KR101396002B1 - Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery - Google Patents

Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery Download PDF

Info

Publication number
KR101396002B1
KR101396002B1 KR1020127007380A KR20127007380A KR101396002B1 KR 101396002 B1 KR101396002 B1 KR 101396002B1 KR 1020127007380 A KR1020127007380 A KR 1020127007380A KR 20127007380 A KR20127007380 A KR 20127007380A KR 101396002 B1 KR101396002 B1 KR 101396002B1
Authority
KR
South Korea
Prior art keywords
mno
polycrystalline
nio
coo
temperature
Prior art date
Application number
KR1020127007380A
Other languages
Korean (ko)
Other versions
KR20120061910A (en
Inventor
키아신 시양
샤오리안 자오
Original Assignee
구이저우 젠후아 뉴 머티어리얼 컴퍼니, 엘티디.
쉔젠 젠후아 뉴 머티어리얼 컴퍼니, 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구이저우 젠후아 뉴 머티어리얼 컴퍼니, 엘티디., 쉔젠 젠후아 뉴 머티어리얼 컴퍼니, 엘티디. filed Critical 구이저우 젠후아 뉴 머티어리얼 컴퍼니, 엘티디.
Publication of KR20120061910A publication Critical patent/KR20120061910A/en
Application granted granted Critical
Publication of KR101396002B1 publication Critical patent/KR101396002B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

다결정 코발트-니켈-망간 삼원 양극 재료가 제공된다. 다결정 코발트-니켈-망간 삼원 양극 재료는 LizCoO2, LizNiO2, LizMnO2, LizCo1 -(x+y)NixMnyO2, LizNixMn1 -xO2, LizCoxNi1 xO2 및 Li2MnO3 중 2종 이상의 베이스 결정체 구조를 포함한다. 고온 융합에 의한 양극재료의 제조 방법이 제공된다. 양극재료는 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C일 때 용량이 145mAh/g이상이며, 300회 순환 후 용량유지율이 90% 초과이다. 고온 융합에 의해 제조된 양극재료는 높은 체적 에너지밀도, 뛰어난 전기 화학 성능 및 개선된 안전성을 가지며, 재료의 원가가 낮다. 또한, 양극재료를 포함하는 리튬이온 2차전지가 제공된다.A polycrystalline cobalt-nickel-manganese three-electrode cathode material is provided. The polycrystalline cobalt-nickel-manganese three-electrode cathode material may include Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1 - (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1 -x O 2 , Li z Co x Ni 1 - x O 2, and Li 2 MnO 3 . A method for producing a cathode material by high temperature fusion is provided. The anode material has a compression density of 3.9 to 4.3 g / cm 3 , a capacity of 145 mAh / g or more when the discharge magnification is 0.5 to 1 C, and a capacity retention rate of more than 90% after 300 cycles. The cathode material produced by high temperature fusion has high volume energy density, excellent electrochemical performance and improved safety, and the material cost is low. Further, a lithium ion secondary battery including a cathode material is provided.

Description

다결정 코발트-니켈-망간 삼원 양극재료, 그의 제조방법, 및 리튬이온 2차전지 {POLYCRYSTALLINE COBALT-NICKEL-MANGANESE TERNARY POSITIVE MATERIAL, PREPARATION METHOD THEREOF AND LITHIUM ION SECONDARY BATTERY}TECHNICAL FIELD [0001] The present invention relates to a polycrystalline cobalt-nickel-manganese three-electrode cathode material, a method for producing the same, and a lithium ion secondary battery,

본 발명은 리튬이온 전지용 양극재료, 그의 제조방법, 및 상기 양극재료로 제조된 리튬이온 전지에 관한 것으로서, 특히 다결정 코발트-니켈-망간(Co-Ni-Mn) 삼원 재료, 그 제조방법, 및 상기 다결정 Co-Ni-Mn 삼원 재료를 사용하여 제조된 리튬이온 2차전지에 관한 것이다.The present invention relates to a cathode material for a lithium ion battery, a method for producing the same, and a lithium ion battery made from the cathode material. More particularly, the present invention relates to a polycrystalline cobalt-nickel-manganese (Co-Ni-Mn) To a lithium ion secondary battery manufactured using a polycrystalline Co-Ni-Mn three-dimensional material.

리튬이온 전지는 1991년에 상품화된 이래, 응용요구가 점점 높아져 시장의 요구에 따라 그 에너지 밀도가 점점 높아지고 있다. 구체적으로 말하면 리튬이온 전지의 에너지 밀도는 체적 에너지 밀도와 중량 에너지 밀도로 나뉘는데, 시장에서 요구되는 것은 체적 에너지 밀도와 중량 에너지 밀도를 동시에 제고시키는 것이다. 같은 용량을 발휘하는 조건하에서 전지의 체적 에너지 밀도를 제고시키려면 전지 활성물질의 단위체적 충전량을 제고시켜야 한다. 현재 대량으로 사용되고 있는 것은 여전히 코발트산리튬으로서, 코발트산리튬은 최초로 상품화를 실현하고 지금까지 사용되어 온 성숙된 재료로서 휴대폰, 노트북 컴퓨터, 디지털 전자제품 등 소형의 로파워 휴대식 전자제품에 널리 사용되고 있다. 그러나 자원의 제한을 받고, 보다 높은 안전성의 요구에 따라, 원가가 낮고 에너지 밀도가 높고 안전성이 뛰어난 비코발트 또는 코발트 함량이 낮은 양극재료를 찾아내는 것이 리튬 양극재료의 발전방향으로 되고 있다. 부단한 발전을 거쳐 Co-Ni-Mn계 삼원 재료 및 그 Mn계는 용량발휘에 있어 이미 코발트산리튬을 초과하고 안전성도 코발트산리튬보다 좋고 원가도 비교적 낮다. 그러나 삼원재료에 대한 평가에 따르면, 삼원재료는 방전전위가 낮고 극편의 압축밀도가 낮기 때문에 체적 에너지 밀도가 여전히 코발트산리튬보다 낮으며, 상기 결점에 의해 단일한 Co-Ni-Mn 삼원 재료 및 그 Mn계는 고성능 양극재료에 대한 시장 요구를 만족시키기에 어렵다는 것이 밝혀졌다. Co-Ni-Mn계 삼원 재료 및 그 Mn계는 아직까지 고급리튬이온 2차전지에서의 코발트산리튬의 응용 수요를 대체할 수 없다. 전통적인 제조방법은 일반적으로 기계적인 혼합방식에 의해 2종의 재료를 함께 혼합시키는 것으로서, 재료를 혼합시키는 방법을 통해 원가를 낮추고 안전성을 개선하는 목적을 달성하고 있다. 예를 들면 일본의 소니에서는 LiCoO2와 LiMn2O4를 혼합시켜 과충전 안전성 및 열 안전성의 개선을 시도하였는데, 이러한 단순한 물리적 혼합방법은 종종 압축밀도가 떨어지는 등 재료성능에 영향을 주며, 그 용량도 혼합재료의 단순한 산술평균치에 지나지 않는다.Since the lithium ion battery was commercialized in 1991, the demand for the application has increased, and the energy density of the lithium ion battery has been increasing according to the market demand. Specifically, the energy density of a lithium ion battery is divided into a volume energy density and a weight energy density. What is required in the market is to simultaneously increase the volume energy density and the weight energy density. To increase the volumetric energy density of the battery under the same capacity, the unit volume of the battery active material should be increased. Lithium cobalt oxide is currently being used in large quantities as lithium cobalt oxide. It is the first matured material that has been commercialized and widely used in small-sized, low-power portable electronic products such as mobile phones, notebook computers, and digital electronic products . However, due to limited resources and higher safety requirements, finding cathode materials with low cost, low energy density, high safety, and low cobalt or cobalt content has become the direction of development of lithium cathode materials. After constant development, the Co-Ni-Mn system and its Mn system exceed the lithium cobalt oxide already in capacity and the safety is better than the lithium cobalt oxide and the cost is relatively low. However, according to the evaluation of the three-way material, the three-way material is still lower in volume energy density than lithium cobalt oxide because of low discharge potential and low compression density of pole pieces, Mn system is difficult to meet the market demand for high performance cathode materials. The Co-Ni-Mn type ternary material and its Mn system can not yet replace the application demand of lithium cobalt oxide in advanced lithium ion secondary batteries. Conventional manufacturing methods generally involve mixing two kinds of materials together by a mechanical mixing method, and achieve the purpose of lowering the cost and improving the safety through a method of mixing the materials. For example, in Sony Japan, attempts have been made to improve overcharge safety and thermal stability by mixing LiCoO 2 and LiMn 2 O 4. This simple physical mixing method often affects material performance, such as poor compression density, It is only a simple arithmetic mean of the mixed materials.

본 발명의 목적은 다결정 Co-Ni-Mn 삼원 재료, 그 제조방법, 및 리튬이온 2차전지를 제공하는 것이며, 양극재료의 체적 에너지 밀도, 안전성 및 방전 전위의 제고, 및 원가 절감을 해결하고자 하는 것을 기술 과제로 삼고 있다.An object of the present invention is to provide a polycrystalline Co-Ni-Mn three-way material, a method for producing the same, and a lithium ion secondary battery, and to solve the volume energy density, safety and discharge potential of the cathode material, It is a technical task.

본 발명은 이하의 기술 방법을 사용한다: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중 2종 이상의 베이스 결정체 구조를 가지며, 다결정 층상 구조이고, 원소 Li:Co:Ni:Mn의 몰비=1~1.2:0.4~0.7:0.2~0.5:0.1~0.3이고, 입도가 8~20미크론이며, 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C일 때 용량이 145mAh/g 이상이며, 300회 순환 용량유지율이 90% 이상인, 다결정 Co-Ni-Mn 삼원 양극재료.The present invention uses the following technique: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2, Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , Li 2 MnO 3 (where x, y, x + y <1, z? 1), and has a polycrystalline layer structure, element Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, and a particle size of 8-20 microns, and the compressed density of 3.9 ~ 4.3g / cm 3, the discharge ratio Wherein the capacity is 145 mAh / g or more at a temperature of 0.5 to 1C, and the cyclic capacity retention rate of 300 times or more is 90% or more.

