KR101392870B1 - Production method of bio disel using waste oil extracted from food waste - Google Patents
Production method of bio disel using waste oil extracted from food waste Download PDFInfo
- Publication number
- KR101392870B1 KR101392870B1 KR1020120133352A KR20120133352A KR101392870B1 KR 101392870 B1 KR101392870 B1 KR 101392870B1 KR 1020120133352 A KR1020120133352 A KR 1020120133352A KR 20120133352 A KR20120133352 A KR 20120133352A KR 101392870 B1 KR101392870 B1 KR 101392870B1
- Authority
- KR
- South Korea
- Prior art keywords
- waste
- waste oil
- biodiesel
- food waste
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/08—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/02—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
본 발명은 음식물 쓰레기에서 추출한 폐유성분을 이용한 바이오 디젤 생산 방법에 관한 것으로서, 보다 상세하게는 음식물 폐유에서 악취를 제거하고 1차 지방산 에스테르와 2차 지방산 에스테르를 제조한 후 증류 및 정제하여 바이오 디젤을 제조하는 폐유로부터 악취가 제거된 연료용 바이오 디젤의 제조방법에 관한 것이다.
The present invention relates to a method for producing biodiesel using waste oil components extracted from food wastes. More particularly, the present invention relates to a method for producing biodiesel using waste oil components extracted from food waste, The present invention relates to a method for producing biodiesel for fuel in which odor is removed from waste oil to be produced.
최근 수년 간에 걸쳐 유가가 급변할 뿐만 아니라 고유가가 고착화된 상황 속에서 화석 연료의 고갈 문제가 대두되고 있다. 그리고 지구 온난화에 따른 온실가스감축과 기후변화협약 등 화석 연료로 인한 환경 문제에 대한 전 세계적인 논의가 계속되고 있다. 이러한 문제들에 대한 대응 방안의 하나로 신재생 에너지의 확대 보급과 관련 기술 확보에 범국가적인 노력을 기울이고 있는데, 특히 석유 자원을 대체할 수 있는 대체에너지의 개발의 중요성이 증대하고 있다.In recent years, oil prices have changed drastically, and oil prices have become stagnant, resulting in the problem of depletion of fossil fuels. There is a continuing global debate on environmental issues caused by fossil fuels, such as greenhouse gas reductions due to global warming and the Convention on Climate Change. As a countermeasure against these problems, we are making national efforts to expand new renewable energy and acquire related technologies. In particular, the development of alternative energy that can replace petroleum resources is becoming increasingly important.
석유나 석탄과 같은 화석 연료를 대체할 수 있는 에너지원으로서 여러 가지가 고려되고 있다. 예를 들어, 친환경적인 풍력과 조력을 이용한 에너지 또는 태양열 발전이나 수력 발전, 그리고 원자력 에너지 등이 있다. 하지만, 이들 각각의 에너지원들은 화석 연료를 대체하기에는 일정한 한계가 있다. 보다 구체적으로, 수력 발전의 경우에 댐 건설에 다른 환경 문제가 발생할 수 있으며 규모를 증가시키는 것이 한계가 있다. 원자력 발전의 경우에는 방사선 쓰레기의 처리 및 보관 문제와 안전성 측면에서 주민들의 동의를 받기 어려워 보급 확대에 제동이 걸리고 있다. 또한, 풍력이나 조력, 태양력 발전 등의 경우에는 천연 에너지로서 환경오염이 거의 없다는 점에서 미래 에너지로 각광을 받고 있지만, 아직까지는 생산되는 에너지의 크기가 작을 뿐만 아니라 자연 현상에 따라서 에너지의 수급이 불안정하다는 단점이 있다.There are many factors considered as energy sources that can replace fossil fuels such as petroleum and coal. For example, there are eco-friendly wind and tidal energy or solar power, hydropower, and nuclear energy. However, each of these energy sources has certain limitations to replace fossil fuels. More specifically, in the case of hydroelectric power generation, there may be other environmental problems in dam construction, and there is a limit to increase the scale. In the case of nuclear power generation, it is difficult to obtain the consent of the residents in terms of treatment and storage of radiation garbage and safety. In addition, in the case of wind power, tidal power, and solar power generation, natural energy is rarely polluted by the environment. However, since the energy generated is still small, the supply of energy is unstable There is a drawback.
