KR101383127B1 - Methode for preparing nano pore on carbon matrix using surface treatment and surface activation - Google Patents

Methode for preparing nano pore on carbon matrix using surface treatment and surface activation Download PDF

Info

Publication number
KR101383127B1
KR101383127B1 KR1020120032114A KR20120032114A KR101383127B1 KR 101383127 B1 KR101383127 B1 KR 101383127B1 KR 1020120032114 A KR1020120032114 A KR 1020120032114A KR 20120032114 A KR20120032114 A KR 20120032114A KR 101383127 B1 KR101383127 B1 KR 101383127B1
Authority
KR
South Korea
Prior art keywords
carbon
surface treatment
alkali metal
surface modification
activated carbon
Prior art date
Application number
KR1020120032114A
Other languages
Korean (ko)
Other versions
KR20130110292A (en
Inventor
김호
한기보
장정희
Original Assignee
고등기술연구원연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고등기술연구원연구조합 filed Critical 고등기술연구원연구조합
Priority to KR1020120032114A priority Critical patent/KR101383127B1/en
Publication of KR20130110292A publication Critical patent/KR20130110292A/en
Application granted granted Critical
Publication of KR101383127B1 publication Critical patent/KR101383127B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment

Abstract

본 발명은 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법으로서, 출발물질로서 활성탄은 목질계 소재, 활성탄소섬유는 섬유계 소재를 사용하는 전구체를 준비하는 과정(S100)과, 상기 전구체를 200 ~ 300℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화과정(S200)과, 상기 안정화과정에서 형성된 탄소체를 무산소조건에서 1,000 ℃ 온도범위에서 탄화시켜 일차적인 기공을 형성시키는 탄화과정(S300)과, 상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액을 접촉시켜 표면처리를 수행하는 표면처리과정(S400)과, 상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알카리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알카리금속 수용액에 침지하는 침지과정(S500)과, 무산소분위기에서 600 ~ 800℃로 승온시키면서 상기 알카리금속의 산화와 환원을 유도하여 3nm 이하의 미세기공을 발달시키고자 표면개질을 수행하는 표면개질과정(S600)을 포함한다.
본 발명에 의하여 제조된 나노기공이 발달된 탄소계 흡착제는 종래의 방법보다 낮은 온도조건에서 제조가 가능하며 종래의 제품보다 고효율 및 장수명의 특징을 갖는 탄화수소류 처리 및 회수용 필터로 활용도가 높은 효과를 가진다.
The present invention provides a method for producing carbon lattice nanopores in combination with surface treatment and surface modification, the process of preparing a precursor using activated carbon as a starting material, wood based material, activated carbon fiber as a fiber material (S100) and the precursor And a stabilization process (S200) to oxidize by contact with air in the temperature range of 200 ~ 300 ℃, and carbonization process to form the primary pores by carbonizing the carbon body formed in the stabilization process in an oxygen-free condition at 1,000 ℃ temperature range (S300) And a surface treatment process (S400) for performing surface treatment by contacting an acid solution to homogeneously form a high concentration of oxygen functional groups on the surface of the carbon grid on the carbon body on which the primary pores are formed, and by the acid of the surface treatment process. Immersion process (S500) for immersing the carbon body subjected to the surface treatment in the aqueous alkali metal solution to contact the alkali metal to the formed oxygen functional group (S500) While temperature rise in the atmosphere to 600 ~ 800 ℃ comprises a surface modification process (S600) that induces the oxidation and reduction of the alkali metal develop fine pores of less than 3nm and characters perform surface modification.
Nanoporous carbon-based adsorbent prepared by the present invention can be manufactured at a lower temperature than the conventional method, and has a high utilization effect as a filter for treating and recovering hydrocarbons having characteristics of higher efficiency and longer life than conventional products. Has

Description

표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법 {Methode for preparing nano pore on carbon matrix using surface treatment and surface activation}Method for preparing nano pores on carbon matrix using surface treatment and surface activation

본 발명은 기공(pore)을 갖는 탄소격자상(carbon matrix) 물질에 3 nm이하의 미세기공을 발달시켜 표면적을 2,500 m2/g이상 나타내는 것을 특징으로 하는 제조방법에 관한 기술이다.
The present invention relates to a method for producing a method characterized in that the development of micropores of 3 nm or less in a carbon matrix material having pores to display a surface area of 2,500 m 2 / g or more.

일반적으로 많이 상용되는 기공을 갖는 탄소격자상 물질은 활성탄(AC, Activated Carbon), 활성탄소섬유(ACF, Activated Carbon Fiber) 등이 있으며, 종래의 기술로는 표면적이 1,000 ~ 1,500 m2/g수준이다.In general, carbon lattice materials having pores that are commonly used include activated carbon (AC) and activated carbon fibers (ACF), and the surface area of the surface is 1,000 to 1,500 m 2 / g. to be.

또한 활성탄의 경우, 기공의 크기가 1 ~ 105 nm 범위에서 넓게 분포되어 있고 기공의 구조가 복잡하게 형성되어 있어, 기공의 크기가 3 nm이하만 90%이상 존재하는 활성탄소섬유보다 흡착 및 탈착속도가 느린 단점이 있다.In addition, in the case of activated carbon, the pore size is widely distributed in the range of 1 to 10 5 nm, and the pore structure is complex, so that the adsorption and desorption of activated carbon is more than 90% of the activated carbon fiber having a pore size of less than 3 nm. The disadvantage is slow speed.

