pat00061

화학식 1b-45 화학식 1b-46Formula 1b-45 Formula 1b-46

Figure 112009012177719-pat00062
Figure 112009012177719-pat00062

화학식 1b-47 화학식 1b-48Formula 1b-47 Formula 1b-48

Figure 112009012177719-pat00063
Figure 112009012177719-pat00063

화학식 1b-49 화학식 1b-50Formula 1b-49 Formula 1b-50

Figure 112009012177719-pat00064
Figure 112009012177719-pat00064

상기 화학식 1c로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다. Specific preferred examples of the compound represented by the formula (1c) include, but are not limited to, the following compounds.

화학식 1c-1 화학식 1c-2Formula 1c-1 Formula 1c-2

Figure 112009012177719-pat00065
Figure 112009012177719-pat00065

화학식 1c-3 화학식 1c-4Formula 1c-3 Formula 1c-4

Figure 112009012177719-pat00066
Figure 112009012177719-pat00066

화학식 1c-5 화학식 1c-6Formula 1c-5 Formula 1c-6

Figure 112009012177719-pat00067
Figure 112009012177719-pat00067

화학식 1c-7 화학식 1c-8Formula 1c-7 Formula 1c-8

Figure 112009012177719-pat00068
Figure 112009012177719-pat00068

화학식 1c-9 화학식 1c-10Formula 1c-9 Formula 1c-10

Figure 112009012177719-pat00069
Figure 112009012177719-pat00069

화학식 1c-11 화학식 1c-12Formula 1c-11 Formula 1c-12

Figure 112009012177719-pat00070
Figure 112009012177719-pat00070

화학식 1c-13 화학식 1c-14Formula 1c-13 Formula 1c-14

Figure 112009012177719-pat00071
Figure 112009012177719-pat00071

화학식 1c-15 화학식 1c-16Formula 1c-15 Formula 1c-16

Figure 112009012177719-pat00072
Figure 112009012177719-pat00072

화학식 1c-17 화학식 1c-18Formula 1c-17 Formula 1c-18

Figure 112009012177719-pat00073
Figure 112009012177719-pat00073

화학식 1c-19 화학식 1c-20Formula 1c-19 Formula 1c-20

Figure 112009012177719-pat00074
Figure 112009012177719-pat00074

화학식 1c-21 화학식 1c-22Formula 1c-21 Formula 1c-22

Figure 112009012177719-pat00075
Figure 112009012177719-pat00075

화학식 1c-23 화학식 1c-24Formula 1c-23 Formula 1c-24

Figure 112009012177719-pat00076
Figure 112009012177719-pat00076

화학식 1c-25 화학식 1c-26Formula 1c-25 Formula 1c-26

Figure 112009012177719-pat00077
Figure 112009012177719-pat00077

화학식 1c-27 화학식 1c-28Formula 1c-27 Formula 1c-28

Figure 112009012177719-pat00078
Figure 112009012177719-pat00078

화학식 1c-29 화학식 1c-30Formula 1c-29 Formula 1c-30

Figure 112009012177719-pat00079
Figure 112009012177719-pat00079

화학식 1c-31 화학식 1c-32Formula 1c-31 Formula 1c-32

Figure 112009012177719-pat00080
Figure 112009012177719-pat00080

화학식 1c-33 화학식 1c-34Formula 1c-33 Formula 1c-34

Figure 112009012177719-pat00081
Figure 112009012177719-pat00081

화학식 1c-35 화학식 1c-36Formula 1c-35 Formula 1c-36

Figure 112009012177719-pat00082
Figure 112009012177719-pat00082

화학식 1c-37 화학식 1c-38Formula 1c-37 Formula 1c-38

Figure 112009012177719-pat00083
Figure 112009012177719-pat00083

화학식 1c-39 화학식 1c-40Formula 1c-39 Formula 1c-40

Figure 112009012177719-pat00084
Figure 112009012177719-pat00084

화학식 1c-41 화학식 1c-42Formula 1c-41 Formula 1c-42

Figure 112009012177719-pat00085
Figure 112009012177719-pat00085

화학식 1c-43 화학식 1c-44Formula 1c-43 Formula 1c-44

Figure 112009012177719-pat00086
Figure 112009012177719-pat00086

화학식 1c-45 화학식 1c-46Formula 1c-45 Formula 1c-46

Figure 112009012177719-pat00087
Figure 112009012177719-pat00087

화학식 1c-47 화학식 1c-48Formula 1c-47 Formula 1c-48

Figure 112009012177719-pat00088
Figure 112009012177719-pat00088

화학식 1c-49 화학식 1c-50Formula 1c-49 Formula 1c-50

Figure 112009012177719-pat00089
Figure 112009012177719-pat00089

상기 화학식 1d로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다. Specific preferred examples of the compound represented by the formula (1d) include, but are not limited to, the following compounds.

화학식 1d-1 화학식 1d-2≪ RTI ID = 0.0 > 1d-1 &

Figure 112009012177719-pat00090
Figure 112009012177719-pat00090

화학식 1d-3 화학식 1d-4≪ RTI ID = 0.0 > 1d-3 &

Figure 112009012177719-pat00091
Figure 112009012177719-pat00091

화학식 1d-5 화학식 1d-6≪ RTI ID = 0.0 > 1d-5 &

Figure 112009012177719-pat00092
Figure 112009012177719-pat00092

화학식 1d-7 화학식 1d-8≪ RTI ID = 0.0 > 1d-8 &

Figure 112009012177719-pat00093
Figure 112009012177719-pat00093

화학식 1d-9 화학식 1d-101d-9 < / RTI > <

Figure 112009012177719-pat00094
Figure 112009012177719-pat00094

화학식 1d-11 화학식 1d-12≪ RTI ID = 0.0 > 1d-11 &

Figure 112009012177719-pat00095
Figure 112009012177719-pat00095

화학식 1d-13 화학식 1d-14≪ RTI ID = 0.0 > 1d-13 &

Figure 112009012177719-pat00096
Figure 112009012177719-pat00096

화학식 1d-15 화학식 1d-16≪ RTI ID = 0.0 > 1d-15 &

Figure 112009012177719-pat00097
Figure 112009012177719-pat00097

화학식 1d-17 화학식 1d-18≪ RTI ID = 0.0 > 1d-17 &

Figure 112009012177719-pat00098
Figure 112009012177719-pat00098

화학식 1d-19 화학식 1d-201d-19 < EMI ID =

Figure 112009012177719-pat00099
Figure 112009012177719-pat00099

화학식 1d-21 화학식 1d-22≪ RTI ID = 0.0 > 1d-22 &

Figure 112009012177719-pat00100
Figure 112009012177719-pat00100

화학식 1d-23 화학식 1d-24Formula 1d-23 Formula 1d-24

Figure 112009012177719-pat00101
Figure 112009012177719-pat00101

화학식 1d-25 화학식 1d-26Formula 1d-25 Formula 1d-26

Figure 112009012177719-pat00102
Figure 112009012177719-pat00102

화학식 1d-27 화학식 1d-28≪ RTI ID = 0.0 > 1d-28 &

Figure 112009012177719-pat00103
Figure 112009012177719-pat00103

화학식 1d-29 화학식 1d-30≪ RTI ID = 0.0 > 1d-29 &

Figure 112009012177719-pat00104
Figure 112009012177719-pat00104

화학식 1d-31 화학식 1d-32Formula 1d-31 Formula 1d-32

Figure 112009012177719-pat00105
Figure 112009012177719-pat00105

화학식 1d-33 화학식 1d-341d-33 < RTI ID = 0.0 >

Figure 112009012177719-pat00106
Figure 112009012177719-pat00106

화학식 1d-35 화학식 1d-361d-35 < EMI ID =

Figure 112009012177719-pat00107
Figure 112009012177719-pat00107

화학식 1d-37 화학식 1d-38(D-37)

Figure 112009012177719-pat00108
Figure 112009012177719-pat00108

화학식 1d-39 화학식 1d-401d-39 < EMI ID =

Figure 112009012177719-pat00109
Figure 112009012177719-pat00109

화학식 1d-41 화학식 1d-421d-41 < EMI ID =

Figure 112009012177719-pat00110
Figure 112009012177719-pat00110

화학식 1d-43 화학식 1d-441d-43 < RTI ID = 0.0 >

Figure 112009012177719-pat00111
Figure 112009012177719-pat00111

화학식 1d-45 화학식 1d-461d-45 < RTI ID = 0.0 >

Figure 112009012177719-pat00112
Figure 112009012177719-pat00112

화학식 1d-47 화학식 1d-48≪ RTI ID = 0.0 > 1d-47 &

Figure 112009012177719-pat00113
Figure 112009012177719-pat00113

화학식 1d-49 화학식 1d-50Formula 1d-49 Formula 1d-50

Figure 112009012177719-pat00114
Figure 112009012177719-pat00114

상기 화학식 1e로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.Preferable specific examples of the compound represented by the formula (1e) include, but are not limited to, the following compounds.

화학식 1e-1 화학식 1e-2Formula (1e-1) Formula (1e-2)

Figure 112009012177719-pat00115
Figure 112009012177719-pat00115

화학식 1e-3 화학식 1e-4Formula (1e-3) Formula (1e-4)

Figure 112009012177719-pat00116
Figure 112009012177719-pat00116

화학식 1e-5 화학식 1e-6Formula (1e-5) Formula (1e-6)

Figure 112009012177719-pat00117
Figure 112009012177719-pat00117

화학식 1e-7 화학식 1e-8Formula 1e-7 Formula 1e-8

Figure 112009012177719-pat00118
Figure 112009012177719-pat00118

화학식 1e-9 화학식 1e-10Formula (1e-9) Formula (1e-10)

Figure 112009012177719-pat00119
Figure 112009012177719-pat00119

화학식 1e-11 화학식 1e-12Formula (1e-11) Formula (1e-12)

Figure 112009012177719-pat00120
Figure 112009012177719-pat00120

화학식 1e-13 화학식 1e-14Formula 1e-13 Formula 1e-14

Figure 112009012177719-pat00121
Figure 112009012177719-pat00121

화학식 1e-15 화학식 1e-16Formula 1e-15 Formula 1e-16

Figure 112009012177719-pat00122
Figure 112009012177719-pat00122

화학식 1e-17 화학식 1e-18Formula 1e-17 Formula 1e-18

Figure 112009012177719-pat00123
Figure 112009012177719-pat00123

화학식 1e-19 화학식 1e-20Formula 1e-19 Formula 1e-20

Figure 112009012177719-pat00124
Figure 112009012177719-pat00124

화학식 1e-21 화학식 1e-22Formula 1e-21 Formula 1e-22

Figure 112009012177719-pat00125
Figure 112009012177719-pat00125

화학식 1e-23 화학식 1e-24Formula 1e-23 Formula 1e-24

Figure 112009012177719-pat00126
Figure 112009012177719-pat00126

화학식 1e-25 화학식 1e-26Formula 1e-25 Formula 1e-26

Figure 112009012177719-pat00127
Figure 112009012177719-pat00127

화학식 1e-27 화학식 1e-28Formula 1e-27 Formula 1e-28

Figure 112009012177719-pat00128
Figure 112009012177719-pat00128

화학식 1e-29 화학식 1e-30Formula 1e-29 Formula 1e-30

Figure 112009012177719-pat00129
Figure 112009012177719-pat00129

화학식 1e-31 화학식 1e-32Formula 1e-31 Formula 1e-32

Figure 112009012177719-pat00130
Figure 112009012177719-pat00130

화학식 1e-33 화학식 1e-34Formula 1e-33 Formula 1e-34

Figure 112009012177719-pat00131
Figure 112009012177719-pat00131

화학식 1e-35 화학식 1e-36Formula 1e-35 Formula 1e-36

Figure 112009012177719-pat00132
Figure 112009012177719-pat00132

화학식 1e-37 화학식 1e-38Formula 1e-37 Formula 1e-38

Figure 112009012177719-pat00133
Figure 112009012177719-pat00133

화학식 1e-39 화학식 1e-40Formula 1e-39 Formula 1e-40

Figure 112009012177719-pat00134
Figure 112009012177719-pat00134

화학식 1e-41 화학식 1e-42(1e-41)

Figure 112009012177719-pat00135
Figure 112009012177719-pat00135

화학식 1e-43 화학식 1e-44Formula 1e-43 Formula 1e-44

Figure 112009012177719-pat00136
Figure 112009012177719-pat00136

화학식 1e-45 화학식 1e-46Formula 1e-45 Formula 1e-46

Figure 112009012177719-pat00137
Figure 112009012177719-pat00137

화학식 1e-47 화학식 1e-48Formula 1e-47 Formula 1e-48

Figure 112009012177719-pat00138
Figure 112009012177719-pat00138

화학식 1e-49 화학식 1e-50Formula 1e-49 Formula 1e-50

Figure 112009012177719-pat00139
Figure 112009012177719-pat00139

상기 화학식 1f로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다. Preferable specific examples of the compound represented by the above formula (1f) include, but are not limited to, the following compounds.

화학식 1f-1 화학식 1f-21f-1 < / RTI > <

Figure 112009012177719-pat00140
Figure 112009012177719-pat00140

화학식 1f-3 화학식 1f-4Formula (1f-3) Formula (1f-4)

Figure 112009012177719-pat00141
Figure 112009012177719-pat00141

화학식 1f-5 화학식 1f-6Formula (1f-5) Formula (1f-6)

Figure 112009012177719-pat00142
Figure 112009012177719-pat00142

화학식 1f-7 화학식 1f-8Formula 1f-7 Formula 1f-8

Figure 112009012177719-pat00143
Figure 112009012177719-pat00143

화학식 1f-9 화학식 1f-101f-9 < EMI ID =

Figure 112009012177719-pat00144
Figure 112009012177719-pat00144

화학식 1f-11 화학식 1f-12(1f-11)

Figure 112009012177719-pat00145
Figure 112009012177719-pat00145

화학식 1f-13 화학식 1f-14(1f-13)

Figure 112009012177719-pat00146
Figure 112009012177719-pat00146

화학식 1f-15 화학식 1f-16(1f-15) < EMI ID =

Figure 112009012177719-pat00147
Figure 112009012177719-pat00147

화학식 1f-17 화학식 1f-18Formula 1f-17 Formula 1f-18

Figure 112009012177719-pat00148
Figure 112009012177719-pat00148

화학식 1f-19 화학식 1f-20Formula 1f-19 Formula 1f-20

Figure 112009012177719-pat00149
Figure 112009012177719-pat00149

화학식 1f-21 화학식 1f-22Formula 1f-21 Formula 1f-22

Figure 112009012177719-pat00150
Figure 112009012177719-pat00150

화학식 1f-23 화학식 1f-24Formula 1f-23 Formula 1f-24

Figure 112009012177719-pat00151
Figure 112009012177719-pat00151

화학식 1f-25 화학식 1f-26Formula 1f-25 Formula 1f-26

Figure 112009012177719-pat00152
Figure 112009012177719-pat00152

화학식 1f-27 화학식 1f-28Formula 1f-27 Formula 1f-28

Figure 112009012177719-pat00153
Figure 112009012177719-pat00153

화학식 1f-29 화학식 1f-30Formula 1f-29 Formula 1f-30

Figure 112009012177719-pat00154
Figure 112009012177719-pat00154

화학식 1f-31 화학식 1f-32Formula 1f-31 Formula 1f-32

Figure 112009012177719-pat00155
Figure 112009012177719-pat00155

화학식 1f-33 화학식 1f-34(1f-33) < EMI ID =

Figure 112009012177719-pat00156
Figure 112009012177719-pat00156

화학식 1f-35 화학식 1f-36Formula 1f-35 Formula 1f-36

Figure 112009012177719-pat00157
Figure 112009012177719-pat00157

화학식 1f-37 화학식 1f-38Formula 1f-37 Formula 1f-38

Figure 112009012177719-pat00158
Figure 112009012177719-pat00158

화학식 1f-39 화학식 1f-40Formula 1f-39 Formula 1f-40

Figure 112009012177719-pat00159
Figure 112009012177719-pat00159

화학식 1f-41 화학식 1f-42(1f-41) < EMI ID =

Figure 112009012177719-pat00160
Figure 112009012177719-pat00160

화학식 1f-43 화학식 1f-44Formula 1f-43 Formula 1f-44

Figure 112009012177719-pat00161
Figure 112009012177719-pat00161

화학식 1f-45 화학식 1f-46Formula 1f-45 Formula 1f-46

Figure 112009012177719-pat00162
Figure 112009012177719-pat00162

화학식 1f-47 화학식 1f-48Formula 1f-47 Formula 1f-48

Figure 112009012177719-pat00163
Figure 112009012177719-pat00163

화학식 1f-49 화학식 1f-50Formula 1f-49 Formula 1f-50

Figure 112009012177719-pat00164
Figure 112009012177719-pat00164

본 발명에 따른 화학식 1의 화합물은 하기 제조예 1 또는 제조예 2와 같은 방법으로 제조할 수 있으나, 이에 한정되는 것은 아니다. The compound of formula (1) according to the present invention can be prepared by the same method as in Preparation Example 1 or 2, but is not limited thereto.

[제조예 1][Production Example 1]

Figure 112009012177719-pat00165
Figure 112009012177719-pat00165

구조식 A 구조식 B 구조식 C 구조식 DStructure A Structure B Structure C Structure D

[제조예 2][Production Example 2]

Figure 112009012177719-pat00166
Figure 112009012177719-pat00166

구조식 A 구조식 E 구조식 F 구조식 GStructure A Structure E Structure F Structure G

상기 제조예 1 또는 2에서, In Production Example 1 or 2,

R1 내지 R12는 상기 화학식 1의 R1 내지 R10의 정의와 같다. R1 to R12 have the same definitions as R1 to R10 in the above formula (1).

구체적으로, R1 내지 R4를 갖고, 오르토(ortho) 위치에 클로라이드기와 같은 할로겐기를 포함하는 벤젠고리를 포함하는 헤테로 5원 고리 화합물인 구조식 A를 제조한다. 상기 구조식 A에 알데히드기 또는 아세틸기를 도입하여 구조식 B 또는 구조식 E의 물질을 제조하고, 축합반응을 통해 치환된 이미다졸 또는 치환된 인돌을 갖는 구조식 C 또는 구조식 F의 물질을 제조한다. 최종에 팔라듐 촉매하에서 아미네이션반응으로 구조식 D 또는 구조식 G의 물질을 제조할 수 있다. 상기 화학식 1에 대한 제조방법은 이에 한정되는 것은 아니며, 상기 제조방법 중 치환반응이나 축합반응은 당업계에 알려진 일반적인 기술을 사용할 수 있다.Specifically, a structural formula A is prepared, which is a hetero five-membered ring compound having a benzene ring having R1 to R4 and containing a halogen group such as a chloride group at an ortho position. An aldehyde group or an acetyl group is introduced into the above structural formula A to prepare a material of the structural formula B or the structural formula E and a condensation reaction to prepare a material of the structural formula C or the structural formula F having a substituted imidazole or a substituted indole. The material of formula D or formula G can be prepared by amination reaction in the final palladium catalyst. The method for preparing the compound of Formula 1 is not limited thereto, and the substitution reaction or the condensation reaction may be carried out by a general technique known in the art.

본 발명에 따른 화학식 1의 화합물의 보다 구체적인 제조방법은 실시예에서 나타낸다.A more specific method for preparing the compound of formula (1) according to the present invention is shown in the examples.

본 발명은 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기전자소자로서, 상기 유기물층 중 1 층 이상은 상기 화학식 1의 화합물을 포함하는 것인 유기전자소자를 제공한다. The present invention provides an organic electronic device comprising a first electrode, a second electrode, and at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers contains the compound of the formula The organic electroluminescent device is provided.

본 발명의 유기전자소자는 전술한 화합물들을 이용하여 한층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기전자소자의 제조방법 및 재료에 의하여 제조될 수 있다.The organic electronic device of the present invention can be produced by a conventional method and materials for producing an organic electronic device, except that one or more organic material layers are formed using the above-described compounds.

이하에서는 유기발광소자에 대하여 예시한다.Hereinafter, the organic light emitting device will be described.

본 발명의 하나의 실시 상태에 있어서, 유기발광소자는 제 1 전극과 제 2 전극 및 이 사이에 배치된 유기물층을 포함하는 구조로 이루어질 수 있다. 본 발명의 유기발광소자 중 유기물층은 1층으로 이루어진 단층 구조일 수도 있으나, 발광층을 포함하는 2층 이상의 다층 구조일 수도 있다. 본 발명의 유기발광소자의 유기물층이 다층 구조인 경우, 이는 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 등이 적층된 구조일 수 있다. 그러나, 유기발광소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다. 예컨대, 본 발명의 유기발광소자는 도 1에 나타낸 것과 같은 구조를 가질 수 있다. 도 1에 있어서, 도면부호 1은 기판, 2는 양극, 3은 정공주입층, 4는 정공수송층, 5는 유기발광층, 6은 전자수송층, 7은 음극을 각각 나타낸다. 도 1과 같은 구조의 유기발광소자를 통상 정방향 구조의 유기발광소자라고 하는데, 본 발명은 이에 한정되지 않고 역방향 구조의 유기발광소자도 포함한다. 즉, 본 발명의 유기발광소자는 기판, 음극, 전자수송층, 유기발광층, 정공수송층, 정공주입층 및 양극이 순차적으로 적층된 구조를 가질 수 있다. In one embodiment of the present invention, the organic light emitting device may have a structure including a first electrode, a second electrode, and an organic layer disposed therebetween. The organic layer in the organic light emitting device of the present invention may have a single layer structure of one layer or a multilayer structure of two or more layers including a light emitting layer. When the organic material layer of the organic light emitting diode of the present invention has a multilayer structure, it may have a structure in which, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are stacked. However, the structure of the organic light emitting device is not limited thereto, and may include a smaller number of organic layers. For example, the organic light emitting device of the present invention may have a structure as shown in FIG. 1, reference numeral 1 denotes a substrate, 2 denotes an anode, 3 denotes a hole injecting layer, 4 denotes a hole transporting layer, 5 denotes an organic light emitting layer, 6 denotes an electron transporting layer and 7 denotes a cathode. The organic light emitting device having the structure as shown in FIG. 1 is generally referred to as an organic light emitting device having a normal structure. However, the present invention is not limited to this and includes an organic light emitting device having a reverse structure. That is, the organic light emitting device of the present invention may have a structure in which a substrate, a cathode, an electron transport layer, an organic light emitting layer, a hole transport layer, a hole injection layer, and an anode are sequentially stacked.

본 발명에 따른 유기발광소자가 다층 구조의 유기물층을 갖는 경우, 상기 화학식 1의 화합물은 발광층, 정공수송층, 정공수송과 발광을 동시에 하는 층, 발광과 전자수송을 동시에 하는 층, 전자수송층, 전자수송 및/또는 주입층 등에 포함될 수 있다. 본 발명에 있어서, 상기 화학식 1의 화합물은 특히 전자주입 및/또는 수송층 또는 발광층에 포함되는 것이 바람직하다.In the case where the organic light emitting device according to the present invention has an organic layer having a multilayer structure, the compound of the general formula (1) includes a light emitting layer, a hole transporting layer, a layer simultaneously transporting and emitting light, a layer simultaneously emitting light and electron transporting, And / or an injection layer. In the present invention, it is particularly preferable that the compound of Formula 1 is included in the electron injecting and / or transporting layer or the light emitting layer.