한편, 석유 자원의 상당 부분은 수송 분야에서 사용되고 있어서, 석유를 대체할만한 다른 에너지원이나 새로운 에너지를 사용하는 동력 수단의 보편적 보급은 미래를 위해 절실히 필요하다. 이를 위해서는 자동차 엔진 등과 같은 동력 수단의 동력원으로서 고출력을 얻을 수 있어야 할 뿐만 아니라 석유와 같이 경제성도 보장되어야 한다. 전술한 대체 에너지 자원들은 이러한 측면에서 일정한 한계가 있으며, 이로 인하여 최근에는 바이오 에너지를 개발하는데 많은 투자가 집중되고 있다. 특히, 최근에는 식물성 기름을 이용하여 디젤 엔진에 사용하는 경유를 대체할 수 있는 소위 '바이오 디젤'이라는 에너지에 대한 관심이 증대되고 있는데, 경제성 측면에서 높은 가격을 유지하고 있는 석유 자원을 대체할 수 있는 것으로 평가를 받고 있다.On the other hand, a significant portion of petroleum resources are used in transport, so the universal diffusion of alternative energy sources or alternative power sources that use new energy is urgently needed for the future. To this end, it should not only be able to obtain high power as a power source for power tools such as automobile engines, but also economically as well as oil. The above-mentioned alternative energy resources have certain limitations in this respect, and as a result, much investment has been focused on the development of bioenergy in recent years. In recent years, there has been a growing interest in the so-called 'biodiesel', which can replace diesel used in diesel engines, by using vegetable oil. In view of economical efficiency, It is evaluated as having.
바이오 디젤은 콩기름, 유채기름, 폐식물기름 따위의 식물성 기름을 원료로 하여 만든 무공해 연료이다. 바이오 디젤은 식물유(트리글리세라이드)가 염기 촉매하에서 메탄올로 트랜스에스테르화되면서 만들어지는 지방산 메틸에스테르로서, 현재 디젤 자동차의 경유에 혼합해서 사용하거나 또는 100% 순수 연료로 사용되고 있으며, 자동차 등과 같은 수송 장치의 연료 이외에 난방 연료용으로도 개발되어 있다.Biodiesel is a non-polluting fuel made from vegetable oil, such as soybean oil, rapeseed oil and waste plant oil. Biodiesel is a fatty acid methyl ester produced by transesterification of vegetable oil (triglyceride) into methanol under base catalysis. It is currently used as a diesel fuel for diesel vehicles or as a 100% pure fuel. In addition to fuel, it has also been developed for heating fuel.
이러한 바이오 디젤은 기후변화협약에 대처하고 또한 고유가 시대의 대안으로서 관심이 높아지고 있다. 바이오 디젤은 일산화탄소, 질소산화물, 미세먼지, 이산화탄소의 배출량을 감축시킬 수 있는 에너지이다. 바이오 디젤의 사용에 의해 생성되는 이산화탄소는 바이오매스 생산과정에서 식물의 광합성 작용으로 회수되므로 순배출량이 대단히 적고, 산성비의 주범인 황산화물이 전혀 배출되지 않으며, 함산소연료(산소 10% 이상 함유)이므로 발암물질인 입자상 물질이나 CO, HC 등 디젤 엔진의 유해 배출 가스를 크게 절감할 수 있다. 또한, 벤젠 등을 배출하지 않아서 독성이 적고, 생분해도가 높아서 유출시 환경오염이 적다. 또한, 세탄가가 경유보다 높아서 압축착화엔진에 그대로 적용이 가능하다. 그리고 경유에 소량 혼합(BD20)하여 사용할 경우에는 기존 엔진의 개조가 거의 불필요하고 출력이나 연비 변화도 거의 문제시 되지 않는다.Such biodiesel is responding to climate change agreements, and is also attracting attention as an alternative to high oil prices. Biodiesel is energy that can reduce emissions of carbon monoxide, nitrogen oxides, fine dust, and carbon dioxide. Since the carbon dioxide produced by the use of biodiesel is recovered by the photosynthesis of the plant during the biomass production process, the net emissions are very small, the sulfuric acid which is the main cause of the acid rain is not discharged at all, the oxygen fuel (containing more than 10% Therefore, it is possible to greatly reduce particulate matter as a carcinogenic substance and harmful exhaust gas of diesel engine such as CO and HC. Also, it does not emit benzene, so its toxicity is low, and its biodegradability is high. Further, since the cetane number is higher than the light oil, it can be directly applied to the compression ignition engine. In addition, when a small amount of fuel (BD20) is used in diesel, it is almost unnecessary to modify the existing engine and the output and the fuel consumption change are hardly problematic.