다결정 Co-Ni-Mn 삼원 양극재료의 제조방법은 아래의 단계를 포함한다:The method for producing polycrystalline Co-Ni-Mn three-cathode material includes the following steps:

1. 전구체의 제조: 6~25g의 폴리에틸렌 글리콜을 리튬원소 농도가 1.0~1.2 mol/L인 LiAc, LiOH 또는 LiNO3 용액 300~500ml 중에 넣고, Co, Ni, Mn 원소의 염류 화합물의 1종 이상을 적가하여 혼합한 후, 20~60℃, 회전속도 20~120rpm의 조건하에서 120분간 교반하여, Co, Ni, Mn 원소의 총함량이 0.3~1.0mol이 되게 하며, 혼합물을 직접 박스식 로 안에 넣고, 150~250℃ 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1 xO2 , LizCoxNi1 xO2 또는 Li2MnO3(상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다;1. Preparation of Precursor: 6 to 25 g of polyethylene glycol was placed in 300 to 500 ml of LiAc, LiOH or LiNO 3 solution having a lithium element concentration of 1.0 to 1.2 mol / L, and at least one kind of salt compound of Co, Ni and Mn elements And the mixture was stirred for 120 minutes under the conditions of 20 to 60 캜 and a rotation speed of 20 to 120 rpm so that the total content of Co, Ni and Mn elements was 0.3 to 1.0 mol. Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , and Li z Co 1- (x + y) were obtained by drying and dehydrating the mixture at a temperature of 150 to 250 ° C. for 2 to 10 hours and dispersing the mixture in a ball mill at a rotation speed of 200 to 1000 rpm for 30 minutes. ) X Ni y Mn 2 O 3 , Li z Ni x Mn 1 - x O 2 , Li z Co x Ni 1 - x O 2 or Li 2 MnO 3 wherein x, y, x + y <Lt; / RTI &gt; oxide precursor;

2. 다결정 Co-Ni-Mn 삼원 양극재료의 제조는 전구체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 산화물 전구체 2종 이상을 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, 회전속도 200~1000rpm의 볼밀로 60분간 균일하게 혼합한다. 그 후 혼합물을 직접 박스식 로 안에 넣고 750~950℃의 온도하에서 5~15시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하고 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;2. Preparation of Polycrystalline Co-Ni-Mn Ternary Cathode Materials The precursory composite sintering method is used for the preparation of the polycrystalline Co-Ni-Mn ternary anode materials: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1- x O 2, Li z Co x Ni 1-x O 2, Li 2 MnO 3 for the oxide precursor two or more of Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 and 0.7: 0.2-0.5: 0.1-0.3, the mixture is homogeneously mixed for 60 minutes with a ball mill at a rotational speed of 200 to 1000 rpm. Thereafter, the mixture is directly poured into a box-type furnace, sintered at a temperature of 750 to 950 ° C for 5 to 15 hours, naturally cooled to lower the temperature to room temperature, air flow pulverization is carried out, -Mn three-anode material;

또는 중간체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 600~850℃의 온도하에서 5~15시간 초기 소결하고, Li:Co:Ni:Mn의 몰비 = 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상의 전구체 초기 소결물을 볼밀로 회전속도 500rpm에서 60분간 균일하게 혼합한후, 다시 직접 박스식 로 안에 넣어 750~980℃의 온도하에서 4~10시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 were directly put into a box furnace and sintered at a temperature of 600 to 850 ° C for 5 to 15 hours for initial sintering. The molar ratio of Li: Co: Ni: Mn = 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: according to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2, Li z The initial sintered product of two or more precursors in Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was homogeneously mixed with a ball mill at a rotation speed of 500 rpm for 60 minutes, And sintered under the temperature of 750 ~ 980 ℃ for 4 ~ 10 hours. The mixture was cooled to room temperature and the air flow was pulverized. The pressure of 0.4 ~ 1.0MPa was applied to the polycrystalline Co-Ni-Mn tri- Get;

또는 최종산물 복합 소결법을 사용한다: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 850~980℃의 온도하에서 5~10시간 소결시키고, 기류분쇄를 진행하며, 기압을 0.5MPa로 하고, 샘플 시브로 분급하여 입도 D50=8~20미크론으로 한다. 그 후 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 2종 이상을 균일하게 혼합하고, 직접 박스식 로 안에 넣고 350~850 ℃의 온도하에서 0.5~5시간 소결하고, 기류분쇄하며, 기압을 0.4~1.0MPa로 하여, 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Each of the precursors of Li z Co x Ni 1-x O 2 and Li 2 MnO 3 is put directly into a box-type furnace, sintered at a temperature of 850 to 980 ° C for 5 to 10 hours, air flow pulverization is carried out, , And classified by a sample sheave to have a particle size D50 of 8 to 20 microns. After that Li: Co: Ni: Mn molar ratio of 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: According to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 are homogeneously mixed, , Sintered at a temperature of 350 to 850 캜 for 0.5 to 5 hours, air-flow pulverized, and an air pressure of 0.4 to 1.0 MPa to obtain a polycrystalline Co-Ni-Mn triode cathode material.

본 발명의 방법에서 Co, Ni, Mn 염류 화합물은 수산기 화합물, 옥살산염 또는 탄산염이다.In the process of the present invention, the Co, Ni, Mn salt compounds are hydroxyl compounds, oxalates or carbonates.

본 발명의 방법에서 기류분쇄 후에 샘플 시브로 분급하여 입도를 D50=8~20미크론으로 제어한다.In the method of the present invention, after air flow milling, it is classified into a sample sheave to control the particle size to D50 = 8 to 20 microns.

다결정 Co-Ni-Mn 삼원 양극재료의 제조방법은 하기 단계를 포함한다:A method of making a polycrystalline Co-Ni-Mn three-cathode material comprises the following steps:

1. 전구체의 제조: Co, Ni, Mn의 1종 이상의 총함량이 0.5~1.0mol인 질산염으로 질량농도가 16%인 질산염 수용액을 제조하고, 30~80℃, 회전속도 20~120rpm 의 조건하에서 리튬 원소 함량 1.0~1.2mol, 질량농도 10~25%의 질산리튬 수용액을 점차 적가하고 60~120분간 반응시킨다. 그 후 혼합물을 직접 박스식 로 안에 넣고 150~250℃의 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1 -(x+y)NixMnyO2, LizNixMn1 -xO2, LizCoxNi1 xO2 또는 Li2MnO3(상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다;1. Preparation of Precursor: An aqueous nitrate solution having a mass concentration of 16% was prepared from nitrate having a total content of at least one of Co, Ni, and Mn of 0.5 to 1.0 mol, and the mixture was heated at 30 to 80 캜 and at a rotation speed of 20 to 120 rpm A lithium nitrate aqueous solution having a lithium element content of 1.0 to 1.2 mol and a mass concentration of 10 to 25% is gradually added dropwise and reacted for 60 to 120 minutes. Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li 2 MnO 2 , and Li z MnO 2 were obtained by directly dipping the mixture in a box type furnace at a temperature of 150 to 250 ° C. for 2 to 10 hours and dispersing the mixture in a ball mill at a rotation speed of 200 to 1000 rpm for 30 minutes. 2 , Li z Co 1 - (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1 -x O 2 , Li z Co x Ni 1 - x O 2 or Li 2 MnO 3 , x + y &lt; 1, z &gt; = 1);

2. 다결정 Co-Ni-Mn 삼원 양극재료의 제조는 전구체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 산화물 전구체 2종 이상을 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, 회전속도 200~1000rpm의 볼밀로 60분간 균일하게 혼합한다. 그 후 혼합물을 직접 박스식 로 안에 넣고 750~950℃의 온도하에서 5~15시간 소결하고 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;2. Preparation of Polycrystalline Co-Ni-Mn Ternary Cathode Materials The precursory composite sintering method is used for the preparation of the polycrystalline Co-Ni-Mn ternary anode materials: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1- x O 2, Li z Co x Ni 1-x O 2, Li 2 MnO 3 for the oxide precursor two or more of Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 and 0.7: 0.2-0.5: 0.1-0.3, the mixture is homogeneously mixed for 60 minutes with a ball mill at a rotational speed of 200 to 1000 rpm. Then, the mixture was directly put into a box type furnace, sintered at 750 to 950 ° C for 5 to 15 hours, naturally cooled to lower the temperature to room temperature, and pulverized by air flow. The pressure of the polycrystalline Co-Ni- Mn trivalent anode material;

또는 중간체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 600~850℃의 온도하에서 5~15시간 초기 소결하고, Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중 2종 이상의 전구체 초기 소결물을 볼밀로 회전속도 500rpm에서 60분간 균일하게 혼합한후, 다시 직접 박스식 로 안에 넣어 750~980℃의 온도하에서 4~10시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 were directly put into a box furnace and sintered at a temperature of 600 to 850 ° C for 5 to 15 hours for initial sintering. The molar ratio of Li: Co: Ni: Mn = 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: according to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2, Li z Two or more precursors of Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 were homogeneously mixed with a ball mill at a rotation speed of 500 rpm for 60 minutes, And sintered under the temperature of 750 ~ 980 ℃ for 4 ~ 10 hours. The mixture was cooled to room temperature and the air flow was pulverized. The pressure of 0.4 ~ 1.0MPa was applied to the polycrystalline Co-Ni-Mn tri- Get;

또는 최종산물 복합 소결법을 사용한다: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 850~980℃의 온도하에서 5~10시간 소결하고, 기류분쇄하며, 기압을 0.5MPa로 하고 샘플 시브로 분급하여 입도 D50=8~20미크론으로 한다. 그 후 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 2종 이상을 균일하게 혼합하고, 직접 박스식 로 안에 넣고 350~850 ℃의 온도하에서 0.5~5시간 소결하고, 기류분쇄하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Each of the precursors of Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was put directly into a box-type furnace, sintered at a temperature of 850 to 980 ° C for 5 to 10 hours, air-flow pulverized, Classified with a sample sheave to have a particle size D50 of 8 to 20 microns. After that Li: Co: Ni: Mn molar ratio of 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: According to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 are homogeneously mixed, And sintered at a temperature of 350 to 850 캜 for 0.5 to 5 hours and air-jet milled to obtain a polycrystalline Co-Ni-Mn three-way cathode material at an air pressure of 0.4 to 1.0 MPa.

본 발명의 방법에서 기류분쇄후 샘플 시브로 분급하여 입도를 D50=8~20미크론으로 제어한다.In the method of the present invention, after air flow pulverization, the sample sieve is classified to control the particle size to D50 = 8 to 20 microns.

양극재료를 포함하는 리튬이온 2차전지에 있어서, 상기 양극재료는 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중의 2종 이상의 베이스 결정체 구조를 가지며, 다결정 층상 구조이고, 원소 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3이고, 입도가 8~20 미크론이며, 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C 일 때 용량이 145mAh/g 이상이며, 300회 순환 용량유지율이 90% 이상인, 리튬이온 2차전지.1. A lithium ion secondary battery comprising a positive electrode material, wherein the positive electrode material comprises Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni at least two base crystal structures of x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , Li 2 MnO 3 (where x, y, x + y <1, And has a polycrystalline layer structure and a molar ratio of element Li: Co: Ni: Mn of 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, a particle size of 8 to 20 microns and a compression density of 3.9 to 4.3 g / cm &lt; 3 &gt;, a capacity of 145 mAh / g or more when the discharge magnification is 0.5 to 1C, and a cyclic capacity retention rate of 300 times or more of 90% or more.

