KR101390665B1 - 농도기울기 생성 미세유체 장치 및 그 제조방법 - Google Patents

농도기울기 생성 미세유체 장치 및 그 제조방법 Download PDF

Info

Publication number
KR101390665B1
KR101390665B1 KR1020120108006A KR20120108006A KR101390665B1 KR 101390665 B1 KR101390665 B1 KR 101390665B1 KR 1020120108006 A KR1020120108006 A KR 1020120108006A KR 20120108006 A KR20120108006 A KR 20120108006A KR 101390665 B1 KR101390665 B1 KR 101390665B1
Authority
KR
South Korea
Prior art keywords
gradient
polymer mold
glass substrate
boundary
concentration
Prior art date
Application number
KR1020120108006A
Other languages
English (en)
Other versions
KR20140041079A (ko
Inventor
김태성
김민석
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to KR1020120108006A priority Critical patent/KR101390665B1/ko
Publication of KR20140041079A publication Critical patent/KR20140041079A/ko
Application granted granted Critical
Publication of KR101390665B1 publication Critical patent/KR101390665B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 농도기울기 생성 미세유체 장치 및 그 제조방법에 관한 것으로, 더욱 상세하게는 (a)내부에는 서로 일정한 간격으로 이격된 복수의 채널이 형성되고, 상기 채널들의 경계를 이루는 경계벽체에는 상기 채널보다 높이가 낮은 상통공간이 형성되는 폴리머몰드를 준비하는 단계와, (b)상기 (a)단계에 의해 준비된 폴리머몰드에 글라스기판을 산소플라즈마로 본딩하는 단계와, (c)상기 (b)단계에 의해 글라스기판이 본딩된 폴리머몰드를 가열하는 단계와, (d)상기 폴리머몰드의 경계벽체들과 글라스기판의 사이 상통공간을 따라 표면장력에 의해 채워지는 아가로스(agarose)용액을 주입하는 단계와, (e)상기 (d)단계에 의해 경계벽체의 상통공간을 따라 아가로스(agarose)용액이 채워지면, 상기 폴리머몰드를 가열을 중단한 후 상온에서 수분간 방치하여, 상기 경계벽체와 글라스기판의 사이 상통공간을 따라 채워진 아가로스(agarose)용액이 무수한 나노 공극을 지닌 하이드로젤로 변환되어 나노공극멤브레인을 완성하는 단계가 포함되어, 확산에 의해 화학물질의 전달을 가능케 하고, 반면 높은 유체저항 때문에 벌크 유동을 막아주는 역할을 하는 나노공극멤브레인과 미세유체채널을 조합가능하고, 누수나 화학물질의 손실이 없이 나노공극멤브레인과 미세유체장치에 조립하는 기술과 그 기술을 이용하여 선형적 농도기울기뿐만 아니라 비선형적 농도기울기를 생성할 수 있고, 미생물의 양주화성 반응과 관련된 화학물질의 주요 농도 조건들을 편리하게 동시 측정할 수 있으며, 미생물의 양주화성 반응에 필요한 화학물질의 선형 또는 비선형 농도 기울기의 선택이 편리하고, 화학물질의 투입 농도를 조절하는 것에 의해 원하는 선형 농도기울기를 용이하게 조절할 수 있는 농도기울기 생성 미세유체 장치 및 그 제조방법을 제공한다.

Description

농도기울기 생성 미세유체 장치 및 그 제조방법{Concentration gradient generating microfluidic device and method of manufacturing the same}
본 발명은 농도기울기 생성 미세유체 장치에 관한 것으로, 더욱 상세하게는 다단의 높이를 갖는 복수의 채널을 구성하되, 상기 복수의 채널들의 경계를 이루는 경계벽체에 상기 채널들이 서로 횡방향으로 상통할 수 있는 상통공간을 형성하고, 상기 상통공간에 무수한 나노 공극을 갖는 나노공극멤브레인(하이드로젤)이 형성되어, 선형 또는 비선형의 농도기울기를 이용한 미생물의 양주화성 실험을 수행할 수 있는 농도기울기 생성 미세유체 장치 및 그 제조방법에 관한 것이다.
일반적으로 미세유체 장치(Microfluidics device)는 마이크로미터 길이를 갖는 다양한 미생물의 운동특성을 연구하는데 매우 유용하게 사용되어 왔다.
이때 이동성을 갖는 미생물의 경우, 주변의 화학물질의 농도차에 자극을 받아 농도가 높은 쪽으로 이동하는 양주화성의 특성을 보인다.
이러한 미생물의 양주화성을 이용한다면 미생물의 운동특성(운동 방향, 운동 속도)을 제어할 수 있다.
따라서 상기한 특성을 이용한 미세유체 장치는 생물과 환경 간의 상호작용, 미생물의 집적, 포식활동, 동종/이종 간의 상호작용 등 여러 분야에 걸쳐 그 응용이 가능하다.