그런데, 이러한 바이오 디젤의 제조에 사용되는 원료는 대부분 옥수수, 콩, 유채꽃, 야자 등과 같은 곡물을 사용하고 있다. 따라서 바이오 디젤의 생산량이 증가하면 이들 곡물에 대한 수요 증가로 이어져 곡물 가격이 급등할 수 있으며, 동일한 원료를 이용하는 전통적 식품 산업과 축산업을 위협할 것으로 전망된다. 또한, 대체 원료로 폐식용유를 포함하여 다양한 식물 자원을 검토하고 있으나, 식물 자원의 대부분은 95% 이상 중국과 남미등으로부터 수입을 하는 것에 의존해야 하는 실정이다. 따라서 이들 바이오 디젤의 원료 공급을 해결하기 위해서는 안정적인 동일한 범용 생산 공정을 통하여 일정한 품질의 원료를 지속적으로 대량 공급할 수 있는 것이 절실하게 필요하다.
However, most of the raw materials used for the production of such biodiesel use grains such as corn, soybean, rape flower, and palm. Therefore, as the production of biodiesel increases, the demand for these grains will increase, leading to a surge in grain prices and threatening the traditional food industry and livestock industry using the same raw materials. In addition, although various plant resources including waste cooking oil are being considered as an alternative raw material, most of the plant resources have to rely on importing from more than 95% of China and South America. Therefore, in order to solve the supply of raw materials of these biodiesel, it is desperately needed to continuously supply raw materials of constant quality through the same general-purpose production process which is stable.
또한, 최근 들어 우리나라의 쓰레기 발생량은 하루에 약 24,000 톤으로 증가 추세에 있으며, 이러한 쓰레기를 처리하는데 다양한 방법이 알려지고 있다. 특히, 쓰레기 중에서 유기물 쓰레기는 쓰레기 총 중량에서 16.7%를 차지하며 이 쓰레기 내에 함수율이 70% 정도로 부패가 이루어지기 쉽고 악취가 심하게 나기 때문에 유기물 쓰레기의 처리에 대한 문제가 심각하게 대두 되고 있다.Recently, the amount of garbage generated in Korea has increased to 24,000 tons per day. Various methods for treating such garbage have been known. In particular, the organic waste in the trash accounts for 16.7% of the total weight of the trash, and the water content of the trash is about 70%, which is likely to cause corruption and bad smell.
또한, 유기물 쓰레기에는 수분뿐만 아니라 탄수화물, 폐유, 단백질, 셀루로오스와 같은 유폐유성 성분이 대량으로 함유되어 있어서 기름 성분의 침출수를 처리하는데 어려움을 겪고 있다.In addition, organic wastes contain not only water but also hydrocarbon components such as carbohydrates, waste oils, proteins, celluloses, and the like, and thus it is difficult to treat the leachate of the oil component.
