KR101381097B1 - Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby - Google Patents

Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby Download PDF

Info

Publication number
KR101381097B1
KR101381097B1 KR1020120044431A KR20120044431A KR101381097B1 KR 101381097 B1 KR101381097 B1 KR 101381097B1 KR 1020120044431 A KR1020120044431 A KR 1020120044431A KR 20120044431 A KR20120044431 A KR 20120044431A KR 101381097 B1 KR101381097 B1 KR 101381097B1
Authority
KR
South Korea
Prior art keywords
aramid fibers
aramid
coating composition
light
zno
Prior art date
Application number
KR1020120044431A
Other languages
Korean (ko)
Other versions
KR20130121334A (en
Inventor
박성민
김명순
권일준
심지현
이경남
Original Assignee
다이텍연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이텍연구원 filed Critical 다이텍연구원
Priority to KR1020120044431A priority Critical patent/KR101381097B1/en
Publication of KR20130121334A publication Critical patent/KR20130121334A/en
Application granted granted Critical
Publication of KR101381097B1 publication Critical patent/KR101381097B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic System; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 아라미드섬유의 자외선에 대한 내광성을 강화할 수 있는 코팅조성물 및 이를 이용한 내광성강화코팅가공방법에 관한 것으로서 자외선에 약해서 강도가 급격히 저하되는 문제점을 가지는 아라미드 섬유에 대하여 간단한 공정으로 효율적인 자외선 차단기구를 부여함으로써 장시간에 걸친 옥외사용에 의해서도 강도저하가 최소화될 뿐만 아니라 아라미드섬유의 변형율도 최소화할 수 있다.The present invention relates to a coating composition capable of enhancing light resistance to ultraviolet rays of aramid fibers, and to a light resistance strengthening coating processing method using the same. In addition, the strength reduction is minimized by outdoor use for a long time, and the strain of aramid fiber can be minimized.

Description

아라미드섬유용 내광성강화코팅조성물 및 이를 이용한 내광성강화코팅가공방법{Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby} Coated Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby}

본 발명은 아라미드섬유의 자외선에 대한 내광성을 강화할 수 있는 코팅조성물 및 이를 이용한 내광성강화코팅가공방법에 관한 것이다.The present invention relates to a coating composition that can enhance the light resistance to ultraviolet rays of aramid fibers and a light resistance reinforced coating processing method using the same.

천연 및 합성 등의 모든 섬유는 자외선의 광화학적 작용에 의해 변퇴, 경화, 취하 및 강도저하가 일어난다. 특히 최근에는 자외선 차단막인 오존층이 감소됨으로써 섬유 및 인체에도 자외선의 악영향이 점차 증가되고 있는 추세이어서 이러한 자외선의 영향을 차단하기 위한 연구가 계속되고 있다.All fibers, natural and synthetic, are degenerated, cured, withdrawn and reduced in strength by the photochemical action of ultraviolet light. In particular, as the ozone layer, which is a UV blocking film, has recently been reduced, the adverse effects of ultraviolet rays are gradually increasing on fibers and the human body, and research for blocking the effects of ultraviolet rays has been continued.

기존의 섬유공정상 사용되고 있는 페닐살리실레이트(흡수제), 벤조페논(흡수제), 벤조트리아졸(흡수제), 니켈유도체(Quenchers), Radical Scavenger 등의 자외선흡수 및 차단제는 밀링한 상태에서 면섬유나 폴리에스테르와 같은 고분자재료를 기질로 한 가공의 형태로 사용되고 있으며, 이러한 고분자 재료 내 흡수제들의 불균일한 혼입 분포와 접착 내구성 저하에 따른 가공 및 사용 중 환경조건으로 인한 유출, 증발소실 등으로 인하여 제품상의 얼룩 응집 및 자외선의 차폐 기능이 점차 저하되는 문제점이 있다.UV absorbers and blocking agents such as phenyl salicylate (absorber), benzophenone (absorber), benzotriazole (absorber), nickel derivatives (Quenchers), and Radical Scavenger that are used in the existing textile process are milled cotton or poly It is used in the form of processing based on polymer material such as ester, and it is uneven distribution of absorbents in such polymer material and stains on product due to outflow and evaporation loss due to environmental conditions during processing and use due to deterioration of adhesion durability. There is a problem that the shielding function of the aggregation and ultraviolet rays is gradually reduced.