본 발명은 종래 기술과 비교하여, 전구체를 제조하고, 고온 융합을 통해 다결정 Co-Ni-Mn 삼원 양극재료를 만들고, 각기 다른 양극재료를 하나의 총체적인 구조로 성장시켜 혼합재료의 장점을 조합하여 다결정 양극재료를 제조하며, 제조된 재료는 뛰어난 전기 화학 성능 및 보다 높은 체적 에너지밀도를 가지며, 안전성이 좋고, 재료의 원가가 낮다.Compared with the prior art, the present invention provides polycrystalline Co-Ni-Mn ternary cathode materials by producing precursors through high-temperature fusing, and by growing the different cathode materials into one overall structure, The anode material is manufactured, and the material produced has excellent electrochemical performance and a higher volume energy density, is safe, and has a low cost of materials.

도 1은 참고예 7의 엑스선 회절 스펙트럼이다.
도 2는 실시예 8의 엑스선 회절 스펙트럼이다.
도 3은 실시예 9의 엑스선 회절 스펙트럼이다.
도 4는 참고예 10의 엑스선 회절 스펙트럼이다.
도 5는 실시예 11의 엑스선 회절 스펙트럼이다.
도 6은 실시예 12의 엑스선 회절 스펙트럼이다.
도 7은 실시예 13의 엑스선 회절 스펙트럼이다.
도 8은 참고예 14의 엑스선 회절 스펙트럼이다.
도 9는 실시예 15의 엑스선 회절 스펙트럼이다.
1 is an X-ray diffraction spectrum of Reference Example 7. Fig.
2 is an X-ray diffraction spectrum of Example 8. Fig.
3 is an X-ray diffraction spectrum of Example 9. Fig.
4 is an X-ray diffraction spectrum of Reference Example 10. Fig.
5 is an X-ray diffraction spectrum of Example 11. Fig.
6 is an X-ray diffraction spectrum of Example 12. Fig.
7 is an X-ray diffraction spectrum of Example 13. Fig.
8 is an X-ray diffraction spectrum of Reference Example 14. Fig.
9 is an X-ray diffraction spectrum of Example 15. Fig.

이하에서는 첨부 도면 및 실시예를 참조하여 본 발명에 대해 더욱 상세히 설명한다. 본 발명의 다결정 Co-Ni-Mn 삼원 양극재료는 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1 xO2, LizCoxNi1 xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중의 2종 이상의 베이스 결정체 구조를 가지며, 결정체가 층상 구조이고, 입도가 8~20미크론이며, 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C일 때 300회 순환 용량유지율이 90% 이상이고, 가공 성능이 좋으며, 극편이 떨어지지 않는다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and embodiments. Poly-Co-Ni-Mn three won positive electrode material of the present invention is Li z CoO 2, Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2, Li z Ni x Mn 1 - x O 2, Li z Co x Ni 1 - x O 2, Li 2 MnO 3 ( wherein x, y, x + y <1, a z≥1) having a base crystal structure of two or more of the layered crystal is , A particle size of 8 to 20 microns, a compression density of 3.9 to 4.3 g / cm 3 , a discharge capacity of 0.5 to 1 C, a circulation capacity retention rate of 300 times or more is 90% or more, a processing performance is good, Do not.

본 발명의 다결정 Co-Ni-Mn 삼원 양극재료의 제조방법은 아래의 단계를 포함한다:A method for producing a polycrystalline Co-Ni-Mn three-way cathode material of the present invention comprises the steps of:

1. 전구체의 제조:1. Preparation of precursor:

방법 1: 6~25g의 폴리에틸렌글리콜을 리튬원소 농도가 1.0~1.2 mol/L인 LiAc, LiOH 또는 LiNO3 용액 300~500ml 중에 넣고, Co, Ni, Mn 원소의 염류 화합물의 1종 이상을 적가하여 혼합한다. 그 후 20~60℃, 회전속도 20~120rpm의 조건하에서 120분간 교반하고, Co, Ni, Mn 원소의 함량이 0.3~1.0mol이 되게 하며, 혼합물을 직접 박스식 로 안에 넣고, 150~250℃의 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2 또는 Li2MnO3(상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다. 상기 Co, Ni, Mn 염류 화합물은 수산기 화합물, 옥살산염 또는 탄산염이다.Method 1: 6 to 25 g of polyethylene glycol is placed in 300 to 500 ml of LiAc, LiOH or LiNO 3 solution having a lithium element concentration of 1.0 to 1.2 mol / L, and one or more of the salts of Co, Ni and Mn elements are added dropwise Mix. Thereafter, the mixture was stirred for 120 minutes under the conditions of 20 to 60 ° C and a rotation speed of 20 to 120 rpm to give 0.3 to 1.0 mol of Co, Ni, and Mn elements. The mixture was directly introduced into a box- by dehydration of 2-10 hours drying at a temperature, and dispersed for 30 minutes by a ball mill in the rotational speed 200 ~ 1000rpm Li z CoO 2, Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2, or an oxide precursor of Li 2 MnO 3 (where x, y, x + y <1, z? . The Co, Ni, Mn salt compounds are hydroxyl compounds, oxalates or carbonates.

방법 2: Co, Ni, Mn의 1종 이상의 총함량이 0.5~1.0mol인 질산염으로 질량농도가 16%인 질산염 수용액을 제조하고, 30~80℃, 회전속도 20~120rpm의 조건하에서 리튬 원소 함량이 1.0~1.2mol, 질량농도가 10~25%인 질산리튬 수용액을 점차 적가하고 60~120분간 반응시킨다. 그 후 혼합물을 직접 박스식 로 안에 넣고 150~250℃의 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2 또는 Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다.Method 2: An aqueous nitrate solution having a mass concentration of 16% was prepared from nitrate having a total content of Co, Ni, Mn of 0.5 to 1.0 mol, and the lithium element content was measured at 30 to 80 캜 and at a rotation speed of 20 to 120 rpm Of lithium nitrate aqueous solution having a mass concentration of 10 to 25% is gradually added dropwise and the mixture is reacted for 60 to 120 minutes. Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li 2 MnO 2 , and Li z MnO 2 were obtained by directly dipping the mixture in a box type furnace at a temperature of 150 to 250 ° C. for 2 to 10 hours and dispersing the mixture in a ball mill at a rotation speed of 200 to 1000 rpm for 30 minutes. 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 or Li 2 MnO 3 , x + y &lt; 1, z? 1).

2. 다결정 Co-Ni-Mn 삼원 양극재료의 제조:2. Preparation of Polycrystalline Co-Ni-Mn Ternary Cathode Material:

방법 1: 전구체 복합 소결법: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 산화물 전구체 2종 이상을 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, 회전속도 200~1000rpm의 볼밀로 60분간 균일하게 혼합한다. 그 후 혼합물을 직접 박스식 로 안에 넣고, 750~950℃의 온도하에서 5~15시간 소결시키고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하고, 샘플 시브로 분급을 진행하여 입도를 D50=8~20미크론으로 제어함으로써 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.Method 1: Precursor composite sintering method: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Two or more kinds of oxide precursors of Co x Ni 1-x O 2 and Li 2 MnO 3 with a molar ratio of Li: Co: Ni: Mn = 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, The mixture is homogeneously mixed with a ball mill at 200 to 1000 rpm for 60 minutes. Thereafter, the mixture is directly introduced into a box-type furnace, sintered at a temperature of 750 to 950 ° C for 5 to 15 hours, naturally cooled to lower the temperature to room temperature, air flow pulverization is carried out, the air pressure is set to 0.4 to 1.0 MPa, And the particle size is controlled to D50 = 8 to 20 microns to obtain a polycrystalline Co-Ni-Mn triode cathode material.

방법 2: 중간체 복합 소결법: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 600~850℃의 온도하에서 5~15시간 초기 소결하고, Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상의 전구체 초기 소결물을 볼밀로 회전속도 500rpm에서 60분간 균일하게 혼합한 후, 다시 직접 박스식 로 안에 넣어 750~980℃의 온도하에서 4~10시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하고, 샘플 시브로 분급하여 입도를 D50=8~20미크론으로 제어함으로써 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.Method 2: Intermediate composite sintering: Li z CoO 2, Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 were directly placed in a box-type furnace and sintered at a temperature of 600 to 850 ° C for 5 to 15 hours to prepare a precursor. Li / Co: Ni: Mn molar ratio = 1 Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni 2 O 3 , The initial sintered product of two or more precursors in x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 was homogeneously mixed with a ball mill at a rotation speed of 500 rpm for 60 minutes, And sintered under a temperature of 750 to 980 캜 for 4 to 10 hours, air cooling was carried out by lowering the temperature to room temperature and the air flow was pulverized. The air pressure was adjusted to 0.4 to 1.0 MPa and classified by a sample sheave to obtain a particle size D50 = 8 To 20 microns to obtain a polycrystalline Co-Ni-Mn three-electrode material.

방법 3: 최종산물 복합 소결법: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 850~980℃의 온도하에서 5~10시간 소결하고, 기류분쇄를 진행하며, 기압을 0.5MPa로 하고, 샘플 시브로 분급하여 입도를 D50=8~20미크론으로 한다. 그 후 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상을 균일하게 혼합하고, 직접 박스식 로 안에 넣고 350~850 ℃의 온도하에서 0.5~5시간 소결하고 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하고 샘플 시브로 분급하여 입도를 D50=8~20미크론으로 제어함으로써 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.Method 3: final product composite sintering method: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 were directly put into a box-type furnace, sintered at a temperature of 850 to 980 ° C for 5 to 10 hours, air flow pulverization was carried out, And classified with a sample sheave to have a particle size of D50 = 8 to 20 microns. After that Li: Co: Ni: Mn molar ratio of 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: According to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 are uniformly mixed, And sintered under the temperature of 350 to 850 ° C for 0.5 to 5 hours and air flow pulverization was carried out. The pressure was adjusted to 0.4 to 1.0 MPa and classified with a sample sheave to control the particle size to D50 = 8 to 20 microns to obtain polycrystalline Co-Ni- Mn trivalent anode material is obtained.