휘발성유기화합물 (VOCs, Volatile Organic Carbons)과 같은 탄화수소류(Hydrocarbons)를 흡착 및 탈착 시, 기공의 구조와 크기 및 크기 분포는 흡착량과 흡·탈착 속도에 많은 영향을 미친다.When adsorbing and desorbing hydrocarbons such as volatile organic compounds (VOCs), the structure and size and size distribution of pores greatly affect the adsorption amount and adsorption / desorption rate.

통상적으로 미세기공이 많을수록 표면적이 증가하기 때문에 흡착량이 많아지며, 기공의 구조가 단순하고 기공의 크기분포가 좁을수록 흡·탈착 속도가 빠르다.Generally, as the number of micropores increases, the surface area increases. Therefore, the adsorption amount increases. As the pore structure is simple and the pore size distribution becomes narrower, the adsorption / desorption rate becomes faster.

따라서 균일한 크기의 미세기공이 발달할수록 흡착능력이 높아짐과 동시에 흡·탈착 반복 재생이 용이한 장수명의 흡착제 확보가 가능하고, 부가적으로 낮은 에너지 비용으로 흡·탈착 반복에 의한 흡착대상물질의 회수가 용이해지는 효과가 있다.Therefore, as micropores of uniform size are developed, adsorption capacity is increased, and long-lived adsorbents are easily secured for repeated adsorption / desorption and regeneration, and additionally, recovery of adsorption target materials by repeated adsorption / desorption at low energy costs is possible. There is an effect that becomes easy.

도 1에는 활성탄, 활성탄소섬유 등의 기공을 갖는 탄소격자 표면에 나노크기의 미세기공을 발달시키는 종래의 방법을 나타내고 있다.1 shows a conventional method for developing nano-sized micropores on the surface of a carbon grid having pores such as activated carbon and activated carbon fibers.

도 1에 도시된 바와 같이, 종래의 방법은 출발물질로서 활성탄은 목질계 소재, 활성탄소섬유는 섬유계 소재를 사용하는 전구체를 준비하는 과정(S10)과, 상기 전구체를 200 ~ 300℃ 온도범위에서 공기와 접촉시켜 산화(oxidation at 200-300℃ in air)시키는 안정화과정(Stabilization)(S20)과, 상기 안정화과정에서 형성된 탄소체를 무산소조건에서 1,000 ~ 1,500℃ 온도범위에서 탄화(Carbonization at 1,000-1,500℃ in inert system)시켜 일차적인 기공을 형성시키는 탄화과정(S30)과, 무산소조건에서 800 ~ 1,200℃ 온도범위에서 CO2 또는 스팀을 주입하여(by CO2 or steam at 800 ~ 1,200℃ in inert system) 상기 1차 형성된 기공을 더욱 발달시키는 활성화과정(Activation)(S40)을 포함하여, 최종 과정(S50)에서, 표면적이 1,500 m2/g 수준인 활성탄 또는 활성탄소섬유가 제조된다.As shown in Figure 1, the conventional method is to prepare a precursor using a activated carbon is a wood-based material, activated carbon fiber is a fiber-based material as a starting material (S10), and the precursor 200 ~ 300 ℃ temperature range Stabilization (S20) to oxidize by contact with air in the air (oxidation at 200-300 ℃ in air), and carbonization formed in the stabilization process carbonization at a temperature range of 1,000 ~ 1,500 ℃ under anoxic conditions (Carbonization at 1,000 Carbonization process (S30) to form primary pores by -1,500 ℃ in inert system, and by injecting CO 2 or steam in the temperature range of 800 ~ 1,200 ℃ in anoxic conditions (by CO 2 or steam at 800 ~ 1,200 ℃ in inert system) Including the activation process (S40) to further develop the first formed pores, in the final process (S50), activated carbon or activated carbon fiber having a surface area of 1,500 m 2 / g level is produced.

기공이 형성되는 원리는 공기와 접촉시키는 산화과정(이하 안정화과정이라 명칭한다)에서 형성된 탄소체 표면의 산소관능기(carbonyl group, carboxyl group 등)가 고온의 탄화과정에서 열분해 되면서 부분적으로 CO2로 가스화되어 비어진 자리에서 기공이 형성되며, 활성화과정에서 CO2 또는 스팀에 의하여 부분 산화를 추가적으로 진행시켜 기공을 더욱 발달시킨다.The principle of the formation of pores is that the oxygen functional groups (carbonyl group, carboxyl group, etc.) on the surface of the carbon body formed during the oxidation process (hereinafter referred to as stabilization process) in contact with air are thermally decomposed during the high temperature carbonization process and partially gasified to CO 2 . The pores are formed in the vacant place, and further develops the pores by additionally partial oxidation by CO 2 or steam during activation.

이러한 종래의 방법에서 미세기공을 균일하고 고밀도로 발달시키는 데 있어 큰 두가지 어려움이 있다.In such a conventional method, there are two major difficulties in developing uniform micropores at high density.

첫 번째로 안정화과정에서 산소관능기의 밀도를 높이는데 한계가 있으며, 두 번째로 탄화 및 활성화과정에서 부분산화에 대한 속도조절이 어렵다는 점이다.First, there is a limit to increase the density of oxygen functional groups in the stabilization process. Second, it is difficult to control the rate of partial oxidation in the carbonization and activation process.

첫 번째 어려움에서 탄소격자상 표면에서 산소관능기의 밀도가 낮으면 기공으로 발달되는 자리(결함자리, defect site)가 부족하게 되어 기공의 수가 작아지기 때문에 표면적이 증대될 가능성이 낮아진다.In the first difficulty, the low density of oxygen functional groups on the surface of the carbon lattice is likely to increase the surface area due to the lack of pore-developed sites (defect sites, defect sites).