최근 고강도, 고내열성섬유로서 각광을 받고 있는 아라미드 섬유소재는 다양한 용도전개가 가능하나, 일광 및 부식에 의한 내광성 및 내광성이 급격하게 저하되는 단점이 있다. 메타, 파라-아라미드섬유는 표백제 용액에 넣어 가열해도 침식되나 유기용매에는 크게 영향을 받지 않는 특성을 가진다. 이러한 메타, 파라-아라미드섬유는 화염(불꽃)에 닿아도 금속과 비슷하게 붉게 달구어지기(glow)만 하고 불꽃이 일지 않으며 화염을 제거하면 탄화된 상태가 되어 내열성이 우수하다.Aramid fiber material, which has been spotlighted as a high strength and high heat resistant fiber in recent years, can be developed in various applications, but has a disadvantage in that light resistance and light resistance due to sunlight and corrosion are sharply degraded. Meta and para-aramid fibers are corroded even when heated in bleach solution, but have little effect on organic solvents. These meta and para-aramid fibers have a red glow similar to metal even when touching a flame (flame), do not spark, and become carbonized when the flame is removed, and thus have excellent heat resistance.

이렇게 메타, 파라-아라미드섬유는 200~300℃사이에서 강도가 약화되기 시작하고 영하 70℃까지는 물성이 변하지 않을 정도로 우수한 물성을 나타내나, 내광성에 있어서, 특히 자외선에 약해서 태양광의 직사광선에 계속 노출될 경우 120주(약 2년 반) 경과 후에는 강도가 3분의 1로 떨어지는 단점이 있기에 옥외용으로 사용한 용도가 제한되고 있는 실정이다.Thus, meta and para-aramid fibers exhibit excellent physical properties such that their strength begins to weaken between 200 and 300 ° C. and their physical properties do not change until minus 70 ° C. However, in terms of light resistance, they are particularly susceptible to ultraviolet rays, which can be exposed to direct sunlight. In the case of 120 weeks (about two and a half years), the strength is reduced to one-third, so the use for outdoor use is limited.

이러한 아라미드섬유의 내광성의 향상을 위하여 일본특허등록JP6017316호에서는 섬유의 적어도 표층부에, 굴절율 3.2이상, 평균입경 0.3μ이하의 무기입자가 섬유중량의 0.1% 이상 5%이하 함유하는 방향족 폴리아미드 섬유를 제공하면서 내광성을 향상시키고 있으나, 폴리아미드 섬유의 방사시 섬유표층부에 무기입자를 함유하도록 하기 때문에 방사조건이 까다롭고 방사설비가 복잡할 뿐만 아니라 방사된 섬유의 물성이 제한적인 문제점을 가질 수 있다. In order to improve the light resistance of such aramid fibers, Japanese Patent Registration No. JP6017316 discloses an aromatic polyamide fiber having at least a surface portion of the fiber containing inorganic particles having a refractive index of 3.2 or more and an average particle diameter of 0.3 μm or less containing 0.1% or more and 5% or less of the fiber weight. While improving the light resistance while providing, because the inorganic particles to the fiber surface layer at the time of spinning of the polyamide fiber, the spinning conditions are difficult, the spinning equipment is complicated, and the physical properties of the spun fiber may have a problem.