특히 기존의 매크로한 기계장치에 비해 미세유체장치는 농도기울기 생성에 있어 그 분해 능력이 뛰어나고, 비교적 적은 양의 세포와 화학물질을 요구할 뿐만 아니라 농도기울기의 능동적인 제어가 가능하여, 생화학에 전반에 걸쳐 광범위한 연구가 수행되고 있다.
상기한 종래의 미세유체장치를 살펴보면 공개특허 제10-2012-0044012호(2012.05.07)에서는 내부에 유체가 채워져 있고, 마이크로채널의 일측 챔버로 투입된 화학물질이 상기 마이크로채널의 길이방향을 따라 선형 농도 분포를 가지면서 타측 챔버로 확산되어 선형적인 농도 기울기를 유지하는 미세유체 장치를 제공한다.
이러한 종래의 미세유체장치는 미세유체채널을 조립하는 부분에서 유체와 화학물질의 손실, 약한 접착력 등으로 인해 장치 간의 기능 편차가 심하다는 문제점이 있다.
더욱이 대부분의 농도기울기 생성 장치들은 선형적인 기울기 생성은 가능하지만, 비선형적인 혹은 임의의 기울기를 생성 및 유지에 한계를 지닌다.
본 발명은 폴리머몰드의 경계벽체들에 의해 형성된 상통공간에는 나노 공극을 통해 입자가 이동되어 확산되는 것을 나타내도록, 상온에서 경화되어 무수한 나노 공극을 지닌 하이드로젤로 변환되는 아가로스(agarose)용액을 주입시켜 나노공극멤브레인 생성하여, 누수나 화학물질의 손실이 없이 나노공극멤브레인과 미세유체장치에 조립하는 기술과 그 기술을 이용하여 선형적 농도기울기뿐만 아니라 비선형적 농도기울기를 생성할 수 있는 농도기울기 생성 미세유체 장치 및 그 제조방법을 제공한다.
특히 본 발명은 확산에 의해 화학물질의 전달을 가능케 하고, 반면 높은 유체저항 때문에 대류 유동을 막아주는 역할을 하는 나노공극멤브레인과 미세유체채널을 조합한 농도기울기 생성 미세유체 장치를 제공한다.
본 발명의 실시 예에 따른 농도기울기 생성 미세유체 장치 제조방법은 (a)내부에는 서로 일정한 간격으로 이격된 복수의 채널이 형성되고, 상기 채널들의 경계를 이루는 경계벽체에는 상기 채널들이 서로 횡방향으로 상통하는 상통공간이 형성되는 폴리머몰드를 준비하는 단계와, (b)상기 (a)단계에 의해 준비된 폴리머몰드에 글라스기판을 산소플라즈마로 본딩하는 단계와, (c)상기 (b)단계에 의해 글라스기판이 본딩된 폴리머몰드를 가열하는 단계와, (d)상기 폴리머몰드의 경계벽체들과 글라스기판의 사이 상통공간을 따라 표면장력에 의해 채워지는 아가로스(agarose)용액을 주입하는 단계와, (e)상기 (d)단계에 의해 경계벽체의 상통공간을 따라 아가로스(agarose)용액이 채워지면, 상기 폴리머몰드를 가열을 중단한 후 상온에서 수분간 방치하여, 상기 경계벽체와 글라스기판의 사이 상통공간을 따라 채워진 아가로스(agarose)용액이 무수한 나노 공극을 지닌 하이드로젤로 변환되어 나노공극멤브레인을 완성하는 단계가 포함된다.
이때 본 발명의 실시 예에 따른 상기 (a)단계는 (a-1)실리콘웨이퍼로 된 기판의 상면에 스핀 코팅방식으로 양각형 감광액을 도포하는 단계와, (a-2)상기 (a-1)단계에 의해 감광액이 도포된 상기 기판의 상측에는 부분적으로 자외선을 투과, 노출시키는 포토마스크를 위치한 후, 감광액을 부분적으로 노광시켜, 상기 기판의 상면에 높이가 상이한 다단의 주형을 형성하는 단계와, (a-3)상기 (a-2)단계에 의해 다단으로 형성된 주형에 PDMS(Polydimethylsiloxane)의 액화 전구체를 붓고 경화시켜, 상기 다단의 주형과 상응하여 복수의 채널과 경계벽체가 형성된 폴리머몰드가 조형되어 준비되는 단계가 포함될 수 있다.
그리고 본 발명의 실시 예에 따른 상기 (a-2)단계에서 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도가 서로 다른 복수의 포토마스크를 순차대로 위치한 후 자외선을 순차대로 투과시켜, 높이가 상이한 다단의 주형을 형성할 수 있다.
또한 본 발명의 실시 예에 따른 상기 (a-2)단계에서 상기 포토마스크는 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도를 선택적으로 달리하여, 높이가 상이한 다단의 주형을 형성할 수 있다.