본 발명에 따른 유기발광소자는 전술한 화학식 1의 화합물을 유기발광소자의 유기물층 중 1층 이상에 사용한다는 것을 제외하고는, 통상의 유기발광소자의 제조방법 및 재료를 사용하여 제조될 수 있다. 예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering) 이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 전술한 바와 같이 역방향 구조의 유기발광소자를 제작하기 위하여 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다.The organic electroluminescent device according to the present invention can be manufactured using conventional organic electroluminescent device manufacturing methods and materials, except that the compound of Formula 1 is used for at least one layer of the organic electroluminescent device. For example, the organic light emitting device according to the present invention may be formed by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation to form a metal oxide or a metal oxide having conductivity on the substrate, To form an anode, an organic material layer including a hole injection layer, a hole transporting layer, a light emitting layer, and an electron transporting layer is formed on the anode, and a material which can be used as a cathode is deposited thereon. In addition to such a method, an organic light emitting device may be fabricated by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate in order to fabricate an organic light emitting device having a reverse structure as described above.

상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.The organic material layer may be formed by using a variety of polymer materials in a smaller number of layers by a solvent process such as a spin coating process, a dip coating process, a doctor blading process, a screen printing process, an inkjet printing process or a thermal transfer process, Can be manufactured.

상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the anode material, a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer. Specific examples of the cathode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline.

상기 음극 물질로는 통상 유기물층으로 전자주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but are not limited thereto.

상기 정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공주입 물질 의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole injecting material, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injecting material is between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injecting material include metal porphyrine, oligothiophene, arylamine-based organic materials, hexanitrile hexaazatriphenylene-based organic materials, quinacridone-based organic materials, perylene , Anthraquinone, polyaniline and polythiophene-based conductive polymers, but the present invention is not limited thereto.

상기 정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole transporting material, a material having high mobility to holes is suitable for transporting holes from the anode or the hole injection layer to the light emitting layer. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.

상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; 비스-메틸-8-히드록시퀴놀린 파라페닐페놀 알루미늄 착물(Balq); 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.The light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; Bis-methyl-8-hydroxyquinoline paraphenyl phenol aluminum complex (Balq); 10-hydroxybenzoquinoline-metal compounds; Compounds of the benzoxazole, benzothiazole and benzimidazole series; Polymers of poly (p-phenylenevinylene) (PPV) series; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.

상기 전자수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플 라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.As the electron transporting material, a material capable of transferring electrons from the cathode well into the light emitting layer, which is suitable for electrons, is suitable. Specific examples include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.

본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.

본 발명에 따른 화합물은 유기태양전지, 유기감광체, 유기트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.The compound according to the present invention may act on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors and the like.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 예시하기 위한 것이며, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention and do not limit the scope of the present invention.

1. 화학식 1a로 표시되는 화합물의 제조방법1. Preparation of the compound of formula (1a)

<제조예 1> 화학식 1a-2의 합성PREPARATION EXAMPLE 1 Synthesis of Compound (1a-2)

Figure 112009012177719-pat00167
Figure 112009012177719-pat00167

화합물 A 화합물 B 화합물 C 화학식 1a-2 Compound A Compound B Compound C Compound 1a-2

<제조예 1-1> 화합물 A의 합성Production Example 1-1 Synthesis of Compound A

2'-클로로아세토페논(20 g, 129.3 mmol)과 페닐하이드라진(15.4 g, 142.2 mmmol), 폴리포스포릭산(300 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고, 물에 부어준 후 교반하였다. 클로로포름으로 추출하고 유기층 을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 A(20 g, 수율 68%; MS: [M+H]+=228) 를 얻었다. 2'-Chloroacetophenone (20 g, 129.3 mmol), phenylhydrazine (15.4 g, 142.2 mmmol) and polyphosphoric acid (300 g) were added and stirred with heating. After completion of the reaction, the temperature was lowered to room temperature, poured into water, and then stirred. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound A (20 g, yield 68%; MS: [M + H] + = 228) was obtained by column purification with tetrahydrofuran: hexane = 1:

<제조예 1-2> 화합물 B의 합성&Lt; Preparation Example 1-2 > Synthesis of Compound B

N-메틸포르마닐라이드(23.6 g, 175 mmol)와 포스포릴클로라이드(26.8 g, 175 mmol)를 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣고 0℃ 냉각한 후 제조예 1-1의 화합물 A(20 g, 87.8 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(17.5 g, 175 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮추고, 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 B(16 g, 수율 71%; MS: [M+H]+=256)를 얻었다. N-Methylformanilide (23.6 g, 175 mmol) and phosphoryl chloride (26.8 g, 175 mmol) were mixed and stirred at room temperature. After 15 minutes, ethylene dichloride (200 ml) was added and the mixture was cooled to 0 ° C, and Compound A (20 g, 87.8 mmol) of Preparation Example 1-1 was slowly added thereto. After 20 minutes, calcium carbonate (17.5 g, 175 mmol) was added and heated. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound B (16 g, yield 71%; MS: [M + H] + = 256).

<제조예 1-3> 화합물 C의 합성&Lt; Preparation Example 1-3 > Synthesis of Compound C

제조예 1-2의 화합물 B(16 g, 62.6 mmmol)와 o-페닐렌디아민(6.8 g, 62.9 mmol)을 섞고, N, N-디메틸아세트아미드와 톨루엔을 넣고 교반하면서 가열하여 생성되는 물을 제거하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 C(11 g, 수율 57%; MS: [M+H]+=308)를 얻었다. (16 g, 62.6 mmmol) and o-phenylenediamine (6.8 g, 62.9 mmol) were mixed, and N, N-dimethylacetamide and toluene were added thereto. Respectively. After the completion of the reaction, the reaction mixture was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 8 to obtain Compound C (11 g, yield 57%; MS: [M + H] + = 308).

<제조예 1-4> 화학식 1a-2의 합성Production Example 1-4 Synthesis of Compound (1a-2)

제조예 1-3의 화합물 C(11 g, 35.8 mmmol)와 브로모벤젠(6.3 g, 40 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.18 g, 0.36 mmol), 나트륨 터셔리-부톡사이드(4.5 g, 46.8 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 5로 컬럼 정제하여 화학식 1a-2(9 g, 수율 66%; MS: [M+H]+=384)를 얻었다. (11 g, 35.8 mmmol), bromobenzene (6.3 g, 40 mmol), bis (tritiated-butylphosphine) palladium (0.18 g, 0.36 mmol), sodium tertiary- Butoxide (4.5 g, 46.8 mmol) were mixed and refluxed with xylene (100 ml) while stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 5 to obtain 9 g (Yield: 66%; MS: [M + H] + = 384).

<제조예 2> 화학식 1a-8의 합성PREPARATION EXAMPLE 2 Synthesis of Compound (1a-8)

Figure 112009012177719-pat00168
Figure 112009012177719-pat00168

화합물 A 화합물 B 화학식 1a-8   Compound A Compound B Compound 1a-8

<제조예 2-1> 화합물 A의 합성&Lt; Preparation Example 2-1 > Synthesis of Compound A

2-브로모-9,10-(디-2-나프틸)안트라센(5 g, 9.8 mmol)과 비스(피나콜라 토)디보론(2.75 g, 10.8 mmol), 아세트산칼륨(2.89 g, 29.4 mmol)을 디옥산(50 ml)에 현탁시켰다. 환류되는 상태에서 팔라듐(디페닐포스피노페로센)클로라이드 (0.24 g, 0.3 mmol)를 넣고 6시간 동안 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물을 부어준 후 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류하였다. 생성된 고체를 여과하고 에탄올로 세척하고 진공에서 건 조하여 화합물 A(4.46 g, 수율 82%; MS: [M+H]+=557)를 얻었다.(2.75 g, 10.8 mmol) and bis (pinacolato) diboron (2.89 g, 29.4 mmol) were added to a solution of 2-bromo-9,10- ) Was suspended in dioxane (50 ml). Palladium (diphenylphosphinoferrocene) chloride (0.24 g, 0.3 mmol) was added under reflux and stirred for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, poured into water, and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and distilled under reduced pressure. The resulting solid was filtered, washed with ethanol and dried in vacuo to give Compound A (4.46 g, 82% yield; MS: [M + H] + = 557).

<제조예 2-2> 화합물 B의 합성PREPARATION EXAMPLE 2-2 Synthesis of Compound B

제조예 2-1의 화합물 A(4 g, 7.2 mmol)와 1-브로모-4-아이오도벤젠(2.5 g, 8.8 mmol)을 테트라하이드로퓨란(100 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.16 g, 0.14 mmol)을 넣은 후, 5시간 동안 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 B(3.2 g, 수율 76%; MS: [M+H]+=586)를 얻었다.To a solution of Compound A (4 g, 7.2 mmol) of Preparation Example 2-1 and 1-bromo-4-iodobenzene (2.5 g, 8.8 mmol) in tetrahydrofuran (100 ml) was added 2M potassium carbonate aqueous solution And tetrakis (triphenylphosphine) palladium (0.16 g, 0.14 mmol) were added thereto, followed by heating with stirring for 5 hours. After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound B (3.2 g, yield 76%; MS: [M + H] + = 586).

<제조예 2-3> 화학식 1a-8의 합성Production Example 2-3 Synthesis of Compound (1a-8)

제조예 2-2의 화합물 B(3 g, 5.1 mmol)와 제조예 1-3의 화합물 C(1.7 g, 5.5 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.03 g, 0.06 mmol), 나트륨 터셔리-부톡사이드(0.63 g, 6.6 mmol)를 섞고, 자일렌(70 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름으로 녹이고 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1a-8(2.8 g, 수율 68%; MS: [M+H]+=812)을 얻었다. (1.7 g, 5.5 mmol) and bis (trityl-butylphosphine) palladium (0.03 g, 0.06 mmol) were added to a solution of the compound B (3 g, 5.1 mmol) And sodium tertiary-butoxide (0.63 g, 6.6 mmol) were mixed and refluxed with stirring in xylene (70 ml). After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform, acidic white clay was added and stirred, followed by filtration and distillation under reduced pressure. (2.8 g, yield 68%; MS: [M + H] + = 812) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 3> 화학식 1a-10의 합성PREPARATION EXAMPLE 3 Synthesis of Compound (1a-10)

Figure 112009012177719-pat00169
Figure 112009012177719-pat00169

화합물 A 화합물 B 화합물 C    Compound A Compound B Compound C

Figure 112009012177719-pat00170
Figure 112009012177719-pat00170

화합물 D 화합물 E 화학식 1a-10    Compound D Compound E &lt; RTI ID = 0.0 &gt;

<제조예 3-1> 화합물 A의 합성Production Example 3-1 Synthesis of Compound A

2',4'-클로로아세토페논(15 g, 79.3 mmol)과 페닐하이드라진(11 g, 103 mmmol), 폴리포스포릭산(250 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 A(13.1 g, 수율 63%; MS: [M+H]+=262)를 얻었다. (15 g, 79.3 mmol), phenylhydrazine (11 g, 103 mmmol) and polyphosphoric acid (250 g) were added and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 7 to obtain Compound A (13.1 g, yield 63%; MS: [M + H] + = 262).

<제조예 3-2> 화합물 B의 합성<Production example 3-2> Synthesis of compound B

N-메틸포르마닐라이드(10.3 g, 76 mmol)와 포스포릴클로라이드(11.6 g, 76 mmol)을 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣고 0 ℃ 냉각한 후 제조예 3-1의 화합물 A(10 g, 38 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(7.6 g, 76 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 5로 컬럼 정제하여 화합물 B(6.4 g, 수율 58%; MS: [M+H]+=290)를 얻었다. N-Methylformanilide (10.3 g, 76 mmol) and phosphoryl chloride (11.6 g, 76 mmol) were mixed and stirred at room temperature. Ethylene dichloride (200 ml) was added after 15 minutes, and the mixture was cooled to 0 ° C, and Compound A (10 g, 38 mmmol) of Preparation Example 3-1 was slowly added thereto. After 20 minutes, calcium carbonate (7.6 g, 76 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 5 to obtain Compound B (6.4 g, yield 58%; MS: [M + H] + = 290).

<제조예 3-3> 화합물 C의 합성PREPARATION EXAMPLE 3-3 Synthesis of Compound C

제조예 3-2의 화합물 B(6 g, 20.7 mmmol)와 o-페닐렌디아민(2.5 g, 23 mmol)을 섞고, N, N-디메틸아세트아미드와 톨루엔을 넣고 교반하면서 가열하여 생성되는 물을 제거하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 C(3.4 g, 수율 49%; MS: [M+H]+=342)를 얻었다. N, N-dimethylacetamide and toluene were added to a solution of the compound B (6 g, 20.7 mmmol) of Preparation Example 3-2 and o-phenylenediamine (2.5 g, 23 mmol) Respectively. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound C (3.4 g, yield 49%; MS: [M + H] + = 342).

<제조예 3-4> 화합물 D의 합성<Production example 3-4> Synthesis of compound D

제조예 3-3의 화합물 C(3.3 g, 9.7 mmmol)와 아이오도벤젠(4 g, 20 mmol), 탄산칼륨(2.8 g, 20 mmol), 구리(0.7 g, 11 mmol)를 섞고 N, N-디메틸 아세트아미드(50 ml)를 넣고 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하고, 여과액을 물에 부었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 D(2.3 g, 수율 57%; MS: [M+H]+=418)를 얻었다. A mixture of the compound C (3.3 g, 9.7 mmol) of Preparation Example 3-3 and iodobenzene (4 g, 20 mmol), potassium carbonate (2.8 g, 20 mmol) and copper (0.7 g, -Dimethylacetamide (50 ml) was added and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and then filtered, and the filtrate was poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound D (2.3 g, yield 57%; MS: [M + H] + = 418) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 3-5> 화합물 E의 합성PREPARATION EXAMPLE 3-5 Synthesis of Compound E

제조예 3-4의 화합물 D(2.3 g, 5.5 mmmol)와 비스(피나콜라토) 디보론(1.8 g, 7.1 mmol), 아세트산칼륨(1.6 g, 16.3 mmol)을 섞고 디옥산(60 ml)을 넣고 교반하면서 가열하였다. 환류되는 상태에서 비스(디벤질리딘아세톤) 팔라듐(0.1 g, 0.17 mmol)과 트리사이클로헥실포스핀(0.1 g, 0.36 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 E(2.1 g, 수율 75%; MS: [M+H]+=510)를 얻었다. (2.3 g, 5.5 mmmol), bis (pinacolato) diboron (1.8 g, 7.1 mmol) and potassium acetate (1.6 g, 16.3 mmol) in dioxane (60 ml) And heated with stirring. Bis (dibenzylidineacetone) palladium (0.1 g, 0.17 mmol) and tricyclohexylphosphine (0.1 g, 0.36 mmol) were placed in a refluxed state and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound E (2.1 g, yield 75%; MS: [M + H] + = 510) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 3-6> 화학식 1a-10의 합성PREPARATION EXAMPLE 3-6 Synthesis of Compound (1a-10)

제조예 3-5의 화합물 E(2 g, 3.9 mmmol)와 2-브로모-9,10-(디-2-나프틸)안트라센(2 g, 3.9 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.11 g, 0.1 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1a-10 (2.4 g, 수율 76%; MS: [M+H]+=812)을 얻었다.To a solution of compound E (2 g, 3.9 mmol) of Preparation 3-5 and 2-bromo-9,10- (di-2-naphthyl) anthracene (2 g, 3.9 mmol) in tetrahydrofuran After dissolving, 2M aqueous potassium carbonate solution was added, tetrakis (triphenylphosphine) palladium (0.11 g, 0.1 mmol) was added, and the mixture was stirred under heating. After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula 1a-10 (2.4 g, yield 76%; MS: [M + H] + = 812).

<제조예 4> 화학식 1a-14의 합성PREPARATION EXAMPLE 4 Synthesis of Compound (1a-14)

Figure 112009012177719-pat00171
Figure 112009012177719-pat00171

화합물 A 화합물 B 화합물 C 화합물 D      Compound A Compound B Compound C Compound D

Figure 112009012177719-pat00172
Figure 112009012177719-pat00172

화합물 E 화학식 1a-14  Compound E &lt; RTI ID = 0.0 &gt;

<제조예 4-1> 화합물 A의 합성Production Example 4-1 Synthesis of Compound A

2'-클로로아세토페논(15 g, 97 mmol)과 4-브로모페닐하이드라진 하이드로클로라이드(22 g, 98 mmmol)를 섞고, 디클로로메탄(100 ml)과 포화된 탄산수소 나트륨 수용액(100 ml)을 넣고 상온에서 3시간 동안 격렬히 교반하였다. 유기층을 분리하여 황산 나트륨으로 건조시키고 감압 증류한 후 염화아연(16.4 g, 120 mmol)을 넣고 140 ℃로 가열하였다. 반응 종료 후 상온으로 온도를 낮추고 물과 디클로로메탄을 넣고 교반하였다. 유기층을 분리하여 무수 황산 나트륨으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 A(19.3 g, 수율 65%; MS: [M+H]+=307)를 얻었다. Dichloromethane (100 ml) and saturated aqueous sodium hydrogencarbonate (100 ml) were added to a mixture of 2'-chloroacetophenone (15 g, 97 mmol) and 4-bromophenylhydrazine hydrochloride (22 g, 98 mmol) And the mixture was vigorously stirred at room temperature for 3 hours. The organic layer was separated, dried over sodium sulfate, distilled under reduced pressure, and zinc chloride (16.4 g, 120 mmol) was added thereto, followed by heating to 140 占 폚. After completion of the reaction, the reaction mixture was cooled to room temperature, and water and dichloromethane were added thereto and stirred. The organic layer was separated, dried over anhydrous sodium sulfate, and distilled under reduced pressure, followed by column purification with tetrahydrofuran: hexane = 1: 8 to obtain Compound A (19.3 g, yield 65%; MS: [M + H] + = 307).

<제조예 4-2> 화합물 B의 합성<Production example 4-2> Synthesis of compound B

N-메틸포르마닐라이드(16.8 g, 124 mmol)와 포스포릴클로라이드(19 g, 124 mmol)를 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣고 0℃ 냉각한 후 제조예 4-1의 화합물 A(19 g, 62 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(12.4 g, 124 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 B(12.7 g, 수율 61%; MS: [M+H]+=335)를 얻었다. N-Methylformanilide (16.8 g, 124 mmol) and phosphoryl chloride (19 g, 124 mmol) were mixed and stirred at room temperature. After 15 minutes, ethylene dichloride (200 ml) was added and the mixture was cooled to 0 ° C, and then Compound A (19 g, 62 mmmol) of Preparation Example 4-1 was gradually added thereto. After 20 minutes, calcium carbonate (12.4 g, 124 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and distilled under reduced pressure, followed by column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound B (12.7 g, yield 61%; MS: [M + H] + = 335).

<제조예 4-3> 화합물 C의 합성<Production example 4-3> Synthesis of compound C

제조예 4-2의 화합물 B(12 g, 35.9 mmmol)와 o-페닐렌디아민(3.9 g, 36 mmol)을 섞고, N, N-디메틸아세트아미드와 톨루엔을 넣고 교반하면서 가열하여 생성되는 물을 제거하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 C(6.5 g, 수율 47%; MS: [M+H]+=387)를 얻었다. N, N-dimethylacetamide and toluene were added to a mixture of the compound B (12 g, 35.9 mmmol) of Preparation Example 4-2 and o-phenylenediamine (3.9 g, 36 mmol) Respectively. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound C (6.5 g, yield 47%; MS: [M + H] + = 387).

<제조예 4-4> 화합물 D의 합성PREPARATION EXAMPLE 4-4 Synthesis of Compound D

제조예 4-3의 화합물 C(6 g, 15.5 mmmol)를 무수 테트라하이드로퓨란에 녹이고 0 ℃에서 수소화나트륨 60%(0.43 g, 18 mmol)과 요오도화메탄(2.5 g, 18 mmol)을 넣고 교반하였다. 반응 종료 후 반응액에 물을 붓고, 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 D(5.4 g, 수율 87%; MS: [M+H]+=401)를 얻었다. 60% sodium hydride (0.43 g, 18 mmol) and iodomethane (2.5 g, 18 mmol) were added to a solution of the compound C (6 g, 15.5 mmol) of Preparation Example 4-3 in anhydrous tetrahydrofuran, Respectively. After completion of the reaction, water was poured into the reaction solution, and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound D (5.4 g, yield 87%; MS: [M + H] + = 401) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 4-5> 화합물 E의 합성<Production example 4-5> Synthesis of compound E

9-브로모-10-(나프탈렌-1-일)안트라센(10 g, 26 mmol)을 무수 테트라 하이드로퓨란(130 ml)에 완전히 녹인 후, -78 ℃에서 터셔리-부틸리튬(17 ml, 1.7 M 펜탄용액)을 천천히 가하였다. 동일 온도에서 한 시간 동안 교반한 후 트리메틸보레이트(3.1 g, 30 mmol)를 가하였다. 냉각 용기를 제거하고 반응 혼합물을 3 시간 동안 상온에서 교반하였다. 반응 혼합물에 2 N 염산수용액(50 ml)을 가하고 1.5 시간 동안 상온에서 교반하였다. 생성된 고체를 거르고 물과 에틸에테르로 차례로 씻은 후 진공 건조하여 화합물 E(6.4 g, 수율 71%; MS: [M+H]+= 349)를 얻었다.Butyllithium (17 ml, 1.7 mmol) was added at -78 ° C to a solution of 9-bromo-10- (naphthalen-1-yl) anthracene (10 g, 26 mmol) in anhydrous tetrahydrofuran M pentane solution) was added slowly. After stirring at the same temperature for one hour, trimethyl borate (3.1 g, 30 mmol) was added. The cooling vessel was removed and the reaction mixture was stirred at ambient temperature for 3 h. To the reaction mixture was added a 2 N aqueous hydrochloric acid solution (50 ml) and the mixture was stirred at room temperature for 1.5 hours. The resultant solid was filtered, washed with water and ethyl ether, and vacuum dried to obtain Compound E (6.4 g, yield 71%; MS: [M + H] + = 349).

<제조예 4-6> 화학식 1a-14의 합성&Lt; Preparation Example 4-6 > Synthesis of Compound (1a-14)

제조예 4-4의 화합물 D(5 g, 12.5 mmmol)와 제조예 4-5의 화합물 E(4.9 g, 14 mmol)를 테트라하이드로퓨란(80 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.23 g, 0.25 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 1a-14(5.4 g, 수율 69%; MS: [M+H]+=624)을 얻었다.Compound D (5 g, 12.5 mmmol) of Preparation Example 4-4 and Compound E (4.9 g, 14 mmol) of Preparation Example 4-5 were dissolved in tetrahydrofuran (80 ml), 2M aqueous potassium carbonate solution was added, Kiss (triphenylphosphine) palladium (0.23 g, 0.25 mmol) was added thereto, followed by stirring while heating. After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound 1a-14 (5.4 g, yield 69%; MS: [M + H] + = 624).