그러므로 본 발명에 의하면 상기 종래기술의 문제점을 해결하여 아라미드섬유의 고유물성을 저해하지 않으면서도 자외선에 대한 내광성을 향상시켜 옥외에서 장기간동안 사용하는 경우에도 아라미드섬유의 물성저하가 최소화될 수 있는 내광성강화코팅조성물을 제공하는 것을 기술적과제로 한다.Therefore, according to the present invention solves the problems of the prior art to improve the light resistance to ultraviolet rays without inhibiting the intrinsic properties of aramid fibers to improve the light resistance to minimize the degradation of physical properties of aramid fibers even when used for a long time outdoors It is a technical task to provide a coating composition.

그러므로 본 발명에 의하면, 평균입경 5 내지 100nm인 ZnO 나노입자를 함유하는 ZnO 졸이 수분산폴리머에 분산된 아라미드섬유용 내광성강화코팅조성물이 제공된다.Therefore, according to the present invention, there is provided a light resistance strengthening coating composition for aramid fibers in which a ZnO sol containing ZnO nanoparticles having an average particle diameter of 5 to 100 nm is dispersed in an aqueous dispersion polymer.

또한 본 발명에 의하면, 상기 아라미드섬유용 내광성강화코팅조성물에 피처리물을 픽업율 5~15중량%로 패딩하고 90~120℃에서 3~6분간 건조한 후 180~185℃에서 1~2분간 큐어링하는 것을 특징으로 하는 아라미드섬유내광성강화가공방법이 제공된다.
In addition, according to the present invention, the light-resistant reinforced coating composition for aramid fibers is padded with a pickup rate of 5 to 15% by weight and dried at 90 to 120 ℃ for 3 to 6 minutes, then cured at 180 to 185 ℃ for 1 to 2 minutes Aramid fiber light-resistant enhanced processing method characterized in that the ring is provided.

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 제공되는 아라미드섬유용 내광성강화코팅조성물은 평균입경이 상이한 ZnO 나노입자를 함유하는 ZnO을 혼합하여 수분산폴리머에 분산시킨 것으로서 아라미드섬유에 적용하는 경우에 자외선투과율을 감소시킴으로써 아라미드섬유의 내광성을 강화할 수 있는 코팅조성물이다.The light-resistant strengthening coating composition for aramid fibers provided in the present invention is a mixture of ZnO containing ZnO nanoparticles having different average particle diameters and dispersed in a water-dispersible polymer, and when applied to aramid fibers, the UV transmittance is reduced by reducing the UV transmittance. It is a coating composition that can strengthen.

본 발명은 평균입경 5 내지 100nm인 ZnO 나노입자를 함유하는 ZnO 졸을 수분산폴리머에 분산시켜 사용하여 자외선차단작용을 부여하여 아라미드섬유의 내광성을 향상시킬 수 있는데, 평균입경이 5㎚미만인 경우에는 내광성 향상효과가 불충분하고 인장강도가 저하되며, 100㎚를 초과하는 경우에는 변형율(strain)이 증가하는 문제점이 있다.According to the present invention, ZnO sol containing ZnO nanoparticles having an average particle diameter of 5 to 100 nm may be dispersed in an aqueous dispersion polymer to impart UV blocking action to improve light resistance of aramid fibers, but when the average particle diameter is less than 5 nm. If the light resistance improving effect is insufficient, the tensile strength is lowered, and if it exceeds 100 nm, there is a problem that the strain is increased.

본 발명에서 사용하는 상기 ZnO 졸은 pH 11~13의 암모니아수 60~80중량%, 아세트산아연(zinc acetate) 수용액 20~40중량%를 혼합하여 반응하여 얻어지는 반응 생성물인 것이 바람직한데, 상기 반응조건에 의해서 ZnO 나노입자의 평균입경을 5 내지 100nm로 조절할 수 있게 된다. 얻어지는 ZnO 나노입자의 크기는 암모니아 수용액의 pH가 높아질수록 결정의 평균크기는 증가하는데, 입자의 크기가 너무 큰 경우에는 아라미드 섬유에 적용시 변형율의 증가를 초래하므로 100㎚이하로 조절하는 것이 바람직하다.The ZnO sol used in the present invention is preferably a reaction product obtained by reacting a mixture of 60 to 80% by weight of aqueous ammonia at pH 11-13 and 20 to 40% by weight of an aqueous zinc acetate solution. As a result, the average particle diameter of the ZnO nanoparticles can be adjusted to 5 to 100 nm. The size of the ZnO nanoparticles obtained increases as the pH of the aqueous ammonia solution increases. However, when the size of the particles is too large, the size of the ZnO nanoparticles may be increased to 100 nm or less since they cause an increase in strain when applied to aramid fibers. .