종래의 방법에서는 산소관능기를 형성시키고 밀도를 조절하는 방법으로 온도를 높이는 수단을 활용하고 있으나, 온도가 높을수록 탄소체가 산화되는 손실이 많이 발생하며 탄소격자 표면에서의 온도가 균일하게 분포되지 못하기 때문에 형성되는 산소관능기 또한 탄소격자 표면에서 균일하게 형성되기 어려운 단점이 있다.The conventional method utilizes a means to increase the temperature by forming oxygen functional groups and adjusting the density, but the higher the temperature, the more oxidative loss of the carbon body occurs, and the temperature on the surface of the carbon grid cannot be uniformly distributed. Because of the oxygen functional groups formed also has a disadvantage that it is difficult to form uniformly on the surface of the carbon grid.

산소관능기의 분포가 탄소격자 표면에서 균일하지 못하고 어느 한쪽으로 치우치게 되면, 다음단계인 탄화 및 활성화과정에서 과밀도로 형성된 산소관능기 자리는 나노기공으로 발달하지 못하고 큰 기공이 형성되어 전체적으로 기공의 구조가 복잡해지고 넓은 표면적을 생산할 수 없게 된다.If the distribution of oxygen functional groups is not uniform on the surface of the carbon grid and is biased to one side, the oxygen functional site formed by overdensity in the next step of carbonization and activation does not develop into nanopores, and large pores are formed, resulting in complicated pore structure. It will not be able to produce large surface areas.

두 번째 어려움은 무산소조건에서 800 ~ 1,200℃ 온도범위에서 CO2 또는 스팀을 주입하는 활성화과정으로는 부분산화 속도를 정교하게 조절하기 어렵다는 점이다.The second difficulty is that it is difficult to precisely control the partial oxidation rate with an activation process in which CO 2 or steam is injected in an oxygen-free condition at a temperature of 800-1,200 ° C.

활성화과정의 중요 사항은 산소관능기 자리에서만 부분적으로 산화되어 기공이 발달해야 한다는 점이다. 산소관능기 자리에서 과산화가 진행되거나 이외의 자리에서 산화가 진행되면 기공으로 발달하지 못하고 단순히 열분해되어 중량의 감소만 발생하게 된다.An important aspect of the activation process is that the porosity must be partially oxidized only at the site of the oxygen functional group. If oxidation proceeds at the site of oxygen peroxide or at the other site, it can not develop into pores, and it is simply pyrolyzed to reduce the weight.

또한 종래의 방법에 있어서, CO2 또는 스팀을 주입하는 방법은 부분산화 속도를 조정하는데 적절한 장점이 있으나, 산화력이 낮기 때문에 800℃ 이상의 고온에서만 수행이 가능하며, 속도가 느리기 때문에 제조시간이 길어지게 됨으로서 경제성이 낮아지는 단점이 있다. In addition, in the conventional method, the method of injecting CO 2 or steam has an advantage in adjusting the partial oxidation rate, but it can be performed only at a high temperature of 800 ° C or more because of low oxidizing power, And the economical efficiency is lowered.

하지만, 이러한 단점의 해소에 만족할만한 선행기술로서의 특허문헌으로 개시된 것이 없다. However, there is no disclosure in the patent literature as a prior art that satisfies the elimination of these disadvantages.

(특허문헌) 없음
(Patent document) None

따라서, 본 발명은 상기와 같은 단점들을 해소하기 위해 발명된 것으로, 그 목적은 종래의 두 가지 문제점 즉 ① 안정화과정에서 산소관능기의 낮은 농도와 불균일성, 그리고 ② 탄화 및 활성화과정에서 요구되는 높은 온도와 긴 공정시간을 해결하기 위해서 표면처리와 표면개질을 연계하여 수행하여, 기공(pore)을 갖는 탄소격자상(carbon matrix) 물질에 3 nm이하의 미세기공을 발달시켜 표면적을 2,500 m2/g이상 나타내는 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법을 제공하는 것이다.
Therefore, the present invention has been invented to solve the above disadvantages, and its object is to solve the two problems of the prior art: ① low concentration and non-uniformity of oxygen functional group in stabilization process, and ② high temperature required in carbonization and activation process. In order to solve the long process time, surface treatment and surface modification are carried out in combination, and the micropore of 3 nm or less is developed in the carbon matrix material having pores, and the surface area is more than 2,500 m 2 / g. The present invention provides a method for producing carbon lattice nanopores in connection with surface treatment and surface modification.

상술한 목적을 달성하기 위해서 본 발명의 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법은 출발물질로서 활성탄은 목질계 소재, 활성탄소섬유는 섬유계 소재를 사용하는 전구체를 준비하는 과정(S100)과, 상기 전구체를 200 ~ 300℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화과정(S200)과, 상기 안정화과정에서 형성된 탄소체를 무산소조건에서 1,000 ℃ 온도범위에서 탄화시켜 일차적인 기공을 형성시키는 탄화과정(S300)과, 상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액에 접촉시켜 표면처리를 수행하는 표면처리과정(S400)과, 상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알카리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알카리금속 수용액에 침지하는 침지과정(S500)과, 무산소분위기에서 600 ~ 800℃로 승온시키면서 상기 알카리금속의 산화와 환원을 유도하여 3nm 이하의 미세기공을 발달시키고자 표면개질을 수행하는 표면개질과정(S600)을 포함한다.In order to achieve the above object, the method for preparing carbon lattice nanopores in combination with the surface treatment and surface modification of the present invention is a process for preparing precursors using activated carbon as a starting material and activated carbon fiber as a starting material. S100), and a stabilization process (S200) for oxidizing the precursor by contacting with air at a temperature range of 200 ~ 300 ℃, and carbonaceous carbon formed in the stabilization process in the oxygen-free condition at 1,000 ℃ temperature range to form the primary pores And a surface treatment process (S400) for performing a surface treatment by contacting with an acid solution to homogeneously form a high concentration of oxygen functional groups on the surface of the carbon grid on the carbon body in which the primary pores are formed. The carbon body subjected to the surface treatment is immersed in an aqueous alkali metal solution in order to contact the alkali metal to the oxygen functional group formed by the acid during the treatment. The immersion process (S500), and the surface modification process (S600) to perform the surface modification to develop micropores of 3nm or less by inducing oxidation and reduction of the alkali metal while raising the temperature to 600 ~ 800 ℃ in an oxygen-free atmosphere do.