그리고 본 발명의 실시 예에 따른 상기 (c)단계에서는 상기 글라스기판이 본딩된 폴리머몰드를 가열할 시 상기 글라스기판이 본딩된 폴리머몰드를 고온을 유지하는 핫플레이트에 안치될 수 있다.
이때 본 발명의 실시 예에 따른 상기 핫플레이트는 50℃~60℃로 발열한다.
더불어 본 발명의 실시 예에 따른 농도기울기 생성 미세유체 장치는 화학물질이 인가되는 공급채널과, 상기 공급채널과 서로 이격되어 상기 공급채널에 인가된 화학물질이 배출되는 배출채널과, 상기 공급채널과 배출채널의 사이에 위치되고, 선형 또는 비선형으로 형성되어 기울기를 형성을 위한 테스트채널과, 상기 공급채널과 배출채널과 테스트채널들의 사이에 각각 배치되고, 상통공간이 형성되어 상기 채널들이 서로 상통되는 복수의 경계벽체가 더 형성되는 폴리머몰드와, 상기 폴리머몰드의 일면에 접합되는 글라스기판과, 상기 폴리머몰드의 경계벽체들의 상통공간을 따라 형성되고, 포함된 나노 공극을 통해 입자가 이동되어 확산되는 것을 나타내는 나노공극멤브레인이 포함된다.
본 발명에 따른 농도구배 생성 미세유체장치 및 그 제조방법은 다음과 같은 효과를 가진다.
첫째, 글라스기판이 본딩된 폴리머몰드를 50℃~60℃의 온도를 유지하는 핫플레이트에 안치하여, 상기 상통공간에 주입될 아가로스(agarose)용액이 경화되는 것을 방지함은 물론, 아가로스(agarose)용액의 표면장력에 의한 이동이 용이하도록 가열하고, 가열된 상기 폴리머몰드의 경계벽체들과 글라스기판의 사이 상통공간을 따라, 표면장력에 의해 채워지는 아가로스(agarose)용액을 주입하여, 상기 아가로스(agarose)용액이 채워지면, 상기 폴리머몰드를 상온에서 수분간 방치하여, 상기 경계벽체와 글라스기판의 사이 상통공간을 따라 채워진 아가로스(agarose)용액이 무수한 나노 공극을 지닌 하이드로젤로 변환되어 나노공극멤브레인을 완성하는 농도구배 생성 미세유체장치 제조방법을 제공하여, 상기 나노공극멤브레인을 통해 확산에 의한 화학물질의 전달을 가능케 하고, 반면 높은 유체저항 때문에 벌크 유동을 막아주는 역할을 하는 나노공극멤브레인과 미세유체채널을 조합가능하며, 누수나 화학물질의 손실이 없이 나노공극멤브레인과 미세유체장치에 조립하는 기술과 그 기술을 이용하여 선형적 농도기울기뿐만 아니라 비선형적 농도기울기를 생성할 수 있는 효과를 가진다.
둘째, 미생물의 양주화성 반응과 관련된 화학물질의 주요 농도 조건들을 편리하게 동시 측정할 수 있는 이점이 있다.
셋째, 미생물의 양주화성 반응에 필요한 화학물질의 선형 또는 비선형 농도 기울기의 선택이 편리하고, 화학물질의 투입 농도를 조절하는 것에 의해 원하는 선형 농도기울기를 용이하게 조절할 수 있다.
도 1은 본 발명에 따른 농도기울기 생성 미세유체 장치 제조방법의 실시 예를 보인 블록도이다.
도 2는 본 발명의 실시 예에 따른 (a)단계를 보다 상세하게 나타낸 블록도이다.
도 3은 본 발명의 실시 예에 따른 농도기울기 생성 미세유체 장치의 제조과정을 간략하게 보인 예시도이다.
도 4는 본 발명의 실시 예에 따라 완성된 농도기울기 생성 미세유체 장치를 보인 예시도이다.
도 5는 본 발명의 실시 예에 따라 상통공간에 나노공극멤브레인이 생성되는 과정을 보인 예시도이다.
도 6은 본 발명의 실시 예에 따라 제조된 농도기울기 생성 미세유체 장치의 프로토 타입을 보인 예시도이다.
도 7은 본 발명에 따른 시간에 따라 형성되는 농도기울기의 변화와 선형적 농도기울기의 형성에 관한 형광이미지와 정량적 결과를 보인 그래프이다.
도 8은 본 발명에 따른 Y값 위치에서 관찰한 X축 농도기울기의 편차측정에 관한 형광이미지와 정량적 결과를 보인 그래프이다.
도 9는 본 발명에 따른 공급채널과 배출채널의 농도를 일정하게 유지하면서 관찰한 테스트채널 내의 농도기울기의 변화를 나타낸 그래프이다.