이러한 유기물 쓰레기의 처리는 가장 일반적인 방법으로 매립을 통해 처리하고 있으나, 이 방법은 유기물 쓰레기의 반출량이 많아짐에 따라 충분한 매립지를 확보해야 하는 문제가 있으며, 특히 매립지 내에서 유기물 쓰레기로부터 발생된 침출수가 주변 지역뿐만 아니라 지하수를 오염시키게 되었다.However, in this method, there is a problem that a sufficient landfill must be secured as the amount of organic waste discharged increases. In particular, when the leachate generated from the organic waste in the landfill is surrounded As well as the area, groundwater was polluted.
최근에 개발되고 있는 유기물 쓰레기 처리 방법 중의 하나로는 건조시켜 함수율을 낮춘 탄화처리 하는 방법이있다. 그러나 이러한 건조 방법은 유기물 쓰레기의 함수율이 높기 때문에 물을 증발시키기 위해 많은 기화열을 필요로 하게 되어 경제적으로 불합리하다고 판단되었다.One of the recently developed methods for treating organic wastes is drying and carbonization treatment with a lower water content. However, this drying method is considered to be economically unreasonable because it requires a large amount of vaporizing heat to evaporate water because the water content of the organic waste is high.
이러한 점들을 극복하고 환경오염을 감소시키면서, 발전을 지속하는 친환경적인 기술들로 환경오염 물질 사용량 저감화 기술이나 쓰레기 재처리에 의한 오염물질 감소에 대한 투자가 많이 이루어지고 있다.Environmentally friendly technologies that overcome these problems and reduce environmental pollution, while continuing to develop, are investing heavily in technology to reduce environmental pollutant use and in pollutant reduction through waste reprocessing.
아울러, 친환경 산업 중에서 쓰레기 재처리에 관한 기술은 재처리를 통해 오염물질을 감소시키면서 재처리 관련 부산물로 생산되는 열, 메탄과 같은 가스를 생산하여 이를 활용하는 기술들이 개발되고 있다.In addition, technologies related to refuse disposal in eco-friendly industries are being developed to reduce the pollutants through reprocessing and to produce and utilize such gases as heat and methane produced as a byproduct of reprocessing.
이러한 기술들은 주로 유채, 콩 등의 기름을 분리하여 이용해 왔는데 이는 농작물의 가격 상승에 의해 단가가 올라가고 있으며, 쓰레기 중에서 폐유를 이용하는 방법들도 존재하나 종래의 기술들은 생산 방법의 단순화, 경제성 등의 제한으로 쓰레기 중의 폐유를 분리하지 않고 폐유 함량이 매우 높은 쓰레기에 한정되어 사용되어 왔다.These technologies have mainly used oils such as rapeseed and soybeans, which are increasing in price due to the increase in the price of crops. There are also methods of using waste oil in the waste, but the conventional techniques are limited in terms of simplification of production methods and economical efficiency Has not been used for separation of waste oil in waste, and has been used only for waste having a very high waste oil content.
쓰레기 처리 방법으로 제안되고 있는 친환경 폐유 분리 방법의 장점과 더불어 회수되는 폐유의 종류에 상관없이 회수된 폐유를 보다 효율적으로 사용하기 위한 방법에 대한 연구가 필요한 실정이다.
It is necessary to study the method of using the recovered waste oil more efficiently regardless of the kind of recovered waste oil as well as the advantage of the environmentally friendly waste oil separation method proposed as a waste disposal method.
이에, 본 발명자들은 음식물 쓰레기에서 얻어진 폐유 성분을 기질로 하여 바이오 디젤을 생산하는 것을 확인하여, 바이오 에너지 생산과, 효율적인 음식물 쓰레기의 재활용을 위한 응용 방법을 제공할 수 있음을 밝힘으로써 본 발명을 완성하였다.
The present inventors have confirmed that biodiesel can be produced using waste oil components obtained from food waste as a substrate and can provide an application method for bio-energy production and efficient recycling of food waste, thereby completing the present invention Respectively.
본 발명의 목적은 음식물 쓰레기의 폐유 성분을 기질로 하여 바이오 디젤로의 화학적 변환이 가능한 지질을 생산하는 공정을 이용한 유기서 쓰레기로부터 바이오 디젤을 제조하는 방법을 제공하는데 있다.