본 발명에 사용되는 탈수 및 건조 설비: 이싱시전금로업설비유한공사의 KSF1100-V형 박스식 로를 사용한다. 분쇄 설비: 렌윈강춘룡실험의기공사의 SHQM형 쌍성 볼밀기를 사용한다. 기류분쇄: 이싱취능분쇄설비공사의 MX-50기류분쇄기를 사용한다. 분급 설비: 씬썅통일기계설비유한공사의 TY-200A형 표준검사 샘플 시브를 사용한다. 사용 분석 기기: 일본전자의 JSM6360 주사전자현미경, 일본 리가꾸의 D/max-2200pc XRD 방사선 회절장치, 쭈하이OMKE의 LS602 레이저 입도 분석기, 강철연구소의 FZS4-4B형 탭 밀도 측정기, Pioneer2002 표면측정기 등으로 본 발명의 방법에 의해 제조되는 다결정 Co-Ni-Mn 삼원 양극재료에 대한 테스트 및 분석을 진행한다.Dewatering and drying equipment used in the present invention: KSF1100-V type box furnace of Eising Co., Ltd. is used. Crushing facility: SHQM-type twin ball mill of Lyeong River Experiment technician is used. Air flow milling: Use an MX-50 air flow mill of the crushing equipment construction work. Classification facility: We use TY-200A standard inspection sample sheave of Scene Unification Machinery Equipment Co., Ltd. Analysis Instrument: JSM6360 Scanning Electron Microscope of Japan Electronics, D / max-2200pc XRD Radiation Diffraction Device of Japan Rigaku, LS602 Laser Particle Size Analyzer of Kuhn Hi-OMKE, FZS4-4B Type Tap Density Meter of Steel Research Institute, Pioneer2002 Surface Meter etc. , A polycrystalline Co-Ni-Mn ternary cathode material prepared by the method of the present invention is tested and analyzed.

본 발명의 리튬이온 2차전지는 양극, 음극, 비수전해질, 격막 및 용기로 구성된다. 양극은 양극 컬렉터 및 양극 컬렉터 위에 도포되는 양극 활성물질로 구성되는데, 양극 활성물질은 LizCoO2, LizNiO2, LizMnO2, LizCo1 -(x+y)NixMnyO2, LizNixMn1 -xO2, LizCoxNi1 xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중의 2종 이상의 베이스 결정체 구조를 가지며, 결정체는 층상 구조이고, 금속 원소 Li:Co:Ni:Mn의 몰비는 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3이고, 다결정 Co-Ni-Mn 삼원 양극재료의 입도는 8~20미크론이며, 상기 양극재료의 압축밀도는 3.9g/cm3 이상이다. 음극은 음극 컬렉터 및 음극 컬렉터 위에 도포되는 음극 활성물질으로 구성된다. 격막은 단순한 고체 절연층 또는 전도성을 가지는 고체 상태의 물질로서 양극과 음극을 서로 갈라 놓는 역할을 한다. 용기는 양극, 음극, 격막, 전해질의 수용체이다.The lithium ion secondary battery of the present invention is composed of a positive electrode, a negative electrode, a nonaqueous electrolyte, a diaphragm, and a container. The positive electrode is composed of a positive electrode active material coated on the positive electrode collector and the positive electrode collector. The positive electrode active material includes Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1 - (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1 -x O 2, Li z Co x Ni 1 - of two or more of the x O 2, Li 2 MnO 3 ( wherein x, y, x + y < 1, a z≥1) base Wherein the molar ratio of the metal element Li: Co: Ni: Mn is 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, and the crystalline of the polycrystalline Co-Ni-Mn tri- The particle size is 8 to 20 microns, the compression density of the cathode material is 3.9 g / cm &lt; 3 &gt; Or more. The cathode is composed of a cathode collector and a cathode active material coated on the cathode collector. The diaphragm acts as a simple solid insulation layer or a conductive solid material separating the anode and the cathode. The container is a positive electrode, a negative electrode, a diaphragm, and a receptor for an electrolyte.

본 발명에 의해 제조되는 다결정 Co-Ni-Mn 삼원 양극재료로 리튬이온 2차전지 시험체를 제조한다. 양극 제조: 본 발명의 다결정 Co-Ni-Mn 삼원 양극재료, 양극재료 질량비 3%를 차지하는 전도성 카본 블랙 및 질량비 3%를 차지하는 접착제 PVDF를 혼합하고, 혼합재료를 질량비 1:1의 비율로 N-메틸피롤리돈 중에 넣어 균일하게 교반하여 슬러리로 만들어 알루미늄 호일 컬렉터 위에 도포하고, 건조 및 압축하여 극편을 만든다. 음극 제조: 음극 활성재료 메조카본 마이크로비즈 (MCMB; mesocarbon microbeads), 음극 활성재료 질량비 2%를 차지하는 전도제 S-P 및 질량비 10%를 차지하는 접착제 PVDF를 혼합하고, 혼합재료를 질량비 1:1의 비율로 N-메틸피롤리돈 중에 넣어 균일하게 교반하여 슬러리로 만들어 동 호일 컬렉터 위에 도포하고, 건조 및 압축하여 극편을 만든다. 격막은 PP 재료로 만들어지며, 용기는 절연층을 가지는 알루미늄 케이싱과 리드 인출 구멍이 뚫려진 전지 뚜껑으로 구성된다. 압축 후의 양극과 음극편을 리드위에 스폿 용접하고 격막을 집어 넣은 후, 와인더 상에서 감은 후 알루미늄 케이싱에 넣고 리드를 전지뚜껑으로부터 인출한 후 접착제로 리드 인출 구멍을 밀봉한다. 알루미늄 케이싱과 전지뚜껑을 함께 용접하여 밀봉한다. 상대습도가 1.5% 이하인 환경하에서 전해액을 주입하고, 전해액은 질량비 EC:DEC:DMC = 1:1:1의 혼합용제를 사용하며, 전해질은 1M의 6불화인산리튬을 사용하고, 액체를 주입한 후 즉시 밀봉한다. 전지의 모델은 4각형의 053048이다.A lithium ion secondary battery test body is manufactured from the polycrystalline Co-Ni-Mn three-electrode cathode material produced by the present invention. Preparation of positive electrode: The polycrystalline Co-Ni-Mn three-cathode material of the present invention, the conductive carbon black which occupies 3% of the cathode material mass ratio and the PVDF adhesive of 3% Methyl pyrrolidone and uniformly stirred to prepare a slurry, which is then applied on an aluminum foil collector, dried and compressed to make extreme pieces. Negative Electrode Material: Negative Electrode Material Mesocarbon microbeads (MCMB), an active material SP, a conductive agent SP that occupies 2% of the active material mass, and PVDF, which occupies 10% of the mass ratio, are mixed and mixed at a ratio of 1: 1 N-methylpyrrolidone and uniformly stirred to form a slurry, which is then applied on a copper foil collector, dried and compressed to make extreme pieces. The diaphragm is made of PP material, and the container consists of an aluminum casing with an insulating layer and a battery lid in which a lead withdrawal hole is drilled. The positive electrode and negative electrode pieces after compression are spot-welded on the lead, the diaphragm is wound, wound on a winder, placed in an aluminum casing, the lead is drawn out from the battery lid, and the lead drawing hole is sealed with an adhesive. Aluminum casing and battery lid are welded together and sealed. The electrolytic solution is injected under an environment having a relative humidity of 1.5% or less. A mixed solvent of EC: DEC: DMC = 1: 1: 1 in mass ratio is used as the electrolyte. Lithium hexafluorophosphate of 1M is used as the electrolyte. Then seal immediately. The model of the battery is hexagon 053048.

음극 활성재료는 리튬이온이 그 중에 삽입 및 탈출이 가능한 탄소계와 비 탄소계 물질일 수 있다. 예를 들면 Li4Ti5O12, 비결정상의 주석산화물, WO2, MoO2, TiS2 및 리튬이온의 삽입 탈출이 가능한 탄소계 물질을 사용할 수도 있다. 탄소계 물질에는 그라파이트, 무방향성 그라파이트, 코크스, 탄소섬유, 구형 탄소, 수지형 소결탄소, 기상성장 탄소 및 카본나노튜브 등이 포괄된다. 상기 특정된 탄소섬유 또는 구형 탄소를 함유하는 음극은 높은 충전효율을 나타내기 때문에, 중간상의 아스팔트기 탄소섬유 또는 중간상 아스팔트기 구형 탄소를 탄소계 활성물질로 사용하는 것이 특히 바람직하다. 중간상 아스팔트기 탄소섬유 또는 중간상 아스팔트기 구형 탄소는 널리 알려진 방법에 의해 얻어진다. 비수전해질은 리튬을 함유하는 금속 리튬염 LiPF6을 전해질로 하여 에틸렌 카보네이트 또는 디메틸 카보네이트의 비수용제 중에 용해함으로써 얻어진다. 격막은 상기 비수용제에 용해되지 않는 폴리에틸렌 또는 폴리프로필렌 수지로 만들어진 다공막일 수 있으며, 또한 비수전해질 용액의 가소화 중합재료로부터 얻어지는 겔 전해질을 함유하는 유형의 고체 전해질을 사용할 수도 있다. 격막은 합성수지 부직포, 폴리에틸렌 다공막 또는 폴리프로필렌 다공막 등으로 만들 수도 있다.The negative electrode active material may be a carbon-based or non-carbon-based material capable of intercalating and deintercalating lithium ions therein. For example, Li 4 Ti 5 O 12 , amorphous tin oxide, WO 2 , MoO 2 , TiS 2, and a carbon-based material capable of intercalating and deintercalating lithium ions. The carbon-based material includes graphite, non-oriented graphite, coke, carbon fiber, spherical carbon, resin-type sintered carbon, vapor grown carbon and carbon nanotubes. Since the negative electrode containing the specified carbon fiber or spherical carbon exhibits a high charging efficiency, it is particularly preferable to use intermediate-phase asphalt-base carbon fibers or intermediate-phase asphalt-base spherical carbon as the carbon-based active material. Intermediate Asphaltic Carbon Fibers or Intermediate Asphaltic Spherical Carbones are obtained by well known methods. The non-aqueous electrolyte is obtained by dissolving lithium metal lithium salt LiPF 6 containing lithium as an electrolyte in a non-aqueous agent of ethylene carbonate or dimethyl carbonate. The diaphragm may be a porous film made of polyethylene or polypropylene resin that does not dissolve in the non-aqueous agent, and a solid electrolyte of the type containing a gel electrolyte obtained from a plasticized polymer material of a non-aqueous electrolyte solution may also be used. The diaphragm may be made of a synthetic resin nonwoven fabric, a polyethylene porous membrane, or a polypropylene porous membrane.

본 발명에 의해 제조되는 리튬이온 2차전지 시험체의 충방전테스트는 GB/T 18287-2000의 테스트 방법에 따라, 광저우칭텐실업공사의 BS-9360형 전지검사박스 안에서 진행된다. 극편의 단위체적 용량발휘는 그람용량발휘가 같은 양극재료에 있어서, 극편의 압축밀도가 크면 클 수록 단위체적 극편 상의 활성물질이 많다는 것을 설명하고, 따라서 단위체적이 발휘할 수 있는 용량도 크다는 것을 설명한다. 계산식: 극편압축밀도(g/cm3)×초기용량(mAh/g).The charge / discharge test of the lithium ion secondary battery test body manufactured according to the present invention is carried out in the test box of BS-9360 type battery of Guangzhou Qing Teng Industrial Co., Ltd. according to the test method of GB / T 18287-2000. It is explained that the larger the compression density of the pole piece is, the more active material is on the pole piece and the larger the capacity that the unit piece can exert in the positive electrode material in which the pole piece exhibits the unit volume capacity. Calculated: Extraction Compression Density (g / cm 3 ) x Initial Capacity (mAh / g).