<제조예 5> 화학식 1a-20의 합성PREPARATION EXAMPLE 5 Synthesis of Compound (1a-20)

Figure 112009012177719-pat00173
Figure 112009012177719-pat00173

화합물 A 화합물 B 화합물 C 화합물 D 화합물 E  Compound A Compound B Compound C Compound D Compound E

Figure 112009012177719-pat00174
Figure 112009012177719-pat00174

화합물 F 화합물 G 화학식 1a-20  Compound F Compound G Compound 1a-20

<제조예 5-1> 화합물 A의 합성Production Example 5-1 Synthesis of Compound A

2',5'-클로로아세토페논(15 g, 79.3 mmol), 페닐하이드라진(11 g, 103 mmmol), 폴리포스포릭산(250 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 A(12.4 g, 수율 60%; MS: [M+H]+=262)를 얻었다. (15 g, 79.3 mmol), phenylhydrazine (11 g, 103 mmmol) and polyphosphoric acid (250 g) were added to the solution, and the mixture was stirred with heating. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 8 to obtain Compound A (12.4 g, yield 60%; MS: [M + H] + = 262).

<제조예 5-2> 화합물 B의 합성<Production example 5-2> Synthesis of compound B

N-메틸포르마닐라이드(10.3 g, 76 mmol)와 포스포릴클로라이드(11.6 g, 76 mmol)을 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣고 0 ℃ 냉각한 후 제조예 5-1의 화합물 A(10 g, 38 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(7.6 g, 76 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 B(6.9 g, 수율 63%; MS: [M+H]+=290)를 얻었다. N-Methylformanilide (10.3 g, 76 mmol) and phosphoryl chloride (11.6 g, 76 mmol) were mixed and stirred at room temperature. Ethylene dichloride (200 ml) was added after 15 minutes, and the mixture was cooled to 0 ° C. Then, Compound A (10 g, 38 mmmol) of Preparation Example 5-1 was gradually added thereto. After 20 minutes, calcium carbonate (7.6 g, 76 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification using tetrahydrofuran: hexane = 1: 7 to obtain Compound B (6.9 g, yield 63%; MS: [M + H] + = 290).

<제조예 5-3> 화합물 C의 합성<Production example 5-3> Synthesis of compound C

제조예 5-2의 화합물 B(6 g, 20.7 mmmol)와 o-페닐렌디아민(2.5 g, 23 mmol)을 섞고, N, N-디메틸아세트아미드와 톨루엔을 넣고 교반하면서 가열하여 생성되는 물을 제거하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 C(3.2 g, 수율 45%; MS: [M+H]+=342)를 얻었다. N, N-dimethylacetamide and toluene were added to a solution of the compound B (6 g, 20.7 mmmol) of Preparation Example 5-2 and o-phenylenediamine (2.5 g, 23 mmol) Respectively. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound C (3.2 g, yield 45%; MS: [M + H] + = 342).

<제조예 5-4> 화합물 D의 합성<Production example 5-4> Synthesis of compound D

제조예 5-3의 화합물 C(3.2 g, 9.4 mmmol)와 아이오도벤젠(4 g, 20 mmol), 탄산칼륨(2.8 g, 20 mmol), 구리(0.7 g, 11 mmol)를 섞고 N, N-디메틸 아세트아미드(50 ml)를 넣고 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하고, 여과액을 물에 부었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 D(2.4 g, 수율 62%; MS: [M+H]+=418)를 얻었다. A mixture of the compound C (3.2 g, 9.4 mmol) of Preparation 5-3 and iodobenzene (4 g, 20 mmol), potassium carbonate (2.8 g, 20 mmol) and copper (0.7 g, -Dimethylacetamide (50 ml) was added and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and then filtered, and the filtrate was poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound D (2.4 g, yield 62%; MS: [M + H] + = 418) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 5-5> 화합물 E의 합성<Production example 5-5> Synthesis of compound E

제조예 5-4의 화합물 D(2.3 g, 5.5 mmmol)와 비스(피나콜라토) 디보론(1.8 g, 7.1 mmol), 아세트산칼륨(1.6 g, 16.3 mmol)을 섞고 디옥산(60 ml)을 넣고 교반하면서 가열하였다. 환류되는 상태에서 비스(디벤질리딘아세톤) 팔라듐(0.1 g, 0.17 mmol)과 트리사이클로헥실포스핀(0.1 g, 0.36 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 E(2.3 g, 수율 82%; MS: [M+H]+=510)를 얻었다. (2.3 g, 5.5 mmol), bis (pinacolato) diboron (1.8 g, 7.1 mmol) and potassium acetate (1.6 g, 16.3 mmol) in dioxane (60 ml) And heated with stirring. Bis (dibenzylidineacetone) palladium (0.1 g, 0.17 mmol) and tricyclohexylphosphine (0.1 g, 0.36 mmol) were placed in a refluxed state and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound E (2.3 g, yield 82%; MS: [M + H] + = 510) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 5-6> 화합물 F의 합성<Production example 5-6> Synthesis of compound F

2-나프탈렌보론산(10 g, 48.3 mmol)과 2-브로모-6-나프톨(10.8 g, 48.3 mmol)을 테트라하이드로퓨란(100 ml)에 완전히 녹인 후 2M 탄산칼륨수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(1.11 g, 0.97 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 6으로 컬럼하여 화합물 A(8.5 g, 65%; MS: [M+H]+=271)를 얻었다.2-Naphthaleneboronic acid (10 g, 48.3 mmol) and 2-bromo-6-naphthol (10.8 g, 48.3 mmol) were completely dissolved in tetrahydrofuran (100 ml), 2M aqueous potassium carbonate solution was added, tetrakis Triphenylphosphine) palladium (1.11 g, 0.97 mmol) were added and the mixture was heated and stirred for 5 hours. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure, followed by column chromatography with tetrahydrofuran: hexane = 1: 6 to obtain Compound A (8.5 g, 65%; MS: [M + H] + = 271).

<제조예 5-7> 화합물 G의 합성<Production example 5-7> Synthesis of compound G

제조예 5-6의 화합물 F(7.2 g, 26.8 mmol)를 디클로로메탄(80 ml)에 녹인 후 트리에틸아민(7.47 ml, 53.6 mmol)을 첨가한 후 10분간 교반하였다. 0℃로 온도 를 낮춘 후 트리플루오로메탄술폰산 무수물(4.4 ml, 40.2 mmol)을 천천히 첨가한 후 상온으로 온도를 올리고 1시간 동안 교반하였다. 탄산수소나트륨 수용액을 첨가한 후 물층을 제거하고 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 헥산으로 재결정하여 화합물 G(8.74 g, 81%; MS: [M+H]+=403)를 얻었다. Compound (F) (7.2 g, 26.8 mmol) of Preparation 5-6 was dissolved in dichloromethane (80 ml), triethylamine (7.47 ml, 53.6 mmol) was added and the mixture was stirred for 10 minutes. After the temperature was lowered to 0 ° C, trifluoromethanesulfonic anhydride (4.4 ml, 40.2 mmol) was added slowly and the temperature was raised to room temperature and stirred for 1 hour. An aqueous solution of sodium hydrogencarbonate was added thereto, and the water layer was removed and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized with hexane to obtain Compound G (8.74 g, 81%; MS: [M + H] + = 403).

<제조예 5-8> 화학식 1a-20의 합성Production Example 5-8 Synthesis of Compound (1a-20)

제조예 5-5의 화합물 E(2.3 g, 5.3 mmmol)와 제조예 5-7의 화합물 G(2 g, 5 mmol)를 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.12 g, 0.1 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름으로 녹이고 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 테트라하이드로퓨란: 헥산 = 1: 5로 컬럼하여 화합물 1a-20(2.2 g, 수율 69%; MS: [M+H]+=636)을 얻었다.Compound E (2.3 g, 5.3 mmol) of Preparation 5-5 and Compound G (2 g, 5 mmol) of Preparation 5-7 were dissolved in tetrahydrofuran (50 ml), 2M aqueous potassium carbonate solution was added, Kiss (triphenylphosphine) palladium (0.12 g, 0.1 mmol) was added thereto, followed by stirring while heating. After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform, acidic white clay was added and stirred, followed by filtration and distillation under reduced pressure. The compound 1a-20 (2.2 g, yield 69%; MS: [M + H] + = 636) was obtained by column chromatography with tetrahydrofuran: hexane = 1:

2. 화학식 1b로 표시되는 화합물의 제조방법2. Production method of the compound represented by the formula (1b)

<제조예 6> 화학식 1b-1의 합성Preparation Example 6 Synthesis of Compound (1b-1)

Figure 112009012177719-pat00175
Figure 112009012177719-pat00175

화합물 A 화합물 B 화합물 C 화학식 1b-1 Compound A Compound B Compound C Compound 1b-1

<제조예 6-1> 화합물 A의 합성&Lt; Preparation Example 6-1 > Synthesis of Compound A

N, N-디메틸아세트아미드(15.2 g, 175 mmol)와 포스포릴클로라이드 (26.8 g, 175 mmol)를 섞고 상온에서 교반하였다. 15분 후 에틸렌 디클로라이드(200 ml)를 넣고 0℃ 냉각한 후 제조예 1-1의 화합물 A(20 g, 87.8 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(17.5 g, 175 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 A(15.2 g, 수율 64%; MS: [M+H]+=270)를 얻었다. N, N-dimethylacetamide (15.2 g, 175 mmol) and phosphoryl chloride (26.8 g, 175 mmol) were mixed and stirred at room temperature. After 15 minutes, ethylene dichloride (200 ml) was added and the mixture was cooled to 0 ° C, and Compound A (20 g, 87.8 mmol) of Preparation Example 1-1 was slowly added thereto. After 20 minutes, calcium carbonate (17.5 g, 175 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound A (15.2 g, yield 64%; MS: [M + H] + = 270).

<제조예 6-2> 화합물 B의 합성<Production example 6-2> Synthesis of compound B

제조예 6-1의 화합물 A(15 g, 55.6 mmol)와 페닐하이드라진(6.3 g, 58 mmol), 폴리포스포릭산(250 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 B(11.4 g, 수율 60%; MS: [M+H]+=343)를 얻었다Compound A (15 g, 55.6 mmol) of Preparation Example 6-1, phenylhydrazine (6.3 g, 58 mmol) and polyphosphoric acid (250 g) were added and stirred under heating. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, column purification was carried out with tetrahydrofuran: hexane = 1: 8 to obtain Compound B (11.4 g, yield 60%; MS: [M + H] + = 343)

<제조예 6-3> 화합물 C의 합성<Production example 6-3> Synthesis of compound C

제조예 6-2의 화합물 B(10 g, 29.2 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.18 g, 0.36 mmol), 나트륨 터셔리-부톡사이드(4.5 g, 46.8 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네 슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 C(6.4 g, 수율 72%; MS: [M+H]+=307)를 얻었다. (10 g, 29.2 mmmol), bis (triturated-butylphosphine) palladium (0.18 g, 0.36 mmol) and sodium tertiary-butoxide (4.5 g, 46.8 mmol) of Preparation Example 6-2 And the mixture was refluxed in xylene (100 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 7 to obtain Compound C (6.4 g, yield 72%; MS: [M + H] + = 307).

<제조예 6-4> 화학식 1b-1의 합성<Production example 6-4> Synthesis of compound of formula (1b-1)

제조예 6-3의 화합물 C(6 g, 19.6 mmmol)와 브로모벤젠(3.9 g, 24.8 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.1 g, 0.2 mmol), 나트륨 터셔리-부톡사이드(2.5 g, 26 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화학식 1b-1(4.8 g, 수율 64%; MS: [M+H]+=383)를 얻었다. (3.9 g, 24.8 mmol), bis (tritiated-butylphosphine) palladium (0.1 g, 0.2 mmol), sodium tertiary-butylphosphine Butoxide (2.5 g, 26 mmol) were mixed and refluxed with xylene (100 ml) while stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 8 to obtain the compound of formula (Ib-1) (4.8 g, yield 64%; MS: [M + H] + = 383).

<제조예 7> 화학식 1b-6의 합성PREPARATION EXAMPLE 7 Synthesis of Compound (1b-6)

Figure 112009012177719-pat00176
Figure 112009012177719-pat00176

화합물 A 화합물 B 화학식 1b-6Compound A Compound B Compound 1b-6

<제조예 7-1> 화합물 A의 합성&Lt; Preparation Example 7-1 > Synthesis of Compound A

9-브로모-10-(나프탈렌-2-일)안트라센(5 g, 19.4 mmol)과 4-하이드록시 페닐보론산(2.8 g, 20.3 mmol)을 테트라하이드로퓨란(100 ml)에 넣고 가열하여 녹인 후, 2M 탄산칼륨 수용액과 테트라키스(트리페닐포스핀)팔라듐(0.45 g, 0.39 mmol)을 넣고 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란: 헥산 = 1: 9로 컬럼 정제하여 화합물 A(6.5 g, 수율 85%; MS: [M+H]+ = 397)를 얻었다.(5 g, 19.4 mmol) and 4-hydroxyphenylboronic acid (2.8 g, 20.3 mmol) were dissolved in tetrahydrofuran (100 ml) and heated to dissolve Then, 2M aqueous potassium carbonate solution and tetrakis (triphenylphosphine) palladium (0.45 g, 0.39 mmol) were added and the mixture was heated and stirred for 4 hours. The temperature was lowered to room temperature and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound A (6.5 g, yield 85%; MS: [M + H] + = 397) was obtained by column purification with tetrahydrofuran: hexane = 1:

<제조예 7-2> 화합물 B의 합성PREPARATION EXAMPLE 7-2 Synthesis of Compound B

제조예 7-1의 화합물 A(5 g, 12.6 mmol)에 디클로로메탄(80 ml)을 넣어 교반시키면서, 트리에틸아민(1.3 g, 13 mmol), 트리플루오로메탄술폰산 무수물 (3.9 g, 14 mmol)을 서서히 넣고 교반하였다. 반응 종료 후 물과 디클로로메탄을 가해 유기층을 분리하고 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 디클로로메탄과 에탄올로 정제하여 화합물 B(6 g, 수율 90%; MS: [M+H]+ = 529)를 얻었다.Dichloromethane (80 ml) was added to the compound A (5 g, 12.6 mmol) of Preparation Example 7-1, and triethylamine (1.3 g, 13 mmol) and trifluoromethanesulfonic anhydride (3.9 g, 14 mmol ) Was slowly added and stirred. After completion of the reaction, water and dichloromethane were added to separate the organic layer, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was purified by dichloromethane and ethanol to obtain Compound B (6 g, yield 90%; MS: [M + H] + = 529).

<제조예 7-3> 화학식 1b-6의 합성<Production example 7-3> Synthesis of compound of formula (1b-6)

제조예 6-3의 화합물 C(4 g, 13 mmmol)와 제조예 7-2의 화합물 B(6.9 g, 13 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.13 g, 0.26 mmol), 나트륨 터셔리-부톡사이드(1.6 g, 17 mmol)를 섞고 자일렌(60 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름으로 녹이고 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1b-6(5.5 g, 수율 62%; MS: [M+H]+=685)을 얻었다. (6.9 g, 13 mmol) and bis (trityl-butylphosphine) palladium (0.13 g, 0.26 mmol) in the same manner as in Production Example 7-3, Compound C (4 g, 13 mmmol) And sodium tertiary-butoxide (1.6 g, 17 mmol) were mixed and refluxed in xylene (60 ml) with stirring. After completion of the reaction, the temperature was lowered to room temperature, and the resulting solid was filtered. The filtered solid was dissolved in chloroform, acidic white clay was added and stirred, followed by filtration and distillation under reduced pressure. (5.5 g, yield 62%; MS: [M + H] + = 685) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 8> 화학식 1b-9의 합성PREPARATION EXAMPLE 8 Synthesis of Compound (1b-9)

Figure 112009012177719-pat00177
Figure 112009012177719-pat00177

화합물 A 화합물 B 화합물 C 화합물 D    Compound A Compound B Compound C Compound D

Figure 112009012177719-pat00178
Figure 112009012177719-pat00178

화합물 E 화합물 F 화학식 1b-9    Compound E Compound F Compound 1b-9

<제조예 8-1> 화합물 A의 합성<Production example 8-1> Synthesis of compound A

2',4'-클로로아세토페논(15 g, 79.3 mmol), 페닐하이드라진(11 g, 103 mmmol), 폴리포스포릭산(250 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 A(13.1 g, 수율 63%; MS: [M+H]+=262)를 얻었다. (15 g, 79.3 mmol), phenylhydrazine (11 g, 103 mmmol) and polyphosphoric acid (250 g) were added to the solution, and the mixture was stirred with heating. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 7 to obtain Compound A (13.1 g, yield 63%; MS: [M + H] + = 262).

<제조예 8-2> 화합물 B의 합성<Production example 8-2> Synthesis of compound B

N, N-디메틸아세트아미드(6.6 g, 76 mmol)와 포스포릴클로라이드(11.6 g, 76 mmol)을 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣 고 0℃ 냉각한 후 제조예 8-1의 화합물 A(10 g, 38 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(7.6 g, 76 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 B(6.2 g, 수율 54%; MS: [M+H]+=304)를 얻었다. N, N-dimethylacetamide (6.6 g, 76 mmol) and phosphoryl chloride (11.6 g, 76 mmol) were mixed and stirred at room temperature. Ethylene dichloride (200 ml) was added after 15 minutes, and the mixture was cooled to 0 캜, and Compound A (10 g, 38 mmmol) of Preparation Example 8-1 was slowly added thereto. After 20 minutes, calcium carbonate (7.6 g, 76 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and distilled under reduced pressure, followed by column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound B (6.2 g, yield: 54%; MS: [M + H] + = 304).

<제조예 8-3> 화합물 C의 합성<Production example 8-3> Synthesis of compound C

제조예 8-2의 화합물 B(6 g, 20.7 mmmol)와 페닐하이드라진(2.4 g, 22 mmmol), 폴리포스포릭산(100 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 C(5.6 g, 수율 72%; MS: [M+H]+=377)를 얻었다.(6 g, 20.7 mmmol), phenylhydrazine (2.4 g, 22 mmmol) and polyphosphoric acid (100 g) were added to the reaction mixture, and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was subjected to column purification using tetrahydrofuran: hexane = 1: 8 to obtain Compound C (5.6 g, yield 72%; MS: [M + H] + = 377).

<제조예 8-4> 화합물 D의 합성<Production example 8-4> Synthesis of compound D

제조예 8-3의 화합물 C(5 g, 13.3 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.07 g, 0.13 mmol), 나트륨 터셔리-부톡사이드(1.4 g, 15 mmol)를 섞고 자일렌(60 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 D(3.8 g, 수율 84%; MS: [M+H]+=341)를 얻었다. (5 g, 13.3 mmmol), bis (triturated-butylphosphine) palladium (0.07 g, 0.13 mmol) and sodium tertiary-butoxide (1.4 g, 15 mmol) in Preparation Example 8-3 And refluxed with xylene (60 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 7 to obtain Compound D (3.8 g, yield 84%; MS: [M + H] + = 341).

<제조예 8-5> 화합물 E의 합성<Production example 8-5> Synthesis of compound E

제조예 8-4의 화합물 D(3.5 g, 10.3 mmmol)와 아이오도벤젠(2.7 g, 13.2 mmol), 탄산칼륨(2.8 g, 20 mmol), 구리(0.7 g, 11 mmol)를 섞고 N, N-디메틸아세트아미드(50 ml)를 넣고 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하고, 여과액을 물에 부었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 E(3.1 g, 수율 72%; MS: [M+H]+=417)를 얻었다. (2.7 g, 13.2 mmol), potassium carbonate (2.8 g, 20 mmol) and copper (0.7 g, 11 mmol) were added to a solution of the compound D (3.5 g, 10.3 mmol) -Dimethylacetamide (50 ml) was added and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and then filtered, and the filtrate was poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound E (3.1 g, yield 72%; MS: [M + H] + = 417) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 8-6> 화합물 F의 합성<Production example 8-6> Synthesis of compound F

제조예 8-5의 화합물 E(3 g, 7.2 mmmol)와 비스(피나콜라토) 디보론(2.3 g, 9.1 mmol), 아세트산칼륨(2.1 g, 21.6 mmol)을 섞고 디옥산(60 ml)을 넣고 교반하면서 가열하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.1 g, 0.17 mmol)과 트리사이클로헥실포스핀 (0.1 g, 0.36 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 F(2.6 g, 수율 71%; MS: [M+H]+=509)를 얻었다. (2.3 g, 9.1 mmol) and potassium acetate (2.1 g, 21.6 mmol) were mixed with the compound E (3 g, 7.2 mmol) of Preparation Example 8-5 and dioxane (60 ml) And heated with stirring. Bis (dibenzylidineacetone) palladium (0.1 g, 0.17 mmol) and tricyclohexylphosphine (0.1 g, 0.36 mmol) were placed in a refluxed state and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound F (2.6 g, yield 71%; MS: [M + H] + = 509) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 8-7> 화학식 1b-9의 합성<Production example 8-7> Synthesis of compound of formula (1b-9)

제조예 8-6의 화합물 F(2.5 g, 4.9 mmmol)와 2-브로모-9,10-(디-2-나프틸)안트라센(2.5 g, 4.9 mmol)을 테트라하이드로퓨란(60 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.11 g, 0.1 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 녹이고 무수 황산 마그네슘으로 건조하였다. 감압 증류 시킨 후 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1b-9(3.2 g, 수율 81%; MS: [M+H]+=811)를 얻었다.(2.5 g, 4.9 mmol) of Preparation Example 8-6 and 2-bromo-9,10- (di-2-naphthyl) anthracene (2.5 g, 4.9 mmol) were dissolved in tetrahydrofuran After dissolving, 2M aqueous potassium carbonate solution was added, tetrakis (triphenylphosphine) palladium (0.11 g, 0.1 mmol) was added, and the mixture was stirred under heating. After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain the compound of Formula 1b-9 (3.2 g, yield 81%; MS: [M + H] + = 811).