도 10은 본 발명에 따른 비선형적인 농도기울기와 여러 가지 임의의 형태를 가지는 농도기울기의 형성을 증명하는 형광이미지와 정량적 결과를 나타낸 그래프이다.
도 11는 본 발명에 따른 양주화성 반응을 보이는 화학물질의 선형적인 농도기울기에서 미생물의 양주화성 반응을 나타내는 형광이미지와 정략적 결과를 나타낸 그래프이다.
도 12는 본 발명에 따른 다양한 선형 농도기울기의 크기와 비선형농도기울기의 형상에 따라 보이는 미생물의 양주화성 방응을 보인 형광이미지이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명에 따른 농도기울기 생성 미세유체 장치 제조방법의 실시 예를 보인 블록도이고, 도 2는 본 발명의 실시 예에 따른 (a)단계를 보다 상세하게 나타낸 블록도이며, 도 3은 본 발명의 실시 예에 따른 농도기울기 생성 미세유체 장치의 제조과정을 간략하게 보인 예시도이고, 도 4는 본 발명의 실시 예에 따라 완성된 농도기울기 생성 미세유체 장치를 보인 예시도이며, 도 5는 본 발명의 실시 예에 따라 상통공간에 나노공극멤브레인이 생성되는 과정을 보인 예시도이고, 도 6은 본 발명의 실시 예에 따라 제조된 농도기울기 생성 미세유체 장치의 프로토 타입을 보인 예시도이며, 도 7은 본 발명에 따른 시간에 따라 형성되는 농도기울기의 변화와 선형적 농도기울기의 형성에 관한 형광이미지와 정량적 결과를 보인 그래프이고, 도 8은 본 발명에 따른 Y값 위치에서 관찰한 X축 농도기울기의 편차측정에 관한 형광이미지와 정량적 결과를 보인 그래프이며, 도 9는 본 발명에 따른 공급채널과 배출채널의 농도를 일정하게 유지하면서 관찰한 테스트채널 내의 농도기울기의 변화를 나타낸 그래프이고, 도 10은 본 발명에 따른 비선형적인 농도기울기와 여러가지 임의의 형태를 가지는 농도기울기의 형성을 증명하는 형광이미지와 정량적 결과를 나타낸 그래프이며, 도 11는 본 발명에 따른 양주화성 반응을 보이는 화학물질의 선형적인 농도기울기에서 미생물의 양주화성 반응을 나타내는 형광이미지와 정략적 결과를 나타낸 그래프이고, 도 12는 본 발명에 따른 다양한 선형 농도기울기의 크기와 비선형농도기울기의 형상에 따라 보이는 미생물의 양주화성 방응을 보인 형광이미지이다.
본 발명은 복수의 채널들의 경계를 이루는 경계벽체에 상기 채널들이 서로 상통할 수 있는 상통공간을 형성하고, 상기 상통공간에 무수한 나노 공극을 갖는 나노공극멤브레인이 형성되어, 선형 또는 비선형의 농도기울기를 이용한 미생물의 양주화성 실험을 수행할 수 있는 농도기울기 생성 미세유체 장치 및 그 제조방법에 관한 것으로, 도면을 참조하여 실시 예를 살펴보면 다음과 같다.
(a)단계(S100)로,
도 1 및 도 3을 참조하면 내부에는 서로 일정한 간격으로 이격된 복수의 채널(110)이 형성되고, 상기 채널(110)들의 경계를 이루는 경계벽체(120)에는 상기 채널(110)들이 서로 횡방향으로 상통하는 상통공간(121)이 형성되는 폴리머몰드(100)를 준비한다.
이때 상기 폴리머몰드(100)는 포토리소그래피(Photo-lithography)기술과 소프트리소그래피(Soft-lithography) 기술을 응용하여 형성할 수 있다.
상기 복수의 채널(110)과, 상기 채널(110)들의 경계를 이루는 경계벽체(120)와, 상기 경계벽체(120)에는 상기 채널(110)들이 서로 횡방향으로 상통하는 상통공간(121)이 형성되는 폴리머몰드(100)를 준비하는데, 상기 (a)단계(S100)를 세분화한 실시 예를 도 2 및 도 3을 참조하여 보다 상세하게 살펴보면 다음과 같다.
먼저 (a-1)단계(S110)로,
실리콘웨이퍼로 된 기판(10)의 상면에 스핀 코팅방식으로 양각형 감광액(Negative PR, 자외선에 의해 고분자화가 됨.)(P)을 고르게 도포한다.
그리고 (a-2)단계(S120)로,
상기 (a-1)단계(S110)에 의해 양각형 감광액(P)이 도포된 상기 기판(10)의 상측에는 해당 패턴(노출영역)을 갖고, 상기 해당 패턴(노출영역)을 통해 부분적으로 자외선을 투과시키는 포토마스크(M)를 위치한 후, 감광액(P)을 상기 해당 패턴(노출영역)에 의해 부분적으로 노광시켜, 상기 기판(10)의 상면에 높이가 상이한 다단의 주형(20)을 형성한다.