1. 전구체의 실시예:1. Examples of precursors:

<실시예 1>&Lt; Example 1 >

6g의 폴리에틸렌 글리콜을 1.00mol/L 농도의 LiAc 용액 300ml에 넣은 다음 탄산코발트 40g을 넣고 균일하게 혼합하여 코발트 함량이 0.3mol이 되게 하고, 20℃, 회전속도 120rpm 조건하에서 120분간 교반한다. 혼합물을 150℃ 온도하에서 2시간 건조 탈수하고, 회전속도 1000rpm의 볼밀로 30분간 분산시킴으로써 LiCoO2 전구체를 얻는다.6 g of polyethylene glycol was placed in 300 ml of a LiAc solution having a concentration of 1.00 mol / L and 40 g of cobalt carbonate was added thereto. The resulting mixture was homogeneously mixed to give a cobalt content of 0.3 mol and stirred at 20 DEG C for 120 minutes at a rotation speed of 120 rpm. The mixture was dried and dehydrated at a temperature of 150 ° C for 2 hours and dispersed in a ball mill at a rotation speed of 1000 rpm for 30 minutes to obtain LiCoO 2 Obtain a precursor.

<실시예 2>&Lt; Example 2 >

25g의 폴리에틸렌 글리콜을 1.20mol/L 농도의 LiNO3 용액 500ml에 넣고 균일하게 교반한 다음, 사전에 혼합해 둔 탄산코발트 21g, 탄산니켈 21g, 탄산망간 22g을 넣어, 코발트 함량이 0.16mol, 니켈 함량이 0.16mol, 망간 함량이 0.16mol이 되게 하고, 60℃, 회전속도 20rpm 조건하에서 120분간 교반한다. 혼합물을 250℃ 온도하에서 10시간 건조 탈수하고, 회전속도 200rpm의 볼밀로 30분간 분산시킴으로써 LiCo1/3Ni1/3Mn1/3O2 전구체를 얻는다.25 g of polyethylene glycol was added to 500 ml of a LiNO 3 solution having a concentration of 1.20 mol / L and uniformly stirred. Then, 21 g of cobalt carbonate, 21 g of nickel carbonate and 22 g of manganese carbonate previously mixed were added to obtain a cobalt content of 0.16 mol and a nickel content And the content of manganese is 0.16 mol, and the mixture is stirred for 120 minutes under the conditions of 60 DEG C and a rotation speed of 20 rpm. The mixture is dried and dehydrated at a temperature of 250 占 폚 for 10 hours and dispersed for 30 minutes in a ball mill at a rotation speed of 200 rpm to obtain a LiCo 1/3 Ni 1/3 Mn 1/3 O 2 precursor.

<실시예 3>&Lt; Example 3 >

20g의 폴리에틸렌 글리콜을 1.10mol/L농도의 LiOH 용액 500ml에 넣고 균일하게 교반한 다음, 사전에 혼합해둔 탄산코발트 13g, 탄산니켈 25g, 탄산망간 26g을 넣어, 코발트 함량이 0.1mol, 니켈 함량이 0.2mol, 망간 함량이 0.2mol이 되게 하고, 40℃, 회전속도 50rpm 조건하에서 120분간 교반한다. 혼합물을 200℃ 온도하에서 6시간 건조 탈수시켜, 회전속도 600rpm의 볼밀로 30분간 분산시킴으로써 LiCo1/5Ni2/5Mn2/5O2 전구체를 얻는다.20 g of polyethylene glycol was placed in 500 ml of a LiOH solution having a concentration of 1.10 mol / L and uniformly stirred. Then, 13 g of previously mixed cobalt carbonate, 25 g of nickel carbonate and 26 g of manganese carbonate were added to obtain a cobalt content of 0.1 mol and a nickel content of 0.2 mol, and manganese content of 0.2 mol, and the mixture was stirred at 40 캜 for 120 minutes under a condition of a rotational speed of 50 rpm. The mixture is dried and dehydrated at a temperature of 200 캜 for 6 hours and dispersed for 30 minutes at a ball mill at a rotation speed of 600 rpm to obtain a LiCo 1/5 Ni 2/5 Mn 2/5 O 2 precursor.

<실시예 4><Example 4>

Co 함량 0.2mol인 Co(NO3)2·6H2O, Ni 함량 0.5mol인 Ni(NO3)2·6H2O, Mn 함량이 0.3mol인 (50%)Mn(NO3)2 용액을 물 1000g에 넣고 용해시켜 질량농도가 16%가 되게 하고, 30℃의 온도를 유지하고 회전속도 20rpm로 교반하면서 리튬함량 1.2mol, 질량농도 15%의 질산리튬 수용액을 점차 적가하고, 60분간 반응시킨다. 반응물을 직접 박스식 로 안에 넣어 150℃ 온도하에서 10시간 건조 탈수하고, 회전속도 1000rpm의 볼밀로 30분간 분산시킴으로써 LiCo2 /10Ni5 /10Mn3 /10O2 전구체를 얻는다.Co (NO 3 ) 2揃 6H 2 O having a Co content of 0.2 mol, Ni (NO 3 ) 2 .6H 2 O having a Ni content of 0.5 mol, Mn (NO 3 ) 2 solution having a Mn content of 0.3 mol And dissolved in 1000 g of water to give a mass concentration of 16%. While maintaining the temperature at 30 캜 and stirring at a rotation speed of 20 rpm, a lithium nitrate aqueous solution having a lithium content of 1.2 mol and a mass concentration of 15% is gradually added dropwise and reacted for 60 minutes . 10 hours drying under 150 ℃ temperature and put in the reaction is directly the expression dewatering box and, by 30 minutes with a ball mill dispersion of the rotation speed 1000rpm LiCo 2/10 Ni 5/ 10 Mn 3/10 O 2 Obtain a precursor.

<실시예 5>&Lt; Example 5 >

Co 함량 0.1mol인 Co(NO3)2·6H2O, Ni 함량 0.2mol인 Ni(NO3)2·6H2O, Mn 함량 0.2mol인 (50%)Mn(NO3)2 용액을 물 580g에 넣고 용해시켜 질량농도가 16%가 되게 하고 30℃의 온도를 유지하고 회전속도 20rpm로 교반하면서 리튬함량 1.0mol, 질량농도 15%의 질산리튬 수용액을 점차 적가하고, 60분간 반응시킨다. 반응물을 직접 박스식 로 안에 넣어 200℃ 온도하에서 6시간 건조 탈수하고, 회전속도 1000rpm의 볼밀로 30분간 분산시킴으로써 LiCo1 /5Ni2 /5Mn2 /5O2 전구체를 얻는다.(50%) Mn (NO 3 ) 2 solution containing 0.1 mol of Co (NO 3 ) 2 .6H 2 O, 0.2 mol of Ni (NO 3 ) 2 .6H 2 O and Mn content of 0.2 mol) Dissolved in 580 g of distilled water to make a mass concentration of 16%, while keeping the temperature at 30 캜 and stirring at a rotation speed of 20 rpm, a lithium nitrate aqueous solution having a lithium content of 1.0 mol and a mass concentration of 15% is gradually added dropwise and reacted for 60 minutes. For 6 hours and dried under 200 ℃ temperature and put in the box directly to dehydration reaction formula, and by 30 minutes with a ball mill dispersion of the rotation speed 1000rpm to obtain a LiCo 1/5 Ni 2/5 Mn 2/5 O 2 precursor.

<실시예 6>&Lt; Example 6 >

Co 함량 0.2mol인 Co(NO3)2·6H2O, Ni 함량 0.2mol인 Ni(NO3)2·6H2O, Mn 함량이 0.2mol인 (50%)Mn(NO3)2 용액을 물 610g에 넣고 용해시켜 질량농도가 16%가 되게 하고, 30℃의 온도를 유지하고 회전속도 20rpm로 교반하면서 리튬함량 1.1mol, 질량농도 15%의 질산리튬 수용액을 점차 적가하고 60분간 반응시킨다. 반응물을 직접 박스식 로 안에 넣어 250℃ 온도하에서 3시간 건조 탈수하고 회전속도 1000rpm의 볼밀로 30분간 분산시킴으로써 LiCo1 /3Ni1 /3Mn1 /3O2 전구체를 얻는다.(50%) Mn (NO 3 ) 2 solution containing 0.2 mol of Co (NO 3 ) 2 · 6H 2 O, 0.2 mol of Ni (NO 3 ) 2 · 6H 2 O and 0.2 mol of Mn) Dissolved in 610 g of water to give a mass concentration of 16%, and while stirring at a rotational speed of 20 rpm at a temperature of 30 캜, a lithium nitrate aqueous solution having a lithium content of 1.1 mol and a mass concentration of 15% was gradually added dropwise and reacted for 60 minutes. 3 hours drying under 250 ℃ temperature and put in the reaction is directly the expression dewatering box and, by dispersing with a ball mill for 30 minutes to obtain a rotation speed 1000rpm LiCo 1/3 Ni 1/3 Mn 1/3 O 2 precursor.

2. 다결정 복합재료의 제조2. Fabrication of polycrystalline composites

전구체 복합 소결법의 참고예 7, 실시예 8-9의 프로세스 파라미터는 표 1에 나타내고, 전지성능 테스트는 표 4에 나타낸다.The process parameters of Reference Example 7 and Example 8-9 of the precursor complex sintering method are shown in Table 1, and the battery performance test is shown in Table 4.

도 1에 도시된 바와 같이, 참고예 7의 결정체 조성: LiCoO2, LiCo1/3Ni1/3Mn1/3O2이다.As shown in FIG. 1, the crystal composition of Reference Example 7 is LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

도 2에 도시된 바와 같이, 실시예 8의 결정체 조성: LiCoO2, LiCo2/10Ni5/10Mn3/10O2이다.As shown in FIG. 2, the crystal composition of Example 8 is LiCoO 2 , LiCo 2/10 Ni 5/10 Mn 3/10 O 2 .

도 3에 도시된 바와 같이, 실시예 9의 결정체 조성: LiCoO2, LiCo2/10Ni5/10Mn3/10O2, LiCo1 /3Ni1 /3Mn1 /3O2이다.The composition of the crystals 3, the Example 9 is LiCoO 2, LiCo 2/10 Ni 5/10 Mn 3/10 O 2, LiCo 1/3 Ni 1/3 Mn 1/3 O 2.

중간체 복합 소결법의 참고예 10, 실시예 11-12의 프로세스 파라미터는 표 2에 나타내고, 전지성능 테스트는 표 4에 나타낸다.The process parameters of Reference Example 10 and Examples 11 to 12 of the intermediate composite sintering method are shown in Table 2, and the battery performance test is shown in Table 4.