표면처리과정(S400)은 상온에서 상기 탄소체에 질산, 황산, 염산, 유기산이 단일 또는 혼합하여 1 ∼ 5M 농도영역으로 제조한 산용액에 0 ∼ 80℃ 온도범위에서 접촉시킬 수 있다.Surface treatment process (S400) can be contacted in the temperature range of 0 ~ 80 ℃ to an acid solution prepared in a concentration range of 1 ~ 5M by nitric acid, sulfuric acid, hydrochloric acid, organic acid to the carbon body at room temperature.

침지과정(S500)은 상기 표면처리된 탄소체를 1 ∼ 5M 농도 알카리금속 수용액에 1시간이상 침지시킬 수 있다. 이때, 알카리금속은 Na또는 K이 사용되는 것이 바람직하다.In the dipping process (S500), the surface-treated carbon body may be immersed for 1 hour or more in an aqueous alkali metal solution of 1-5M concentration. At this time, the alkali metal is preferably Na or K is used.

본 발명에 있어서, 표면개질과정(S600)의 완료 후, 무산소조건에서 상온으로 냉각시킨 후, 5M 농도 이하의 황산용액에 1시간이상 침지시키고, 증류수로 pH가 5 ∼ 7 조건까지 중화시킬 목적으로 세척 후, 공기분위기에서 150℃로 건조하는 과정(S700)을 더 포함하여, 최종 과정(S800)에서, 표면적이 2,500 m2/g 이상인 활성탄 또는 활성탄소섬유가 제조될 수 있다.
In the present invention, after completion of the surface modification process (S600), after cooling to room temperature in an anoxic condition, immersed in sulfuric acid solution of 5M or less for 1 hour or more, for the purpose of neutralizing the pH to 5-7 conditions with distilled water After washing, further comprising the step (S700) of drying at 150 ℃ in an air atmosphere, in the final process (S800), activated carbon or activated carbon fibers having a surface area of more than 2,500 m 2 / g can be produced.

본 발명에 의하면, 종래의 방법으로 제조되는 활성탄 및 활성탄소섬유는 표면적이 1,000 ~ 1,500 m2/g수준이나, 본 발명에 의한 표면처리와 표면개질을 연계하여 수행하였을 경우 표면적을 2,500 m2/g 이상으로 증가하였다.According to the present invention, the activated carbon and activated carbon fiber produced by the conventional method has a surface area of 1,000 to 1,500 m 2 / g, but the surface area is 2,500 m 2 / when the surface treatment is performed in connection with the surface modification according to the present invention. increased above g.

특히 종래의 탄화온도를 1,000 ~ 1,500℃에서 900 ~ 1,000℃로 낮추고 종래의 활성화온도를 800 ~ 1,200℃에서 700 ~ 800℃로 낮춤에도 불구하고, 종래의 표면적 1,000 ~ 1,500 m2/g에서 2,500 m2/g이상으로 향상 시키는 성과를 얻을 수 있었다.In particular, although the conventional carbonization temperature is lowered from 1,000 to 1,500 ° C. to 900 to 1,000 ° C., and the conventional activation temperature is lowered from 800 to 1,200 ° C. to 700 to 800 ° C., the conventional surface area of 1,000 to 1,500 m 2 / g is 2,500 m. The result was improved to 2 / g or more.

또한 종래의 활성탄 또는 저품질의 활성탄소섬유에 톨루엔 등의 탄화수소류를 파괴점까지 흡착 후 120℃에서 탈착을 수행하는 재생조건에서 이를 반복하는 재생횟수가 종래의 4회 수준에서 초기 흡착량의 70%이하로 감소하는데 비하여, 본 발명에 의하여 제조된 활성 및 활성탄소섬유는 재생횟수를 100회 이상 반복하여도 초기 흡착량의 90%이상 유지하였다.In addition, the number of regeneration times in conventional regeneration conditions in which activated carbon or low-quality activated carbon fiber is desorbed at 120 DEG C after adsorbing hydrocarbons such as toluene to the destruction point is 70% of the initial adsorption amount at the conventional four- , Whereas the active and activated carbon fibers prepared according to the present invention maintained more than 90% of the initial adsorption amount even when the number of regeneration was repeated 100 times or more.

따라서 본 발명에 의하여 제조된 나노기공이 발달된 탄소계 흡착제는 종래의 방법보다 낮은 온도조건에서 제조가 가능하며 종래의 제품보다 고효율 및 장수명의 특징을 갖는 탄화수소류 처리 및 회수용 필터로 활용도가 높은 효과를 가진다.
Therefore, the nanocomposite carbonaceous adsorbent produced by the present invention can be produced at a lower temperature than the conventional method and can be used as a hydrocarbon treatment and recovery filter having high efficiency and long life Effect.