<제조예 9> 화학식 1b-47의 합성PREPARATION EXAMPLE 9 Synthesis of Compound (1b-47)

Figure 112009012177719-pat00179
Figure 112009012177719-pat00179

화합물 A 화합물 B 화합물 C 화합물 D    Compound A Compound B Compound C Compound D

Figure 112009012177719-pat00180
Figure 112009012177719-pat00180

화합물 E 화합물 F 화학식 1b-47      Compound E Compound F Compound 1b-47

<제조예 9-1> 화합물 A의 합성Production Example 9-1 Synthesis of Compound A

N, N-디메틸아세트아미드(10.8 g, 124 mmol)와 포스포릴클로라이드(19 g, 124 mmol)을 섞고 상온에서 교반하였다. 15분 후 에틸렌디클로라이드(200 ml)를 넣고 0℃ 냉각한 후 제조예 4-1의 화합물 A(19 g, 62 mmmol)를 서서히 넣어주었다. 20분 후 탄산칼슘(12.4 g, 124 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 9로 컬럼 정제하여 화합물 A(12.7 g, 수율 59%; MS: [M+H]+=349)를 얻었다. N, N-dimethylacetamide (10.8 g, 124 mmol) and phosphoryl chloride (19 g, 124 mmol) were mixed and stirred at room temperature. After 15 minutes, ethylene dichloride (200 ml) was added and the mixture was cooled to 0 ° C, and then Compound A (19 g, 62 mmmol) of Preparation Example 4-1 was gradually added thereto. After 20 minutes, calcium carbonate (12.4 g, 124 mmol) was added and heated. After the completion of the reaction, the temperature was lowered to room temperature, and the reaction solution was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 9 to obtain Compound A (12.7 g, yield 59%; MS: [M + H] + = 349).

<제조예 9-2> 화합물 B의 합성<Production example 9-2> Synthesis of compound B

제조예 9-1의 화합물 A(10 g, 28.7 mmmol)와 페닐하이드라진(3.2 g, 30 mmmol), 폴리포스포릭산(100 g)을 넣고 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 B(8.6 g, 수율 71%; MS: [M+H]+=422)를 얻었다.Compound A (10 g, 28.7 mmmol), phenylhydrazine (3.2 g, 30 mmmol) and polyphosphoric acid (100 g) were added to the reaction mixture and stirred under heating. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound B (8.6 g, yield 71%; MS: [M + H] + = 422) was obtained by column purification with tetrahydrofuran: hexane = 1:

<제조예 9-3> 화합물 C의 합성<Manufacturing Example 9-3> Synthesis of Compound C

제조예 9-2의 화합물 B(8 g, 19 mmmol)와 비스(트리 터셔리-부틸포스핀) 팔라듐(0.1 g, 0.19 mmol), 나트륨 터셔리-부톡사이드(2.4 g, 25 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 C(5.9 g, 수율 81%; MS: [M+H]+=386)를 얻었다. (8 g, 19 mmol), bis (triturated-butylphosphine) palladium (0.1 g, 0.19 mmol) and sodium tertiary-butoxide (2.4 g, 25 mmol) in Preparation Example 9-2 And the mixture was refluxed in xylene (100 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 7 to obtain Compound C (5.9 g, yield 81%; MS: [M + H] + = 386).

<제조예 9-4> 화합물 D의 합성<Production example 9-4> Synthesis of compound D

제조예 9-3의 화합물 C(5 g, 13 mmmol)와 아이오도벤젠(4 g, 20 mmol), 탄산칼륨(2.8 g, 20 mmol), 구리(0.7 g, 11 mmol)를 섞고 N, N-디메틸 아세트아미 드(50 ml)를 넣고 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하고, 여과액을 물에 부었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 D(4.4 g, 수율 73%; MS: [M+H]+=461)를 얻었다. (5 g, 13 mmol), iodobenzene (4 g, 20 mmol), potassium carbonate (2.8 g, 20 mmol) and copper (0.7 g, 11 mmol) -Dimethylacetamide (50 ml) was added and the mixture was heated with stirring. After completion of the reaction, the temperature was lowered to room temperature and then filtered, and the filtrate was poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound D (4.4 g, yield 73%; MS: [M + H] + = 461) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 9-5> 화합물 E의 합성<Production Example 9-5> Synthesis of Compound E

6-브로모-2-나프토산(5 g, 20 mmol)과 티오닐클로라이드(20 ml), N, N-디메틸포름아미드(1 ml)을 섞고, 4시간 동안 가열하면서 교반하였다. 과량의 티오닐클로라이드를 감압 증류로 제거한 후, 반응 혼합물에 N-메틸피롤리딘(20 ml)과 N-페닐-1,2-디아미노 벤젠(3.7 g, 20 mmol)을 넣고 160 ℃에서 12 시간 교반하였다. 상온으로 식힌 후, 과량의 물을 가하여 고체를 형성시켰다. 여과하고 물과 에탄올로 순차적으로 씻어준 후 건조시켜 화합물 E(6.2 g, 수율 78%; MS: [M+H]+ = 400)를 얻었다.6-Bromo-2-naphthoic acid (5 g, 20 mmol), thionyl chloride (20 ml) and N, N-dimethylformamide (1 ml) were stirred and heated for 4 hours. After the excess thionyl chloride was removed by distillation under reduced pressure, N-methylpyrrolidine (20 ml) and N-phenyl-1,2-diaminobenzene (3.7 g, 20 mmol) were added to the reaction mixture, Lt; / RTI &gt; After cooling to room temperature, excess water was added to form a solid. Filtered, washed sequentially with water and ethanol, and then dried to obtain Compound E (6.2 g, yield 78%; MS: [M + H] + = 400).

<제조예 9-6> 화합물 F의 합성<Production example 9-6> Synthesis of compound F

제조예 9-5의 화합물 E(6 g, 15 mmol)와 비스(피나콜라토)디보론(4.3 g, 17 mmol), 아세트산칼륨(2.9 g, 30 mmol)을 섞고 디옥산(100 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 팔라듐(디페닐포스피노페로센)클로라이드(0.37g, 0.45 mmol)를 넣고 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 F(6.2 g, 수율 93%; MS: [M+H]+ = 447)를 얻었다.A mixture of compound E (6 g, 15 mmol) of Preparation 9-5, bis (pinacolato) diboron (4.3 g, 17 mmol) and potassium acetate (2.9 g, 30 mmol) And stirred with heating. Palladium (diphenylphosphinoferrocene) chloride (0.37 g, 0.45 mmol) was added under reflux and stirred. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound F (6.2 g, yield 93%; MS: [M + H] + = 447).

<제조예 9-7> 화학식 1b-47의 합성<Production example 9-7> Synthesis of compound of formula (1b-47)

제조예 9-4의 화합물 D(4 g, 8.7 mmmol)와 제조예 9-6의 화합물 F(3.9 g, 8.7 mmol)를 테트라하이드로퓨란(100 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.2 g, 0.17 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란과 에탄올로 재결정하여 화학식 1b-47(4.7 g, 수율 77%; MS: [M+H]+=701)을 얻었다.Compound D (4 g, 8.7 mmol) of Preparation Example 9-4 and Compound F (3.9 g, 8.7 mmol) of Preparation Example 9-6 were dissolved in tetrahydrofuran (100 ml), 2M aqueous potassium carbonate solution was added, Kiss (triphenylphosphine) palladium (0.2 g, 0.17 mmol) was added thereto, followed by stirring with heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain the compound of Formula 1b-47 (4.7 g, yield 77%; MS: [M + H] + = 701).

<제조예 10> 화학식 1b-50의 합성PREPARATION EXAMPLE 10 Synthesis of Compound (1b-50)

Figure 112009012177719-pat00181
Figure 112009012177719-pat00181

화합물 A 화학식 1b-50      Compound A Compound 1b-50

<제조예 10-1> 화합물 A의 합성PREPARATION EXAMPLE 10-1 Synthesis of Compound A

제조예 9-4의 화합물 D(5 g, 10.8 mmol)와 비스(피나콜라토)디보론(3 g, 12 mmol), 아세트산칼륨(2.5 g, 25.5 mmol)을 섞고 디옥산(80 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 팔라듐(디페닐포스피노페로센) 클로라이드(0.26g, 0.32 mmol)를 넣고 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 물에 부어주 었다. 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 A(4.9 g, 수율 89%; MS: [M+H]+ = 509)를 얻었다.(5 g, 10.8 mmol), bis (pinacolato) diboron (3 g, 12 mmol) and potassium acetate (2.5 g, 25.5 mmol) were mixed in dioxane (80 ml) And stirred with heating. Palladium (diphenylphosphinoferrocene) chloride (0.26 g, 0.32 mmol) was added under reflux and stirred. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The mixture was extracted with chloroform and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound A (4.9 g, yield 89%; MS: [M + H] + = 509) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 10-2> 화학식 1b-50의 합성Production Example 10-2 Synthesis of Compound (1b-50)

제조예 10-1의 화합물 A(4 g, 7.9 mmmol)와 3-브로모-N-페닐카바졸(2.6 g, 8.4 mmol)을 테트라하이드로퓨란(60 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.18 g, 0.16 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화학식 1b-50(3.4 g, 수율 69%; MS: [M+H]+=624)을 얻었다.Compound A (4 g, 7.9 mmol) of Preparation Example 10-1 and 3-bromo-N-phenylcarbazole (2.6 g, 8.4 mmol) were dissolved in tetrahydrofuran (60 ml) and 2M aqueous potassium carbonate solution And tetrakis (triphenylphosphine) palladium (0.18 g, 0.16 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure and recrystallized from tetrahydrofuran and ethanol to obtain the compound of Formula 1b-50 (3.4 g, yield 69%; MS: [M + H] + = 624).

3. 화학식 1c로 표시되는 화합물의 제조방법3. Production method of the compound represented by the formula (1c)

<제조예 11> 화학식 1c-2의 합성PREPARATION EXAMPLE 11 Synthesis of Compound (1c-2)

Figure 112009012177719-pat00182
Figure 112009012177719-pat00182

화합물 A 화학식 1c-2Compound A Compound 1c-2

<제조예 11-1> 화합물 A의 합성PREPARATION EXAMPLE 11-1 Synthesis of Compound A

o-페닐렌디아민 디하이드로클로라이드(3.6 g, 20 mmol)와 디에틸 옥살산(1.5 g, 10 mmol)을 섞고 에틸렌글리콜(15 ml)를 넣고 마이크로웨이브 오븐에서 165W로 2분 동안 반응하였다. 반응 종료 후 상온으로 식힌 후 물을 붓고 탄산칼슘으로 중화시켰다. 생성된 고체를 여과하고 90% 에탄올로 재결정하여 화합물 A(2.2 g, 수율 92%; MS: [M+H]+=235)를 얻었다.Ethylene glycol (15 ml) was added to the mixture of o-phenylenediamine dihydrochloride (3.6 g, 20 mmol) and diethyl oxalic acid (1.5 g, 10 mmol) and reacted in a microwave oven at 165 W for 2 minutes. After the reaction was completed, the reaction mixture was cooled to room temperature, poured into water and neutralized with calcium carbonate. The resulting solid was filtered and recrystallized from 90% ethanol to obtain Compound A (2.2 g, yield 92%; MS: [M + H] + = 235).

<제조예 11-2> 화학식 1c-2의 합성Production Example 11-2 Synthesis of Compound (1c-2)

제조예 11-1의 화합물 A(2 g, 8.5 mmol)와 1,2-디브로모벤젠(2 g, 8.5 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.09 g, 0.17 mmol), 나트륨 터셔리-부톡사이드(2.1 g, 22.1 mmol)를 섞고 자일렌(50 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 1c-2(1.3 g, 수율 50%; MS: [M+H]+=309)를 얻었다. Dibromobenzene (2 g, 8.5 mmol) and bis (tritiated-butylphosphine) palladium (0.09 g, 0.17 mmol) in the same manner as in Preparation Example 11-1, , Sodium tertiary-butoxide (2.1 g, 22.1 mmol) were mixed and refluxed in xylene (50 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was subjected to column purification using tetrahydrofuran: hexane = 1: 7 to obtain Compound 1c-2 (1.3 g, yield 50%; MS: [M + H] + = 309).

<제조예 12> 화학식 1c-11의 합성PREPARATION EXAMPLE 12 Synthesis of Chemical Formula 1c-11

Figure 112009012177719-pat00183
Figure 112009012177719-pat00183

화합물 A 화학식 1c-11Compound A Compound 1c-11

<제조예 12-1> 화합물 A의 합성Production Example 12-1 Synthesis of Compound A

제조예 5-7의 화합물 G(5 g, 12.4 mmol)와 1-브로모-3,4-디클로로벤젠(2.8 g, 12.4 mmol)을 테트라하이드로퓨란(60 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.29 g, 0.25 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(3.7 g, 수율 75%; MS: [M+H]+=399)를 얻었다.Bromo-3,4-dichlorobenzene (2.8 g, 12.4 mmol) was dissolved in tetrahydrofuran (60 ml), and a 2M aqueous potassium carbonate solution was added to the solution of Compound G (5 g, 12.4 mmol) And tetrakis (triphenylphosphine) palladium (0.29 g, 0.25 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The compound A (3.7 g, yield 75%; MS: [M + H] + = 399) was obtained by distillation under reduced pressure and recrystallization from tetrahydrofuran and ethanol.

<제조예 12-2> 화학식 1c-11의 합성Production Example 12-2 Synthesis of Compound (1c-11)

제조예 12-1의 화합물 A(3 g, 7.5 mmol)와 제조예 11-1의 화합물 A(1.8 g, 7.7 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.08 g, 0.15 mmol), 나트륨 터셔리-부톡사이드(1.9 g, 19.8 mmol)를 섞고 자일렌(60 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름으로 녹이고 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 1c-11(1.9 g, 수율 45%; MS: [M+H]+=561)을 얻었다. Compound (A) (1.8 g, 7.7 mmol) and bis (trityl-butylphosphine) palladium (0.08 g, 0.15 mmol) were added to a solution of the compound A (3 g, 7.5 mmol) And sodium tertiary-butoxide (1.9 g, 19.8 mmol) were mixed and refluxed in xylene (60 ml) with stirring. After completion of the reaction, the temperature was lowered to room temperature, and the resulting solid was filtered. The filtered solid was dissolved in chloroform, acidic white clay was added and stirred, followed by filtration and distillation under reduced pressure. The compound 1c-11 (1.9 g, yield 45%; MS: [M + H] + = 561) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 13> 화학식 1c-13의 합성PREPARATION EXAMPLE 13 Synthesis of Compound (1c-13)

Figure 112009012177719-pat00184
Figure 112009012177719-pat00184

화합물 A 화합물 B 화합물 C 화학식 1c-13  Compound A Compound B Compound C Compound 1c-13

<제조예 13-1> 화합물 A의 합성<Production example 13-1> Synthesis of compound A

4-클로로-1,2-페닐렌디아민 디하이드로클로라이드(4.4 g, 20 mmol)와 디에틸옥살산(1.5 g, 10 mmol)을 섞고 에틸렌글리콜(15 ml)를 넣고 마이크로 웨이브 오븐에서 165W로 2분 동안 반응하였다. 반응 종료 후 상온으로 식힌 후 물을 붓고 탄산칼슘으로 중화시켰다. 생성된 고체를 여과하고 90% 에탄올로 재결정하여 화합물 A(2.5 g, 수율 83%; MS: [M+H]+=303)를 얻었다.Ethyleneglycol (15 ml) was added to the mixture of 4-chloro-1,2-phenylenediamine dihydrochloride (4.4 g, 20 mmol) and diethyloxalic acid (1.5 g, 10 mmol) Lt; / RTI &gt; After the reaction was completed, the reaction mixture was cooled to room temperature, poured into water and neutralized with calcium carbonate. The resulting solid was filtered and recrystallized from 90% ethanol to obtain Compound A (2.5 g, yield 83%; MS: [M + H] + = 303).

<제조예 13-2> 화합물 B의 합성<Production example 13-2> Synthesis of compound B

제조예 13-1의 화합물 A(2 g, 6.6 mmol)와 1,2-디브로모벤젠(1.6 g, 6.8 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.09 g, 0.17 mmol), 나트륨 터셔리-부톡사이드(2.1 g, 22.1 mmol)를 섞고 자일렌(50 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출 하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 B(1.2 g, 수율 48%; MS: [M+H]+=377)를 얻었다. Dibromobenzene (1.6 g, 6.8 mmol) and bis (tritiated-butylphosphine) palladium (0.09 g, 0.17 mmol) in the same manner as in Preparation Example 13-1, , Sodium tertiary-butoxide (2.1 g, 22.1 mmol) were mixed and refluxed in xylene (50 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound B (1.2 g, yield 48%; MS: [M + H] + = 377).

<제조예 13-3> 화합물 C의 합성<Production example 13-3> Synthesis of compound C

제조예 13-2의 화합물 B(1.2 g, 3.2 mmol)와 비스(피나콜라토)디보론 (1.8 g, 7 mmol), 아세트산칼륨(1.5 g, 15 mmol)을 섞고 디옥산(40 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.07 g, 0.13 mmol)과 트리사이클로헥실포스핀(0.07 g, 0.26 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(1.2 g, 수율 67%; MS: [M+H]+=561)를 얻었다. (1.2 g, 3.2 mmol), bis (pinacolato) diboron (1.8 g, 7 mmol) and potassium acetate (1.5 g, 15 mmol) were mixed in dioxane (40 ml) And stirred with heating. Bis (dibenzylidineacetone) palladium (0.07 g, 0.13 mmol) and tricyclohexylphosphine (0.07 g, 0.26 mmol) were added under reflux and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and recrystallized from tetrahydrofuran and ethanol to obtain Compound C (1.2 g, yield 67%; MS: [M + H] + = 561).

<제조예 13-4> 화학식 1c-13의 합성<Production example 13-4> Synthesis of compound of formula (1c-13)

제조예 13-3의 화합물 C(1 g, 1.8 mmmol)와 3-브로모퀴놀린(0.8 g, 3.8 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.08 g, 0.07 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1c-13(0.8 g, 수율 79%; MS: [M+H]+=563)을 얻었다.Compound C (1 g, 1.8 mmol) of Preparation Example 13-3 and 3-bromoquinoline (0.8 g, 3.8 mmol) were dissolved in tetrahydrofuran (50 ml), 2M potassium carbonate aqueous solution was added, tetrakis Triphenylphosphine) palladium (0.08 g, 0.07 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula 1c-13 (0.8 g, yield 79%; MS: [M + H] + = 563).

<제조예 14> 화학식 1c-22의 합성PREPARATION EXAMPLE 14 Synthesis of Compound (1c-22)

Figure 112009012177719-pat00185
Figure 112009012177719-pat00185

화합물 A 화학식 1c-22        Compound A Compound 1c-22

<제조예 14-1> 화합물 A의 합성Production Example 14-1 Synthesis of Compound A

제조예 9-6의 화합물 F(5 g, 11.2 mmol)와 1-브로모-3,4-디클로로 벤젠(2.5 g, 11.2 mmol)을 테트라하이드로퓨란(60 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.29 g, 0.25 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(4 g, 수율 77%; MS: [M+H]+=465)를 얻었다.Bromo-3,4-dichlorobenzene (2.5 g, 11.2 mmol) was dissolved in tetrahydrofuran (60 ml), and a 2M aqueous potassium carbonate solution was added to the solution of Compound F (5 g, 11.2 mmol) And tetrakis (triphenylphosphine) palladium (0.29 g, 0.25 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was distilled under reduced pressure, and recrystallized from tetrahydrofuran and ethanol to obtain Compound A (4 g, yield 77%; MS: [M + H] + = 465).

<제조예 14-2> 화학식 1c-22의 합성PREPARATION EXAMPLE 14-2 Synthesis of Compound (1c-22)

제조예 14-1의 화합물 A(3 g, 6.4 mmol)와 제조예 11-1의 화합물 A(1.5 g, 6.4 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.08 g, 0.15 mmol), 나트륨 터셔리-부톡사이드(1.9 g, 19.8 mmol)를 섞고 자일렌(60 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름으로 녹이고 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 1c-22(1.9 g, 수율 47%; MS: [M+H]+=627)를 얻었다. Compound (A) (1.5 g, 6.4 mmol) and bis (trityl-butylphosphine) palladium (0.08 g, 0.15 mmol) in the same manner as in Preparation Example 14-1, Compound A (3 g, And sodium tertiary-butoxide (1.9 g, 19.8 mmol) were mixed and refluxed in xylene (60 ml) with stirring. After completion of the reaction, the temperature was lowered to room temperature, and the resulting solid was filtered. The filtered solid was dissolved in chloroform, acidic white clay was added and stirred, followed by filtration and distillation under reduced pressure. The compound 1c-22 (1.9 g, yield 47%; MS: [M + H] + = 627) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 15> 화학식 1c-40의 합성PREPARATION EXAMPLE 15 Synthesis of Compound (1c-40)

Figure 112009012177719-pat00186
Figure 112009012177719-pat00186

화합물 A 화합물 B 화합물 C 화학식 1c-40Compound A Compound B Compound C Compound 1c-40

<제조예 15-1> 화합물 A의 합성Production Example 15-1 Synthesis of Compound A

1-브로모-2-나프톨(5 g, 22.4 mmol)을 디클로로메탄(80 ml)에 현탁 시키고, 트리에틸아민(2.5 g, 25 mmol), 트리플루오로메탄술폰산 무수물 (7.1 g, 25 mmol)을 서서히 넣고 교반하였다. 반응 종료 후 물을 넣고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 디클로로메탄과 에탄올로 재결정하여 화합물 A(6.6 g, 수율 83%; MS: [M+H]+ = 356)를 얻었다.2-Naphthol (5 g, 22.4 mmol) was suspended in dichloromethane (80 ml), and triethylamine (2.5 g, 25 mmol) and trifluoromethanesulfonic anhydride (7.1 g, 25 mmol) Was added slowly and stirred. After completion of the reaction, water was added and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from dichloromethane and ethanol to obtain Compound A (6.6 g, yield 83%; MS: [M + H] + = 356).

<제조예 15-2> 화합물 B의 합성<Production example 15-2> Synthesis of compound B

제조예 13-1의 화합물 A(2 g, 6.6 mmol)와 제조예 15-1의 화합물 A(2.4 g, 6.8 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.09 g, 0.17 mmol), 나트륨 터셔리-부톡사이드(2.1 g, 22.1 mmol)를 섞고 자일렌(50 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 5로 컬럼 정제하여 화합물 B(1.4 g, 수율 50%; MS: [M+H]+=426)를 얻었다. Compound (A) (2.4 g, 6.8 mmol) and bis (trityl-butylphosphine) palladium (0.09 g, 0.17 mmol) of Preparation A- , Sodium tertiary-butoxide (2.1 g, 22.1 mmol) were mixed and refluxed in xylene (50 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound B (1.4 g, yield 50%; MS: [M + H] + = 426) was obtained by column purification with tetrahydrofuran: hexane = 1:

<제조예 15-3> 화합물 C의 합성Production Example 15-3 Synthesis of Compound C

제조예 15-2의 화합물 B(1.4 g, 3.3 mmol)와 비스(피나콜라토)디보론 (1.8 g, 7 mmol), 아세트산칼륨(1.5 g, 15 mmol)을 섞고 디옥산(40 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.07 g, 0.13 mmol)과 트리사이클로헥실포스핀(0.07 g, 0.26 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(1.4 g, 수율 71%; MS: [M+H]+=611)를 얻었다. (1.4 g, 3.3 mmol), bis (pinacolato) diboron (1.8 g, 7 mmol) and potassium acetate (1.5 g, 15 mmol) were mixed in dioxane (40 ml) And stirred with heating. Bis (dibenzylidineacetone) palladium (0.07 g, 0.13 mmol) and tricyclohexylphosphine (0.07 g, 0.26 mmol) were added under reflux and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then recrystallized from tetrahydrofuran and ethanol to obtain Compound C (1.4 g, yield 71%; MS: [M + H] + = 611).