An object of the present invention is to provide a method for producing biodiesel from organic waste using a process for producing lipid capable of chemical conversion into biodiesel using waste oil component of food waste as a substrate.
상기 목적을 달성하기 위하여, 본 발명은 (a) 음식물 폐유에 수소화붕소나트륨(소디윰브로하이드라이드, NaBH4) 또는 동유를 첨가하고 추가적으로 황산을 첨가하여 악취를 제거하는 단계; (b) 단계 a) 후, 메탄올과 산 촉매를 추가로 첨부하여 1차 지방산 에스테르를 제조한 후, 침전물을 제거하는 단계; (c) 단계 b) 후, 알칼리 촉매를 첨가하여 2차 지방산 에스테르를 제조하는 단계; 및 (d) 단계 c) 후, 증류 및 정제하여 바이오 디젤을 제조하는 단계;를 포함하는 폐유로부터 악취가 제거된 연료용 바이오 디젤의 제조방법을 제공한다.
(A) adding sodium borohydride (sodium dibromide hydrate, NaBH 4 ) or syngas to the food waste oil and further adding sulfuric acid to remove odor; (b) after step (a), further adding methanol and an acid catalyst to prepare a first fatty acid ester, and then removing the precipitate; (c) after step b), adding an alkali catalyst to prepare a secondary fatty acid ester; And (d) preparing biodiesel by distillation and purification after step (c), wherein odor is removed from the waste oil.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 (a) 음식물 폐유에 수소화붕소나트륨(소디윰브로하이드라이드, NaBH4) 또는 동유를 첨가하고 추가적으로 황산을 첨가하여 악취를 제거하는 단계; (b) 단계 a) 후, 메탄올과 산 촉매를 추가로 첨부하여 1차 지방산 에스테르를 제조한 후, 침전물을 제거하는 단계; (c) 단계 b) 후, 알칼리 촉매를 첨가하여 2차 지방산 에스테르를 제조하는 단계; 및 (d) 단계 c) 후, 증류 및 정제하여 바이오 디젤을 제조하는 단계;를 포함하는 폐유로부터 악취가 제거된 연료용 바이오 디젤의 제조방법을 제공한다.(A) adding sodium borohydride (sodydipine hydrochloride, NaBH 4 ) or syngas to a food waste oil and additionally adding sulfuric acid to remove odor; (b) after step (a), further adding methanol and an acid catalyst to prepare a first fatty acid ester, and then removing the precipitate; (c) after step b), adding an alkali catalyst to prepare a secondary fatty acid ester; And (d) preparing biodiesel by distillation and purification after step (c), wherein odor is removed from the waste oil.
본 발명의 연료용 바이오 디젤의 제조방법에 있어서, 상기 음식물 폐유 100 중량부를 기준으로 수소화붕소나트륨은 0.3~3 중량부이고, 황산은 0.2~1.0 중량부인 것이 바람직하고, 상기 a) 단계는 40~80℃에서 수행되는 것이 바람직하며, 상기 바이오 디젤은 경유대용으로 사용되는 것이 바람직하다.In the method for producing biodiesel for fuel according to the present invention, it is preferable that 0.3 to 3 parts by weight of sodium borohydride and 0.2 to 1.0 parts by weight of sulfuric acid are used based on 100 parts by weight of the food waste oil, 80 < 0 > C, and the biodiesel is preferably used as a substitute for light oil.
본 발명의 연료용 바이오 디젤의 제조 방법에 있어서, 폐유 성분의 분리는 유기물 쓰레기를 분쇄기로 분쇄한 후 협잡물을 분리하는 과정으로 얻을 수 있다.In the method for producing biodiesel for fuel according to the present invention, the separation of the waste oil component can be obtained by grinding the organic waste with a crusher and then separating the contaminants.