도 1은 종래의 탄소격자상 나노기공 제조방법을 나타내는 공정도이고,
도 2는 본 발명의 바람직한 일 실시예에 따른 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법의 공정도이고,
도 3은 표면처리과정에서의 산용액의 농도에 따른 탄소체 표면의 산소관능기의 FT-IR 분석을 수행한 결과이다.
1 is a process chart showing a conventional carbon lattice nanopore manufacturing method,
2 is a process chart of a method for manufacturing carbon lattice nanopores in combination with surface treatment and surface modification according to an embodiment of the present invention,
Figure 3 is the result of performing the FT-IR analysis of the oxygen functional group on the surface of the carbon body according to the concentration of the acid solution in the surface treatment process.

도 2는 본 발명의 바람직한 일 실시예에 따른 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법을 제조하는 공정을 나타내고 있다.Figure 2 shows a process for producing a carbon lattice nanopore manufacturing method in conjunction with the surface treatment and surface modification according to an embodiment of the present invention.

본 발명의 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법은 기공(pore)을 갖는 탄소격자상(carbon matrix) 물질에 나노크기의 미세기공을 발달시키는 제조방법으로서, 일반적으로 기공을 갖는 탄소격자상 물질은 활성탄(AC, Activated Carbon), 활성탄소섬유(ACF, Activated Carbon Fiber) 등이 있는 바, 이러한 탄소격자상 물질의 표면에 표면처리(ST, Surface Treatment)와 표면개질(SA, Surface Activation)을 연계 처리하여 나노크기의 세공을 발달시킴으로서 표면적을 증대시키고 흡착 및 탈착 속도를 빠르게 할 수 있다. 이와 같이 표면적을 증대시킴으로서 대기중 또는 수중의 탄화수소류에 대한 흡착량을 증대시키고 빠른 흡·탈착 속도를 나타냄으로서 재생 및 회수효율을 개선할 수 있는 것이다.Carbon lattice nanopore manufacturing method in conjunction with the surface treatment and surface modification of the present invention is a manufacturing method for developing nano-sized micropores in a carbon matrix material having pores, generally having pores Carbon lattice materials include activated carbon (AC) and activated carbon fibers (ACF) .The surface treatment (ST) and surface modification (SA, Surface Activation can be linked to develop nano-sized pores to increase surface area and speed up adsorption and desorption. By increasing the surface area as described above, the amount of adsorption to hydrocarbons in the atmosphere or in water is increased, and the adsorption / desorption rate is fast, thereby improving the regeneration and recovery efficiency.

도 2에 도시된 바와 같이, 본 발명의 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법은 출발물질로서 활성탄은 목질계 소재, 활성탄소섬유는 섬유계 소재를 사용하는 전구체를 준비하는 과정(S100)과, 상기 전구체를 200 ~ 300℃ 온도범위에서 공기와 접촉시켜 산화(oxidation at 200-300℃ in air)시키는 안정화과정(Stabilization)(S200)과, 상기 안정화과정에서 형성된 탄소체를 무산소조건에서 1,000 ℃ 온도범위에서 탄화(Carbonization at 1,000℃ in inert system)시켜 일차적인 기공을 형성시키는 탄화과정(S300)과, 상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액을 접촉시켜 표면처리(Surface treatment)를 수행하는 표면처리과정(S400)과, 상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알카리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알카리금속 수용액에 침치하는 침지과정(Dipping alkali metal solution)(S500)과, 무산소분위기에서 600 ~ 800℃로 승온시키면서 상기 알카리금속의 산화와 환원을 유도하여 3nm 이하의 미세기공을 발달시키고자 표면개질(Surface activation)을 수행하는 표면개질과정(S600)을 포함하여, 탄소격자 표면에 3nm크기 이하의 미세기공을 균일하게 발달시켜 표면적 2,500 m2/g 이상을 갖는 활성탄 또는 활성탄소섬유를 제조한다.(S800)As shown in Figure 2, the carbon lattice nanopore manufacturing method in conjunction with the surface treatment and surface modification of the present invention is a process for preparing a precursor using the activated carbon is a wood-based material, activated carbon fiber is a fiber-based material as a starting material (S100), and the stabilization process (Stabilization) (S200) for contacting the precursor with air in the temperature range of 200 ~ 300 ℃ (oxidation at 200-300 ℃ in air), and the oxygen-free carbon body formed in the stabilization process Under the condition of carbonization (Carbonization at 1,000 ℃ in inert system) in the carbonization process (S300) to form the primary pores, and the oxygen functional group on the surface of the carbon grid on the carbon body formed with the primary pores to a high concentration homogeneously The surface treatment process (S400) to contact the acid solution to form a surface treatment (S400), and the alkali metal in the oxygen functional group formed by the acid of the surface treatment process Dipping alkali metal solution (S500) of immersing the carbon body subjected to the surface treatment in an alkali metal solution (S500), and the oxidation and reduction of the alkali metal while raising the temperature to 600 ~ 800 ℃ in an oxygen-free atmosphere Including the surface modification process (S600) to perform surface activation (S600) to induce the development of micropores of less than 3nm by induction, uniformly develop micropores of 3nm or less on the surface of the carbon grid surface area 2,500 m 2 / To prepare activated carbon or activated carbon fiber having more than g. (S800)

표면처리과정에서 산용액을 접촉시키는 것은, 탄소체를 제조하기 위하여 기공이 미발달된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키기 위한 목적으로 행해지는 것으로, 이러한 산용액의 접촉에 의해 일종의 전처리 개념으로 표면처리가 수행된다. 이때 산용액은 질산, 황산, 염산, 유기산이 단일 또는 혼합하여 1 ∼ 5M 농도영역으로 제조되며 0 ∼ 80℃ 온도범위에서 탄소체에 접촉시킬 수 있다.Contacting the acid solution during the surface treatment is performed for the purpose of homogeneously forming a high concentration of oxygen functional groups on the surface of the carbon lattice on the undeveloped carbon body in order to produce a carbon body. Surface treatment is performed by a kind of pretreatment concept. At this time, the acid solution is prepared in 1-5M concentration range by nitric acid, sulfuric acid, hydrochloric acid, organic acid single or mixed, it can be contacted to the carbon body in the temperature range of 0 ~ 80 ℃.