상기 수분산폴리머는 수용성 아크릴계 폴리머를 사용하여 아라미드 섬유에 대한 견뢰도를 향상시킬 수 있다.
The water dispersion polymer may improve the fastness to aramid fibers using a water-soluble acrylic polymer.

본 발명에서는 아라미드섬유용 내광성강화코팅조성물에 피처리물을 픽업율 5~15중량%로 패딩하고 90~120℃에서 3~6분간 건조한 후 180~185℃에서 1~2분간 큐어링하여 아라미드섬유내광성강화가공을 행하게 된다.In the present invention, the aramid fibers are cured for 1 to 2 minutes at 180 to 185 ℃ after padding the treated material in the light-resistant reinforced coating composition for aramid fibers at a pickup rate of 5 to 15% by weight and dried at 90 to 120 ℃ for 3 to 6 minutes. Light-resistant hardening processing is performed.

아라미드 섬유는 절단시 섬유축 방향에 균열이 발생하여 전단응력에 의하여 부분 절단된 후 다수의 피브릴을 갖는 형태로 분리되어 완전히 절단되는 것으로 나타난다. 필라멘트의 표면에서 하중이 증가함에 따라 자외선조사에 의한 결점(defect)을 가진 피브릴의 구성단위가 파괴되어 초기균열점(initial crack point)이 생성되며, 초기균열점에서 섬유축 방향으로 전단응력이 발생하여 피브릴 다발의 균열은 인장응력에 의해 급진적으로 진행되며 인장강도가 전단강도 보다 크게 될 때 균열이 급경사각으로 전개된다. 한편, 1차 절단된 피브릴은 응력이 다음 층으로 전달되어 새로운 균열이 발생하며 이러한 균열전파 메카니즘은 최초의 피브릴 구성단위로부터 필라멘트가 완전히 절단될 때까지 전달된다고 생각된다. 따라서 본 발명의 가공에 의해 아라미드 섬유로의 자외선 침투를 차단함으로써 자외선조사에 의한 결점발생을 감소시켜 인장강도의 저하현상을 방지할 수 있는 것이다. Aramid fibers are cracked in the direction of the fiber axis during the cutting, and is partially cut by the shear stress and then separated into a form having a plurality of fibrils and appears to be completely cut. As the load on the surface of the filament increases, the structural unit of fibrils having defects due to ultraviolet radiation is destroyed, and thus an initial crack point is generated, and the shear stress in the fiber axis direction is generated from the initial crack point. The fibrillated bundle crack is radically progressed by the tensile stress, and the crack develops at an inclined angle when the tensile strength becomes larger than the shear strength. On the other hand, the first cut fibrils are thought to transfer stresses to the next layer, resulting in new cracks, and this crack propagation mechanism is believed to be transferred until the filaments are completely cut from the original fibril unit. Therefore, by blocking the UV penetration into the aramid fiber by the process of the present invention it is possible to reduce the occurrence of defects due to ultraviolet irradiation to prevent the phenomenon of lowering the tensile strength.