이때 상기 감광액(P)은 자외선에 노출됨에 따라 의해 고분자화되어, 상기 기판(10)의 상면에 양각의 주형(20)으로 형성되는데, 상기 주형(20)을 다단으로 형성하기 위해, 상기 포토마스크(M)의 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도를 각각 조절한다.
상기 포토마스크(M)의 자외선 투과도를 조절하기 위해 본 발명의 실시 예에서는 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도가 서로 다른 복수의 포토마스크(M), 즉 적어도 둘 이상의 포토마스크(M)를 순차대로 위치한 후 자외선을 순차대로 투과시켜, 높이가 상이한 다단의 주형을 형성할 수 있다.
보다 상세하게는 먼저 해당 패턴(노출영역)의 자외선 투과도가 높은 포토마스크를 감광액이 도포된 상기 기판의 상부에 위치한 후 상기 해당 패턴(노출영역)을 통해 자외선을 노광시켜 높이가 높은 양각 주형이 형성되도록 선행할 수 있고, 그 후 다시 선행보다 해당 패턴(노출영역)의 자외선 투과도가 낮은 포토마스크를 감광액이 도포된 상기 기판의 상부에 위치한 후 상기 해당 패턴(노출영역)을 통해 자외선을 노광시켜, 선행보다 높이가 낮은 양각 주형이 형성되도록 후행하여 높이가 상이한 다단의 주형을 완성할 수 있다.
이때 선행 노광 후 상기 기판에 도포된 감광액을 현상 제거하고, 감광액이 제거된 상기 기판에 감광액을 재 도포한 후 후행을 실시할 수 있으며, 순서를 뒤바꿔 실시할 수도 있다.
또한 다른 실시 예로 상기 포토마스크(M)는 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도를 선택적으로 각각 달리하여, 높이가 상이한 다단의 주형을 형성할 수도 있다.
이는 상기 해당 패턴(노출영역)의 자외선 투과도를 각각 달리하여 한장의 포토마스크로 높이가 상이한 다단의 주형을 완성할 수 있다.
따라서 상기한 실시 예에 따라 상기 양각형 감광액(P)이 조사는 되는 자외선에 의해 부분적으로 상이하게 고분자화 되면서 성장하기에, 높이가 상이한 다단의 주형(20)이 제조된다.
그리고 상기 주형(20)의 다단으로 형성된 양각형태 및 크기, 그리고 양각돌기들의 사이 간격은 사용자의 요구에 따라 다양하게 변경 가능한데, 이는 포토마스크(M)의 패턴을 사용자의 요구에 맞게 변경함으로써 이루어진다.
그리고 (a-3)단계(S130)로,
상기 (a-2)단계(S120)에 의해 다단으로 형성된 주형(20)에 PDMS(Polydimethylsiloxane)의 액화 전구체를 붓고, 소정의 시간을 소비하여, 상기 액화 전구체가 고체가 되도록 경화시킨다.
따라서 상기 주형(20)의 상면에 부어진 액화 전구체가 경화되어 고체화되고, 상기 액화 전구체가 고체화됨에 따라 상기 주형(20)의 높이가 서로 상이한 양각돌기에 대응되는 복수의 채널(110)과 경계벽체(120)가 형성된 폴리머몰드(100)가 조형되어 준비가 완료된다.
상기한 (a)단계(S100)에 의해 복수의 채널(110)과 경계벽체(120)가 형성된 폴리머몰드(100)가 조형되어 준비가 완료되면, 다음 단계로 (b)단계(S200)는,
상기 (a)단계(S100)에 의해 준비된 폴리머몰드(100)에 글라스기판(200)을 본딩한다.
이때 상기 폴리머몰드(100)에 글라스기판(200)을 본딩하는 수단으로 산소플라즈마를 이용하여 본딩한다.
상기한 (b)단계(S200)에 의해 상기 폴리머몰드(100)에 글라스기판(200)이 본딩되면, 다음 단계로 (c)단계(S300)는,
상기 (b)단계(S200)에 의해 글라스기판(200)이 본딩된 폴리머몰드(100)를 가열한다.
이때 상기 글라스기판(200)이 본딩된 폴리머몰드(100)를 가열할 시 상기 글라스기판(200)이 본딩된 폴리머몰드(100)를 고온을 유지하는 핫플레이트(H)에 안치한다.
상기 핫플레이트(H)는 50℃~60℃로 발열하고, 상기 안치된 상기 글라스기판(200)이 본딩된 폴리머몰드(100)이 내부까지 고온을 유지하도록 하여, 다음 단계에서 주입될 아가로스(agarose)용액가 경화되는 것을 방지함은 물론, 아가로스(agarose)용액의 표면장력에 의한 이동이 용이하도록 하기 위함이다.