도 4에 도시된 바와 같이, 참고예 10의 결정체 조성: LiCoO2, LiCo1/3Ni1/3Mn1/3O2이다.As shown in FIG. 4, the crystal composition of Reference Example 10 is LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .

도 5에 도시된 바와 같이, 실시예 11의 결정체 조성: LiCoO2, LiCo2/10Ni5/10Mn3/10O2이다.As shown in FIG. 5, the crystal composition of Example 11 is LiCoO 2 , LiCo 2/10 Ni 5/10 Mn 3/10 O 2 .

도 6에 도시된 바와 같이, 실시예 12의 결정체 조성: LiCoO2, LiCo1/5Ni2/5Mn2/5O2, LiCo2 /10Ni5 /10Mn3 /10O2이다.The composition of the crystals in Example 12. As shown in Figure 6: LiCoO 2, LiCo 1/5 Ni 2/5 Mn 2/5 O 2, LiCo 2/10 Ni 5/10 Mn 3/10 O 2.

최종산물 복합 소결법의 실시예 13, 참고예 14, 실시예 15의 프로세스 파라미터는 표 3에 나타내고, 전지성능 테스트는 표 4에 나타낸다.The process parameters of Example 13, Reference Example 14 and Example 15 of the final product composite sintering method are shown in Table 3, and the battery performance test is shown in Table 4.

도 7에 도시된 바와 같이, 실시예 13의 결정체 조성: LiCoO2, LiCo1/5Ni2/5Mn2/5O2, LiCo2 /10Ni5 /10Mn3 /10O2 , LiCo1 /3Ni1 /3Mn1 /3O2이다.The composition of the crystals in Example 13. As shown in Figure 7: LiCoO 2, LiCo 1/5 Ni 2/5 Mn 2/5 O 2, LiCo 2/10 Ni 5/10 Mn 3/10 O 2, LiCo 1 / a 3 Ni 1/3 Mn 1/ 3 O 2.

도 8에 도시된 바와 같이, 참고예 14의 결정체 조성: LiCoO2, LiCo2/10Ni5/10Mn3/10O2, LiMn2O4이다.The composition of the crystals Reference Example 14 As shown in Figure 8: LiCoO 2, LiCo 2/10 Ni 5/10 Mn 3/10 O 2, LiMn 2 O 4.

도 9에 도시된 바와 같이, 실시예 15의 결정체 조성: LiCoO2, LiCo2/10Ni5/10Mn3/10O2, LiCo1 /3Ni1 /3Mn1 /3O2이다.As shown in FIG. 9, in Example 15 the composition of the crystals: a LiCoO 2, LiCo 2/10 Ni 5/10 Mn 3/10 O 2, LiCo 1/3 Ni 1/3 Mn 1/3 O 2.

<비교예 1>&Lt; Comparative Example 1 &

시판의 썬전시진화신재료유한공사의 Co-Ni-Mn 삼원 ZH5000R을 전지 활성물질로 하여, Co-Ni-Mn의 몰비가 0.2:0.5:0.3인 053048 사각형 리튬이온 전지를 제조한다. 전지의 성능은 표 5에 나타낸다. 단위체적의 극편 용량발휘는 560.4mAh/cm3이고, 방전배율 0.5~1.0C에서 150회 순환 용량유지율은 94%이고, 300회 순환 용량유지율은 85%이다.A 053048 rectangular lithium ion battery having a Co-Ni-Mn molar ratio of 0.2: 0.5: 0.3 was prepared from Co-Ni-Mn trivalent ZH5000R of Sun Display Jinhwa New Material Co., Ltd. as a battery active material. The performance of the battery is shown in Table 5. The discharge capacity of the unit capacity is 560.4 mAh / cm 3 at a discharge magnification of 0.5 to 1.0 C, and the cyclic capacity retention ratio at 150 cycles is 94% and the cyclic capacity retention ratio at 300 cycles is 85%.

<비교예 2>&Lt; Comparative Example 2 &

시판의 썬전시진화신재료유한공사의 코발트산리튬 ZHT08을 전지 활성물질로 하여, 053048 사각형 리튬이온 전지를 제조한다. 전지의 성능은 표 5에 나타낸다. 단위체적의 극편 용량 발휘는 577.9mAh/cm3이고, 방전배율 0.5~1.0C에서, 150회 순환용량 유지율은 90%이고, 300회 순환용량 유지율은 84%이다.053048 quadrangular lithium ion battery is manufactured using lithium cobalt oxide ZHT08 of Sun Display Jinhwa New Material Co., Ltd. as a battery active material. The performance of the battery is shown in Table 5. Geukpyeon capacity exhibited in the unit volume is 577.9mAh / cm 3, and in the discharge ratio 0.5 ~ 1.0C, and capacity retention rate of 150 cycles was 90%, and 300 cycle capacity retention rate was 84%.

<비교예 3>&Lt; Comparative Example 3 &

시판의 썬전시진화신재료유한공사의 Co-Ni-Mn 삼원 ZH3000을 전지 활성물질로 하여, Co-Ni-Mn의 몰비가 1/3:1/3:1/3인 053048 사각형 리튬이온 전지를 제조한다. 전지의 성능은 표 5에 나타낸다. 단위체적의 극편 용량발휘는 480.7mAh/cm3이고, 방전배율 0.5~1.0C에서, 150회 순환 용량유지율은 95%이고, 300회 순환 용량유지율은 89%이다.Co-Ni-Mn ternary ZH3000 of commercially available Sun Display Jinhua New Materials Co., Ltd. was used as a battery active material and a 053048 rectangular lithium ion battery having a Co-Ni-Mn molar ratio of 1/3: 1/3: . The performance of the battery is shown in Table 5. The discharge capacity of the unit volume is 480.7 mAh / cm 3 at a discharge capacity of 0.5 to 1.0 C, the circulation capacity retention ratio at 150 cycles is 95%, and the circulation capacity retention ratio at 300 cycles is 89%.

상기 실험결과는 본 발명의 다결정 복합재료의 단위체적 용량발휘가 코발트산리튬과 Co-Ni-Mn 삼원 단결정 재료에 비해 우수함을 보여준다. 3.9g/cm3 이상의 압축밀도를 보증하는 조건하에서 결정체 구조 중에 니켈 함량이 비교적 높은 재료로 복합하면 에너지밀도의 제고에 유리하다.The experimental results show that the unit volume capacity of the polycrystalline composite of the present invention is superior to lithium cobalt oxide and Co-Ni-Mn ternary single crystal materials. 3.9g / cm 3 It is advantageous to increase the energy density if the material is composed of a material having a relatively high nickel content in the crystal structure.

Figure 112013110964616-pct00015
Figure 112013110964616-pct00015

Figure 112013110964616-pct00016
Figure 112013110964616-pct00016

Figure 112013110964616-pct00017
Figure 112013110964616-pct00017

Figure 112013110964616-pct00018
Figure 112013110964616-pct00018

Figure 112012023085791-pct00005
Figure 112012023085791-pct00005

Claims (7)

LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중 2종 이상의 베이스 결정체 구조를 가지고, 다결정 층상 구조이며, 원소 Li:Co:Ni:Mn의 몰비=1~1.2:0.4~0.7:0.2~0.5:0.1~0.3이고, 입도가 8~20미크론이며, 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C일 때 용량이 145mAh/g 이상이며, 300회 순환 용량유지율이 90% 이상인 것을 특징으로 하는 다결정 Co-Ni-Mn 삼원 양극재료.Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 (wherein x, y, x + y &lt; 1, z? 1), and has a polycrystalline layer structure and has a molar ratio of element Li: Co: Ni: Mn = 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, a particle size of 8 to 20 microns, a compression density of 3.9 to 4.3 g / cm 3 , a discharge capacity of 0.5 to 1 C, and a capacity of 145 mAh / g Or more and a cyclic capacity retention rate of 300 times or more is 90% or more. 하기 단계를 포함하는 다결정 Co-Ni-Mn 삼원 양극재료의 제조 방법:
1. 전구체의 제조: 6~25g의 폴리에틸렌 글리콜을 리튬원소 농도가 1.0~1.2 mol/L인 LiAc, LiOH 또는 LiNO3 용액 300~500ml 중에 넣고, Co, Ni, Mn 원소의 염류 화합물의 1종 이상을 적가하여 혼합한 후, 20~60℃, 회전속도 20~120rpm의 조건하에서 120분간 교반하고, Co, Ni, Mn 원소의 총함량이 0.3~1.0mol이 되게 하고, 혼합물을 직접 박스식 로 안에 넣고 150~250℃ 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2 또는 Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다;
2. 다결정 Co-Ni-Mn 삼원 양극재료의 제조는 전구체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 산화물 전구체 2종 이상을 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, 회전속도 200~1000rpm의 볼밀로 60분간 균일하게 혼합한 후, 혼합물을 직접 박스식 로 안에 넣고 750~950℃의 온도하에서 5~15시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;
또는 중간체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 600~850℃의 온도하에서 5~15시간 초기 소결시키고, Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상의 전구체 초기 소결물을 볼밀로 회전속도 500rpm에서 60분간 균일하게 혼합한 후, 다시 직접 박스식 로 안에 넣어 750~980℃의 온도하에서 4~10시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;
또는 최종산물 복합 소결법을 사용한다: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 850~980℃의 온도하에서 5~10시간 소결시키고, 기류분쇄하며, 기압을 0.5MPa로 하고, 샘플 시브로 분급하여 입도 D50=8~20미크론으로 한다. Li:Co:Ni:Mn의 몰비 = 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상을 균일하게 혼합하고, 직접 박스식 로 안에 넣고, 350~850 ℃의 온도하에서 0.5~5시간 소결하고 기류분쇄하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.
A method for producing a polycrystalline Co-Ni-Mn three-electrode material comprising the steps of:
1. Preparation of Precursor: 6 to 25 g of polyethylene glycol was placed in 300 to 500 ml of LiAc, LiOH or LiNO 3 solution having a lithium element concentration of 1.0 to 1.2 mol / L, and at least one kind of salt compound of Co, Ni and Mn elements And the mixture was stirred for 120 minutes under the conditions of 20 to 60 캜 and a rotation speed of 20 to 120 rpm so that the total content of the elements of Co, Ni and Mn was 0.3 to 1.0 mol, Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , and Li z Co 1- (x + y) were obtained by drying and dewatering at a temperature of 150 to 250 ° C. for 2 to 10 hours and dispersing in a ball mill at a rotation speed of 200 to 1000 rpm for 30 minutes . Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 or Li 2 MnO 3 wherein x, y, x + y < ) Oxide precursor;
2. Preparation of Polycrystalline Co-Ni-Mn Ternary Cathode Materials The precursory composite sintering method is used for the preparation of the polycrystalline Co-Ni-Mn ternary anode materials: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1- x O 2, Li z Co x Ni 1-x O 2, Li 2 MnO 3 for the oxide precursor two or more of Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 and 0.7 to 0.2: 0.5: 0.1 to 0.3, the mixture is directly put into a box type furnace and sintered at a temperature of 750 to 950 ° C for 5 to 15 hours, Air cooling to lower the temperature to room temperature to carry out the air flow pulverization and obtain a polycrystalline Co-Ni-Mn three-way cathode material at an air pressure of 0.4 to 1.0 MPa;
Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 precursors were directly put into a box type furnace and sintered at a temperature of 600 to 850 ° C for 5 to 15 hours. The molar ratio of Li: Co: Ni: Mn = 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: according to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2, Li z The initial sintered product of two or more precursors in Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was homogeneously mixed with a ball mill at a rotation speed of 500 rpm for 60 minutes, And sintered under the temperature of 750 ~ 980 ℃ for 4 ~ 10 hours. The mixture was cooled to room temperature and the air flow was pulverized. The pressure of 0.4 ~ 1.0MPa was applied to the polycrystalline Co-Ni-Mn tri- Get;
Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Each of the precursors of Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was put directly into a box-type furnace, sintered at a temperature of 850 to 980 ° C for 5 to 10 hours, air-flow pulverized, , And classified by a sample sheave to have a particle size D50 of 8 to 20 microns. Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 to 0.7: 0.2 - 0.5: According to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y ) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 are homogeneously mixed and put into a direct box type furnace , Sintered at 350 to 850 ° C for 0.5 to 5 hours, air-jet pulverized, and 0.4 to 1.0 MPa in air pressure to obtain a polycrystalline Co-Ni-Mn three-way cathode material.
제2항에 있어서, 상기 Co, Ni, Mn 염류 화합물은 수산기 화합물, 옥살산염 또는 탄산염인 것을 특징으로 하는 다결정 Co-Ni-Mn 삼원 양극재료의 제조방법.3. The method of claim 2, wherein the Co, Ni, Mn salt compound is a hydroxyl compound, an oxalate salt, or a carbonate salt. 제3항에 있어서, 상기 기류분쇄 후에 샘플 시브로 분급하여 입도를 D50 = 8~20 미크론으로 제어하는 것을 특징으로 하는 다결정 Co-Ni-Mn 삼원 양극재료의 제조방법.4. The method for producing a polycrystalline Co-Ni-Mn three-electrode material according to claim 3, wherein the air flow is classified into a sample sheave after milling to control the particle size to D50 = 8 to 20 microns. 하기 단계를 포함하는 다결정 Co-Ni-Mn 삼원 양극재료의 제조방법:
1. 전구체의 제조: Co, Ni, Mn의 1종 이상의 총함량이 0.5~1.0mol인 질산염으로 질량농도가 16%인 질산염 수용액을 제조하고, 30~80℃, 회전속도 20~120rpm 의 조건하에서 리튬 원소 함량 1.0~1.2mol, 질량농도 10~25%의 질산리튬 수용액을 점차 적가하고 60~120분간 반응시킨 후, 반응시킨 재료를 직접 박스식 로 안에 넣고 150~250℃의 온도하에서 2~10시간 건조 탈수하고, 회전속도 200~1000rpm의 볼밀로 30분간 분산시킴으로써 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2 또는 Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다)의 산화물 전구체를 얻는다;
2. 다결정 Co-Ni-Mn 삼원 양극재료의 제조는 전구체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 산화물 전구체 2종 이상을 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, 회전속도 200~1000rpm의 볼밀로 60분간 균일하게 혼합한 후, 혼합물을 직접 박스식 로 안에 넣고 750~950℃의 온도하에서 5~15시간 소결하고 자연 냉각하여 실온까지 온도를 낮추고 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;
또는 중간체 복합 소결법을 사용하거나: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 600~850℃의 온도하에서 5~15시간 초기 소결하고, Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상의 전구체 초기 소결물을 볼밀로 회전속도 500rpm에서 60분간 균일하게 혼합한 후, 다시 직접 박스식 로 안에 넣어 750~980℃의 온도하에서 4~10시간 소결하고, 자연 냉각하여 실온까지 온도를 낮추어 기류분쇄를 진행하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다;
또는 최종산물 복합 소결법을 사용한다: LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3의 전구체 각각을 직접 박스식 로 안에 넣고, 850~980℃의 온도하에서 5~10시간 소결하고, 기류분쇄하며, 기압을 0.5MPa로 하고, 샘플 시브로 분급하여 입도 D50=8~20미크론으로 한다. 그 후 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3에 따라, LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 중의 2종 이상을 균일하게 혼합하고, 직접 박스식 로 안에 넣고 350~850 ℃의 온도하에서 0.5~5시간 소결하고 기류분쇄하며, 기압을 0.4~1.0MPa로 하여 다결정 Co-Ni-Mn 삼원 양극재료를 얻는다.
A method for producing a polycrystalline Co-Ni-Mn three-electrode material comprising the steps of:
1. Preparation of Precursor: An aqueous nitrate solution having a mass concentration of 16% was prepared from nitrate having a total content of at least one of Co, Ni, and Mn of 0.5 to 1.0 mol, and the mixture was heated at 30 to 80 캜 and at a rotation speed of 20 to 120 rpm Lithium nitrate aqueous solution having a lithium element content of 1.0 to 1.2 mol and a mass concentration of 10 to 25% is gradually added dropwise and reacted for 60 to 120 minutes. Then, the reacted material is directly introduced into a box type furnace and heated at a temperature of 150 to 250 ° C. for 2 to 10 Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , and Li z Ni 2 O 3 by dispersing them for 30 minutes at a rotating speed of 200 to 1000 rpm. to obtain an oxide precursor of x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 or Li 2 MnO 3 (wherein x, y, x + y <1, z? 1);
2. Preparation of Polycrystalline Co-Ni-Mn Ternary Cathode Materials The precursory composite sintering method is used for the preparation of the polycrystalline Co-Ni-Mn ternary anode materials: Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1- x O 2, Li z Co x Ni 1-x O 2, Li 2 MnO 3 for the oxide precursor two or more of Li: Co: Ni: Mn molar ratio is 1 to 1.2: 0.4 and 0.7 to 0.2: 0.5: 0.1 to 0.3, the mixture is directly mixed in a ball mill at a rotating speed of 200 to 1000 rpm for 60 minutes, and then the mixture is directly put into a box type furnace and sintered at a temperature of 750 to 950 ° C for 5 to 15 hours. Cooled to a room temperature, subjected to air flow pulverization, and subjected to a pressure of 0.4 to 1.0 MPa to obtain a polycrystalline Co-Ni-Mn triode cathode material;
Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 were directly put into a box furnace and sintered at a temperature of 600 to 850 ° C for 5 to 15 hours for initial sintering. The molar ratio of Li: Co: Ni: Mn = 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: according to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2, Li z The initial sintered product of two or more precursors in Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was homogeneously mixed with a ball mill at a rotation speed of 500 rpm for 60 minutes, And sintered under the temperature of 750 ~ 980 ℃ for 4 ~ 10 hours. The mixture was cooled to room temperature and the air flow was pulverized. The pressure of 0.4 ~ 1.0MPa was applied to the polycrystalline Co-Ni-Mn tri- Get;
Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Each of the precursors of Li z Co x Ni 1-x O 2 and Li 2 MnO 3 was put directly into a box-type furnace, sintered at a temperature of 850 to 980 ° C for 5 to 10 hours, air-flow pulverized, , And classified by a sample sheave to have a particle size D50 of 8 to 20 microns. After that Li: Co: Ni: Mn molar ratio of 1 ~ 1.2: 0.4 to 0.7: 0.2 - 0.5: According to 0.1 ~ 0.3, Li z CoO 2 , Li z NiO 2, Li z MnO 2, Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni 1-x O 2 , and Li 2 MnO 3 are uniformly mixed, And sintered at a temperature of 350 to 850 ° C for 0.5 to 5 hours and air-jet milled to obtain a polycrystalline Co-Ni-Mn three-way cathode material at an air pressure of 0.4 to 1.0 MPa.
제5항에 있어서, 상기 기류분쇄 후에 샘플 시브로 분급하여 입도를 D50 = 8~20 미크론으로 제어하는 것을 특징으로 하는 다결정 Co-Ni-Mn 삼원 양극재료의 제조방법.The method for producing a polycrystalline Co-Ni-Mn three-electrode material according to claim 5, wherein the air flow is classified into a sample sheave after milling to control the particle size to D50 = 8 to 20 microns. 양극재료를 포함하는 리튬이온 2차전지에 있어서,
상기 양극재료는 LizCoO2, LizNiO2, LizMnO2, LizCo1-(x+y)NixMnyO2, LizNixMn1-xO2, LizCoxNi1-xO2, Li2MnO3 (상기 식에서 x, y, x+y<1, z≥1이다) 중의 2종 이상의 베이스 결정체 구조를 가지며, 다결정 층상 구조이고, 원소 Li:Co:Ni:Mn의 몰비= 1~1.2:0.4~0.7:0.2~0.5:0.1~0.3이고, 입도가 8~20 미크론이며, 압축밀도가 3.9~4.3g/cm3이고, 방전배율이 0.5~1C 일 때 용량이 145mAh/g 이상이며, 300회 순환 용량유지율이 90% 이상인 것을 특징으로 하는 리튬이온 2차전지.
1. A lithium ion secondary battery comprising a positive electrode material,
Wherein the cathode material is selected from the group consisting of Li z CoO 2 , Li z NiO 2 , Li z MnO 2 , Li z Co 1- (x + y) Ni x Mn y O 2 , Li z Ni x Mn 1-x O 2 , Li z Co x Ni (Li: Co: Ni: Mn) having two or more kinds of base crystal structure among 1-x O 2 and Li 2 MnO 3 (x, y, x + y & Mn is in the range of 1 to 1.2: 0.4 to 0.7: 0.2 to 0.5: 0.1 to 0.3, the particle size is 8 to 20 microns, the compression density is 3.9 to 4.3 g / cm 3 and the discharge magnification is 0.5 to 1C. Is 145 mAh / g or more, and the cycling capacity retention ratio of 300 times is 90% or more.
KR1020127007380A 2009-11-09 2010-10-26 Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery KR101396002B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2009101101329A CN101707252B (en) 2009-11-09 2009-11-09 Polycrystal Co-Ni-Mn ternary anode material and preparation method thereof as well as secondary lithium-ion battery
CN200910110132.9 2009-11-09
PCT/CN2010/078116 WO2011054262A1 (en) 2009-11-09 2010-10-26 Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
KR20120061910A KR20120061910A (en) 2012-06-13
KR101396002B1 true KR101396002B1 (en) 2014-05-16