우리나라는 자원이 없기에 폐유(후두, 음식물유)를 고도의 정제기술을 통해서 유용한 연료로 사용하는 것으로써 냄새를 없애기 위해 수소(H2)로 환원함에 있어서 소디움브로하이드라이드(sodium borohydride, NaBH4) 및 황산을 소량 첨가하므로 반응을 촉진하여 냄새 물질 등 분순물을 제거한다. 아울러, 메탄올을 2 몰(mol)이상 가하고 황산 촉매를 가하여 80℃에서 에스테르화하여 바이오 디젤을 제조한다. 상기 바이오 디젤은 증류하여 자동차 경유로 사용하거나 경유 대용으로 보일러 연료유로 사용한다. 이때 미량의 냄새물은 연소됨으로써 소멸된다.
In Korea, sodium borohydride (NaBH 4 ) is used as a reducing agent to hydrogen (H 2 ) in order to eliminate smell by using waste oil (larynx, food oil) And sulfuric acid are added in a small amount to accelerate the reaction to remove impurities and other impurities. In addition, methanol is added in an amount of at least 2 mol, and a sulfuric acid catalyst is added thereto, followed by esterification at 80 DEG C to produce biodiesel. The biodiesel is distilled and used as fuel for automobiles or as boiler fuel oil for diesel. At this time, a small amount of odorous substance is burned out and is destroyed.
본 발명의 연료용 바이오 디젤의 제조방법의 크게 다음과 같은 2단계로 구성된다.The method for producing biodiesel for fuel according to the present invention generally comprises the following two steps.
제 1단계 : 악취 제거 단계Stage 1: Deodorization Stage
음식물 쓰레기 폐유에 0.3~2%의 NaBH4을 가하고 40~80℃에서 황산 0.2~0.6% 를 가하여 30분간 반응을 한다. 반응을 중지하고 정치하여 침전물을 빼 제거한다.
0.3 ~ 2% of NaBH 4 is added to the garbage waste oil and 0.2 ~ 0.6% of sulfuric acid is added at 40 ~ 80 ℃ for 30 minutes. The reaction is stopped, and the precipitate is removed by standing.
제 2단계 : 바이오 디젤의 제조단계Step 2: Preparation of biodiesel
상기 탈취물을 알콜 2~5 몰(mol)을 가하여 3시간 반응을 하고 정치하여 찌꺼기를 빼고 NaOH로 중화하고, 촉매로 NaOH 0.3~1%를 가하고 역시 80℃에서 1~2시간 반응을 하여 찌꺼기를 빼고 과량의 알콜(CH3OH)과 물을 날리고 증류하여서 바이오 디젤을 제조한다.
The deodorized product was reacted with 2 to 5 mol of alcohol for 3 hours and allowed to stand to neutralize with NaOH, adding 0.3 to 1% of NaOH as a catalyst and reacting at 80 ° C for 1 to 2 hours to remove debris (CH 3 OH) and water are distilled off to prepare biodiesel.
상기와 같이 구성되는 본 발명은 음식물 쓰레기에서 추출한 폐유 성분을 기질로 하여 바이오 에너지 생산 방법에 관한 것으로, 생산된 폐유성분을 활용하여 폐자원화 기술의 활용성을 크게 증진시키는 효과가 있다. 아울러, 음식물 쓰레기의 재활용하여 응용함으로써 쓰레기 감소에 따른 환경보호와 바이오 소재의 생산에 따른 대체 소재 이용을 통해 우수한 경제적 효과를 가져올 수 있다.
The present invention, which is constructed as described above, relates to a method for producing bioenergy using a waste oil component extracted from food waste as a substrate, and has an effect of greatly improving the utilization of waste resource recovery technology by utilizing the produced waste oil component. In addition, by applying recycled food wastes, it is possible to obtain excellent economic effects through environmental protection due to the reduction of waste and use of alternative materials for production of biomaterials.