상기한 (c)단계(S300)에 의해 상기 글라스기판(200)이 본딩된 폴리머몰드(100)가 가열되면, 다음 단계로 (d)단계(S400)는,
상기 폴리머몰드(100)의 경계벽체(120)들과 글라스기판(200)의 사이 상통공간(121)을 따라 아가로스(agarose)용액을 주입하는데, 도 5를 참조하여 상기 아가로스(agarose)용액은 상기 상통공간(121)을 따라 표면장력에 의해 채워진다.
상기한 (d)단계(S400)에 의해 상기 폴리머몰드(100)의 경계벽체(120)들과 글라스기판(200)의 사이 상통공간(121)을 따라 아가로스(agarose)용액이 주입되면, 다음 단계로 (e)단계(S500)는,
상기 (d)단계(S400)에 의해 경계벽체(120)의 상통공간(121)을 따라 아가로스(agarose)용액이 채워지면, 상기 폴리머몰드(100)를 가열을 중단한다.
이때 상기 (c)단계(S300)에 의해 상기 핫플레이트(H)에 안치된 폴리머몰드(100)를 상기 핫플레이트(H)에서 이탈시키는 것으로 가열이 중단되고, 상기 핫플레이트(H)에서 이탈된 폴리머몰드(100)를 상온에서 수분간 방치하여, 상기 경계벽체(120)와 글라스기판(200)의 사이 상통공간(121)을 따라 채워진 아가로스(agarose)용액이 무수한 나노 공극을 지닌 하이드로젤로 변환되어 나노공극멤브레인(130)이 형성됨으로써 농도기울기 생성 미세유체 장치가 완성된다.
그리고 본 발명의 실시 예에 따른 농도기울기 생성 미세유체 장치는 도 4 및 도 6에 도시한 바와 같이 내부에 화학물질이 인가되는 공급채널(source channel)(110a)이 형성되고, 상기 공급채널(110a)과 서로 이격되어 상기 공급채널(110a)에 인가된 화학물질이 배출되는 배출채널(sink channel)(110b)이 형성되며, 상기 공급채널(110a)과 배출채널(110b)의 사이에 테스트채널(110c) 위치 형성되어, 선형 또는 비선형으로 형성되어 기울기를 형성한다.
또한 상기 공급채널(110a)과 배출채널(110b)과 테스트채널(test channel)(110c)들의 사이에는 경계벽체(120) 각각 배치되는데, 상기 경계벽체(120)에는 상기 채널(110a,110b,110c)들이 서로 상통되도록 하는 상통공간(121)이 형성된다.
그리고 상기 폴리머몰드(100)의 저면에는 글라스기판(200)이 접합되는데, 상기 폴리머몰드(100)의 경계벽체(120)들과 글라스기판(200)의 사이 틈에 형성되는 상기 상통공간(121)에는 나노 공극을 통해 입자가 이동되어 확산되는 것을 나타내는 나노공극멤브레인(130)이 형성되어, 농도기울기 생성 미세유체 장치가 완성된다.
상기한 본 발명에 따른 의 농도기울기 생성 미세유체 장치 사용 일 예시를 도면을 참조하여 살펴보면 다음과 같다.
도 7은 시간에 따라 선형적인 농도기울기가 형성되는 것을 형광을 띄는 분자의 확산을 통해 가시화하였다.
상기 공급채널(110a)과 배출채널(110b) 및 테스트채널(110c)을 경계하는 나노공극멤브레인(하이드로젤)(130)으로 인해 각각의 채널(110)을 통과하는 유체의 직접적인 흐름은 없고, 오직 농도 차에 의한 확산에 의해 형광분자가 전달되어 농도기울기가 형성함을 볼 수 있다.
이때 대략 20분 이내에 1.3mm에 해당하는 테스트채널(110c) 및 나노공극멤브레인(하이드로젤)(130)에 선형적인 농도가 형성되었고, 이는 1D으로 가정한 이론값과도 매우 가까운 결과를 보여준다.
이를 통해 본 농도기울기 형성이 누수와 화학물질의 손실 없이 고성능으로 작동함을 증명하였다.
도 8은 X축을 따라 형성된 선형적인 농도기울기를 여러 Y값에서 관찰한 것으로, Y값에 따라 농도기울기의 차이 없이 균일한 농도기울기가 형성됨을 확인하였고, 이는 비선형 농도기울기 형성에 필수적인 성능이다.
또한 도 9를 참조하면 나노공극을 지니고 자가 조립된 나노공극멤브레인(하이드로젤)(130)을 내부에 포함하고 있기 때문에 종래의 장치들에 비해 장시간 형성된 농도기울기의 유지가 가능하다.
도 10은 테스트채널(110c)의 형상에 따라 여러 가지 형상의 농도기울기를 형성을 조절할 수 있는데, 일 예로 도 10의 2번 라인을 따라서는 증가하는 형태의 비선형기울기가 형성되고, 도 10의 3번 라인을 따라서는 감소하는 형태의 비선형기울기가 형성될 수 있다.