도 3은 표면처리과정에서의 산용액의 농도에 따른 탄소체 표면의 산소관능기의 FT-IR 분석을 수행한 결과를 나타내고 있다.Figure 3 shows the results of the FT-IR analysis of the oxygen functional group on the surface of the carbon body according to the concentration of the acid solution in the surface treatment process.

도 3에 있어서, 질산(HNO3)을 각각 1M, 3M, 5M 용액으로 제조하여 50℃로 유지시킨 후 탄소체를 4시간동안 접촉시켜 건조 후 FT-IR 분석을 수행하였다.In FIG. 3, nitric acid (HNO 3 ) was prepared as a 1M, 3M, and 5M solution, respectively, and maintained at 50 ° C., followed by contact with a carbon body for 4 hours, followed by FT-IR analysis.

도 3으로부터 알 수 있는 바와 같이, 산용액에 접촉하지 않은 탄소체(raw)보다 질산의 농도가 증가할수록 산소관능기를 나타내는 2,400cm-1과 1,700cm-1 영역의 파장에서 피크가 증가하고 있음을 확인할 수 있으며 이는 표면의 산소관응기가 발달하고 있다는 증거이다.As can be seen from Figure 3, the more the concentration of nitric acid than the carbon material (raw) do not come into contact with the acid solution may increase and the peak increase in the wavelength of 2,400cm -1 and 1,700cm -1 area indicating the oxygen functional group This can be confirmed, which is evidence of the development of surface oxygen coffins.

이러한 표면처리과정과 연계하여, 표면처리에 의하여 형성된 산소관능기에 알카리금속을 접촉시키고 무산소분위기에서 600 ~ 800℃로 승온시키면서 알카리금속의 산화와 환원을 유도하여 3nm 이하의 미세기공을 발달시키기 위한 목적으로 표면개질을 수행한다.In connection with the surface treatment process, the purpose of contacting the alkali metal formed by the surface treatment with alkali metal and inducing oxidation and reduction of the alkali metal while raising the temperature to 600-800 ° C. in an oxygen-free atmosphere to develop micropores of 3 nm or less Surface modification is carried out with.

알카리금속을 접촉시키는 방법은 표면처리된 탄소체를 1 ∼ 5M 농도 알카리금속 수용액에 1시간이상 침지(at room temperature in 1-5 M solution)시키며, 이때 알카리금속은 Na 또는 K을 사용하는 것이 바람직하다.In the method of contacting the alkali metal, the surface-treated carbon body is immersed in 1-5 M aqueous alkali metal solution for at least 1 hour (at room temperature in 1-5 M solution), and the alkali metal is preferably Na or K. Do.

이어서 알카리금속 수용액에 침지후 탄소체를 공기분위기에서 100 ∼ 200℃ 온도조건에서 건조시키고 무산소조건에서 600 ∼ 800℃ 온도조건에서 1시간이상 유지시켜 표면개질을 수행한다.(by alkali metal redox system at 600 ~ 800℃)Subsequently, after immersion in an aqueous alkali metal solution, the carbon body is dried at 100 to 200 ° C. in an air atmosphere and maintained at 600 to 800 ° C. in an oxygen-free condition for at least 1 hour. (By alkali metal redox system at 600 ~ 800 ℃)

표면개질과정(S600)의 완료 후, 무산소조건에서 상온으로 냉각시킨 후, 5M 농도 이하의 황산용액에 1시간이상 침지시키고, 증류수로 pH가 5 ∼ 7 조건까지 중화시킬 목적으로 세척(Cleaning, by H2SO4 and water) 후, 공기분위기에서 150℃로 건조(Drying at 150℃ in air)하는 과정(S700)을 수행한다.After completion of the surface modification process (S600), cooled to room temperature in an anoxic condition, immersed in sulfuric acid solution of 5M or less for more than 1 hour, and washed with the purpose of neutralizing the pH to 5 ~ 7 conditions with distilled water (Cleaning, by After H 2 SO 4 and water), a process of drying at 150 ℃ in air in an air atmosphere (S700) is performed.

이로서 최종과정(S900)으로, 표면적 2,500 m2/g 수준의 넓은 표면적을 갖는 활성탄 또는 활성탄소섬유를 제조할 수 있다.As a result, the final process (S900), it is possible to produce activated carbon or activated carbon fibers having a large surface area of the surface area of 2500 m 2 / g.

이상과 같이 표면처리와 표면개질을 연계하여 수행하는 본 발명의 제조방법에 의해 제조된 활성탄소섬유와 종래의 기공이 미발달된 활성탄소섬유에 대한 세부적인 특징을 비교하여 표 1에 나타내었다.Table 1 compares the detailed characteristics of the activated carbon fiber produced by the production method of the present invention performed in conjunction with the surface treatment and surface modification as described above and the active carbon fiber is not developed.