도 1은 음식물 쓰레기 폐유로부터 바이오 디젤을 생산하는 개략도를 나타낸 것이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for producing biodiesel from waste food waste; FIG.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It will be apparent to those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
<실시예 1> 폐유의 에스테르화 1Example 1: Esterification of waste oil 1
<1-1> 1차 폐유산 에스테르의 제조<1-1> Preparation of primary waste acid ester
음식물쓰레기를 가정에서 흔히 사용하는 믹서기로 파쇄한 후, 용매를 투입하여 폐유를 분리하였다. 분리된 폐유 550 g에 소디윰브로하이드라이드(NaBH4)을 소량에 물에 녹여 40℃에 10분 반응하다가 황산 2.5 g을 넣고 (H2So4) 1.5 g을 가하고 30분간 반응한 후 정치하여 찌꺼기를 제거한 후 여기에 알콜(CH3OH) 2 mol 114 g을 넣고 촉매 황산 2.8 g을 넣고 80℃에서 5시간을 반응한 이후 alcohol과 수분을 제거한 후 침전시켜 찌꺼기를 제거하였다.
The food waste was crushed by a mixer commonly used in the home, and the waste oil was separated by introducing a solvent. Sodium dihydrobromide (NaBH 4 ) was dissolved in water in a small amount and reacted at 40 ° C for 10 minutes. Then, 2.5 g of sulfuric acid (H 2 So 4 ) was added and the reaction was continued for 30 minutes. After removal of the residue, 114 g of 2 mol of alcohol (CH 3 OH) was added and 2.8 g of catalytic sulfuric acid was added. After reacting at 80 ° C. for 5 hours, alcohol and water were removed and precipitated to remove the residue.
<1-2> 2차 폐유산 에스테르의 제조<1-2> Preparation of Secondary Lactic Acid Esters
반제품 500 g에 알콜(CH3OH) 2 mol 114g에 촉매 잿물 2.5g 을 넣고 80℃에서 3시간 반응하여 정치 침전물감수를 빼고 150~230oC에서 증류하여 Bio Diesel 로 한다.
2.5 g of catalyst lye is added to 114 g of alcohol (CH3OH) in 500 g of semi-finished product and reacted at 80 ° C for 3 hours to remove residual precipitate. Distillation at 150 ~ 230 ° C is made into Bio Diesel.
<실시예 2> 폐유의 에스테르화 2Example 2: Esterification of waste oil 2
원료유(산가 5) 500 g에 알콜 3mol 170g 을 넣고 촉매 가성소다 3g 을 넣고 80℃에서 5시간을 반응하여 정치 침전하여 감수를 빼고 150~250oC에서 증류하여 Bio Diesel을 얻는다.
To 500 g of raw material oil (acid value 5), 170 g of alcohol is added, 3 g of catalyst caustic soda is added, and the mixture is reacted at 80 ° C for 5 hours, and the mixture is allowed to stand for political precipitation. The water is removed and the mixture is distilled at 150-250 ° C to obtain Bio Diesel.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, This is possible.
Claims (4)
(b) 단계 a) 후, 메탄올과 산 촉매를 추가로 첨부하여 1차 지방산 에스테르를 제조한 후, 침전물을 제거하는 단계;
(c) 단계 b) 후, 알칼리 촉매를 첨가하여 2차 지방산 에스테르를 제조하는 단계; 및
(d) 단계 c) 후, 상기 2차 지방산 에스테르를 증류 및 정제하여 바이오 디젤을 제조하는 단계;를 포함하는 폐유로부터 악취가 제거된 연료용 바이오 디젤의 제조방법.
(a) adding sodium borohydride (sodydipine hydrochloride, NaBH 4 ) or tung oil to the food waste oil and additionally adding sulfuric acid to remove odor;
(b) after step (a), further adding methanol and an acid catalyst to prepare a first fatty acid ester, and then removing the precipitate;
(c) after step b), adding an alkali catalyst to prepare a secondary fatty acid ester; And
and (d) after step c), distilling and purifying the secondary fatty acid ester to produce biodiesel, wherein the offensive odor is removed from the waste oil.
The method according to claim 1, wherein 0.3 to 3 parts by weight of sodium borohydride and 0.2 to 1.0 parts by weight of sulfuric acid are used based on 100 parts by weight of the food waste oil.