이때 미생물은 테스트채널(110c)로 인가되므로, 실제 미생물은 테스트채널(110c)의 형상에 따라 선형 및 비선형 등 임의의 형상의 농도기울기 하에서 양주화성 반응을 볼 수 있다.
선형 및 비선형 농도 기울기 생성에 있어, 테스트채널(110c)의 유체는 정지되어야 하고, 공급채널(110a)과 배출채널(110b)은 일정한 유속으로 새로운 유체를 지속적으로 공급하여 농도가 항상 처음과 같이 유지한다.
도 11은 양주화성 화학물질에 해당하는 aspartic acid를 이용하여 선형농도기울기를 형성하고, 형성된 선형기울기에서 보이는 양주화성 반응으로, 화학물질의 농도가 높은 방향으로 미생물이 이동하여 고밀집함으로 확인할 수 있다.
도 12는 두 가지 기울기를 가지는 선형농도기울기 하에서 보는 미생물의 양주화성 반응의 차이를 확인하였고, 다양한 형상의 비선형 농도기울기 하에서 보이는 양주화성 반응을 관찰하였다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
H: 핫플레이트 M: 포토마스크 P: 감광액
10: 기판 20: 주형 100: 폴리머몰드
110: 채널 120: 경계벽체 121: 상통공간
130: 나노공극멤브레인

Claims (7)

  1. (a)실리콘웨이퍼로 된 기판의 상면에 스핀 코팅방식으로 양각형 감광액을 도포하는 (a-1)단계와, 상기 (a-1)단계에 의해 감광액이 도포된 상기 기판의 상측에는 부분적으로 자외선을 투과, 노출시키는 포토마스크를 위치한 후, 감광액을 부분적으로 노광시켜, 상기 기판의 상면에 높이가 상이한 다단의 주형을 형성하는 (a-2)단계와, 상기 (a-2)단계에 의해 다단으로 형성된 주형에 PDMS의 액화 전구체를 붓고 경화시켜, 상기 다단의 주형과 상응하여 복수의 채널과 경계벽체가 형성된 폴리머몰드가 조형되어 준비되는 (a-3)단계를 실시하여, 내부에는 서로 일정한 간격으로 이격된 복수의 채널이 형성되고, 상기 채널들의 경계를 이루는 경계벽체에는 상기 채널들이 서로 횡방향으로 상통하는 상통공간이 형성되는 폴리머몰드를 준비하는 단계;
    (b)상기 (a)단계에 의해 준비된 폴리머몰드에 글라스기판을 산소플라즈마로 본딩하는 단계가 포함되는 농도구배 생성 미세유체장치 제조방법에 있어서,
    (c)상기 (b)단계에 의해 글라스기판이 본딩된 폴리머몰드를 50℃~60℃의 온도를 유지하는 핫플레이트에 안치하여, 상기 상통공간에 주입될 아가로스(agarose)용액이 경화되는 것을 방지함은 물론, 아가로스(agarose)용액의 표면장력에 의한 이동이 용이하도록 가열하는 단계;
    (d)상기 (c)단계에 의해 가열된 상기 폴리머몰드의 경계벽체들과 글라스기판의 사이 상통공간을 따라, 표면장력에 의해 채워지는 아가로스(agarose)용액을 주입하는 단계; 및
    (e)상기 (d)단계에 의해 경계벽체의 상통공간을 따라 아가로스(agarose)용액이 채워지면, 상기 폴리머몰드를 상온에서 수분간 방치하여, 상기 경계벽체와 글라스기판의 사이 상통공간을 따라 채워진 아가로스(agarose)용액이 무수한 나노 공극을 지닌 하이드로젤로 변환되어 나노공극멤브레인을 완성하는 단계를 포함하는 농도구배 생성 미세유체장치 제조방법.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 (a-2)단계에서
    자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도가 서로 다른 복수의 포토마스크를 순차대로 위치한 후 자외선을 순차대로 투과시켜, 높이가 상이한 다단의 주형을 형성하는 농도구배 생성 미세유체장치 제조방법.
  4. 청구항 1에 있어서,
    상기 (a-2)단계에서
    상기 포토마스크는 자외선이 투과되는 해당 패턴(노출영역)들의 자외선 투과도를 선택적으로 달리하여, 높이가 상이한 다단의 주형을 형성하는 농도구배 생성 미세유체장치 제조방법.