<제조예 15-4> 화학식 1c-40의 합성Production Example 15-4 Synthesis of Compound (1c-40)

제조예 15-3의 화합물 C(1.3 g, 2.1 mmmol)와 2-브로모나프탈렌(1 g, 4.8 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화학식 1c-40(0.9 g, 수율 70%; MS: [M+H]+=611)을 얻었다.The compound C (1.3 g, 2.1 mmmol) and 2-bromonaphthalene (1 g, 4.8 mmol) in Preparation Example 15-3 were dissolved in tetrahydrofuran (50 ml), and a 2M aqueous potassium carbonate solution was added thereto. Triphenylphosphine) palladium (0.09 g, 0.08 mmol) were added thereto, followed by stirring with heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula 1c-40 (0.9 g, yield 70%; MS: [M + H] + = 611).

4. 화학식 1d로 표시되는 화합물의 제조방법4. Preparation of the compound represented by the formula (1d)

<제조예 16> 화학식 1d-1의 합성PREPARATION EXAMPLE 16 Synthesis of Compound (1d-1)

Figure 112009012177719-pat00187
Figure 112009012177719-pat00187

화합물 A 화합물 B 화합물 CCompound A Compound B Compound C

Figure 112009012177719-pat00188
Figure 112009012177719-pat00188

화합물 D 화합물 E 화학식 1d-1  Compound D Compound E Compound 1d-1

<제조예 16-1> 화합물 A의 합성<Production example 16-1> Synthesis of compound A

벤즈이미다졸(20 g, 169.2 mmmol)을 무수 테트라하이드로퓨란(300 ml)에 녹이고, 0 ℃에서 수소화나트륨 60%(7.2 g, 180 mmol)과 요오도화메탄(25.5 g, 180 mmol)을 넣고 교반하였다. 반응 종료 후 반응액에 물을 붓고, 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 A(32 g, 수율 91%; MS: [M+H]+=209)를 얻었다. (7.2 g, 180 mmol) and iodomethane (25.5 g, 180 mmol) were added at 0 ° C, and stirred at 0 ° C. To the mixture was added dropwise a solution of benzimidazole (20 g, 169.2 mmmol) in anhydrous tetrahydrofuran Respectively. After completion of the reaction, water was poured into the reaction solution, and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 8 to obtain Compound A (32 g, yield 91%; MS: [M + H] + = 209).

<제조예 16-2> 화합물 B의 합성<Production example 16-2> Synthesis of compound B

제조예 16-1의 화합물 A(30 g, 144 mmol)와 2-클로로벤즈이미다졸(7.3 g, 48 mmol)을 섞고 135℃로 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮춘 후 클로로포름에 현탁시키고 여과한 후 정제 과정 없이 다음 반응을 진행하였 다. Compound A (30 g, 144 mmol) of Preparation 16-1 and 2-chlorobenzimidazole (7.3 g, 48 mmol) were mixed and stirred while being heated to 135 캜. After completion of the reaction, the reaction mixture was cooled to room temperature, suspended in chloroform, filtered, and then subjected to the following reaction without purification.

<제조예 16-3> 화합물 C의 합성Production Example 16-3 Synthesis of Compound C

제조예 16-2의 화합물 B를 메탄올에 현탁시키고 팔라듐/카본 10 wt% (10.2 g, 9.6 mmol)를 넣고 1기압 수소하에서 교반하였다. 반응 종료 후 여과하고 여과된 고체를 클로로포름으로 녹이고 유기층을 물로 씻어 준 후 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(2.8 g, 수율 25%; MS: [M+H]+=235)를 얻었다. Compound B of Preparation Example 16-2 was suspended in methanol, 10 wt% of palladium / carbon (10.2 g, 9.6 mmol) was added, and the mixture was stirred under 1 atm of hydrogen. After completion of the reaction, the reaction mixture was filtered, and the filtered solid was dissolved in chloroform. The organic layer was washed with water and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound C (2.8 g, yield 25%; MS: [M + H] + = 235) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 16-4> 화합물 D의 합성<Production example 16-4> Synthesis of compound D

제조예 16-3의 화합물 C(2.5 g, 10.7 mmol)를 클로로포름(70 ml)에 녹이고 N-브로모숙신이미드(2 g, 11.2 mmol)를 넣고 교반하였다. 반응 종료 후 물을 붓고 유기층을 분리하여 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 D(2.8 g, 수율 76%; MS: [M+H]+=314)를 얻었다. Compound C (2.5 g, 10.7 mmol) of Preparation 16-3 was dissolved in chloroform (70 ml), N-bromosuccinimide (2 g, 11.2 mmol) was added and stirred. After completion of the reaction, water was poured and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound D (2.8 g, yield 76%; MS: [M + H] + = 314).

<제조예 16-5> 화합물 E의 합성<Production example 16-5> Synthesis of compound E

제조예 16-4의 화합물 D(2.5 g, 8 mmmol)와 2-클로로페닐보론산(1.4 g, 9 mmol)을 테트라하이드로퓨란(60 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.18 g, 0.16 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 E(1.9 g, 수율 69%; MS: [M+H]+=345)를 얻었다.Compound D (2.5 g, 8 mmmol) of Preparation 16-4 and 2-chlorophenylboronic acid (1.4 g, 9 mmol) were dissolved in tetrahydrofuran (60 ml), 2M aqueous potassium carbonate solution was added, tetrakis (Triphenylphosphine) palladium (0.18 g, 0.16 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallization from tetrahydrofuran and ethanol gave Compound E (1.9 g, yield 69%; MS: [M + H] + = 345).

<제조예 16-6> 화학식 1d-1의 합성<Production example 16-6> Synthesis of compound of formula (1d-1)

제조예 16-5의 화합물 E(1.5 g, 4.4 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.03 g, 0.05 mmol), 나트륨 터셔리-부톡사이드(0.5 g, 5.2 mmol)를 섞고 자일렌(40 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 9로 컬럼 정제하여 화학식 1d-1(1.1 g, 수율 81%; MS: [M+H]+=309)을 얻었다. (1.5 g, 4.4 mmol) of Preparation 16-5, bis (tritiated-butylphosphine) palladium (0.03 g, 0.05 mmol) and sodium tertiary-butoxide (0.5 g, 5.2 mmol) And refluxed with xylene (40 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 9 to obtain the compound of formula (1d-1) (1.1 g, yield 81%; MS: [M + H] + = 309).

<제조예 17> 화학식 1d-3의 합성PREPARATION EXAMPLE 17 Synthesis of Compound (d-3)

Figure 112009012177719-pat00189
Figure 112009012177719-pat00189

화합물 A 화합물 B 화합물 C   Compound A Compound B Compound C

Figure 112009012177719-pat00190
Figure 112009012177719-pat00190

화합물 D 화합물 E 화학식 1d-3      Compound D Compound E Compound 1d-3

<제조예 17-1> 화합물 A의 합성<Production example 17-1> Synthesis of compound A

벤질(20 g, 186.7 mmol), 암모늄아세테이트(21.6 g, 280 mmol), 벤질아민(60 g, 560.1 mmol), 포름알데하이드 37 wt%(15.2 g, 186.7 mmol)를 아세트산(500 ml)에 현탁시켰다. 반응 종료 후 상온으로 온도를 낮추고 물을 부어준 후 생성된 고체를 여과하였다. 여과된 고체를 물과 에틸에테르로 차례로 씻어 주고 진공 건조하여 화합물 A(35.9 g, 62%; MS: [M+H]+=311)를 얻었다.A suspension of benzyl (20 g, 186.7 mmol), ammonium acetate (21.6 g, 280 mmol), benzylamine (60 g, 560.1 mmol) and 37 wt% formaldehyde (15.2 g, 186.7 mmol) was suspended in acetic acid . After the completion of the reaction, the temperature was lowered to room temperature, water was poured, and the resulting solid was filtered. The filtered solid was washed successively with water and ethyl ether and dried under vacuum to obtain Compound A (35.9 g, 62%; MS: [M + H] + = 311).

<제조예 17-2> 화합물 B의 합성<Production example 17-2> Synthesis of compound B

제조예 17-1의 화합물 A(20 g, 64.4 mmol)와 2-클로로벤즈이미다졸(3.3 g, 21.6 mmol)을 섞고 135℃로 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 클로로포름에 현탁시켰다. 여과한 후 정제 과정 없이 다음 반응을 진행하였다. Compound A (20 g, 64.4 mmol) of Preparation 17-1 and 2-chlorobenzimidazole (3.3 g, 21.6 mmol) were mixed and stirred while being heated to 135 캜. After completion of the reaction, the temperature was lowered to room temperature and suspended in chloroform. After filtration, the following reaction was carried out without purification.

<제조예 17-3> 화합물 C의 합성Production Example 17-3 Synthesis of Compound C

제조예 17-2의 화합물 B를 메탄올에 현탁시키고 팔라듐/카본 10 wt%(4 g, 4.3 mmol)를 넣고 1기압 수소하에서 교반하였다. 반응 종료 후 고체를 여과하고, 여과된 고체를 클로로포름으로 녹이고 유기층을 물로 씻어 준 후 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(1.5 g, 수율 21%; MS: [M+H]+=337)를 얻었다. Compound B of Preparation Example 17-2 was suspended in methanol, palladium / carbon 10 wt% (4 g, 4.3 mmol) was added, and the mixture was stirred under 1 atm of hydrogen. After completion of the reaction, the solid was filtered, and the filtered solid was dissolved in chloroform. The organic layer was washed with water and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound C (1.5 g, yield 21%; MS: [M + H] + = 337) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 17-4> 화합물 D의 합성<Production example 17-4> Synthesis of compound D

제조예 17-3의 화합물 C(1.5 g, 4.5 mmol)를 클로로포름(50 ml)에 녹이고 N-브로모숙신이미드(0.89 g, 5 mmol)을 넣고 교반하였다. 반응 종료 후 물을 붓고 유기층을 분리하여 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 D(1.5 g, 수율 80%; MS: [M+H]+=416)를 얻었다. Compound C (1.5 g, 4.5 mmol) of Preparation 17-3 was dissolved in chloroform (50 ml), N-bromosuccinimide (0.89 g, 5 mmol) was added and stirred. After completion of the reaction, water was poured and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound D (1.5 g, yield 80%; MS: [M + H] + = 416) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 17-5> 화합물 E의 합성<Production Example 17-5> Synthesis of Compound E

제조예 17-4의 화합물 D(1.5 g, 3.6 mmmol)와 2-클로로페닐보론산(0.63 g, 4 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 E(1.2 g, 수율 75%; MS: [M+H]+=447)를 얻었다.Compound D (1.5 g, 3.6 mmol) of Preparation 17-4 and 2-chlorophenylboronic acid (0.63 g, 4 mmol) were dissolved in tetrahydrofuran (50 ml), 2M aqueous potassium carbonate solution was added, tetrakis (Triphenylphosphine) palladium (0.09 g, 0.08 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound E was recrystallized from tetrahydrofuran and ethanol to obtain Compound E (1.2 g, yield 75%; MS: [M + H] + = 447).

<제조예 17-6> 화학식 1d-3의 합성<Production example 17-6> Synthesis of compound of formula (1d-3)

제조예 17-5의 화합물 E(1.2 g, 2.7 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.03 g, 0.05 mmol), 나트륨 터셔리-부톡사이드(0.4 g, 4.1 mmol)를 섞고 자일렌(40 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 8로 컬럼 정제하여 화학식 1d-3(0.8 g, 수율 72%; MS: [M+H]+=411)를 얻었다. (1.2 g, 2.7 mmmol), palladium (0.03 g, 0.05 mmol) and sodium tertiary-butoxide (0.4 g, 4.1 mmol) were added to a solution of the compound E And refluxed with xylene (40 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 8 to obtain the compound of formula (1d-3) (0.8 g, yield 72%; MS: [M + H] + = 411).

<제조예 18> 화학식 1d-20의 합성Production Example 18 Synthesis of Compound (d-20)

Figure 112009012177719-pat00191
Figure 112009012177719-pat00191

화합물 A 화합물 B 화합물 C 화학식 1d-20      Compound A Compound B Compound C Compound 1d-20

<제조예 18-1> 화합물 A의 합성Production Example 18-1 Synthesis of Compound A

제조예 17-4의 화합물 D(1.5 g, 3.6 mmmol)와 2, 4-디클로로페닐 보론산(0.76 g, 4 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(1.3 g, 수율 75%; MS: [M+H]+=481)를 얻었다.Compound D (1.5 g, 3.6 mmol) of Preparation 17-4 and 2,4-dichlorophenylboronic acid (0.76 g, 4 mmol) were dissolved in tetrahydrofuran (50 ml), 2M aqueous potassium carbonate solution was added, Tetrakis (triphenylphosphine) palladium (0.09 g, 0.08 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The mixture was distilled under reduced pressure, and recrystallized from tetrahydrofuran and ethanol to obtain Compound A (1.3 g, yield 75%; MS: [M + H] + = 481).

<제조예 18-2> 화합물 B의 합성<Production example 18-2> Synthesis of compound B

제조예 18-1의 화합물 A(1.3 g, 2.7 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.03 g, 0.05 mmol), 나트륨 터셔리-부톡사이드(0.4 g, 4.1 mmol)를 섞고 자일렌(40 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 B(0.97 g, 수율 81%; MS: [M+H]+=445)를 얻었다. (Tert-butylphosphine) palladium (0.03 g, 0.05 mmol) and sodium tertiary-butoxide (0.4 g, 4.1 mmol) were added to a mixture of the compound A (1.3 g, 2.7 mmmol) And refluxed with xylene (40 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 7 to obtain Compound B (0.97 g, yield 81%; MS: [M + H] + = 445).

<제조예 18-3> 화합물 C의 합성Production Example 18-3 Synthesis of Compound C

제조예 18-2의 화합물 B(0.9 g, 2 mmol)와 비스(피나콜라토)디보론(0.6 g, 2.4 mmol), 아세트산칼륨(0.59 g, 6 mmol)을 섞고 디옥산(40 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.02 g, 0.04 mmol)과 트리사이클로헥실포스핀(0.02 g, 0.08 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(0.97 g, 수율 90%; MS: [M+H]+=537)를 얻었다. (0.9 g, 2 mmol), bis (pinacolato) diboron (0.6 g, 2.4 mmol) and potassium acetate (0.59 g, 6 mmol) were mixed in dioxane (40 ml) And stirred with heating. Bis (dibenzylidineacetone) palladium (0.02 g, 0.04 mmol) and tricyclohexylphosphine (0.02 g, 0.08 mmol) were added under reflux and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound C (0.97 g, yield 90%; MS: [M + H] + = 537).

<제조예 18-4> 화학식 1d-20의 합성<Production example 18-4> Synthesis of compound of formula (1d-20)

제조예 18-3의 화합물 C(0.91 g, 1.7 mmmol)와 9-브로모-10-(나프탈렌-2-일)안트라센(0.76 g, 2 mmol)을 테트라하이드로퓨란(40 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.05 g, 0.04 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1d-20(0.9 g, 수율 74%; MS: [M+H]+=713)을 얻었다.(0.91 g, 1.7 mmmol) and 9-bromo-10- (naphthalene-2-yl) anthracene (0.76 g, 2 mmol) in Preparation Example 18-3 were dissolved in 40 ml of tetrahydrofuran, Potassium carbonate aqueous solution was added, and tetrakis (triphenylphosphine) palladium (0.05 g, 0.04 mmol) was added thereto, followed by stirring with heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula (1d-20) (0.9 g, yield 74%; MS: [M + H] + = 713).

<제조예 19> 화학식 1d-22의 합성Production Example 19 Synthesis of Compound (1d-22)

Figure 112009012177719-pat00192
Figure 112009012177719-pat00192

화합물 A 화합물 B 화합물 C 화학식 1d-22   Compound A Compound B Compound C Compound 1d-22

<제조예 19-1> 화합물 A의 합성Production Example 19-1 Synthesis of Compound A

제조예 16-4의 화합물 D(1.5 g, 4.8 mmmol)와 2, 5-디클로로페닐 보론산(0.76 g, 4 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(1.4 g, 수율 77%; MS: [M+H]+=379)를 얻었다.Compound D (1.5 g, 4.8 mmol) and 2, 5-dichlorophenylboronic acid (0.76 g, 4 mmol) in Preparation Example 16-4 were dissolved in tetrahydrofuran (50 ml), 2M aqueous potassium carbonate solution was added, Tetrakis (triphenylphosphine) palladium (0.09 g, 0.08 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallized from tetrahydrofuran and ethanol to obtain Compound A (1.4 g, yield 77%; MS: [M + H] + = 379).

<제조예 19-2> 화합물 B의 합성<Production example 19-2> Synthesis of compound B

제조예 19-1의 화합물 A(1.4 g, 3.7 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.04 g, 0.07 mmol), 나트륨 터셔리-부톡사이드(0.5 g, 5.2 mmol)를 섞고 자일렌(40 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘 으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 B(0.96 g, 수율 76%; MS: [M+H]+=343)를 얻었다. (1.4 g, 3.7 mmmol), bis (triturated-butylphosphine) palladium (0.04 g, 0.07 mmol) and sodium tertiary-butoxide (0.5 g, 5.2 mmol) in Preparation Example 19-1 And refluxed with xylene (40 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification using tetrahydrofuran: hexane = 1: 7 to obtain Compound B (0.96 g, yield 76%; MS: [M + H] + = 343).

<제조예 19-3> 화합물 C의 합성Production Example 19-3 Synthesis of Compound C

제조예 19-2의 화합물 B(0.9 g, 2.6 mmol)와 비스(피나콜라토)디보론 (0.8 g, 3 mmol), 아세트산칼륨(0.76 g, 7.8 mmol)을 섞고 디옥산(40 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.02 g, 0.04 mmol)과 트리사이클로헥실포스핀(0.02 g, 0.08 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(0.99 g, 수율 88%; MS: [M+H]+=435)를 얻었다. (0.9 g, 2.6 mmol), bis (pinacolato) diboron (0.8 g, 3 mmol) and potassium acetate (0.76 g, 7.8 mmol) were mixed in dioxane (40 ml) And stirred with heating. Bis (dibenzylidineacetone) palladium (0.02 g, 0.04 mmol) and tricyclohexylphosphine (0.02 g, 0.08 mmol) were added under reflux and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the compound C (0.99 g, yield 88%; MS: [M + H] + = 435) was obtained by recrystallization from tetrahydrofuran and ethanol.

<제조예 19-4> 화학식 1d-22의 합성Production Example 19-4 Synthesis of Compound (d-22)

제조예 19-3의 화합물 C(0.9 g, 2.1 mmmol)와 2-브로모-9,10-(디-2-나프틸)안트라센(1.1 g, 2.1 mmol)을 테트라하이드로퓨란(40 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.05 g, 0.04 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1d-22(1.1 g, 수율 71%; MS: [M+H]+=737)를 얻었다.To a solution of the compound C (0.9 g, 2.1 mmmol) of Preparation 19-3 and 2-bromo-9,10- (di-2-naphthyl) anthracene (1.1 g, 2.1 mmol) in tetrahydrofuran After dissolving, 2M aqueous potassium carbonate solution was added, and tetrakis (triphenylphosphine) palladium (0.05 g, 0.04 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula (1d-22) (1.1 g, yield 71%; MS: [M + H] + = 737).

<제조예 20> 화학식 1d-35의 합성PREPARATION EXAMPLE 20 Synthesis of Compound (1d-35)

Figure 112009012177719-pat00193
Figure 112009012177719-pat00193

화합물 A 화합물 B 화합물 C 화학식 1d-35    Compound A Compound B Compound C Compound 1d-35

<제조예 20-1> 화합물 A의 합성Production Example 20-1 Synthesis of Compound A

제조예 17-4의 화합물 D(1.5 g, 3.6 mmmol)와 2, 5-디클로로페닐 보론산(0.76 g, 4 mmol)을 테트라하이드로퓨란(50 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(1.4 g, 수율 81%; MS: [M+H]+=481)를 얻었다.Compound D (1.5 g, 3.6 mmol) of Preparation 17-4 and 2,5-dichlorophenylboronic acid (0.76 g, 4 mmol) were dissolved in tetrahydrofuran (50 ml), 2M aqueous potassium carbonate solution was added, Tetrakis (triphenylphosphine) palladium (0.09 g, 0.08 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was distilled under reduced pressure, and recrystallized from tetrahydrofuran and ethanol to obtain Compound A (1.4 g, yield 81%; MS: [M + H] + = 481).

<제조예 20-2> 화합물 B의 합성<Production example 20-2> Synthesis of compound B

제조예 20-1의 화합물 A(1.4 g, 2.9 mmmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.04 g, 0.07 mmol), 나트륨 터셔리-부톡사이드(0.5 g, 5.2 mmol)를 섞고 자일렌(40 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘 으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 B(0.9 g, 수율 70%; MS: [M+H]+=445)를 얻었다. (1.4 g, 2.9 mmmol), bis (triturated-butylphosphine) palladium (0.04 g, 0.07 mmol) and sodium tertiary-butoxide (0.5 g, 5.2 mmol) in Preparation Example 20-1 And refluxed with xylene (40 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification using tetrahydrofuran: hexane = 1: 7 to obtain Compound B (0.9 g, yield 70%; MS: [M + H] + = 445).

<제조예 20-3> 화합물 C의 합성Production Example 20-3 Synthesis of Compound C

제조예 20-2의 화합물 B(0.9 g, 2 mmol)와 비스(피나콜라토)디보론(0.6 g, 2.4 mmol), 아세트산칼륨(0.59 g, 6 mmol)을 섞고 디옥산(40 ml)에서 가열하면서 교반하였다. 환류되는 상태에서 비스(디벤질리딘아세톤)팔라듐(0.02 g, 0.04 mmol)과 트리사이클로헥실포스핀(0.02 g, 0.08 mmol)을 넣고 가열하였다. 반응 종료 후 상온으로 온도를 낮춘 후 여과하였다. 여과액을 물에 붓고 클로로포름으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 C(0.97 g, 수율 90%; MS: [M+H]+=537)를 얻었다. (0.9 g, 2 mmol), bis (pinacolato) diboron (0.6 g, 2.4 mmol) and potassium acetate (0.59 g, 6 mmol) were mixed in dioxane (40 ml) And stirred with heating. Bis (dibenzylidineacetone) palladium (0.02 g, 0.04 mmol) and tricyclohexylphosphine (0.02 g, 0.08 mmol) were added under reflux and heated. After completion of the reaction, the temperature was lowered to room temperature and then filtered. The filtrate was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the residue was recrystallized from tetrahydrofuran and ethanol to obtain Compound C (0.97 g, yield 90%; MS: [M + H] + = 537).