Family

ID=42377458

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127007380A KR101396002B1 (en) 2009-11-09 2010-10-26 Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery

Country Status (6)

Country Link
US (1) US8834740B2 (en)
EP (1) EP2500968B1 (en)
JP (1) JP5138834B2 (en)
KR (1) KR101396002B1 (en)
CN (1) CN101707252B (en)
WO (1) WO2011054262A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707252B (en) * 2009-11-09 2012-01-25 深圳市振华新材料股份有限公司 Polycrystal Co-Ni-Mn ternary anode material and preparation method thereof as well as secondary lithium-ion battery
KR101264337B1 (en) * 2010-08-13 2013-05-14 삼성에스디아이 주식회사 Positive active material and lithium battery using it
CN102479947B (en) * 2010-11-30 2015-11-25 比亚迪股份有限公司 A kind of anode material for lithium-ion batteries and preparation method thereof and a kind of lithium ion battery
CN102074700B (en) * 2010-12-09 2013-03-27 深圳市贝特瑞新能源材料股份有限公司 Laminated ternary positive material and preparation method thereof
WO2013097186A1 (en) * 2011-12-30 2013-07-04 Robert Bosch Gmbh Lithium-metal oxide nanofarticles, preparation method and use thereof
CN102931390B (en) * 2012-05-29 2015-11-25 合肥国轩高科动力能源股份公司 A kind of lithium-rich manganese-based anode material xLi 2mnO 3-(1-x) LiMO 2preparation method
CN102881892B (en) * 2012-10-15 2015-04-08 福建师范大学 Method for preparing lithium-rich solid solution cathode material through oxidation/sintering
CN102916176B (en) * 2012-11-02 2015-06-17 多氟多(焦作)新能源科技有限公司 Microsphere laminated lithium-enriched manganese-based solid solution anode material and preparation method thereof
CN103000870B (en) * 2012-11-22 2017-05-03 中国电子科技集团公司第十八研究所 Compounding method for LizNixCoyMn (1-x-y) O2 material
CN103985855A (en) * 2013-12-16 2014-08-13 青岛乾运高科新材料股份有限公司 Preparation method of lithium battery cathode material solid solution micropowder
ES2927109T3 (en) * 2014-05-27 2022-11-02 Jiangsu Hengtron Nanotech Co Ltd Improved Lithium Metal Oxide Cathode Materials and Method of Making Them
CN104393332B (en) * 2014-11-17 2017-04-19 云南锡业集团(控股)有限责任公司 Nickel-cobalt-manganese-lithium power battery and manufacturing method thereof
CN104993123B (en) * 2015-06-02 2017-05-31 中国东方电气集团有限公司 A kind of lithium ion battery nickle cobalt lithium manganate positive electrode reverse micro emulsion assistant preparation method
KR102116005B1 (en) * 2017-12-29 2020-05-28 포항공과대학교 산학협력단 Manufacturing method of positive active material for lithium secondary battery and positive active material for lithium secondary battery
CN113594447B (en) * 2018-02-13 2023-11-10 宁德时代新能源科技股份有限公司 Ternary positive electrode material, positive electrode plate, preparation method and application
CN111801817B (en) 2018-03-02 2024-05-28 尤米科尔公司 Positive electrode material for rechargeable lithium ion batteries
JP7202393B2 (en) * 2018-03-29 2023-01-11 ユミコア Method for preparing cathode material for rechargeable lithium-ion batteries
US11271202B2 (en) 2018-08-22 2022-03-08 Samsung Sdi Co., Ltd. Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
CN109742389A (en) * 2018-12-10 2019-05-10 北方奥钛纳米技术有限公司 Positive electrode and preparation method thereof, positive plate, battery
WO2020134774A1 (en) * 2018-12-27 2020-07-02 宁德时代新能源科技股份有限公司 Anti-compression positive electrode active material and electrochemical energy storage device
CN112830525B (en) * 2019-11-22 2023-07-14 微宏动力系统(湖州)有限公司 Cathode active material and lithium ion electrochemical system including the same
CN112194201B (en) * 2020-05-08 2023-06-06 江苏载驰科技股份有限公司 Method for recycling valuable metals of waste lithium ion batteries and regenerating ternary positive electrode materials
CN114497524B (en) * 2020-10-28 2024-02-02 万华化学(四川)有限公司 Preparation method of high-compaction high-cycle ternary positive electrode and lithium secondary battery
CN113249777A (en) * 2021-04-23 2021-08-13 陕西彩虹新材料有限公司 Nanoscale single crystal ternary cathode material precursor, single crystal ternary cathode material and preparation method
KR20220169308A (en) * 2021-06-18 2022-12-27 주식회사 엘 앤 에프 Cathode Active Material for Lithium Secondary Battery
CN114597474B (en) * 2022-03-21 2024-09-13 珠海冠宇电池股份有限公司 Battery cell
CN114883555B (en) * 2022-06-09 2024-01-30 贵州高点科技有限公司 Multiphase manganese material, preparation method thereof, positive plate and secondary battery
CN115036141B (en) * 2022-07-20 2023-09-01 山东理工大学 CoNi-LDH/MXene grid-like array structure composite material and preparation method and application thereof
CN116230858B (en) * 2023-05-08 2023-07-18 宁德时代新能源科技股份有限公司 Positive pole piece, battery and electric equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110253A (en) 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
JP2006164758A (en) 2004-12-07 2006-06-22 Seimi Chem Co Ltd Positive electrode material for lithium secondary battery
US20090230349A1 (en) 2003-03-14 2009-09-17 3M Innovative Properties Company Method of producing lithium ion cathode materials

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031399A1 (en) * 2000-02-14 2001-10-18 Hyun-Sook Jung Positive active material for rechargeable lithium battery and method of preparing same
EP1391950B1 (en) * 2001-04-20 2010-08-25 GS Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US9666862B2 (en) * 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
JP2006260906A (en) * 2005-03-16 2006-09-28 Sony Corp Battery
CN1971980A (en) * 2005-11-23 2007-05-30 比亚迪股份有限公司 Anode of battery and lithium ion battery using the same and their preparation method
WO2007072759A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
CN101071859A (en) * 2007-06-07 2007-11-14 深圳市邦凯电子有限公司 Lithium cell anode active substance, anode dressing and its preparing method
JP2010541165A (en) * 2007-09-28 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Sintered cathode composition
JP2009224097A (en) * 2008-03-14 2009-10-01 Panasonic Corp Nonaqueous electrolyte secondary battery
CN101355159B (en) * 2008-09-17 2010-06-16 金瑞新材料科技股份有限公司 Method for preparing lithium ion battery anode material nickle cobalt lithium manganate
CN101369651A (en) * 2008-09-27 2009-02-18 浙江华友钴业股份有限公司 Novel method for preparing lithium ion battery anode ternary material LiCoxNiyMn2O2
CN101626080B (en) * 2008-10-17 2011-02-09 成都晶元新材料技术有限公司 Nickel-cobalt-manganese multiplex doped lithium ion battery anode material and preparation method thereof
KR20100099359A (en) * 2009-03-03 2010-09-13 대호전자(주) Lithium ion secondary cell with high charge and discharge rate capability
CN101707252B (en) * 2009-11-09 2012-01-25 深圳市振华新材料股份有限公司 Polycrystal Co-Ni-Mn ternary anode material and preparation method thereof as well as secondary lithium-ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110253A (en) 2000-09-29 2002-04-12 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
US20090230349A1 (en) 2003-03-14 2009-09-17 3M Innovative Properties Company Method of producing lithium ion cathode materials
JP2006164758A (en) 2004-12-07 2006-06-22 Seimi Chem Co Ltd Positive electrode material for lithium secondary battery

Also Published As

Publication number Publication date
CN101707252A (en) 2010-05-12
WO2011054262A1 (en) 2011-05-12
EP2500968A4 (en) 2013-04-10
US8834740B2 (en) 2014-09-16
US20120043500A1 (en) 2012-02-23
EP2500968A1 (en) 2012-09-19
CN101707252B (en) 2012-01-25
JP5138834B2 (en) 2013-02-06
KR20120061910A (en) 2012-06-13
JP2013501317A (en) 2013-01-10
EP2500968B1 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
KR101396002B1 (en) Polycrystalline cobalt-nickel-manganese ternary positive material, preparation method thereof and lithium ion secondary battery
CN102263239B (en) One kind graphene coated adulterated lithium manganate composite positive pole and preparation method thereof
Du et al. Fluorine-doped LiNi0. 5Mn1. 5O4 for 5 V cathode materials of lithium-ion battery
CN1332878C (en) Prepn process of oxygen place doped lithium ferric phosphate powder
Nie et al. Effects of precursor particle size on the performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material
CN101388451B (en) Lithium cobaltate composite positive pole material and preparation, secondary lithium ionic battery
CN103137960B (en) Anode material for lithium-ion batteries and preparation method thereof and lithium ion battery
CN103247793A (en) High-performance compound spherical positive pole material of lithium ion secondary battery and preparation method of material thereof
KR20120061909A (en) High manganese polycrystalline anode material, preparation method thereof and dynamic lithium ion battery
CN103178260A (en) Lithium manganate anode material, and preparation method and application thereof
Jia et al. The multiple effects of Al-doping on the structure and electrochemical performance of LiNi 0.5 Mn 0.5 O 2 as cathode material at high voltage
CN108511749A (en) Copper doped lithium nickelate positive electrode and preparation method thereof and lithium ion battery
CN103187566B (en) Tubular lithium-rich anode material, preparation method and application thereof
CN106099074B (en) A kind of modified fluorinated iron nano composite anode material and its preparation method and application
CN110190277A (en) A kind of anode material for lithium-ion batteries LiMnO2@C and preparation method thereof
Wu et al. Co‐Doping of Al3+ and Ti4+ and Electrochemical Properties of LiNiO2 Cathode Materials for Lithium‐Ion Batteries
CN102738455A (en) Layered lithium manganate and preparation method thereof
Hou et al. Comparative studies of tungsten and zirconium doping on single crystal cobalt-free cathode material
Peng et al. Electrochemical properties of LiMn2O4 prepared by solid-state combustion synthesis using oxalic acid as a fuel
Zhang et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 composite powders by solid state reaction
Zhang et al. Synthesis and Electrochemical Characterization of α-NaMnOi as a Cathode Material for Hybrid Na/Li-Ion Batteries
TW201533965A (en) Manufacturing synthesis method for lithium nickel manganese oxide cathode composite material
Cui et al. Electrochemical performance Ni doped spinel LiMn2O4 cathode for lithium ion batteries
KR102176647B1 (en) Manufacturing method of cathod active material for lithium rechargeable batteries, and cathod active material for lithium rechargeable batteries made by the same
Wen et al. Electrochemical performance Cr doped spinel LiMn2O4 cathode for lithium ion batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170320

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180410

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200121

Year of fee payment: 7