표 1. 본 발명에 의하여 제조된 활성탄소섬유와 종래의 방법에 의하여 제조된 활성탄소섬유의 표면적, 흡착능력, 재생능력 비교Table 1.Comparison of Surface Area, Adsorption Capacity, and Regeneration Capacity of Activated Carbon Fibers Prepared by the Present Invention and Activated Carbon Fibers Prepared by Conventional Methods

Figure 112012025108306-pat00001
Figure 112012025108306-pat00001

* 재생조건 : 온도 120 ℃에서 탈착하여 초기 흡착량 대비 90%유지 조건
* Regeneration condition: 90% of initial adsorption amount by desorption at 120 ℃

표 1에서, 본 발명에 의하여 제조된 활성탄소섬유와 종래의 방법에 의하여 제조된 활성탄소섬유에 대하여 상온에서 톨루엔을 흡착시켜 흡착량을 비교한 결과, 표면적 증대와 비례하여 흡착량이 증가함을 확인할 수 있다.In Table 1, the adsorption amount of toluene was adsorbed at room temperature on the activated carbon fiber produced by the present invention and the activated carbon fiber prepared by the conventional method, and as a result, it was confirmed that the adsorption amount was increased in proportion to the increase of the surface area .

또한 파괴점까지 흡착 후, 120℃에서 탈착을 수행하는 재생조건에서 이를 반복하여 재생횟수가 종래의 4회 수준에서 초기 흡착량의 70%이하로 감소하는데 비하여, 본 발명에 의하여 제조된 활성탄 및 활성탄소섬유는 재생횟수를 100회 이상 반복하여도 초기 흡착량의 90%이상 유지함을 확인할 수 있다.In addition, in the regeneration condition where desorption is carried out at 120 ° C after adsorption to the breakdown point, the number of regeneration times is reduced to 70% or less of the initial adsorption amount at the conventional four times level, It can be confirmed that the carbon fiber retains more than 90% of the initial adsorption amount even when the number of regeneration is repeated 100 times or more.

이상에서 설명한 것은 본 발명에 따른 표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법의 하나의 바람직한 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않는 것이므로, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one preferred embodiment of the method for producing carbon lattice nanopores in combination with the surface treatment and surface modification according to the present invention, the present invention is not limited to the above-described embodiment, the following claims As claimed in the present invention without departing from the gist of the present invention, any person having ordinary knowledge in the field of the present invention will have the technical spirit of the present invention to the extent that various modifications can be made.

Claims (5)

탄소격자상 나노기공 제조방법으로서,
출발물질로서 활성탄은 목질계 소재, 활성탄소섬유는 섬유계 소재를 사용하는 전구체를 준비하는 과정(S100)과,
상기 전구체를 200 ~ 300℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화과정(S200)과,
상기 안정화과정에서 형성된 탄소체를 무산소조건에서 1,000 ℃ 온도범위에서 탄화시켜 일차적인 기공을 형성시키는 탄화과정(S300)과,
상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액을 접촉시켜 표면처리를 수행하는 표면처리과정(S400)과,
상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알카리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알카리금속 수용액에 침지하는 침지과정(S500)과,
무산소분위기에서 600 ~ 800℃이하로 승온시키면서 상기 알카리금속의 산화와 환원을 유도하여 3nm 이하의 미세기공을 발달시키고자 표면개질을 수행하는 표면개질과정(S600)을 포함하는
표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법.
Carbon lattice nanopore manufacturing method,
A step (S100) of preparing a precursor using wood-based activated carbon as the starting material and a fiber-based activated carbon fiber;
Stabilization process (S200) for oxidizing the precursor by contacting with air in the temperature range of 200 ~ 300 ℃,
A carbonization process (S300) for carbonizing the carbon body formed in the stabilization process under anoxic conditions at a temperature range of 1,000 ° C. to form primary pores;
A surface treatment step (S400) of performing surface treatment by contacting an acid solution to homogeneously form a high concentration of oxygen functional groups on the surface of the carbon grid on the carbon body in which the primary pores are formed;
An immersion process (S500) of immersing the carbon body subjected to the surface treatment in an aqueous alkali metal solution in order to contact the alkali metal to the oxygen functional group formed by the acid in the surface treatment process;
Including an surface modification process (S600) for performing surface modification to develop micropores of 3 nm or less by inducing oxidation and reduction of the alkali metal while raising the temperature below 600 to 800 ° C. in an oxygen-free atmosphere.
Carbon lattice nanopores manufacturing method by combining surface treatment and surface modification.
제 1항에 있어서,
상기 표면처리과정(S400)은 상온에서 상기 탄소체에 질산, 황산, 염산, 유기산이 단일 또는 혼합하여 1 ∼ 5M 농도영역으로 제조한 산용액에 0 ~ 80℃ 온도범위에서 접촉시키는 것을 특징으로 하는
표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법.
The method according to claim 1,
The surface treatment process (S400) is characterized in that in contact with the acid solution prepared in a concentration range of 1 to 5M concentration of nitric acid, sulfuric acid, hydrochloric acid, organic acid in the carbon body at a temperature range of 0 ~ 80 ℃ at room temperature.
Carbon lattice nanopores manufacturing method by combining surface treatment and surface modification.
제 1 항에 있어서,
상기 침지과정(S500)은 상기 표면처리된 탄소체를 1 ∼ 5M 농도 알카리금속 수용액에 1시간이상 침지시키는 것을 특징으로 하는
표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법.
The method according to claim 1,
The immersion process (S500) is characterized in that the surface-treated carbon body is immersed for 1 hour or more in an aqueous alkali metal solution of 1 ~ 5M concentration
Carbon lattice nanopores manufacturing method by combining surface treatment and surface modification.
제 3 항에 있어서,
상기 알카리금속은 Na또는 K이 사용되는 것을 특징으로 하는
표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법.
The method of claim 3, wherein
The alkali metal is characterized in that Na or K is used
Carbon lattice nanopores manufacturing method by combining surface treatment and surface modification.
제 1 항에 있어서,
상기 표면개질과정(S600)의 완료 후,
무산소조건에서 상온으로 냉각시킨 후, 5M 농도 이하의 황산용액에 1시간이상 침지시키고, 증류수로 pH가 5 ∼ 7 조건까지 중화시킬 목적으로 세척 후, 공기분위기에서 150℃로 건조하는 과정(S700)을 더 포함하여,
최종 과정(S800)에서, 표면적이 2,500 m2/g 이상인 활성탄 또는 활성탄소섬유가 제조되는
표면처리와 표면개질을 연계한 탄소격자상 나노기공 제조방법.
The method according to claim 1,
After completion of the surface modification process (S600),
After cooling to room temperature under anoxic conditions, immersed in a sulfuric acid solution of 5M or less for at least 1 hour, washed with distilled water to neutralize the pH to 5 ~ 7 conditions, and then dried at 150 ℃ in an air atmosphere (S700) Including more,
In the final process (S800), activated carbon or activated carbon fiber having a surface area of 2,500 m 2 / g or more is produced
Carbon lattice nanopores manufacturing method by combining surface treatment and surface modification.
KR1020120032114A 2012-03-29 2012-03-29 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation KR101383127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120032114A KR101383127B1 (en) 2012-03-29 2012-03-29 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120032114A KR101383127B1 (en) 2012-03-29 2012-03-29 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation

Publications (2)

Publication Number Publication Date
KR20130110292A KR20130110292A (en) 2013-10-10
KR101383127B1 true KR101383127B1 (en) 2014-04-09

Family

ID=49632127

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120032114A KR101383127B1 (en) 2012-03-29 2012-03-29 Methode for preparing nano pore on carbon matrix using surface treatment and surface activation

Country Status (1)

Country Link
KR (1) KR101383127B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599131B1 (en) 2023-02-23 2023-11-07 고등기술연구원연구조합 Method for producing high specific surface area activated carbon using lignocellulosic biomass using resource recycling type advanced activation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986914A (en) * 1995-09-28 1997-03-31 Osaka Gas Co Ltd Active carbon, its production and adsorption and removal of acidic component
KR20030095694A (en) * 2002-06-14 2003-12-24 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR20090101534A (en) * 2008-03-24 2009-09-29 방영석 Pd catalyst dopped in active carbon and a method for preparing thereof
KR20120121952A (en) * 2011-04-28 2012-11-07 고등기술연구원연구조합 Methode for preparing nano pore on carbon matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986914A (en) * 1995-09-28 1997-03-31 Osaka Gas Co Ltd Active carbon, its production and adsorption and removal of acidic component
KR20030095694A (en) * 2002-06-14 2003-12-24 한국화학연구원 Preparation of activated carbon fibers using nano fibers
KR20090101534A (en) * 2008-03-24 2009-09-29 방영석 Pd catalyst dopped in active carbon and a method for preparing thereof
KR20120121952A (en) * 2011-04-28 2012-11-07 고등기술연구원연구조합 Methode for preparing nano pore on carbon matrix

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102599131B1 (en) 2023-02-23 2023-11-07 고등기술연구원연구조합 Method for producing high specific surface area activated carbon using lignocellulosic biomass using resource recycling type advanced activation

Also Published As

Publication number Publication date
KR20130110292A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
Singh et al. CO2 capture by modified porous carbon adsorbents: Effect of various activating agents
Vivo-Vilches et al. Tailoring the surface chemistry and porosity of activated carbons: Evidence of reorganization and mobility of oxygenated surface groups
Su et al. Adsorption effect of nitrogen, sulfur or phosphorus surface functional group on formaldehyde at ambient temperature: Experiments associated with calculations
CN103225135A (en) Porous carbon fiber, and preparation method and application thereof
KR101993629B1 (en) Activated carbon having basic functional groups and method for producing same
KR20190064151A (en) Activated carbon with excellent adsorption performance
Wang et al. NH3-activated carbon nanofibers for low-concentration NO removal at room temperature
CN111359582A (en) Graphene composite aerogel formaldehyde-removing material and preparation method thereof
KR101315112B1 (en) Methode for preparing nano pore on carbon matrix
Lee et al. Carbon dioxide adsorption performance of ultramicroporous carbon derived from poly (vinylidene fluoride)
Lee et al. Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity
KR101273494B1 (en) Recycle method of spent carbons by chemical impregnation and heating treatments in vacuum
KR20160051879A (en) Porous carbon, humidity-controlling adsorbent material, adsorption-type heat pump, and fuel cell
CN110541210A (en) Nitrogen-rich porous polyacrylonitrile-based carbon fiber and preparation method and application thereof
Park et al. Effect of acidic treatment on metal adsorptions of pitch-based activated carbon fibers
Palliyarayil et al. Advances in porous material research towards the management of air pollution
KR101383127B1 (en) Methode for preparing nano pore on carbon matrix using surface treatment and surface activation
KR101419868B1 (en) Methode for preparing nano pore on carbon materials
KR101258507B1 (en) Mesoporous carbon sieves, preparation methods thereof, and processes of removing greenhouse gas by using the same
Hwang et al. Preparation of Activated Carbon Fiber Adsorbent for Enhancement of CO 2 Capture Capacity
CN101380569B (en) Preparation method of three-dimensional ordered macropore carbon loaded with titanium dioxide particles and application method thereof
US10751697B2 (en) Method of producing highly porous adsorbents
Zhang et al. Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu (II)
KR101082590B1 (en) Preparing method of Carbon nanotube for hydrogen storage
KR102544657B1 (en) The Method of Producing Active Carbon by Using Physical Activation and the Active Carbon Produced by the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180402

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 6