The method according to claim 1, wherein the step a) is carried out at 40 to 80 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120133352A KR101392870B1 (en) | 2012-11-23 | 2012-11-23 | Production method of bio disel using waste oil extracted from food waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120133352A KR101392870B1 (en) | 2012-11-23 | 2012-11-23 | Production method of bio disel using waste oil extracted from food waste |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101392870B1 true KR101392870B1 (en) | 2014-05-08 |
Family
ID=50893472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120133352A KR101392870B1 (en) | 2012-11-23 | 2012-11-23 | Production method of bio disel using waste oil extracted from food waste |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101392870B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101837697B1 (en) | 2016-10-06 | 2018-03-14 | 한국생산기술연구원 | A method for preparing fatty acid alkyl ester by a series of catalytic reactions |
US10633605B2 (en) * | 2013-03-08 | 2020-04-28 | Upm-Kymmene Corporation | Process for modifying bio-oil |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048472A1 (en) | 2007-08-15 | 2009-02-19 | Rajiv Manohar Banavali | Method for purification of glycerol from biodiesel production |
-
2012
- 2012-11-23 KR KR1020120133352A patent/KR101392870B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048472A1 (en) | 2007-08-15 | 2009-02-19 | Rajiv Manohar Banavali | Method for purification of glycerol from biodiesel production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10633605B2 (en) * | 2013-03-08 | 2020-04-28 | Upm-Kymmene Corporation | Process for modifying bio-oil |
KR101837697B1 (en) | 2016-10-06 | 2018-03-14 | 한국생산기술연구원 | A method for preparing fatty acid alkyl ester by a series of catalytic reactions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Osman et al. | Conversion of biomass to biofuels and life cycle assessment: a review | |
Rehan et al. | Waste to biodiesel: A preliminary assessment for Saudi Arabia | |
Foo et al. | The conundrum of waste cooking oil: Transforming hazard into energy | |
Moya et al. | Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using Waste-To-Energy Technologies | |
Guo et al. | Bioenergy and biofuels: History, status, and perspective | |
Jeevahan et al. | Waste into energy conversion technologies and conversion of food wastes into the potential products: a review | |
Jung et al. | A new biorefinery platform for producing (C2-5) bioalcohols through the biological/chemical hybridization process | |
Giwa et al. | Pyrolysis coupled anaerobic digestion process for food waste and recalcitrant residues: fundamentals, challenges, and considerations | |
Sentanuhady et al. | Recent progress on the implementation of renewable biodiesel fuel for automotive and power plants: raw materials perspective | |
Ali et al. | Fueling the future: biomass applications for green and sustainable energy | |
Malani et al. | Waste biorefinery based on waste carbon sources: case study of biodiesel production using carbon based catalysts and mixed feedstocks of nonedible and waste oils | |
Asaad et al. | Definition of bioenergy | |
KR101392870B1 (en) | Production method of bio disel using waste oil extracted from food waste | |
Chilakamarry et al. | Maximizing the value of biodiesel industry waste: Exploring recover, recycle, and reuse for sustainable environment | |
Mayilswamy et al. | Various Biomasses from Wastewater and Possibilities of Conversion to Energy Resources | |
Zielińska et al. | Agricultural Wastes and Their By-Products for the Energy Market | |
Economou et al. | Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source | |
Toshmamatov | Solar energy application in municipal solid waste: experience, results and efficiency | |
Kumar et al. | Solid waste to energy: existing scenario in developing and developed countries | |
KR20150005123A (en) | Heavy oil preparation method using botanic oil containing lots of free fatty acid | |
Kang et al. | Fossil fuels versus biofuels: Perspectives on greenhouse gas emissions, energy consumptions, and projections | |
Lopresto | Sustainable biodiesel production from waste cooking oils for energetically independent small communities: an overview | |
Amesho et al. | Technologies to convert waste to bio-oil, biochar, and biogas | |
Asaad et al. | Applications of bioenergy | |
Chegenizadeh et al. | The significant role of waste to energy on decarbonization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170419 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180221 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190219 Year of fee payment: 6 |