<제조예 20-4> 화학식 1d-35의 합성Production Example 20-4 Synthesis of Compound (1d-35)

제조예 20-3의 화합물 C(0.9 g, 1.7 mmmol)와 3-브로모-N-페닐카바졸 (0.58 g, 1.8 mmol)을 테트라하이드로퓨란(40 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.05 g, 0.04 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화학식 1d-35(0.77 g, 수율 69%; MS: [M+H]+=652)를 얻었다.Compound C (0.9 g, 1.7 mmol) of Preparation 20-3 and 3-bromo-N-phenylcarbazole (0.58 g, 1.8 mmol) were dissolved in tetrahydrofuran (40 ml), and a 2M aqueous potassium carbonate solution And tetrakis (triphenylphosphine) palladium (0.05 g, 0.04 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure and recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula (1d-35) (0.77 g, yield 69%; MS: [M + H] + = 652).

5. 화학식 1e로 표시되는 화합물의 제조방법5. Production method of the compound represented by the formula (1e)

<제조예 21> 화학식 1e-2의 합성PREPARATION EXAMPLE 21 Synthesis of Compound (e-2)

Figure 112009012177719-pat00194
Figure 112009012177719-pat00194

화합물 A 화합물 B 화합물 C      Compound A Compound B Compound C

Figure 112009012177719-pat00195
Figure 112009012177719-pat00195

화합물 D 화학식 1e-2       Compound D &lt; RTI ID = 0.0 &gt;

<제조예 21-1> 화합물 A의 합성<Production example 21-1> Synthesis of compound A

페닐하이드라진 하이드로클로라이드(30 g, 207.5 mmol)와 에틸피루 베이트(24.4 g, 210 mmol)를 섞고 에탄올(300 ml)를 넣고 교반하였다. 12시간 후 가스 상태의 염화수소를 넣어 포화시키고 12시간동안 교반하였다. 반응 종료 후 감압 증류하여 에탄올을 제거하고 물을 부어주었다. 디클로로메탄으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 8로 컬럼 정제하여 화합물 A(18.3 g, 수율 47%; MS: [M+H]+=190)를 얻었다.Phenylhydrazine hydrochloride (30 g, 207.5 mmol) and ethyl pyruvate (24.4 g, 210 mmol) were mixed, and ethanol (300 ml) was added thereto and stirred. After 12 hours, gaseous hydrogen chloride was added to saturate and the mixture was stirred for 12 hours. After completion of the reaction, the reaction mixture was distilled under reduced pressure to remove ethanol and pour water. The organic layer was extracted with dichloromethane and dried over anhydrous magnesium sulfate. The crude product was purified by column chromatography with tetrahydrofuran: hexane = 1: 8 to obtain Compound A (18.3 g, yield 47%; MS: [M + H] + = 190).

<제조예 21-2> 화합물 B의 합성<Production example 21-2> Synthesis of compound B

제조예 21-1의 화합물 A(18 g, 95.1 mmol)를 무수 테트라하이드로 퓨란(400 ml)에 녹이고 0℃에서 리튬알루미늄하이드라이드(10.8 g, 285 mmol)를 서서히 넣어주었다. 반응 종료 후 물(11 ml)과 25% 수산화 나트륨 수용액(11 ml), 물(30 ml)을 순차적으로 넣고 교반하였다. 생성된 고체를 여과하고 테트라하이드로퓨란으로 씻 어준 후 여과액을 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 정제 과정 없이 다음 반응을 진행하였다. Compound A (18 g, 95.1 mmol) of Preparation 21-1 was dissolved in anhydrous tetrahydrofuran (400 ml) and lithium aluminum hydride (10.8 g, 285 mmol) was gradually added at 0 ° C. After completion of the reaction, water (11 ml), 25% aqueous sodium hydroxide solution (11 ml) and water (30 ml) were added successively and stirred. The resulting solid was filtered and washed with tetrahydrofuran, and the filtrate was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the following reaction was carried out without purification.

<제조예 21-3> 화합물 C의 합성<Manufacturing Example 21-3> Synthesis of Compound C

제조예 21-2의 화합물 B를 디클로로메탄(300 ml)에 녹이고, 피리디늄 클로로크로메이트(20.5 g, 95 mmol)와 셀라이트 545(10 g)를 넣고 상온에서 교반하였다. 반응 종료 후 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 C(5.8 g, 수율 42%; MS: [M+H]+=146)를 얻었다.Compound B of Preparation Example 21-2 was dissolved in dichloromethane (300 ml), pyridinium chlorochromate (20.5 g, 95 mmol) and Celite 545 (10 g) were added and stirred at room temperature. After completion of the reaction, the mixture was distilled off under reduced pressure, and the residue was purified by column chromatography with tetrahydrofuran: hexane = 1: 7 to obtain Compound C (5.8 g, yield 42%; MS: [M + H] + = 146).

<제조예 21-4> 화합물 D의 합성<Production example 21-4> Synthesis of compound D

제조예 21-3의 화합물 C(5.5 g, 37.9 mmol)와 o-페닐렌디아민(4.1 g, 38 mmol)을 N, N-디메틸아세트아미드(50 ml)에 녹이고 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮추고 물에 부었다. 디클로로메탄으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 D(5.1 g, 수율 58%; MS: [M+H]+=234)를 얻었다.Compound C (5.5 g, 37.9 mmol) of Preparation Example 21-3 and o-phenylenediamine (4.1 g, 38 mmol) were dissolved in N, N-dimethylacetamide (50 ml) and refluxed with stirring. After completion of the reaction, the temperature was lowered to room temperature and poured into water. The organic layer was extracted with dichloromethane and dried over anhydrous magnesium sulfate. The residue was purified by column chromatography with tetrahydrofuran: hexane = 1: 6 to obtain compound D (5.1 g, yield 58%; MS: [M + H] + = 234).

<제조예 21-5> 화학식 1e-2의 합성<Production example 21-5> Synthesis of compound of formula (1e-2)

제조예 21-4의 화합물 D(5 g, 21.4 mmol)와 1,2-디브로모벤젠(5.2 g, 22 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.22 g, 0.43 mmol), 나트륨 터셔리-부톡사이드(5.3 g, 55.1 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출 하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 5로 컬럼 정제하여 화합물 1e-2(3.2 g, 수율 49 %; MS: [M+H]+=308)을 얻었다. Dibromobenzene (5.2 g, 22 mmol) and bis (tritiated-butylphosphine) palladium (0.22 g, 0.43 mmol) in the same manner as in Preparation Example 21-4, , Sodium tertiary-butoxide (5.3 g, 55.1 mmol) were mixed and refluxed with xylene (100 ml) while stirring. After the completion of the reaction, the reaction mixture was poured into water, extracted with chloroform, and the organic layer was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the product was purified by column chromatography with tetrahydrofuran: hexane = 1: 5 to obtain Compound 1e-2 (3.2 g, yield 49%; MS: [M + H] + = 308).

<제조예 22> 화학식 1e-5의 합성PREPARATION EXAMPLE 22 Synthesis of Compound (1e-5)

Figure 112009012177719-pat00196
Figure 112009012177719-pat00196

화합물 A 화합물 B 화합물 C 화합물 D       Compound A Compound B Compound C Compound D

Figure 112009012177719-pat00197
Figure 112009012177719-pat00197

화합물 E 화학식 1e-5       Compound E Compound 1e-5

<제조예 22-1> 화합물 A의 합성<Production example 22-1> Synthesis of compound A

4-브로모페닐하이드라진 하이드로클로라이드(40 g, 179 mmol)와 에틸 피루베이트(20.8 g, 180 mmol)를 섞고 에탄올(400 ml)을 넣고 교반하였다. 12시간 후 가스 상태의 염화수소를 넣어 포화시키고 12시간동안 교반하였다. 반응 종료 후 감압 증류하여 에탄올을 제거하고 물을 부어주었다. 디클로로메탄 으로 추출하고 유기층을 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 A(21.5 g, 수율 45%; MS: [M+H]+=269)를 얻었다.4-Bromophenylhydrazine hydrochloride (40 g, 179 mmol) and ethyl pyruvate (20.8 g, 180 mmol) were mixed, and ethanol (400 ml) was added and stirred. After 12 hours, gaseous hydrogen chloride was added to saturate and the mixture was stirred for 12 hours. After completion of the reaction, the reaction mixture was distilled under reduced pressure to remove ethanol and pour water. The organic layer was extracted with dichloromethane and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound A (21.5 g, yield 45%; MS: [M + H] + = 269).

<제조예 22-2> 화합물 B의 합성<Production example 22-2> Synthesis of compound B

제조예 22-1의 화합물 A(21 g, 78.3 mmol)를 무수 테트라하이드로 퓨란(400 ml)에 녹이고 0℃에서 리튬알루미늄하이드라이드(8.9 g, 235 mmol)를 서서히 넣어주었다. 반응 종료 후 물(9 ml)과 25% 수산화 나트륨 수용액(9 ml), 물(27 ml)을 순차적으로 넣고 교반하였다. 생성된 고체를 여과하고 테트라하이드로퓨란으로 씻어준 후 여과액을 무수 황산 마그네슘으로 건조시켰다. 감압 증류 후 정제 과정 없이 다음 반응을 진행하였다. Compound A (21 g, 78.3 mmol) of Preparation Example 22-1 was dissolved in anhydrous tetrahydrofuran (400 ml), and lithium aluminum hydride (8.9 g, 235 mmol) was slowly added thereto at 0 ° C. After completion of the reaction, water (9 ml), 25% aqueous sodium hydroxide solution (9 ml) and water (27 ml) were added successively and stirred. The resulting solid was filtered and washed with tetrahydrofuran, and then the filtrate was dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the following reaction was carried out without purification.

<제조예 22-3> 화합물 C의 합성<Manufacturing Example 22-3> Synthesis of Compound C

제조예 22-2의 화합물 B를 디클로로메탄(300 ml)에 녹이고, 피리디늄 클로로크로메이트(17.2 g, 80 mmol)와 셀라이트 545(10 g)를 넣고 상온에서 교반하였다. 반응 종료 후 감압 증류시키고 테트라하이드로 퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 C(6.8 g, 수율 39%; MS: [M+H]+=225)를 얻었다.Compound B of Preparation Example 22-2 was dissolved in dichloromethane (300 ml), pyridinium chlorochromate (17.2 g, 80 mmol) and Celite 545 (10 g) were added and stirred at room temperature. After completion of the reaction, the mixture was distilled off under reduced pressure, and the obtained product was purified by column chromatography with tetrahydrofuran: hexane = 1: 7 to obtain Compound C (6.8 g, yield 39%; MS: [M + H] + = 225).

<제조예 22-4> 화합물 D의 합성<Production example 22-4> Synthesis of compound D

제조예 22-3의 화합물 C(6.5 g, 29 mmmol)와 페닐보론산(4 g, 33 mmol) 을 테트라하이드로퓨란(80 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.67 g, 0.58 mmol)을 넣은 후 교반하면서 가열하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 D(5.3 g, 수율 83%; MS: [M+H]+=222)를 얻었다.Compound C (6.5 g, 29 mmmol) of Preparation 22-3 and phenylboronic acid (4 g, 33 mmol) were dissolved in tetrahydrofuran (80 ml), 2M aqueous potassium carbonate solution was added, tetrakis Phosphine) palladium (0.67 g, 0.58 mmol) was added thereto, followed by heating with stirring. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The mixture was distilled under reduced pressure, and recrystallized from tetrahydrofuran and ethanol to obtain Compound D (5.3 g, yield 83%; MS: [M + H] + = 222).

<제조예 22-5> 화합물 E의 합성<Production example 22-5> Synthesis of compound E

벤질(4.8 g, 22.6 mmol)과 암모늄아세테이트(2.6 g, 33.9 mmol), 2-클로로아닐린(11.5 g, 90.4 mmol), 제조예 22-4의 화합물 D(5 g, 22.6 mmol)를 아세트산(130 ml)에 현탁시켰다. 반응 종료 후 상온으로 온도를 낮추고 반응액을 물에 부었다. 생성된 고체를 여과하고, 여과된 고체를 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 E(8.4 g, 수율 71%; MS: [M+H]+=522)를 얻었다.Chloro-aniline (11.5 g, 90.4 mmol) and compound D (5 g, 22.6 mmol) of Preparation 22-4 were dissolved in acetic acid (130 g, ml). After completion of the reaction, the temperature was lowered to room temperature and the reaction solution was poured into water. The resulting solid was filtered and the filtered solid was column-purified with tetrahydrofuran: hexane = 1: 6 to obtain Compound E (8.4 g, yield 71%; MS: [M + H] + = 522).

<제조예 22-6> 화학식 1e-5의 합성<Production Example 22-6> Synthesis of Compound (e-5)

제조예 22-5의 화합물 E(6 g, 11.5 mmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.05 g, 0.12 mmol), 나트륨 터셔리-부톡사이드(1.4 g, 14.6 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로 퓨란: 헥산 = 1: 5로 컬럼 정제하여 화합물 1e-5(3.7 g, 수율 66%; MS: [M+H]+=486)를 얻었다. (Tert-butylphosphine) palladium (0.05 g, 0.12 mmol) and sodium tertiary-butoxide (1.4 g, 14.6 mmol) in a mixture of the compound E (6 g, 11.5 mmol) And the mixture was refluxed in xylene (100 ml) with stirring. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 5 to obtain Compound 1e-5 (3.7 g, yield 66%; MS: [M + H] + = 486).

<제조예 23> 화학식 1e-18의 합성PREPARATION EXAMPLE 23 Synthesis of Compound (1e-18)

Figure 112009012177719-pat00198
Figure 112009012177719-pat00198

화합물 A 화합물 B 화학식 1e-18  Compound A Compound B Compound 1e-18

<제조예 23-1> 화합물 A의 합성Production Example 23-1 Synthesis of Compound A

제조예 22-3의 화합물 C(5 g, 22.3 mmmol)와 제조예 4-5의 화합물 E(8.4 g, 24 mmol)를 테트라하이드로퓨란(100 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고, 테트라키스(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 A(7.6 g, 수율 76%; MS: [M+H]+=448)를 얻었다.Compound C (5 g, 22.3 mmmol) of Preparation 22-3 and Compound E (8.4 g, 24 mmol) of Preparation 4-5 were dissolved in tetrahydrofuran (100 ml), followed by the addition of a 2M aqueous potassium carbonate solution, Tetrakis (triphenylphosphine) palladium (0.52 g, 0.45 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to vacuum distillation and recrystallization from tetrahydrofuran and ethanol gave Compound A (7.6 g, yield 76%; MS: [M + H] + = 448).

<제조예 23-2> 화합물 B의 합성<Production example 23-2> Synthesis of compound B

벤질(3.3 g, 15.6 mmol)과 암모늄아세테이트(1.8 g, 23.4 mmol), 2-클로로아닐린(7.9 g, 61.9 mmol), 제조예 23-1의 화합물 A(7 g, 15.6 mmol)를 아세트산(130 ml)에 현탁시켰다. 반응 종료 후 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 테트라하이드로퓨란과 에탄올로 재결정하여 화합물 B(8.1 g, 수율 69%; MS: [M+H]+=748)를 얻었다.Chloroaniline (7.9 g, 61.9 mmol) and the compound A of Preparation 23-1 (7 g, 15.6 mmol) were dissolved in acetic acid (130 g, ml). After completion of the reaction, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized from tetrahydrofuran and ethanol to obtain Compound B (8.1 g, yield 69%; MS: [M + H] + = 748).

<제조예 23-3> 화학식 1e-18의 합성Production Example 23-3 Synthesis of Compound (e-18)

제조예 23-2의 화합물 B(8 g, 10.7 mmol)와 비스(트리 터셔리-부틸포스핀)팔라듐(0.06 g, 0.12 mmol), 나트륨 터셔리-부톡사이드(1.3 g, 13.9 mmol)를 섞고 자일렌(100 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과한 고체를 테트라하이드로퓨란과 에탄올로 재결정하여 화학식 1e-18(4.6 g, 수율 60%; MS: [M+H]+=712)을 얻었다. Palladium (0.06 g, 0.12 mmol) and sodium tertiary-butoxide (1.3 g, 13.9 mmol) were added to a solution of the compound B (8 g, 10.7 mmol) of Preparation Example 23-2, bis (tri- tert- butylphosphine) palladium And the mixture was refluxed in xylene (100 ml) with stirring. After completion of the reaction, the temperature was lowered to room temperature, and the resulting solid was filtered. The filtered solid was recrystallized from tetrahydrofuran and ethanol to obtain the compound of formula 1e-18 (4.6 g, yield 60%; MS: [M + H] + = 712).

6. 화학식 1f로 표시되는 화합물의 제조방법6. A process for producing a compound represented by the formula (1f)

<제조예 24> 화학식 1f-1의 합성Production Example 24 Synthesis of Compound (1f-1)

Figure 112009012177719-pat00199
Figure 112009012177719-pat00199

화합물 A 화합물 B 화학식 1f-1     Compound A Compound B Compound 1f-1

<제조예 24-1> 화합물 A의 합성Production Example 24-1 Synthesis of Compound A

N-페닐설포닐인돌(50 g, 194.3 mmol)을 무수 테트라하이드로퓨란(900 ml)에 녹이고 터셔리-부틸리튬(171 ml, 1.7 M 펜탄용액)을 넣고 상온에서 교반하였다. 1시간 후 무수 염화구리(II)(53.8 g, 400 mmol)를 넣고 교반하면서 환류시켰다. 반응 종료 후 반응액을 물에 붓고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류 후 메탄올에 교반하여 생성된 고체를 여과하였다. 여과된 고체를 디클로로메탄: 메탄올 = 20: 1로 컬럼 정제하여 화합물 A(11.9 g, 수율 24%; MS: [M+H]+=513)를 얻었다.N-phenylsulfonylindole (50 g, 194.3 mmol) was dissolved in anhydrous tetrahydrofuran (900 ml) and tertiary-butyl lithium (171 ml, 1.7 M pentane solution) was added and stirred at room temperature. After 1 hour, anhydrous copper (II) chloride (53.8 g, 400 mmol) was added and refluxed with stirring. After completion of the reaction, the reaction solution was poured into water, and the organic layer was separated and dried over anhydrous magnesium sulfate. After distillation under reduced pressure, the reaction mixture was stirred in methanol and the resultant solid was filtered. The filtrated solid was subjected to column purification by column chromatography with dichloromethane: methanol = 20: 1 to obtain Compound A (11.9 g, yield 24%; MS: [M + H] + = 513).

<제조예 24-2> 화합물 B의 합성<Production example 24-2> Synthesis of compound B

제조예 24-1의 화합물 A(10 g, 19.5 mmol)를 메탄올(200 ml)에 녹이고 수산화나트륨(2 g, 50 mmol)을 넣고 교반하면서 가열하였다. 반응 종료 후 감압 증류하고 물을 부었다. 생성된 고체를 여과하고 여과된 고체를 디클로로메탄: 메탄올 = 20: 1로 컬럼 정제하여 화합물 B(2.7 g, 수율 60%; MS: [M+H]+=233)를 얻었다.Compound A (10 g, 19.5 mmol) of Preparation 24-1 was dissolved in methanol (200 ml), sodium hydroxide (2 g, 50 mmol) was added and the mixture was heated with stirring. After completion of the reaction, the reaction mixture was distilled under reduced pressure and poured into water. The resulting solid was filtered and the filtered solid was purified by column chromatography with dichloromethane: methanol = 20: 1 to obtain Compound B (2.7 g, yield 60%; MS: [M + H] + = 233).

<제조예 24-3> 화학식 1f-1의 합성Production Example 24-3 Synthesis of Compound (1f-1)

제조예 24-2의 화합물 B(2.5 g, 10.8 mmol)와 1,2-디브로모벤젠(2.6 g, 11 mmol), 비스(트리 터셔리-부틸포스핀)팔라듐(0.11 g, 0.22 mmol), 나트륨 터셔리-부톡사이드(2.7 g, 28.1 mmol)를 섞고 자일렌(80 ml)에서 교반하면서 환류시켰다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 7로 컬럼 정제하여 화합물 1f-1(1.9 g, 수율 57%; MS: [M+H]+=307)을 얻었다. (2.5 g, 10.8 mmol), 1,2-dibromobenzene (2.6 g, 11 mmol) and bis (tritiated-butylphosphine) palladium (0.11 g, 0.22 mmol) And sodium tertiary-butoxide (2.7 g, 28.1 mmol) were mixed and refluxed with stirring in xylene (80 ml). After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification using tetrahydrofuran: hexane = 1: 7 to obtain Compound 1f-1 (1.9 g, yield 57%; MS: [M + H] + = 307).

<제조예 25> 화학식 1f-22의 합성PREPARATION EXAMPLE 25 Synthesis of Compound (1f-22)

Figure 112009012177719-pat00200
Figure 112009012177719-pat00200

화합물 A 화학식 1f-22Compound A Compound 1f-22

<제조예 25-1> 화합물 A의 합성Production Example 25-1 Synthesis of Compound A

제조예 24-3의 화학식 1f-1(2 g, 6.5 mmol)을 클로로포름(60 ml)에 녹이고 N-브로모숙신이미드(1.2 g, 6.7 mmol)를 넣고 교반하였다. 반응 종료 후 상온으로 온도를 낮춘 후 반응액을 물에 붓고, 클로로포름으로 추출하였다. 유기층을 무수 황산 마그네슘으로 건조하고 감압 증류 후 테트라하이드로퓨란: 헥산 = 1: 6으로 컬럼 정제하여 화합물 A(1.8 g, 수율 72%; MS: [M+H]+=386)를 얻었다. 1f-1 (2 g, 6.5 mmol) of Preparation Example 24-3 was dissolved in chloroform (60 ml), N-bromosuccinimide (1.2 g, 6.7 mmol) was added and stirred. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, distilled under reduced pressure, and then subjected to column purification with tetrahydrofuran: hexane = 1: 6 to obtain Compound A (1.8 g, yield 72%; MS: [M + H] + = 386).

<제조예 25-2> 화학식 1f-22의 합성Production Example 25-2 Synthesis of Compound (1f-22)

제조예 25-1의 화합물 A(1.5 g, 3.9 mmol)와 제조예 2-1의 화합물 A(2.2 g, 4 mmol)를 테트라하이드로퓨란(80 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.09 g, 0.08 mmol)을 넣은 후, 8시간 동안 가열 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재 결정하여 화학식 1f-22(2.1 g, 수율 73%; MS: [M+H]+=735)를 얻었다.Compound A (1.5 g, 3.9 mmol) of Preparation Example 25-1 and Compound A (2.2 g, 4 mmol) of Preparation Example 2-1 were dissolved in tetrahydrofuran (80 ml), followed by the addition of 2M aqueous potassium carbonate solution, Kiss (triphenylphosphine) palladium (0.09 g, 0.08 mmol) was added thereto, followed by heating and stirring for 8 hours. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure and recrystallized from tetrahydrofuran and ethanol to obtain the compound of the formula 1f-22 (2.1 g, yield 73%; MS: [M + H] + = 735).

<제조예 26> 화학식 1f-24의 합성PREPARATION EXAMPLE 26 Synthesis of Compound (1f-24)

Figure 112009012177719-pat00201
Figure 112009012177719-pat00201

화합물 A 화학식 1f-24Compound A Compound 1f-24

<제조예 26-1> 화합물 A의 합성Production Example 26-1 Synthesis of Compound A

1-브로모파이렌(10 g, 35.6 mmol)을 무수 테트라하이드로퓨란(120 ml)에 완전히 녹인 후, -78 ℃에서 터셔리-부틸리튬(23 ml, 1.7 M 펜탄용액)을 천천히 가하였다. 한 시간 동안 교반한 후 트리메틸보레이트(4.8 g, 46.2 mmol)를 가하였다. 냉각 용기를 제거하고 반응 혼합물을 3 시간 동안 상온에서 교반 하였다. 반응 혼합물에 2 N 염산수용액(50 ml)를 가하고 2 시간 동안 상온에서 교반하였다. 유기층을 분리하여 무수 황산 마그네슘으로 건조하고 감압 증류시켰다. 헥산으로 재결정하여 화합물 A(5.3 g, 수율 60%; MS: [M+H]+= 247)를 얻었다.1-Bromopyrrene (10 g, 35.6 mmol) was completely dissolved in anhydrous tetrahydrofuran (120 ml) and then tert-butyllithium (23 ml, 1.7 M pentane solution) was added slowly at -78 deg. After stirring for one hour, trimethyl borate (4.8 g, 46.2 mmol) was added. The cooling vessel was removed and the reaction mixture was stirred at ambient temperature for 3 h. To the reaction mixture was added a 2 N aqueous hydrochloric acid solution (50 ml) and the mixture was stirred at room temperature for 2 hours. The organic layer was separated, dried over anhydrous magnesium sulfate, and distilled under reduced pressure. And recrystallized with hexane to obtain Compound A (5.3 g, yield 60%; MS: [M + H] + = 247).

<제조예 26-2> 화학식 1f-24의 합성Production Example 26-2 Synthesis of Compound (1f-24)

제조예 26-1의 화합물 A(1.4 g, 5.7 mmmol)와 제조예 25-1의 화합물 A(2.1 g, 5.5 mmol)를 테트라하이드로퓨란(70 ml)에 녹인 후 2M 탄산칼륨 수용액을 첨가하고 테트라키스(트리페닐포스핀)팔라듐(0.13 g, 0.11 mmol)을 넣은 후 가열하면서 교반하였다. 반응 종료 후 상온으로 온도를 낮추고 유기층을 분리하여 무수 황산 마그네슘으로 건조하였다. 감압 증류시키고 테트라하이드로 퓨란과 에탄올로 재결정하여 화합물 1f-24(2 g, 수율 72%; MS: [M+H]+=507)를 얻었다.Compound A (1.4 g, 5.7 mmol) of Preparation Example 26-1 and Compound A (2.1 g, 5.5 mmol) of Preparation Example 25-1 were dissolved in tetrahydrofuran (70 ml), 2M aqueous potassium carbonate solution was added, Kiss (triphenylphosphine) palladium (0.13 g, 0.11 mmol) was added thereto, followed by stirring while heating. After the completion of the reaction, the temperature was lowered to room temperature, and the organic layer was separated and dried over anhydrous magnesium sulfate. The residue was subjected to distillation under reduced pressure and recrystallized from tetrahydrofuran and ethanol to obtain Compound 1f-24 (2 g, yield 72%; MS: [M + H] + = 507).

<실험예 1> <Experimental Example 1>

ITO(indium tin oxide)가 1500 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사 (Millipore Co.) 제품의 필터(Filter)로 2 차로 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.The glass substrate coated with ITO (indium tin oxide) thin film with a thickness of 1500 Å was immersed in distilled water containing detergent and washed with ultrasonic waves. At this time, a Fischer Co. product was used as a detergent, and distilled water, which was filtered with a filter of Millipore Co., was used as distilled water. The ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 하기 화학식의 헥사니트릴 헥사아자트리페닐렌 (hexanitrile hexaazatriphenylene; HAT)를 500 Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. Hexanitrile hexaazatriphenylene (HAT) of the following chemical formula was thermally vacuum deposited on the ITO transparent electrode thus prepared to a thickness of 500 Å to form a hole injection layer.

[HAT][LINE]

Figure 112009012177719-pat00202
Figure 112009012177719-pat00202

상기 정공주입층 위에 정공을 수송하는 물질인 하기 화학식의 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB)(400 Å)를 진공증착하여 정공수송층을 형성하였다. 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB) (400 Å) of the following formula, which is a hole transporting material, was vacuum- deposited on the hole injection layer to form a hole transport layer .

[NPB][NPB]

Figure 112009012177719-pat00203
Figure 112009012177719-pat00203

이어서, 상기 정공수송층 위에 막 두께 300 Å으로 아래와 같은 GH와 GD를 20:1의 막 두께비로 진공증착하여 발광층을 형성하였다.Subsequently, GH and GD were vacuum deposited on the hole transport layer at a film thickness of 300 Å at a film thickness ratio of 20: 1 to form a light emitting layer.

[GH] [GD]  [GH] [GD]

Figure 112009012177719-pat00204
Figure 112009012177719-pat00205
Figure 112009012177719-pat00204
Figure 112009012177719-pat00205

상기 발광층 위에 제조예 1에서 제조된 화학식 1a-2의 화합물을 200 Å의 두께로 진공 증착하여 전자주입 및 수송층을 형성하였다.The compound of Formula 1a-2 prepared in Preparation Example 1 was vacuum deposited on the light emitting layer to a thickness of 200 Å to form an electron injection and transport layer.

상기 전자주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬 플루라이드(LiF)와 2000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다. Lithium fluoride (LiF) and aluminum having a thickness of 2000 Å were sequentially deposited on the electron injection and transport layer to a thickness of 12 Å to form a cathode.

상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 × 10-7 ~ 5 × 10-8 torr를 유지하였다.The deposition rate of the organic material was maintained at 0.4 to 0.7 Å / sec, the lithium fluoride at the cathode was maintained at a deposition rate of 0.3 Å / sec and the deposition rate of aluminum was maintained at 2 Å / sec. -7 to 5 x 10 &lt; -8 &gt; torr.

상기에서 제조된 유기발광소자에 4.8 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 20 cd/A관찰되었다.As a result of applying a forward electric field of 4.8 V to the organic light emitting device manufactured above, 20 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 2><Experimental Example 2>

실험예 1에서 화학식 1a-2의 화합물 대신 제조예 2에서 제조된 화학식 1a-8의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Example 1 except that the compound of Formula 1a-8 prepared in Preparation Example 2 was used instead of the compound of Formula 1a-2.

상기에서 제조된 유기발광소자에 4.4 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 21 cd/A관찰되었다.As a result of applying a forward electric field of 4.4 V to the organic light emitting device manufactured above, 21 cd / A of green light was observed at a current density of 5 mA / cm 2.

<실험예 3><Experimental Example 3>

실험예 1에서 화학식 1a-2의 화합물 대신 제조예 3에서 제조된 화학식 1a-10의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Example 1 except that the compound of Formula 1a-10 prepared in Preparation Example 3 was used instead of the compound of Formula 1a-2.

상기에서 제조된 유기발광소자에 4.1 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 23 cd/A관찰되었다.As a result of applying a forward electric field of 4.1 V to the organic light emitting device manufactured above, 23 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 4><Experimental Example 4>

실험예 1에서 화학식 1a-2의 화합물 대신 제조예 5에서 제조된 화학식 1a-20의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Example 1 except that the compound of Formula 1a-20 prepared in Preparation Example 5 was used instead of the compound of Formula 1a-2.

상기에서 제조된 유기발광소자에 4.4 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 20 cd/A관찰되었다.As a result of applying a forward electric field of 4.4 V to the organic light emitting device manufactured above, 20 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 5><Experimental Example 5>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 7에서 제조된 1b-6의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1b-6 prepared in Preparation Example 7 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 4.3 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 22 cd/A관찰되었다.As a result of applying a forward electric field of 4.3 V to the organic light emitting device manufactured above, 22 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 6><Experimental Example 6>

실험예 1에서 화학식 1a-2의 화합물 대신 제조예 8에서 제조된 화학식 1b-10의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1 except that the compound of Formula 1b-10 prepared in Preparation Example 8 was used instead of the compound of Formula 1a-2.

상기에서 제조된 유기발광소자에 4.3 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 23 cd/A관찰되었다.As a result of applying a forward electric field of 4.3 V to the organic light emitting device fabricated above, 23 cd / A of green light was observed at a current density of 5 mA / cm 2.

<실험예 7><Experimental Example 7>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 9에서 제조된 1b-47의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1b-47 prepared in Preparation Example 9 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.9 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 23 cd/A관찰되었다.As a result of applying a forward electric field of 3.9 V to the organic light emitting device manufactured above, 23 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 8><Experimental Example 8>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 12에서 제조된 1c-11의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1c-11 prepared in Preparation Example 12 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.8 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 22 cd/A관찰되었다.As a result of applying a forward electric field of 3.8 V to the organic light emitting device manufactured above, 22 cd / A of green light was observed at a current density of 5 mA / cm 2.

<실험예 9><Experimental Example 9>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 13에서 제조된 1c-13의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1c-13 prepared in Preparation Example 13 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.7 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 23 cd/A관찰되었다.As a result of applying a forward electric field of 3.7 V to the organic light emitting device fabricated above, 23 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 10><Experimental Example 10>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 18에서 제조된 1d-20의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1d-20 prepared in Preparation Example 18 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 4.1 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 24 cd/A관찰되었다.As a result of applying a forward electric field of 4.1 V to the organic light emitting device manufactured above, 24 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 11>&Lt; Experimental Example 11 &

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 19에서 제조된 1d-22의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1d-22 prepared in Preparation Example 19 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.9 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 25 cd/A관찰되었다.As a result of applying a forward electric field of 3.9 V to the organic light emitting device fabricated above, green light was observed at 25 cd / A at a current density of 5 mA / cm 2.

<실험예 12><Experimental Example 12>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 23에서 제조된 1e-18의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1e-18 prepared in Preparation Example 23 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.8 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 23 cd/A관찰되었다.As a result of applying a forward electric field of 3.8 V to the organic light emitting device manufactured above, 23 cd / A green light was observed at a current density of 5 mA / cm 2.

<실험예 13><Experimental Example 13>

실험예 1에서 화학식 1a-2의 화합물 대신 화학식 제조예 25에서 제조된 1f-22의 화합물을 사용한 것 이외에는 똑같이 하고 유기 발광 소자를 제작했다. An organic light emitting device was prepared in the same manner as in Experimental Example 1, except that the compound 1f-22 prepared in Preparation Example 25 was used in place of the compound represented by Formula 1a-2.

상기에서 제조된 유기발광소자에 3.9 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 24 cd/A관찰되었다.As a result of applying a forward electric field of 3.9 V to the organic light emitting device manufactured above, 24 cd / A green light was observed at a current density of 5 mA / cm 2.

<비교예 1>&Lt; Comparative Example 1 &

실험예 1과 같은 방법으로 제조된 ITO 전극 위에 헥사니트릴 헥사아자트리페닐렌(500 Å), 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB)(400 Å), GH : GD (막 두께비 20 : 1) (300 Å) 및 한국 공개 특허 2003-0067773호에 기재된 하기 화학식으로 표시되는 전자수송물질(200 Å), 리튬 플루오라이드(LiF) 12 Å을 순차적으로 열 진공 증착하여 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 차례로 형성시켰다. 그 위에 2000 Å 두께의 알루미늄을 증착하여 음극을 형성하고 유기 발광 소자를 제조하였다.(500 Å), 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB) on the ITO electrode prepared in the same manner as in Experimental Example 1, (200 ANGSTROM), lithium fluoride (LiF) 12 ANGSTROM (400 ANGSTROM), GH: GD (film thickness ratio 20: 1) (300 ANGSTROM) and Korean Patent Laid- A hole transporting layer, a light emitting layer, an electron transporting layer, and an electron injecting layer were formed in this order. A 2000 Å thick aluminum layer was deposited thereon to form a cathode and an organic light emitting device was fabricated.

[전자 수송 물질][Electron transport material]

Figure 112009012177719-pat00206
Figure 112009012177719-pat00206

상기 제조된 유기발광소자에 4.6 V의 순방향 전계를 가한 결과, 5 mA/㎠의 전류밀도에서 녹색 빛이 19 cd/A로 관찰되었다.As a result of applying a forward electric field of 4.6 V to the organic light emitting device, green light was observed at 19 cd / A at a current density of 5 mA / cm 2.

도 1은 본 발명에 따른 유기발광소자의 한 예를 도시한 것이다.1 shows an example of an organic light emitting device according to the present invention.

[도면의 주요 부분에 대한 부호의 설명]DESCRIPTION OF THE REFERENCE NUMERALS

1 기판 2 양극1 substrate 2 anode

3 정공 주입층 4 정공 수송층3 hole injection layer 4 hole transport layer

5 유기 발광층 6 전자 수송층5 Organic light emitting layer 6 Electron transport layer

7 음극7 cathode

Claims (25)

하기 화학식 1a 내지 1f 중 어느 하나로 표시되는 질소 함유 복소환 화합물:A nitrogen-containing heterocyclic compound represented by any one of the following formulas (1a) to (1f): [화학식 1a] [화학식 1b] [Chemical Formula 1a] [Chemical Formula 1b]
Figure 112014011072370-pat00369
Figure 112014011072370-pat00370
Figure 112014011072370-pat00369
Figure 112014011072370-pat00370
[화학식 1c] [화학식 1d][Chemical Formula 1c] [Chemical Formula 1d]
Figure 112014011072370-pat00371
Figure 112014011072370-pat00372
Figure 112014011072370-pat00371
Figure 112014011072370-pat00372
[화학식 1e] [화학식 1f] [Formula 1e] [Formula 1f]
Figure 112014011072370-pat00373
Figure 112014011072370-pat00374
Figure 112014011072370-pat00373
Figure 112014011072370-pat00374
상기 화학식 1a 및 1e의 R1 내지 R11 중 적어도 하나; 상기 화학식 1b 및 1f의 R1 내지 R14 중 적어도 하나; 상기 화학식 1c 및 1d의 R1 내지 R8 중 적어도 하나;는 하기 화학식 2로 표시되는 화합물이고, At least one of R1 to R11 in the above formulas (1a) and (1e); At least one of R1 to R14 in the above formulas (1b) and (1f); At least one of R 1 to R 8 in the above formulas (1c) and (1d) is a compound represented by the following formula (2) 상기 화학식 1a 내지 1f의 나머지 R은 서로 같거나 상이하고, 각각 독립적으로 수소; 메틸기; C6 ~ C40의 아릴기로 치환 또는 비치환된 C6 ~ C40의 아릴기; 또는 퀴놀린기이고,The remaining R in the above formulas (1a) to (1f) are the same or different from each other, and each independently hydrogen; Methyl group; A C 6 to C 40 aryl group substituted or unsubstituted with a C 6 to C 40 aryl group; Or a quinolinyl group, 상기 화학식 1a 내지 1f에 있어서, 각 화학식 내의 하나의 고리에서 가장 가까운 2개의 치환기가 서로 결합하여 수소; 메틸기; C6 ~ C40의 아릴기로 치환 또는 비치환된 C6 ~ C40의 아릴기; 또는 퀴놀린기로 치환된 벤젠고리를 형성할 수 있으며,In the above general formulas (1a) to (1f), two closest substituents in one ring in each formula are bonded to each other to form a hydrogen; Methyl group; A C 6 to C 40 aryl group substituted or unsubstituted with a C 6 to C 40 aryl group; Or a benzene ring substituted with a quinoline group, [화학식 2](2)
Figure 112014011072370-pat00208
Figure 112014011072370-pat00208
상기 화학식 2에서, In Formula 2, L1은 직접결합; C6 ~C40의 아릴기로 치환 또는 비치환된 2가의 C6 ~C40의 아릴; 또는 2가의 카바졸이고, L 1 is a direct bond; Aryl of C 6 ~ C 40 aryl groups substituted or unsubstituted divalent C 6 ~ C 40 ring; Or a divalent carbazole, Ar1은 수소; 메틸기; C6 ~C40의 아릴기로 치환 또는 비치환된 C6 ~C40의 아릴기; 퀴놀린기; 또는 페닐벤즈이미다조닐기이다.Ar 1 is hydrogen; Methyl group; A C 6 to C 40 aryl group substituted or unsubstituted with a C 6 to C 40 aryl group; A quinoline group; Or a phenylbenzimidazonyl group.
삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 있어서, The method according to claim 1, 상기 화학식 1a 및 1e의 R1 내지 R11 중 적어도 하나; 상기 화학식 1b 및 1f의 R1 내지 R14 중 적어도 하나; 상기 화학식 1c 및 1d의 R1 내지 R8 중 적어도 하나;는 상기 화학식 2로 표시되는 화합물이고, At least one of R1 to R11 in the above formulas (1a) and (1e); At least one of R1 to R14 in the above formulas (1b) and (1f); At least one of R 1 to R 8 in the formulas (1c) and (1d) is a compound represented by the formula (2) 나머지 R 중 적어도 하나는 수소인 것인 질소 함유 복소환 화합물.And at least one of the remaining R's is hydrogen. 청구항 1에 있어서, The method according to claim 1, 상기 화학식 1a 및 1e의 R1 내지 R11 중 적어도 하나; 상기 화학식 1b 및 1f의 R1 내지 R14 중 적어도 하나; 상기 화학식 1c 및 1d의 R1 내지 R8 중 적어도 하나;는 상기 화학식 2로 표시되는 화합물이고, At least one of R1 to R11 in the above formulas (1a) and (1e); At least one of R1 to R14 in the above formulas (1b) and (1f); At least one of R 1 to R 8 in the formulas (1c) and (1d) is a compound represented by the formula (2) 나머지 R 중 적어도 하나는 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:And at least one of the remaining R's is selected from the group consisting of:
Figure 112014011072370-pat00414
Figure 112014011072370-pat00414
상기 화학식에서 Z1 내지 Z3은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 C6 ~ C40의 아릴기이다.In the above formula, Z1 to Z3 are the same or different from each other and each independently hydrogen; Or a C 6 to C 40 aryl group.
청구항 1에 있어서, The method according to claim 1, 상기 화학식 2의 Ar1은 하기 화학식으로 이루어진 군으로부터 선택되는 아릴기인 질소 함유 복소환 화합물:Wherein Ar &lt; 1 &gt; in the formula (2) is an aryl group selected from the group consisting of the following formulas:
Figure 712013004612502-pat00216
Figure 712013004612502-pat00216
상기 화학식에서 Z4는 각각 독립적으로 수소; 또는 C6 ~C40의 아릴기이다. In the above formulas, Z4 is each independently hydrogen; Or a C 6 to C 40 aryl group.
청구항 1에 있어서, The method according to claim 1, 상기 화학식 2의 L1은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein L &lt; 1 &gt; in the general formula (2) is selected from the group consisting of the following formulas:
Figure 712013004612502-pat00376
Figure 712013004612502-pat00376
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1a로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein the compound represented by the formula (1a) is selected from the group consisting of a nitrogen-containing heterocyclic compound represented by the following formula: 화학식 1a-1 화학식 1a-2Formula 1a-1 Formula la-2
Figure 112014011072370-pat00218
Figure 112014011072370-pat00218
화학식 1a-3 화학식 1a-4Formula 1a-3 Formula 1a-4
Figure 112014011072370-pat00219
Figure 112014011072370-pat00219
화학식 1a-5 화학식 1a-6(1a-5)
Figure 112014011072370-pat00220
Figure 112014011072370-pat00220
화학식 1a-7 화학식 1a-8Formula 1a-7 Formula 1a-8
Figure 112014011072370-pat00221
Figure 112014011072370-pat00221
화학식 1a-9 화학식 1a-10(1a-9)
Figure 112014011072370-pat00222
Figure 112014011072370-pat00222
화학식 1a-11 화학식 1a-12(1a-11)
Figure 112014011072370-pat00223
Figure 112014011072370-pat00223
화학식 1a-13 화학식 1a-14(1a-13)
Figure 112014011072370-pat00224
Figure 112014011072370-pat00224
화학식 1a-15 화학식 1a-16(1a-15)
Figure 112014011072370-pat00225
Figure 112014011072370-pat00225
화학식 1a-17 화학식 1a-18Formula 1a-17 Formula la-18
Figure 112014011072370-pat00226
Figure 112014011072370-pat00226
화학식 1a-19 화학식 1a-20(1a-19)
Figure 112014011072370-pat00227
Figure 112014011072370-pat00227
화학식 1a-23 화학식 1a-24Formula 1a-23 Formula 1a-24
Figure 112014011072370-pat00229
Figure 112014011072370-pat00229
화학식 1a-25 화학식 1a-26Formula 1a-25 Formula 1a-26
Figure 112014011072370-pat00230
Figure 112014011072370-pat00230
화학식 1a-27 화학식 1a-28Formula 1a-27 Formula la-28
Figure 112014011072370-pat00231
Figure 112014011072370-pat00231
화학식 1a-29 화학식 1a-30(1a-29)
Figure 112014011072370-pat00232
Figure 112014011072370-pat00232
화학식 1a-31 화학식 1a-32Formula 1a-31 Formula 1a-32
Figure 112014011072370-pat00233
Figure 112014011072370-pat00233
화학식 1a-36Formula 1a-36
Figure 112014011072370-pat00416
Figure 112014011072370-pat00416
화학식 1a-41 화학식 1a-42(1a-41)
Figure 112014011072370-pat00238
Figure 112014011072370-pat00238
화학식 1a-47 화학식 1a-48Formula 1a-47 Formula 1a-48
Figure 112014011072370-pat00241
Figure 112014011072370-pat00241
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1b로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein the compound represented by Formula 1b is selected from the group consisting of a nitrogen-containing heterocyclic compound: 화학식 1b-1 화학식 1b-2Formula 1b-1 Formula 1b-2
Figure 712013004612502-pat00243
Figure 712013004612502-pat00243
화학식 1b-3 화학식 1b-4Formula 1b-3 &lt; EMI ID =
Figure 712013004612502-pat00244
Figure 712013004612502-pat00244
화학식 1b-5 화학식 1b-6Formula 1b-5 Formula 1b-6
Figure 712013004612502-pat00245
Figure 712013004612502-pat00245
화학식 1b-7 화학식 1b-8Formula 1b-7 Formula 1b-8
Figure 712013004612502-pat00246
Figure 712013004612502-pat00246
화학식 1b-9 화학식 1b-10Formula 1b-9 Formula 1b-10
Figure 712013004612502-pat00247
Figure 712013004612502-pat00247
화학식 1b-11 화학식 1b-121b-11 &lt; EMI ID =
Figure 712013004612502-pat00248
Figure 712013004612502-pat00248
화학식 1b-18 1b-18
Figure 712013004612502-pat00377
Figure 712013004612502-pat00377
화학식 1b-19 화학식 1b-20Formula 1b-19 Formula 1b-20
Figure 712013004612502-pat00252
Figure 712013004612502-pat00252
화학식 1b-21 화학식 1b-22Formula 1b-21 Formula 1b-22
Figure 712013004612502-pat00253
Figure 712013004612502-pat00253
화학식 1b-29 화학식 1b-30Formula 1b-29 Formula 1b-30
Figure 712013004612502-pat00257
Figure 712013004612502-pat00257
화학식 1b-33 화학식 1b-34Formula 1b-33 Formula 1b-34
Figure 712013004612502-pat00259
Figure 712013004612502-pat00259
화학식 1b-39 화학식 1b-40Formula 1b-39 Formula 1b-40
Figure 712013004612502-pat00262
Figure 712013004612502-pat00262
화학식 1b-45 1b-45
Figure 712013004612502-pat00378
Figure 712013004612502-pat00378
화학식 1b-47 1b-47
Figure 712013004612502-pat00379
Figure 712013004612502-pat00379
화학식 1b-49 화학식 1b-50Formula 1b-49 Formula 1b-50
Figure 712013004612502-pat00267
Figure 712013004612502-pat00267
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1c로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein the compound represented by Formula 1c is selected from the group consisting of a nitrogen-containing heterocyclic compound represented by the following formula: 화학식 1c-1 화학식 1c-2Formula 1c-1 Formula 1c-2
Figure 112014011072370-pat00268
Figure 112014011072370-pat00268
화학식 1c-5 화학식 1c-6Formula 1c-5 Formula 1c-6
Figure 112014011072370-pat00270
Figure 112014011072370-pat00270
화학식 1c-7 화학식 1c-8Formula 1c-7 Formula 1c-8
Figure 112014011072370-pat00271
Figure 112014011072370-pat00271
화학식 1c-9 화학식 1c-10Formula 1c-9 Formula 1c-10
Figure 112014011072370-pat00272
Figure 112014011072370-pat00272
화학식 1c-11 화학식 1c-12Formula 1c-11 Formula 1c-12
Figure 112014011072370-pat00273
Figure 112014011072370-pat00273
화학식 1c-13 1c-13
Figure 112014011072370-pat00380
Figure 112014011072370-pat00380
화학식 1c-15 화학식 1c-16Formula 1c-15 Formula 1c-16
Figure 112014011072370-pat00275
Figure 112014011072370-pat00275
화학식 1c-17 화학식 1c-18Formula 1c-17 Formula 1c-18
Figure 112014011072370-pat00276
Figure 112014011072370-pat00276
화학식 1c-19 1c-19
Figure 112014011072370-pat00381
Figure 112014011072370-pat00381
화학식 1c-221c-22
Figure 112014011072370-pat00382
Figure 112014011072370-pat00382
화학식 1c-23 1c-23
Figure 112014011072370-pat00383
Figure 112014011072370-pat00383
화학식 1c-29 화학식 1c-30Formula 1c-29 Formula 1c-30
Figure 112014011072370-pat00282
Figure 112014011072370-pat00282
화학식 1c-31 화학식 1c-32Formula 1c-31 Formula 1c-32
Figure 112014011072370-pat00283
Figure 112014011072370-pat00283
화학식 1c-341c-34
Figure 112014011072370-pat00384
Figure 112014011072370-pat00384
화학식 1c-35 1c-35
Figure 112014011072370-pat00385
Figure 112014011072370-pat00385
화학식 1c-39 화학식 1c-40Formula 1c-39 Formula 1c-40
Figure 112014011072370-pat00287
Figure 112014011072370-pat00287
화학식 1c-41 화학식 1c-42Formula 1c-41 Formula 1c-42
Figure 112014011072370-pat00288
Figure 112014011072370-pat00288
화학식 1c-441c-44
Figure 112014011072370-pat00387
Figure 112014011072370-pat00387
화학식 1c-45 1c-45
Figure 112014011072370-pat00417
Figure 112014011072370-pat00417
화학식 1c-481c-48
Figure 112014011072370-pat00388
Figure 112014011072370-pat00388
화학식 1c-49 화학식 1c-50Formula 1c-49 Formula 1c-50
Figure 112014011072370-pat00292
Figure 112014011072370-pat00292
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1d로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein the compound represented by the formula (1d) is selected from the group consisting of a nitrogen-containing heterocyclic compound represented by the following formula: 화학식 1d-1 화학식 1d-2&Lt; RTI ID = 0.0 &gt; 1d-1 &
Figure 112014011072370-pat00293
Figure 112014011072370-pat00293
화학식 1d-3 1d-3
Figure 112014011072370-pat00418
Figure 112014011072370-pat00418
화학식 1d-5 화학식 1d-6&Lt; RTI ID = 0.0 &gt; 1d-5 &
Figure 112014011072370-pat00295
Figure 112014011072370-pat00295
화학식 1d-7 1d-7
Figure 112014011072370-pat00389
Figure 112014011072370-pat00389
화학식 1d-9 화학식 1d-101d-9 &lt; / RTI &gt; &lt;
Figure 112014011072370-pat00297
Figure 112014011072370-pat00297
화학식 1d-11 1d-11
Figure 112014011072370-pat00390
Figure 112014011072370-pat00390
화학식 1d-13 화학식 1d-14&Lt; RTI ID = 0.0 &gt; 1d-13 &
Figure 112014011072370-pat00299
Figure 112014011072370-pat00299
화학식 1d-19 화학식 1d-201d-19 &lt; EMI ID =
Figure 112014011072370-pat00302
Figure 112014011072370-pat00302
화학식 1d-21 화학식 1d-22&Lt; RTI ID = 0.0 &gt; 1d-22 &
Figure 112014011072370-pat00303
Figure 112014011072370-pat00303
화학식 1d-23 화학식 1d-24Formula 1d-23 Formula 1d-24
Figure 112014011072370-pat00304
Figure 112014011072370-pat00304
화학식 1d-25 화학식 1d-26Formula 1d-25 Formula 1d-26
Figure 112014011072370-pat00305
Figure 112014011072370-pat00305
화학식 1d-27 화학식 1d-28&Lt; RTI ID = 0.0 &gt; 1d-28 &
Figure 112014011072370-pat00306
Figure 112014011072370-pat00306
화학식 1d-31 1d-31
Figure 112014011072370-pat00391
Figure 112014011072370-pat00391
화학식 1d-341d-34
Figure 112014011072370-pat00392
Figure 112014011072370-pat00392
화학식 1d-35 1d-35
Figure 112014011072370-pat00393
Figure 112014011072370-pat00393
화학식 1d-37 1d-37
Figure 112014011072370-pat00394
Figure 112014011072370-pat00394
화학식 1d-39 화학식 1d-401d-39 &lt; EMI ID =
Figure 112014011072370-pat00312
Figure 112014011072370-pat00312
화학식 1d-41 1d-41
Figure 112014011072370-pat00395
Figure 112014011072370-pat00395
화학식 1d-43 1d-43
Figure 112014011072370-pat00396
Figure 112014011072370-pat00396
화학식 1d-45 1d-45
Figure 112014011072370-pat00397
Figure 112014011072370-pat00397
화학식 1d-47 1d-47
Figure 112014011072370-pat00398
Figure 112014011072370-pat00398
화학식 1d-49 화학식 1d-50Formula 1d-49 Formula 1d-50
Figure 112014011072370-pat00317
Figure 112014011072370-pat00317
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1e로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:Wherein the compound represented by Formula 1e is selected from the group consisting of a nitrogen-containing heterocyclic compound: 화학식 1e-1 화학식 1e-2Formula (1e-1) Formula (1e-2)
Figure 112014011072370-pat00318
Figure 112014011072370-pat00318
화학식 1e-41e-4
Figure 112014011072370-pat00419
Figure 112014011072370-pat00419
화학식 1e-5 화학식 1e-6Formula (1e-5) Formula (1e-6)
Figure 112014011072370-pat00320
Figure 112014011072370-pat00320
화학식 1e-7 화학식 1e-8Formula 1e-7 Formula 1e-8
Figure 112014011072370-pat00321
Figure 112014011072370-pat00321
화학식 1e-9 화학식 1e-10Formula (1e-9) Formula (1e-10)
Figure 112014011072370-pat00322
Figure 112014011072370-pat00322
화학식 1e-11 화학식 1e-12Formula (1e-11) Formula (1e-12)
Figure 112014011072370-pat00323
Figure 112014011072370-pat00323
화학식 1e-13 1e-13
Figure 112014011072370-pat00399
Figure 112014011072370-pat00399
화학식 1e-15 화학식 1e-16Formula 1e-15 Formula 1e-16
Figure 112014011072370-pat00325
Figure 112014011072370-pat00325
화학식 1e-17 화학식 1e-18Formula 1e-17 Formula 1e-18
Figure 112014011072370-pat00326
Figure 112014011072370-pat00326
화학식 1e-19 1e-19
Figure 112014011072370-pat00400
Figure 112014011072370-pat00400
화학식 1e-221e-22
Figure 112014011072370-pat00401
Figure 112014011072370-pat00401
화학식 1e-23 1e-23
Figure 112014011072370-pat00402
Figure 112014011072370-pat00402
화학식 1e-25 화학식 1e-26Formula 1e-25 Formula 1e-26
Figure 112014011072370-pat00330
Figure 112014011072370-pat00330
화학식 1e-29 화학식 1e-30Formula 1e-29 Formula 1e-30
Figure 112014011072370-pat00332
Figure 112014011072370-pat00332
화학식 1e-31 화학식 1e-32Formula 1e-31 Formula 1e-32
Figure 112014011072370-pat00333
Figure 112014011072370-pat00333
화학식 1e-341e-34
Figure 112014011072370-pat00403
Figure 112014011072370-pat00403
화학식 1e-35 (1e-35)
Figure 112014011072370-pat00404
Figure 112014011072370-pat00404
화학식 1e-37 (1e-37)
Figure 112014011072370-pat00405
Figure 112014011072370-pat00405
화학식 1e-39 화학식 1e-40Formula 1e-39 Formula 1e-40
Figure 112014011072370-pat00337
Figure 112014011072370-pat00337
화학식 1e-421e-42
Figure 112014011072370-pat00420
Figure 112014011072370-pat00420
화학식 1e-441e-44
Figure 112014011072370-pat00421
Figure 112014011072370-pat00421
화학식 1e-45 1e-45
Figure 112014011072370-pat00422
Figure 112014011072370-pat00422
화학식 1e-481e-48
Figure 112014011072370-pat00406
Figure 112014011072370-pat00406
화학식 1e-49 화학식 1e-50Formula 1e-49 Formula 1e-50
Figure 112014011072370-pat00342
Figure 112014011072370-pat00342
청구항 1에 있어서, The method according to claim 1, 상기 화학식 1f로 표시되는 화합물은 하기 화학식으로 이루어진 군으로부터 선택되는 것인 질소 함유 복소환 화합물:The nitrogen-containing heterocyclic compound represented by the formula (1f) is selected from the group consisting of: 화학식 1f-1 화학식 1f-21f-1 &lt; / RTI &gt; &lt;
Figure 712013004612502-pat00343
Figure 712013004612502-pat00343
화학식 1f-3 화학식 1f-4Formula (1f-3) Formula (1f-4)
Figure 712013004612502-pat00344
Figure 712013004612502-pat00344
화학식 1f-5 화학식 1f-6Formula (1f-5) Formula (1f-6)
Figure 712013004612502-pat00345
Figure 712013004612502-pat00345
화학식 1f-7 화학식 1f-8Formula 1f-7 Formula 1f-8
Figure 712013004612502-pat00346
Figure 712013004612502-pat00346
화학식 1f-13 화학식 1f-14(1f-13)
Figure 712013004612502-pat00349
Figure 712013004612502-pat00349
화학식 1f-15 화학식 1f-16(1f-15) &lt; EMI ID =
Figure 712013004612502-pat00350
Figure 712013004612502-pat00350
화학식 1f-181f-18
Figure 712013004612502-pat00407
Figure 712013004612502-pat00407
화학식 1f-201f-20
Figure 712013004612502-pat00408
Figure 712013004612502-pat00408
화학식 1f-21 화학식 1f-22Formula 1f-21 Formula 1f-22
Figure 712013004612502-pat00353
Figure 712013004612502-pat00353
화학식 1f-23 화학식 1f-24Formula 1f-23 Formula 1f-24
Figure 712013004612502-pat00354
Figure 712013004612502-pat00354
화학식 1f-27 화학식 1f-28Formula 1f-27 Formula 1f-28
Figure 712013004612502-pat00356
Figure 712013004612502-pat00356
화학식 1f-29 1f-29
Figure 712013004612502-pat00415
Figure 712013004612502-pat00415
화학식 1f-321f-32
Figure 712013004612502-pat00409
Figure 712013004612502-pat00409
화학식 1f-33 1f-33
Figure 712013004612502-pat00410
Figure 712013004612502-pat00410
화학식 1f-361f-36
Figure 712013004612502-pat00411
Figure 712013004612502-pat00411
화학식 1f-39 화학식 1f-40Formula 1f-39 Formula 1f-40
Figure 712013004612502-pat00362
Figure 712013004612502-pat00362
화학식 1f-41 화학식 1f-42(1f-41) &lt; EMI ID =
Figure 712013004612502-pat00363
Figure 712013004612502-pat00363
화학식 1f-45 1f-45
Figure 712013004612502-pat00412
Figure 712013004612502-pat00412
화학식 1f-47 화학식 1f-48Formula 1f-47 Formula 1f-48
Figure 712013004612502-pat00366
Figure 712013004612502-pat00366
화학식 1f-49 화학식 1f-50Formula 1f-49 Formula 1f-50
Figure 712013004612502-pat00367
Figure 712013004612502-pat00367
애노드, 캐소드, 및 상기 애노드와 캐소드 사이에 배치된 1층 이상의 유기물층을 포함하는 유기전자소자로서, 상기 유기물층 중 1 층 이상은 청구항 1, 6 내지 15 중 어느 한 항의 질소 함유 복소환 화합물을 포함하는 것인 유기전자소자. An organic electronic device comprising an anode, a cathode, and at least one organic layer disposed between the anode and the cathode, wherein at least one of the organic layers comprises the nitrogen-containing heterocyclic compound of any one of claims 1 to 6 to 15 Lt; / RTI &gt; 청구항 16에 있어서, 18. The method of claim 16, 상기 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체(OPC) 드럼 및 유기 트랜지스터로 이루어진 군에서 선택되는 것인 유기전자소자. Wherein the organic electronic device is selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoconductor (OPC) drum, and an organic transistor. 청구항 16에 있어서, 18. The method of claim 16, 상기 유기전자소자는 유기발광소자인 것인 유기전자소자. Wherein the organic electronic device is an organic light emitting device. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자는 기판상에 애노드, 1층 이상의 유기물층 및 캐소드가 순차적으로 적층된 정방향 구조의 유기발광소자인 것인 유기전자소자. Wherein the organic light emitting device is an organic light emitting device having a forward structure in which an anode, at least one organic material layer, and a cathode are sequentially stacked on a substrate. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자는 기판상에 캐소드, 1층 이상의 유기물층 및 애노드가 순차적으로 적층된 역방향 구조의 유기발광소자인 것인 유기전자소자.Wherein the organic light emitting device is an organic light emitting device having a reverse structure in which a cathode, at least one organic material layer, and an anode are sequentially stacked on a substrate. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자의 유기물층은 정공주입층, 정공수송층, 발광층, 전자주입층, 전사수송층 및 전자주입과 전자수송을 동시에 하는 층 중 하나 이상을 포함하는 것인 유기전자소자.Wherein the organic material layer of the organic light emitting device comprises at least one of a hole injecting layer, a hole transporting layer, a light emitting layer, an electron injecting layer, a transferring transporting layer, and a layer simultaneously injecting electrons and transporting electrons. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자의 유기물층은 발광층을 포함하고, 이 발광층이 상기 질소 함유 복소환 화합물을 포함하는 것인 유기전자소자.Wherein the organic compound layer of the organic light emitting element comprises a light emitting layer, and the light emitting layer comprises the nitrogen containing heterocyclic compound. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자의 유기물층은 전자수송층, 전자주입층 및 전자주입과 전자수송을 동시에 하는 층 중 하나 이상을 포함하고, 이 층이 상기 질소 함유 복소환 화합물을 포함하는 것인 유기전자소자.Wherein the organic material layer of the organic light emitting device comprises at least one of an electron transport layer, an electron injection layer, and a layer simultaneously performing electron injection and electron transport, and the layer includes the nitrogen containing heterocyclic compound. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자의 유기물층은 정공수송과 발광을 동시에 하는 층을 포함하는 것인 유기전자소자.Wherein the organic material layer of the organic light emitting device includes a layer that simultaneously transports holes and emits light. 청구항 18에 있어서, 19. The method of claim 18, 상기 유기발광소자의 유기물층은 발광과 전자수송을 동시에 하는 층을 포함하는 것인 유기전자소자.Wherein the organic material layer of the organic light emitting device comprises a layer simultaneously emitting light and transporting electrons.
KR1020090016623A 2009-02-27 2009-02-27 Nitrogen containing compound and organic electronic device using the same KR101398711B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090016623A KR101398711B1 (en) 2009-02-27 2009-02-27 Nitrogen containing compound and organic electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090016623A KR101398711B1 (en) 2009-02-27 2009-02-27 Nitrogen containing compound and organic electronic device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130130915A Division KR20130133732A (en) 2013-10-31 2013-10-31 Nitrogen containing compound and organic electronic device using the same

Publications (2)

Publication Number Publication Date
KR20100097797A KR20100097797A (en) 2010-09-06
KR101398711B1 true KR101398711B1 (en) 2014-05-27

Family

ID=43004843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090016623A KR101398711B1 (en) 2009-02-27 2009-02-27 Nitrogen containing compound and organic electronic device using the same

Country Status (1)

Country Link
KR (1) KR101398711B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435386B2 (en) * 2010-02-10 2014-03-05 東洋インキScホールディングス株式会社 Materials for organic electroluminescence devices
KR101536163B1 (en) * 2012-08-29 2015-07-14 주식회사 엠비케이 New organic electroluminescent compounds and organic electroluminescent device comprising the same
KR102240991B1 (en) 2012-09-12 2021-04-16 이데미쓰 고산 가부시키가이샤 Novel compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
CN103145710B (en) * 2013-03-11 2015-08-19 北京工业大学 The synthetic method of indole-imidazole compound
KR102263843B1 (en) * 2014-10-08 2021-06-14 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent device using the same
CN106299142B (en) * 2015-05-13 2018-07-10 上海和辉光电有限公司 Compound with thermal stability and hole stability and its preparation method and application
CN105399749B (en) * 2015-10-21 2017-10-10 中节能万润股份有限公司 A kind of new OLED electron transport materials and its application
DE102016115859B4 (en) * 2015-12-25 2020-12-10 Shanghai Tianma AM-OLED Co., Ltd. Organic electroluminescent compound and organic photoelectric device therefrom
CN105418617B (en) * 2015-12-25 2018-03-06 上海天马有机发光显示技术有限公司 Organic electroluminescent compounds and its organic photoelectric device
CN106046002B (en) * 2016-06-12 2018-06-01 河南师范大学 A kind of synthetic method of pyridine-imidazole simultaneously [1,2,3] triazoloquinoline class compound
KR102597025B1 (en) 2016-07-18 2023-11-02 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102534337B1 (en) * 2017-01-04 2023-05-18 메르크 파텐트 게엠베하 Materials for Organic Electroluminescent Devices
KR102431718B1 (en) * 2017-09-20 2022-08-12 삼성디스플레이 주식회사 Compound including nitrogen and organic electroluminescence device including the same
CN107935936A (en) * 2017-11-29 2018-04-20 华南理工大学 Benzimidazole compound and derivative, Organic Electron Transport Material and its preparation and application
KR102472915B1 (en) * 2017-12-28 2022-12-01 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
CN108276419B (en) * 2018-02-07 2019-11-12 台州学院 The synthetic method of a kind of azoles and quinazoline ternary fused heterocyclic derivative
KR20210031714A (en) * 2018-07-09 2021-03-22 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN109180690A (en) * 2018-10-15 2019-01-11 烟台显华化工科技有限公司 One kind is used as azepine aromatic compound and its application of blue fluorescent material
CN116178379A (en) * 2021-11-26 2023-05-30 北京绿人科技有限责任公司 Organic compound, application thereof and organic electroluminescent device
CN114380838B (en) * 2022-01-18 2023-01-17 川北医学院 Organic photoelectric material and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060110269A (en) * 2004-03-03 2006-10-24 노발레드 게엠베하 Use of a metal complex as n-dopant for an organic semiconducting matrix material, organic semiconductor material and electronic component, as well as dopant and ligand and method for producing the same
KR20060135007A (en) * 2004-03-31 2006-12-28 이스트맨 코닥 캄파니 Organic element for electroluminescent devices
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060110269A (en) * 2004-03-03 2006-10-24 노발레드 게엠베하 Use of a metal complex as n-dopant for an organic semiconducting matrix material, organic semiconductor material and electronic component, as well as dopant and ligand and method for producing the same
KR20060135007A (en) * 2004-03-31 2006-12-28 이스트맨 코닥 캄파니 Organic element for electroluminescent devices
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials

Also Published As

Publication number Publication date
KR20100097797A (en) 2010-09-06

Similar Documents

Publication Publication Date Title
KR101398711B1 (en) Nitrogen containing compound and organic electronic device using the same
JP6648882B2 (en) Organic light emitting device
JP6733882B2 (en) Nitrogen-containing compound and organic light-emitting device containing the same
KR101991428B1 (en) Heterocyclic compound and organic electronic device using the same
KR101460361B1 (en) New imidazole derivatives and organic electronic device using the same
KR100872692B1 (en) New anthracene derivatives and organic electronic device using the same
KR100864364B1 (en) Novel imidazoquinazoline derivative, process for preparing the same, and organic electronic device using the same
JP6673544B2 (en) Heterocyclic compound and organic light emitting device containing the same
KR100961821B1 (en) New anthracene derivatives and organic electronic device using the same
KR101460365B1 (en) New imidazole derivatives and organic electronic device using the same
KR101367514B1 (en) New anthracene derivatives and organic electronic device using the same
KR101825405B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
JP5253378B2 (en) NOVEL ANTHRACENE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTRONIC DEVICE USING THE SAME
KR101262420B1 (en) New anthracene derivatives and organic electronic devices using the same
JP2009502778A (en) Novel anthracene derivative, method for producing the same, and organic electroluminescent device using the same
JP2018535188A (en) Compound and organic electronic device containing the same
JP2019527197A (en) Compound and organic electronic device containing the same
KR20130100948A (en) New anthracene derivatives and organic electronic device using the same
KR20080016007A (en) New anthracene derivatives and organic electronic device using the same
KR101741322B1 (en) Multicyclic compound including nitrogen and organic electronic device using the same
KR101317531B1 (en) New imidazole derivatives and organic electronic device using the same
JP6638924B2 (en) Heterocyclic compound and organic light emitting device using the same
KR20100108505A (en) New cycloalkene derivatives and organic electronic diode using the same
KR101985740B1 (en) Hetero-cyclic compound and organic light emitting device comprising the same
KR20130083887A (en) New imidazole derivatives and organic electronic device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
J201 Request for trial against refusal decision
AMND Amendment
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 6