그러므로 본 발명에 의하면 자외선에 약해서 강도가 급격히 저하되는 문제점을 가지는 아라미드 섬유에 대하여 간단한 공정으로 효율적인 자외선 차단기구를 부여함으로써 장시간에 걸친 옥외사용에 의해서도 강도저하가 최소화될 뿐만 아니라 아라미드섬유의 변형율도 최소화할 수 있는 아라미드섬유용 내광성강화코팅조성물 및 이를 이용한 아라미드섬유내광성강화가공방법을 제공할 수 있다.Therefore, according to the present invention, by providing an effective UV blocking mechanism with a simple process to the aramid fibers having a problem that the strength is sharply lowered due to ultraviolet rays, not only the strength reduction is minimized even by outdoor use for a long time but also the strain rate of the aramid fibers is minimized. It can provide a light-resistant strengthening coating composition for aramid fibers and aramid fiber light-resistant enhanced processing method using the same.

도 1은 본 발명의 아라미드섬유용 내광성강화코팅조성물을 코팅한 아라미드섬유의 SEM 현미경사진(×5,000)이며,
도 2는 본 발명의 아라미드섬유용 내광성강화코팅조성물을 코팅한 아라미드섬유의 SEM 현미경사진(×30,000)이며,
도 3은 본 발명의 아라미드섬유용 내광성강화코팅조성물의 구성성분인 ZnO 나노졸의 TEM 현미경사진이며,
도 4는 본 발명의 아라미드섬유용 내광성강화코팅조성물의 구성성분인 ZnO 나노졸의 TEM 현미경사진이며,
도 5는 ZnO 입자 크기에 따른 파라아라미드 섬유의 변형율을 나타낸 그래프이며,
도 6은 ZnO 입자 크기에 따른 파라아라미드 섬유의 인장강도를 나타낸 그래프이다.
1 is a SEM micrograph (× 5,000) of aramid fibers coated with a light-resistant strengthening coating composition for aramid fibers of the present invention,
2 is a SEM micrograph (× 30,000) of an aramid fiber coated with the light-resistant strengthening coating composition for aramid fibers of the present invention,
3 is a TEM photomicrograph of ZnO nanosol as a component of the light-resistant strengthening coating composition for aramid fibers of the present invention,
4 is a TEM photomicrograph of ZnO nanosol as a component of the light-resistant strengthening coating composition for aramid fibers of the present invention,
5 is a graph showing the strain of para-aramid fibers according to the ZnO particle size,
Figure 6 is a graph showing the tensile strength of the paraaramid fiber according to the ZnO particle size.

이하 다음의 실시 예에서는 본 발명의 아라미드섬유용 내광성강화코팅조성물에 대한 비한정적인 예시를 하고 있다.The following examples are given as non-limiting examples of the light-resistant strengthening coating composition for aramid fibers of the present invention.

[합성례 1~4][Synthesis Cases 1-4]

1,000㎖ 크기의 파이렉스재질의 분리된 플라스크 반응기에 온도계, 교반기를 장착하고, 암모니아수의 기화를 방지하기 위한 냉각기와 반응용액 주입용 테프론 개폐구를 장착한 다음 맨틀히터(mantle heater)에 장치하였다. 하기 표 1의 암모니아수 300㎖를 각각 반응기에 주입하여 80℃로 가열하고, 일정 농도의 아세트산아연(zinc acetate : 농도 1M) 수용액 100㎖를 1회용 피펫으로 여러 차례에 걸쳐 분사하듯이 분무 주입하여 반응시켜 ZnO 나노졸을 제조하였다. A separate flask reactor of 1,000 ml Pyrex material was equipped with a thermometer, a stirrer, a cooler to prevent evaporation of ammonia water, and a Teflon opening and closing port for reaction solution injection, followed by a mantle heater. 300 ml of ammonia water shown in Table 1 was respectively injected into a reactor and heated to 80 ° C., and 100 ml of zinc acetate (concentration 1M) aqueous solution of a certain concentration was spray-injected as if it was sprayed with a disposable pipette several times. ZnO nanosol was prepared.

합성례 1Synthesis Example 1 합성례 2Synthesis Example 2 합성례 3Synthesis Example 3 합성례 4Synthesis Example 4 암모니아수 pHAmmonia Water pH 11.411.4 11.0 11.0 11.811.8 12.012.0 ZnO나노입자크기(㎚)ZnO nanoparticle size (nm) 16.1316.13 35.7835.78 74.9574.95 88.8888.88

상기 제조된 입자의 미세구조변화와 크기를 알아보기 위해 나노레벨까지 관찰이 가능한 투과전자현미경(TEM, H-7600, HITACHI)을 사용하였다. TEM 결과 생성된 합성례 1의 ZnO입자는 도 1에 도시된 바와 같이 육각형 구조를 보였다. 제조된 입자의 입자분포와 크기를 알아보기 위해 합성된 ZnO 졸의 입도는 입도분포분석기(ELS-8000, OTSUKA)로 측정하였으며, 측정횟수는 50회로 하였다. 표 1에 기재된 바와 같이 pH가 높아질수록 결정의 평균크기는 대체로 증가하였다.
The transmission electron microscope (TEM, H-7600, HITACHI) that can be observed up to nano-level was used to determine the microstructure change and size of the prepared particles. The ZnO particles of Synthesis Example 1 generated as a result of TEM showed a hexagonal structure as shown in FIG. 1. The particle size of the synthesized ZnO sol was measured by particle size distribution analyzer (ELS-8000, OTSUKA) to determine the particle distribution and size of the prepared particles, the number of measurements was 50 times. As shown in Table 1, as the pH was increased, the average size of the crystals generally increased.

[실시예 1~4][Examples 1 to 4]

상기 합성례 1~4에서 얻은 ZnO나노졸을 수용성 아크릴계 폴리머를 함유하는 수분산폴리머와 각각 혼합하여 코팅조성물을 제조하였다.The coating composition was prepared by mixing ZnO nanosols obtained in Synthesis Examples 1 to 4 with a water dispersion polymer containing a water-soluble acrylic polymer.

제조된 각각의 코팅조성물에 파라아라미드직물을 픽업율 10중량%로 패딩하고 100℃에서 4분간 건조한 후 180℃에서 2분간 큐어링하여 내광성강화가공을 하였다. 실시예 1의 직물을 SEM 분석한 결과, 나노 크기의 ZnO 분포 상태는 비교적 고르게 되어있지만, 입자간의 응집(aggregation)이 되어 있는 것을 확인할 수 있었다.
Para-aramid fabric was padded with a pick-up rate of 10% by weight in each of the prepared coating compositions, dried at 100 ° C. for 4 minutes, and cured at 180 ° C. for 2 minutes for light resistance-enhanced processing. As a result of SEM analysis of the fabric of Example 1, it was confirmed that the nano-sized ZnO distribution state was relatively even, but aggregation between particles was performed.

[비교예 1][Comparative Example 1]

상기 실시예의 내광성강화가공을 하지 않은 파라아라미드직물을 채택하였다.
The para-aramid fabric without the light resistance-hardening process of the said Example was employ | adopted.

광조사에 의한 상기 실시예 및 비교예의 파라아라미드 섬유의 내광성을 알아보기 위하여 파라아라미드 섬유를 xenon-arc 시험기(ATLAS Ci-4000)에서 80시간 조사한 후, 물성 변화를 알아보기 위하여 만능인장시험기(Shimazu)를 사용하여 인장특성을 측정하였다. 섬유 표면이 매끄러운 고강도 파라 아라미드 섬유는 인장 시 그립(grip)에서 미끄러짐 현상을 방지하기 위하여 50 × 30mm의 직사각형 종이 프레임(frame)에 단일 필라멘트를 에폭시 수지로 부착시켜 측정하였다. 인장실험 조건은 ASTM D 3822를 참고하였으며 gage length는 50mm, cross-head speed는 10mm/min로 설정하였다. 광 조사 전에 사용된 시편과 동일하게 acetone에 10분간 초음파로 정제과정을 거쳤으며, 인장실험의 편차를 줄이기 위하여 시편의 수는 5개를 사용하였다. ZnO 입자 크기에 따른 파라아라미드 섬유의 변형율을 도 5에 나타내었고, ZnO 입자 크기에 따른 파라아라미드 섬유의 인장강도를 도 6에 나타내고 있다. ZnO 나노 입자의 크기에 따른 파라 아라미드 섬유의 인장강도는 입자의 크기가 커질수록 광에 대한 저항성이 효과적으로 나타나 증가하였으며, 변형율은 미처리 파라 아라미드보다 낮게 나타났다.
In order to find out the light resistance of the para-aramid fibers of the Examples and Comparative Examples by light irradiation, after irradiating the para-aramid fibers in the xenon-arc tester (ATLAS Ci-4000) for 80 hours, to determine the physical properties of the universal tensile tester (Shimazu ) Was measured for tensile properties. High-strength para-aramid fibers with smooth fiber surfaces were measured by attaching a single filament with an epoxy resin to a 50 × 30 mm rectangular paper frame to prevent slippage during grip. Tensile test conditions were referred to ASTM D 3822, gage length was set to 50mm, cross-head speed was set to 10mm / min. In the same manner as the one used before the light irradiation, acetone was purified by ultrasonic for 10 minutes, and 5 specimens were used to reduce the variation of tensile test. The strain of the paraaramid fiber according to the ZnO particle size is shown in FIG. 5, and the tensile strength of the paraaramid fiber according to the ZnO particle size is shown in FIG. 6. The tensile strength of the para-aramid fiber with the ZnO nanoparticle size increased effectively as the particle size increased, and the strain was lower than the untreated para-aramid.

Claims (4)

평균입경 5 내지 100nm인 ZnO 나노입자를 함유하는 ZnO 졸이 수용성 아크릴계 폴리머인 수분산폴리머에 분산된 아라미드섬유용 내광성강화코팅조성물.A light resistant coating composition for aramid fibers in which a ZnO sol containing ZnO nanoparticles having an average particle diameter of 5 to 100 nm is dispersed in an aqueous dispersion polymer which is a water-soluble acrylic polymer. 삭제delete 제 1항에 있어서, 상기 ZnO 졸은 pH 11~13의 암모니아수 60~80중량%, 아세트산아연(zinc acetate) 수용액 20~40중량%를 혼합하여 반응하여 얻어지는 반응 생성물인 것을 특징으로 하는 아라미드섬유용 내광성강화코팅조성물.The aramid fiber according to claim 1, wherein the ZnO sol is a reaction product obtained by reacting 60 to 80 wt% of ammonia water at pH 11-13 and 20 to 40 wt% of an aqueous zinc acetate solution. Light Resistance Reinforced Coating Composition. 제 1항 또는 제 3항 기재의 아라미드섬유용 내광성강화코팅조성물에 피처리물을 픽업율 5~15중량%로 패딩하고 90~120℃에서 3~6분간 건조한 후 180~185℃에서 1~2분간 큐어링하는 것을 특징으로 하는 아라미드섬유내광성강화가공방법.The light-resistant reinforced coating composition for aramid fibers according to claim 1 or 3 is padded with a pickup rate of 5 to 15% by weight, dried at 90 to 120 ° C. for 3 to 6 minutes, and then at 1 to 2 at 180 to 185 ° C. Aramid fiber light resistance enhanced processing method characterized in that the curing for minutes.
KR1020120044431A 2012-04-27 2012-04-27 Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby KR101381097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120044431A KR101381097B1 (en) 2012-04-27 2012-04-27 Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120044431A KR101381097B1 (en) 2012-04-27 2012-04-27 Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby

Publications (2)

Publication Number Publication Date
KR20130121334A KR20130121334A (en) 2013-11-06
KR101381097B1 true KR101381097B1 (en) 2014-04-02

Family

ID=49851583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120044431A KR101381097B1 (en) 2012-04-27 2012-04-27 Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby

Country Status (1)

Country Link
KR (1) KR101381097B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179568A (en) * 1991-12-27 1993-07-20 Teika Corp Fiber treating agent for protecting ultraviolet ray and woven fabric subjected to ultraviolet ray-protecting treatment
KR100582552B1 (en) 2004-09-23 2006-05-23 한국전자통신연구원 Method for forming nanoparticle oxide electrode of plastic-type dye-sensitized solar cells using binder-free and high viscosity nanoparticle oxide pastes
KR20090040577A (en) * 2007-10-22 2009-04-27 주식회사 효성 Light resistent-excellent light reflective aramid multifilament fiber and method of producing the same
KR20100008690A (en) * 2008-07-16 2010-01-26 한국세라믹기술원 Sunscreen composition comprising zinc oxide fine particles, method for manufacturing the same and functional textile product using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179568A (en) * 1991-12-27 1993-07-20 Teika Corp Fiber treating agent for protecting ultraviolet ray and woven fabric subjected to ultraviolet ray-protecting treatment
KR100582552B1 (en) 2004-09-23 2006-05-23 한국전자통신연구원 Method for forming nanoparticle oxide electrode of plastic-type dye-sensitized solar cells using binder-free and high viscosity nanoparticle oxide pastes
KR20090040577A (en) * 2007-10-22 2009-04-27 주식회사 효성 Light resistent-excellent light reflective aramid multifilament fiber and method of producing the same
KR20100008690A (en) * 2008-07-16 2010-01-26 한국세라믹기술원 Sunscreen composition comprising zinc oxide fine particles, method for manufacturing the same and functional textile product using the same

Also Published As

Publication number Publication date
KR20130121334A (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Wang et al. Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties
Zhang et al. Facile preparation of hyperbranched polysiloxane-grafted aramid fibers with simultaneously improved UV resistance, surface activity, and thermal and mechanical properties
DE2418027A1 (en) STRUCTURES OF TITANIUM DIOXYDE
CN110055615A (en) A kind of uvioresistant polyester drawn textured yarn production technology
Majumdar et al. Improving the mechanical properties of p‐aramid fabrics and composites by developing ZnO nanostructures
Cai et al. Developing thermally resistant polydopamine@ nano turbostratic BN@ CeO2 double core-shell ultraviolet absorber with low light-catalysis activity and its grafted high performance aramid fibers
PA et al. Surface‐modified sisal fiber‐reinforced eco‐friendly composites: Mechanical, thermal, and diffusion studies
Mardiyati et al. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber
Li et al. The influence of media treatments on color changes, dimensional stability, and cracking behavior of bamboo scrimber
JP2024009966A (en) Cut resistant filled lengthy body
DK2828333T3 (en) polyolefin
Mahalingam et al. Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red Matta-RHA biosilica woven ramie fibre epoxy composite
KR101381097B1 (en) Coating Composite For Reinforcing Lightfastness For Aramid Textiles And Coating Process Using Thereby
CN112940305A (en) Preparation method of aramid pulp masterbatch, masterbatch obtained by preparation method and application of masterbatch
KR101479801B1 (en) Aramid Rope
Surajarusarn et al. Realising the potential of pineapple leaf fiber as green and high-performance reinforcement for natural rubber composite with liquid functionalized rubber
Li et al. Effect of durability treatment on ultraviolet resistance, strength, and surface wettability of wood plastic composite
Ruksakulpiwat et al. Cogon grass fiber-epoxidized natural rubber composites
EP1124885A1 (en) Method for manufacturing a moulded part
DE4106682C2 (en) Aromatic high-performance polyamide fibers, their production and use
US10272653B2 (en) Surface treatment composition, insulating fiber, yarn, rope and preparation method thereof
Thulasimani et al. Fabrication and characterization of natural rubber/Imperata cylindrica cellulose fiber biocomposites
JPH0681211A (en) Aromatic polyamide yarn
KR101426203B1 (en) Coating process of reinforcing lightfastness for aramid textiles using tio_2 sol
KR20130063900A (en) Aramid fiber for reinforcing concrete and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181217

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191218

Year of fee payment: 7