  5. 삭제
  6. 삭제
  7. 화학물질이 인가되는 공급채널과, 상기 공급채널과 서로 이격되어 상기 공급채널에 인가된 화학물질이 배출되는 배출채널과, 상기 공급채널과 배출채널의 사이에 위치되고, 선형 또는 비선형으로 형성되어 기울기를 형성을 위한 테스트채널과, 상기 공급채널과 배출채널과 테스트채널들의 사이에 각각 배치되고, 상통공간이 형성되어 상기 채널들이 서로 상통되는 복수의 경계벽체;가 더 형성되는 폴리머몰드;
    상기 폴리머몰드의 일면에 접합되는 글라스기판;
    상기 폴리머몰드의 경계벽체들의 상통공간을 따라 형성되고, 포함된 나노 공극을 통해 입자가 이동되어 확산되는 것을 나타내는 나노공극멤브레인;이 포함되는 농도구배 생성 미세유체장치.
KR1020120108006A 2012-09-27 2012-09-27 농도기울기 생성 미세유체 장치 및 그 제조방법 KR101390665B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120108006A KR101390665B1 (ko) 2012-09-27 2012-09-27 농도기울기 생성 미세유체 장치 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120108006A KR101390665B1 (ko) 2012-09-27 2012-09-27 농도기울기 생성 미세유체 장치 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20140041079A KR20140041079A (ko) 2014-04-04
KR101390665B1 true KR101390665B1 (ko) 2014-04-30

Family

ID=50650974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120108006A KR101390665B1 (ko) 2012-09-27 2012-09-27 농도기울기 생성 미세유체 장치 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101390665B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689741B1 (ko) * 2014-12-23 2016-12-26 울산과학기술원 자가조립 분리막의 제조방법 및 자가조립 분리막을 이용한 미세입자 집적기
KR102272251B1 (ko) * 2019-05-02 2021-07-02 재단법인 오송첨단의료산업진흥재단 다중 분석을 위한 분기형 바이오 칩
CN115138402A (zh) * 2021-03-31 2022-10-04 中国科学院深圳先进技术研究院 一种能够设置化学浓度梯度的微流控芯片及其制备方法和应用
CN113198329B (zh) * 2021-04-09 2022-03-29 华南理工大学 一种高通量膜上合成微纳米材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744366A (en) * 1992-05-01 1998-04-28 Trustees Of The University Of Pennsylvania Mesoscale devices and methods for analysis of motile cells
US7374906B2 (en) * 2000-11-08 2008-05-20 Surface Logix, Inc. Biological assays using gradients formed in microfluidic systems
WO2009102453A2 (en) * 2008-02-11 2009-08-20 The General Hospital Corporation System and method for quantitative assessment of biological migration behavior

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744366A (en) * 1992-05-01 1998-04-28 Trustees Of The University Of Pennsylvania Mesoscale devices and methods for analysis of motile cells
US7374906B2 (en) * 2000-11-08 2008-05-20 Surface Logix, Inc. Biological assays using gradients formed in microfluidic systems
WO2009102453A2 (en) * 2008-02-11 2009-08-20 The General Hospital Corporation System and method for quantitative assessment of biological migration behavior

Also Published As

Publication number Publication date
KR20140041079A (ko) 2014-04-04

Similar Documents

Publication Publication Date Title
Ao et al. Stretching fibroblasts remodels fibronectin and alters cancer cell migration
Mehta et al. Hard top soft bottom microfluidic devices for cell culture and chemical analysis
Anderson et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping
Hu et al. Surface-directed, graft polymerization within microfluidic channels
US9404914B2 (en) Microfluidic system for controlling a concentration profile of molecules capable of stimulating a target
US11065616B2 (en) Methods of making microfluidic devices
KR101390665B1 (ko) 농도기울기 생성 미세유체 장치 및 그 제조방법
Behroodi et al. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid production
Kang et al. Capillarity guided patterning of microliquids
KR20130009260A (ko) 미세 세포 배양 장치 및 제조 방법
Morel et al. Concentration landscape generators for shear free dynamic chemical stimulation
KR101716302B1 (ko) 생화학 반응기의 제조방법
Abate et al. Functionalized glass coating for PDMS microfluidic devices
Rahmanian et al. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling
Mehta et al. Facile route for 3D printing of transparent PETg-based hybrid biomicrofluidic devices promoting cell adhesion
Yu et al. Deformable mold based on-demand microchannel fabrication technology
Gao et al. Direct optical micropatterning of poly (dimethylsiloxane) for microfluidic devices
Duineveld et al. Diffusion of solvent in PDMS elastomer for micromolding in capillaries
Ge et al. A microfluidic device for generation of chemical gradients
KR101442059B1 (ko) 미세 세포 배양 장치 및 제조 방법
Velve-Casquillas et al. A fast microfluidic temperature control device for studying microtubule dynamics in fission yeast
Muñoz-Garcia et al. Drug delivery and temperature control in microfluidic chips during live-cell imaging experiments
Doudou Spatio-Temporal Diffusion of Purmorphamine in Collagen with Microfluidic Systems
US11135589B2 (en) Large microfluidic bioreactor and manufacturing method thereof
US20220372418A1 (en) Pumpless Microfluidic Devices and Uses Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee