KR101375704B1 - Precursor of cathode active material for lithium secondary battery and preparation method thereof - Google Patents

Precursor of cathode active material for lithium secondary battery and preparation method thereof Download PDF

Info

Publication number
KR101375704B1
KR101375704B1 KR1020110124300A KR20110124300A KR101375704B1 KR 101375704 B1 KR101375704 B1 KR 101375704B1 KR 1020110124300 A KR1020110124300 A KR 1020110124300A KR 20110124300 A KR20110124300 A KR 20110124300A KR 101375704 B1 KR101375704 B1 KR 101375704B1
Authority
KR
South Korea
Prior art keywords
active material
secondary battery
lithium secondary
cathode active
material precursor
Prior art date
Application number
KR1020110124300A
Other languages
Korean (ko)
Other versions
KR20130058342A (en
Inventor
노영호
김병수
김형모
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to KR1020110124300A priority Critical patent/KR101375704B1/en
Publication of KR20130058342A publication Critical patent/KR20130058342A/en
Application granted granted Critical
Publication of KR101375704B1 publication Critical patent/KR101375704B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

니켈망간코발트의 혼합 금속염 용액에 알칼리 용액을 첨가하여 pH 및 교반 rpm을 조절하며 공침반응을 수행하여 제조되는 하기 화학식 1의 니켈망간코발트 수산화물 입자를 포함하는 리튬이차전지용 양극활물질 전구체는, 단축길이에 대한 장축길이의 비율인 구형도의 평균값이 1.3 내지 1.8이므로, 리튬이차전지에 사용되어 전기적 특성을 향상시킬 수 있다:
화학식 1
NixCoyMn(1-x-y)(OH)2
상기 식에서, 0.33 ≤ x ≤ 0.80이고 0 ≤ y ≤ 0.33이되, 0 < x+y < 1이다.
A cathode active material precursor for a lithium secondary battery comprising nickel manganese cobalt hydroxide particles of Formula 1 prepared by adding an alkali solution to a mixed metal salt solution of nickel manganese cobalt and controlling a pH and stirring rpm and performing a coprecipitation reaction, has a short length. Since the average value of the sphericity, which is the ratio of the major axis length to, is 1.3 to 1.8, it can be used in a lithium secondary battery to improve electrical characteristics:
Formula 1
Ni x Co y Mn (1-xy) (OH) 2
Wherein 0.33 ≦ x ≦ 0.80 and 0 ≦ y ≦ 0.33, where 0 <x + y <1.

Description

리튬이차전지용 양극활물질 전구체 및 이의 제조방법{PRECURSOR OF CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PREPARATION METHOD THEREOF} Cathode active material precursor for lithium secondary battery and manufacturing method therefor {PRECURSOR OF CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PREPARATION METHOD THEREOF}

본 발명은 리튬이차전지 양극활물질의 제조에 이용되는 전구체 및 이의 제조 방법에 관한 것이다. The present invention relates to a precursor used in the production of a lithium secondary battery cathode active material and a method for producing the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As the technology development and demand for mobile devices have increased, the demand for secondary batteries has increased sharply as an energy source. Among such secondary batteries, lithium secondary batteries having high energy density and operating potential, long cycle life, Have been commercialized and widely used.

리튬 이차전지의 양극활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2), 삼성분계의 LiNixMnyCO(1-x-y)O2의 사용도 고려되고 있다. Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery. In addition, lithium-containing manganese oxides such as LiMnO 2 in a layered crystal structure and LiMn 2 O 4 in a spinel crystal structure, and lithium-containing nickel oxide (LiNiO 2 ) and the use of LiNi x Mn y CO (1-xy) O 2 of the ternary system are also considered.

일반적으로 리튬 이차전지의 양극활물질은 700℃ 이상의 고온에서 고상반응법(solid state reaction)에 의해 제조된다. 그러나, 상기 고상반응법에 의해 양극활물질을 제조하는 경우, 물리적인 혼합 및 분쇄를 거치므로 혼합상태가 불균일하여 여러차례의 혼합 및 분쇄 과정을 거쳐야 하며, 이에 따라 제조에 필요한 시간이 크게 늘어나고 제조 단가가 상승하게 된다. Generally, the positive electrode active material of a lithium secondary battery is manufactured by a solid state reaction at a high temperature of 700 ° C. or higher. However, when the cathode active material is manufactured by the solid phase reaction method, since the mixing and grinding are performed physically, the mixing state is uneven, and thus, the mixing and grinding process must be performed several times. Will rise.

이에 따라, 가수분해(hydrolysis)와 축합반응(condensation)으로 이루어지는 졸-겔법(sol-gel process) 및 공침법(co-precipitation)으로 대표되는 습식 제조법이 개발되었다. 이 중 공침법은 원료물질을 함유한 염화물, 질화물 또는 황화물 등을 염기성의 공침액 내에서 수산화물로 침전시키고 이를 소성(calcination)하여 산화물 분말을 제조하는 방법으로, 공침법에 의한 양극활물질의 제조는 공침액의 pH, 온도, 교반 조건의 제어가 필요하다. Accordingly, a wet manufacturing method represented by the sol-gel process and co-precipitation, which consist of hydrolysis and condensation, has been developed. Among these, the coprecipitation method is a method of precipitating chloride, nitride, or sulfide containing a raw material with hydroxide in a basic coprecipitation solution and calcining it to prepare an oxide powder. Control of pH, temperature, and agitation conditions of the coprecipitation solution is necessary.

종래의 공침 기술 구현은 연속 반응기(continuous stirred-tank reactor, CSTR)에 의하여 주로 실시되고 있다. 그러나, 이들 방식은 최종으로 얻어지는 모든 금속 수산화물이 일정한 공침 반응시간을 거쳐 최적의 구형화도, 치밀화도 등을 가지지 못하는 문제점이 있다. 예를 들어, 공침 반응시간이 너무 길면 이차입자의 완결도가 높아져 이차입차로부터 떨어져 나오는 미분의 양이 증가하고, 반대로 공침 반응 시간이 부족하면 일차입자의 완결도와 이차입자로의 구성도가 떨어지게 되어 미분량이 증가하고 구형도와 치밀도가 저하될 수 있다.Conventional coprecipitation technology implementation is mainly carried out by a continuous stirred-tank reactor (CSTR). However, these methods have a problem in that all metal hydroxides finally obtained do not have an optimum sphericity, densification degree, etc. through a constant coprecipitation reaction time. For example, if the coprecipitation reaction time is too long, the final particle of the secondary particle is increased, and the amount of fines falling from the secondary borrowing increases. On the contrary, when the coprecipitation reaction time is insufficient, the completeness of the primary particle and the composition of the secondary particle are reduced. The amount of fines may increase and sphericity and density may decrease.

또한, 리튬이차전지의 안전성을 향상시키기 위해서는 전기화학 반응성이 뛰어난 3㎛ 미만의 입자 분포를 제어하는 것이 필요하나, 종래의 연속 반응기에 의한 금속 수산화물 제조 방법은 공침반응을 통해 전체 입자 규모에서 높은 구형도와 치밀도를 확보한 입자 분포를 구현하기 어렵다. 즉, 저성장 미분의 경우 추가 공정의 도입을 통하여 일부 해결될 수 있으나 높은 추가 비용을 필요로 하며, 구형도가 낮은 입자의 경우 최종 제품에서의 탭 또는 전극 밀도 향상을 저해하지는 않으나 열처리 과정에서 추가 미분의 발생 가능성과 고밀도 전극의 구현에 있어 이차입자의 깨짐 현상이 심화될 가능성이 높아진다.In addition, in order to improve the safety of the lithium secondary battery, it is necessary to control the particle distribution of less than 3㎛ excellent in electrochemical reactivity, the conventional method of manufacturing a metal hydroxide by a continuous reactor is a high spherical shape at the entire particle size through the coprecipitation reaction It is difficult to realize particle distribution that ensures degree and density. In other words, low growth fines can be partially solved through the introduction of additional processes, but require high additional costs, and low spherical particles do not inhibit the improvement of tap or electrode density in the final product, but additional fines during heat treatment The possibility of the occurrence of and the formation of high-density electrode is likely to intensify the secondary particle cracking phenomenon.

이에 본 발명자들은 반응기 내 용액의 흐름과 pH 값, 반응 시간 등을 적절히 변화시킴으로써 입자의 구형도를 제어할 수 있음을 발견하고 본 발명을 완성하였다.Accordingly, the present inventors have found that the sphericity of the particles can be controlled by appropriately changing the flow, pH value, reaction time, and the like of the solution in the reactor, and completed the present invention.

따라서, 본 발명의 목적은 전기적 특성 등이 우수한 리튬이차전지를 제조하기 위한 양극활물질의 전구체 및 이의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a precursor of a cathode active material for producing a lithium secondary battery excellent in electrical characteristics and the like and a method of manufacturing the same.

상기 목적에 따라, 본 발명은 하기 화학식 1로 표시되는 니켈망간코발트의 수산화물의 입자를 포함하며, 상기 입자의 단축길이(w)에 대한 장축길이(l)의 비율(l/w)인 구형도(sphericity coefficient)의 평균값이 1.3 내지 1.8인, 리튬이차전지용 양극활물질 전구체를 제공한다:In accordance with the above object, the present invention comprises a particle of the hydroxide of nickel manganese cobalt represented by the following formula (1), the spherical figure which is the ratio (l / w) of the long axis length (l) to the short axis length (w) of the particles It provides a cathode active material precursor for a lithium secondary battery, the average value of the (sphericity coefficient) is 1.3 to 1.8:

화학식 1Formula 1

NixCoyMn(1-x-y)(OH)2 Ni x Co y Mn (1-xy) (OH) 2

상기 식에서, 0.33 ≤ x ≤ 0.80이고 0 ≤ y ≤ 0.33이되, 0 < x+y < 1이다.Wherein 0.33 ≦ x ≦ 0.80 and 0 ≦ y ≦ 0.33, where 0 <x + y <1.

또한, 본 발명은 니켈망간코발트의 혼합 금속염 용액에 알칼리 용액을 첨가하여 pH 10 내지 13으로 조절한 뒤 500 내지 1,000 rpm으로 교반을 실시하며 공침반응을 수행하여 상기 화학식 1의 니켈망간코발트 수산화물 입자를 제조하는 단계를 포함하는, 상기 리튬이차전지용 양극활물질 전구체의 제조방법을 제공한다.In addition, the present invention is adjusted to pH 10 to 13 by adding an alkaline solution to the mixed metal salt solution of nickel manganese cobalt and then stirred at 500 to 1,000 rpm to perform a coprecipitation reaction to the nickel manganese cobalt hydroxide particles of the formula (1) It provides a method for producing a cathode active material precursor for a lithium secondary battery, comprising the step of manufacturing.

본 발명에 따른 리튬이차전지용 양극활물질 전구체 입자는, 공침반응시의 pH, 교반 RPM 등의 조절을 통해 특정 범위의 구형도를 갖도록 제조될 수 있으며, 이를 리튬이차전지의 제조에 양극활물질로 사용할 경우 전지의 전기적 특성을 향상시킬 수 있다.The positive electrode active material precursor particles for a lithium secondary battery according to the present invention may be manufactured to have a specific range of sphericity through adjustment of pH, stirring RPM, etc. during the coprecipitation reaction, and when used as a positive electrode active material for the production of a lithium secondary battery The electrical characteristics of the battery can be improved.

도 1 및 2는 각각 실시예 1에서 얻은 전구체 입자의 고배율 및 저배율 SEM 이미지이다.
도 3은 실시예 2에서 얻은 전구체 입자의 고배율 SEM 이미지이다.
도 4는 실시예 3에서 얻은 전구체 입자의 고배율 SEM 이미지이다.
도 5 및 6는 각각 비교예 1에서 얻은 전구체 입자의 고배율 및 저배율 SEM 이미지이다.
도 7은 비교예 2에서 얻은 전구체 입자의 고배율 SEM 이미지이다.
도 8은 비교예 3에서 얻은 전구체 입자의 고배율 SEM 이미지이다.
도 9은 실시예 1에서 얻은 전구체 입자의 XRD 결과이다.
도 10은 실시예 1 및 비교예 1에서 얻은 전구체를 이용해 얻은 양극활물질의 충방전 특성을 비교한 그래프이다.
도 11은 실시예 2 및 비교예 2에서 얻은 전구체를 이용해 얻은 양극활물질의 충방전 특성을 비교한 그래프이다.
1 and 2 are high and low magnification SEM images of the precursor particles obtained in Example 1, respectively.
3 is a high magnification SEM image of the precursor particles obtained in Example 2. FIG.
4 is a high magnification SEM image of the precursor particles obtained in Example 3. FIG.
5 and 6 are high and low magnification SEM images of the precursor particles obtained in Comparative Example 1, respectively.
7 is a high magnification SEM image of the precursor particles obtained in Comparative Example 2. FIG.
8 is a high magnification SEM image of the precursor particles obtained in Comparative Example 3. FIG.
9 is an XRD result of the precursor particles obtained in Example 1. FIG.
10 is a graph comparing the charge and discharge characteristics of the positive electrode active material obtained using the precursors obtained in Example 1 and Comparative Example 1.
11 is a graph comparing the charge and discharge characteristics of the positive electrode active material obtained using the precursors obtained in Example 2 and Comparative Example 2.

이하, 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described more specifically.

본 발명은 하기 화학식 1로 표시되는 니켈망간코발트의 수산화물의 입자를 포함하는 리튬이차전지용 양극활물질 전구체에 관한 것이다:The present invention relates to a cathode active material precursor for a lithium secondary battery comprising particles of a hydroxide of nickel manganese cobalt represented by Formula 1 below:

화학식 1Formula 1

NixCoyMn(1-x-y)(OH)2 Ni x Co y Mn (1-xy) (OH) 2

상기 식에서, 0.33 ≤ x ≤ 0.80이고 0 ≤ y ≤ 0.33이되, 0 < x+y < 1이다.Wherein 0.33 ≦ x ≦ 0.80 and 0 ≦ y ≦ 0.33, where 0 <x + y <1.

본 발명에 따른 전구체 입자는 단축길이(w)에 대한 장축길이(l)의 비율(l/w)인 구형도(sphericity coefficient)의 평균값이 1.3 내지 1.8이고, 더욱 바람직하게는 1.4 내지 1.7이다. 입자의 구형도의 평균값이 상기 범위 내일 때, 높은 탭밀도의 장점이 있으며, 최종 리튬이차전지에서 높은 전극밀도의 구현과 고용량 및 고출력의 장점이 있다.The precursor particles according to the present invention have an average value of sphericity coefficient, which is the ratio (l / w) of the major axis length (l) to the minor axis length (w), of 1.3 to 1.8, more preferably 1.4 to 1.7. When the average value of the sphericity of the particles is within the above range, there is an advantage of high tap density, there is an advantage of high electrode density and high capacity and high output in the final lithium secondary battery.

본 발명에 따른 전구체 입자의 평균 입경(D50)은 5 내지 20 ㎛의 범위이며, 더욱 바람직하게는 6 내지 12 ㎛의 범위이다. 또한, 입자크기분포의 규정 지수로서 사용되는 SPAN 값이 0.5 내지 0.8의 범위인 것이 바람직하다.The average particle diameter (D50) of the precursor particles according to the present invention is in the range of 5 to 20 µm, more preferably in the range of 6 to 12 µm. In addition, it is preferable that the SPAN value used as the prescribed index of the particle size distribution is in the range of 0.5 to 0.8.

또한, 본 발명에 따른 전구체 입자의 소성 후 탭밀도는 2 g/cc 이상으로서, 예를 들어 2.0 내지 2.6 g/cc이며, 더욱 바람직하게는 2.1 g/cc 이상이다. 입자의 탭밀도가 상기 범위 내일 때, 높은 전극밀도 구현이 가능하여 고용량의 전지 제조가 용이하다는 장점이 있다.
Moreover, the tap density after baking of the precursor particle which concerns on this invention is 2 g / cc or more, for example, 2.0-2.6 g / cc, More preferably, it is 2.1 g / cc or more. When the tap density of the particles is within the above range, it is possible to implement a high electrode density, there is an advantage that it is easy to manufacture a high capacity battery.

또한, 본 발명은 니켈망간코발트의 혼합 금속염 용액에 알칼리 용액을 첨가하고 교반을 실시하며 공침반응을 수행하여 상기 화학식 1의 니켈망간코발트 수산화물 입자를 제조하는 단계를 포함하는, 리튬이차전지용 양극활물질 전구체의 제조방법을 제공한다.In addition, the present invention includes the step of adding an alkaline solution to the mixed metal salt solution of nickel manganese cobalt, performing stirring and coprecipitation reaction to prepare the nickel manganese cobalt hydroxide particles of the formula (1), a cathode active material precursor for a lithium secondary battery It provides a method of manufacturing.

이 때, 상기 알칼리 용액에 의해 니켈망간코발트의 혼합 금속염 용액의 pH 10 내지 13으로 조절하는 것이 필요하며, 더욱 바람직하게는 pH 10.5 내지 12.0 으로 조절하는 것이 좋고, 가장 바람직하게는 pH 11.0 내지 11.4 인 것이 좋다. pH 가 상기 범위 내일 때, 공침반응에 의해 얻어진 전구체 입자가 본 발명에서 목적하는 균일도 및 구형화도의 범위를 가질 수 있으며, 생성되는 전구체 입자의 침전의 일부가 재용해되는 현상을 방지하여 전구체 입자가 원하는 조성비를 갖도록 할 수 있고, 또한 분말의 탭밀도를 높일 수 있는 장점이 있다.At this time, it is necessary to adjust the pH to 10 to 13 of the mixed metal salt solution of nickel manganese cobalt by the alkaline solution, more preferably to adjust to pH 10.5 to 12.0, most preferably pH 11.0 to 11.4 It is good. When the pH is in the above range, the precursor particles obtained by the coprecipitation reaction may have a range of uniformity and sphericity degree desired in the present invention, and the precursor particles may be prevented by re-dissolving a part of the precipitation of the resulting precursor particles. It can be made to have a desired composition ratio, and there is an advantage that can increase the tap density of the powder.

교반 속도는 500 내지 1,000 rpm인 것이 좋고, 더욱 바람직하게는 600 내지 900 rpm 인 것이 바람직하다. 교반속도가 상기 범위 내일 때 입자간 충돌이 충분하여 입자간의 응집효율이 높으면서도 입자간의 충돌 회수 및 충돌 강도가 적정하여 원하는 크기의 전구체 입자의 제조를 위한 입자간의 응집이 보다 효율적으로 일어날 수 있다.The stirring speed is preferably 500 to 1,000 rpm, more preferably 600 to 900 rpm. When the stirring speed is within the above range, the collision between particles is sufficient, while the aggregation efficiency between particles is high, but the collision recovery and collision strength between particles are appropriate, so that aggregation between particles for the production of precursor particles of a desired size can occur more efficiently.

또한, 반응기 내의 체류시간(RT)은, 쿠에트테일러 반응기의 경우 1 내지 6 시간이 바람직하고, 연속 반응기(CSTR)의 경우 3 내지 12 시간이 바람직한데, 상기 범위 내일 때 균일한 전구체 입자가 안정적으로 제조되는 장점이 있다.In addition, the residence time (RT) in the reactor is preferably 1 to 6 hours in the case of the Kuet Taylor reactor, and 3 to 12 hours is preferable in the case of the continuous reactor (CSTR), the uniform precursor particles are stable in the above range Has the advantage of being manufactured.

상기 금속염 용액의 농도는 1.0 내지 4.0 M인 것이 바람직하며, 1.5 내지 2.5 M인 것이 더욱 바람직하다. 금속염 용액의 농도가 상기 범위 내일 때 생성되는 전구체 입자의 수율이 더욱 증가하게 된다. The concentration of the metal salt solution is preferably 1.0 to 4.0 M, more preferably 1.5 to 2.5 M. The yield of precursor particles produced when the concentration of the metal salt solution is within the above range is further increased.

또한, 니켈망간코발트의 혼합 금속염에 포함될 수 있는 니켈염으로는 니켈 황산염, 니켈 질산염, 니켈 염산염 등이 가능하고, 코발트염으로는 코발트 황산염, 코발트 질산염 등이 가능하며, 망간염으로는 망간 황산염, 망간 질산염, 망간 염산염 등이 가능한데, 이 중 니켈 황산염, 코발트 황산염, 또는 망간 황산염이 가장 바람직하다. In addition, nickel salts that may be included in the mixed metal salt of nickel manganese cobalt may be nickel sulfate, nickel nitrate, nickel hydrochloride, and the like, and the cobalt salt may be cobalt sulfate, cobalt nitrate, and the like. Manganese nitrate, manganese hydrochloride, and the like are possible, of which nickel sulfate, cobalt sulfate, or manganese sulfate is most preferred.

이들 원료 금속염의 몰비는 니켈염, 코발트염, 및 망간염 중의 Ni:Co:Mn의 몰비가 상기 화학식 1의 몰비 범위 내에 속하도록 혼합시키는 것이 바람직하다.The molar ratio of these raw metal salts is preferably mixed so that the molar ratio of Ni: Co: Mn in the nickel salt, cobalt salt, and manganese salt falls within the molar ratio range of the general formula (1).

한편, 상기와 같이 Ni, Co 및 Mn을 포함하는 전구체를 이용하여 제조되는 리튬 전이금속 복합 산화물은 일부 고전위 영역에서 충방전하는 경우에는 결정 구조의 변화로 인하여 그 수명 특성이 감소하는 문제점이 발생할 수 있다. 이와 같은 문제점을 해소하기 위하여, Fe, Ga, Ge, Al, Ti, V, Cu, Zn, Si, P, Nb, Ta, Zr, Zn, Sn, Sb, Pt, In, Ag, Au, Bi, Pd, W 및 Nb로 구성된 군으로부터 선택된 금속을 도핑시킴으로써 고전위 영역에서 사이클 특성을 대폭적으로 개선할 수 있으며, 상기 금속의 도핑은 상기 혼합 금속염 용액을 반응기에 투입하는 단계에서, Fe, Ga, Ge, Al, Ti, V, Cu, Zn, Si, P, Nb, Ta, Zr, Zn, Sn, Sb, Pt, In, Ag, Au, Bi, Pd, W 및 Nb로 구성된 군으로부터 선택된 금속의 금속염 용액을 추가로 투입하여 이루어질 수 있다.On the other hand, the lithium transition metal composite oxide prepared using the precursor containing Ni, Co, and Mn as described above, when the charge and discharge in some high potential region, the lifespan characteristics may decrease due to the change in crystal structure Can be. In order to solve this problem, Fe, Ga, Ge, Al, Ti, V, Cu, Zn, Si, P, Nb, Ta, Zr, Zn, Sn, Sb, Pt, In, Ag, Au, Bi, By doping a metal selected from the group consisting of Pd, W and Nb, the cycle characteristics can be significantly improved in the high potential region, and the doping of the metal is performed in the step of introducing the mixed metal salt solution into the reactor, by using Fe, Ga, Ge Metal salts of metals selected from the group consisting of Al, Ti, V, Cu, Zn, Si, P, Nb, Ta, Zr, Zn, Sn, Sb, Pt, In, Ag, Au, Bi, Pd, W and Nb It can be made by adding additional solution.

상기 알칼리 용액은, 공침제로서 반응기 내에 투입된 금속염 용액의 pH를 적정 범위로 제어하는 역할을 하며, 구체적인 예로서 수산화나트륨 수용액, 암모니아 수용액 등을 바람직하게 사용할 수 있다. 이들 알칼리 용액은 1종 또는 2종 이상을 함께 첨가시킬 수 있다.The alkaline solution serves to control the pH of the metal salt solution introduced into the reactor as a coprecipitation agent to an appropriate range, and specific examples thereof may preferably use an aqueous sodium hydroxide solution or an aqueous ammonia solution. These alkali solutions can add 1 type (s) or 2 or more types together.

상기 공침 반응시의 온도는 상온 내지 90℃ 인 것이 바람직하며, 40℃ 내지 90℃인 것이 더욱 바람직하다. The temperature during the coprecipitation reaction is preferably from room temperature to 90 ℃, more preferably from 40 ℃ to 90 ℃.

본 발명에 있어서, 상기 공침반응은 연속 반응기 또는 쿠에트테일러 반응기를 이용하여 실시될 수 있다. In the present invention, the coprecipitation reaction may be carried out using a continuous reactor or a Kuet Taylor reactor.

일례로서, 연속 반응기에서는 적절한 범위에서의 RPM 조절을 통해 전체 입자의 구형도를 지속적으로 제어할 수 있고, 쿠에트테일러 반응기에서는 공침 반응 순서에 따라 순차적으로 최종 금속 수산화물을 생성시킴으로써 초기 조건에 의해 지속적인 입자의 구형도 제어가 가능하다. For example, in a continuous reactor, the sphericity of the whole particles can be continuously controlled by controlling the RPM in an appropriate range, and in the Kuet Taylor reactor, the final metal hydroxides are produced sequentially in the order of the coprecipitation reaction, so that the continuous The sphericity of the particles can be controlled.

먼저, 연속 반응기를 이용할 경우는 반응 체류시간이 최대한 비슷하도록 유지시켜 주는 것이 중요하며 일정한 범위의 체류시간에서 유사한 구형도 조절은 RPM 을 변화시켜 조절할 수 있다. 즉, 평균 체류시간(retention time)이 10시간이라고 했을 때 5~15시간의 범위에서 유사한 입자의 모양을 형성하는 RPM의 범위를 구하고 그 범위 내에서 pH 및 반응시간에 따라 순차적으로 RPM 값을 변동시킴으로써 구형화도를 일정하게 유지시킬 수 있다. 예를 들어, 공침반응 초기 안정화까지는 800 내지 1000 rpm으로 교반기를 회전시키고, 이후 3 내지 24 시간에 걸쳐 교반 속도를 600 내지 700 rpm 까지 낮춘 뒤, 다시 원래의 속도 범위로 상승시키는 방식으로, 교반 속도의 변화를 상기 범위 사이에서 계속적으로 반복하여, 양극활물질 전구체를 제조할 수 있다.First, in the case of using a continuous reactor, it is important to keep the reaction residence time as similar as possible, and similar sphericity control at a certain range of residence time can be controlled by changing the RPM. That is, when the average retention time is 10 hours, the range of RPM forming the shape of similar particles in the range of 5 to 15 hours is obtained, and the RPM value is sequentially changed according to pH and reaction time within the range. By doing so, the degree of sphericity can be kept constant. For example, by rotating the stirrer at 800 to 1000 rpm until the initial stabilization of the coprecipitation reaction, the stirring speed is lowered to 600 to 700 rpm over 3 to 24 hours, and then raised to the original speed range again. The change of can be repeated continuously between the above ranges, to prepare a cathode active material precursor.

쿠에트테일러 반응기를 이용할 경우는 연속 반응기를 이용할 경우보다 쉽게 구형도의 조절이 가능하다. 입자의 회전이 수반되는 공침 반응의 경우 pH 값의 변화에 따라 입자의 성장 방향이 결정된다. 따라서 생성되는 입자의 구형도는 동일한 조성과 와류회전 조건에서 pH 값에 의존하게 된다.In the case of the Kuet Taylor reactor, it is possible to adjust the sphericity more easily than in the case of using a continuous reactor. In the case of the coprecipitation reaction involving the rotation of the particles, the growth direction of the particles is determined by the change of the pH value. The sphericity of the particles thus formed will depend on the pH value at the same composition and vortex rotation conditions.

상기 제조된 양극활물질 전구체는 추가적으로 800 내지 1,300 ℃의 산화로에서 8 내지 12 시간 동안 소성하는 과정을 거칠 수 있다. 상기 소성 과정을 거치게 되면 상기 양극활물질 전구체 입자를 안정적으로 성장시키면서 결정들간의 밀착도를 향상시켜 보다 입도가 균일한 양극활물질 전구체 입자를 얻을 수 있다.
The prepared cathode active material precursor may additionally undergo baking for 8 to 12 hours in an oxidation furnace at 800 to 1,300 ° C. When the firing process is performed, the cathode active material precursor particles may be stably grown while improving adhesion between crystals, thereby obtaining cathode particles having a more uniform particle size.

또한, 본 발명은 상기 리튬이차전지용 양극활물질 전구체에 리튬 화합물을 첨가하고 소결하여 제조된, 리튬이차전지용 양극활물질을 제공한다. 상기 리튬화합물은 예를 들어 Li2CO3가 가능하다.In addition, the present invention provides a cathode active material for a lithium secondary battery prepared by adding and sintering a lithium compound to the cathode active material precursor for a lithium secondary battery. The lithium compound may, for example, be Li 2 CO 3 .

이와 같이 제조된 양극활물질은 리튬이차전지의 제조에 사용될 경우, 리튬이차전지의 초기용량, 출력특성, 싸이클 수명 등의 전기적 특성과, 부피 에너지 밀도를 향상시키는 효과가 있다.
When the cathode active material manufactured as described above is used in the production of a lithium secondary battery, there is an effect of improving the electrical characteristics such as initial capacity, output characteristics, cycle life, and volumetric energy density of the lithium secondary battery.

이하, 하기 실시예에 의해 본 발명을 더욱 구체적으로 설명한다. 하기 실시예는 본 발명의 일례일 뿐 본 발명의 범위가 이에 한정되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. The following examples are only examples of the present invention, but the scope of the present invention is not limited thereto.

실시예 1: 양극활물질 전구체의 제조 (쿠에트테일러 반응기 사용)Example 1 Preparation of Cathode Active Material Precursor (Using Queuth Taylor Reactor)

NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O를 몰비 1 : 1 : 1 로 혼합하고, N2 퍼징(purging)을 거친 증류수를 첨가하여 전체 농도가 2M인 금속염 용액을 제조하였다. 제조된 금속염 용액을 1L의 쿠에트테일러 와류를 이용한 반응기(제조사:라미나, 제품명:CT 반응기)의 금속염 용액 공급부를 통하여 200mL/h의 속도로 투입하였다.A metal salt solution having a total concentration of 2M by mixing NiSO 4 6H 2 O, CoSO 4 7H 2 O, and MnSO 4 H 2 O in a molar ratio of 1: 1 and adding distilled water after N 2 purging. Was prepared. The prepared metal salt solution was introduced at a rate of 200 mL / h through a metal salt solution supply part of a reactor (manufacturer: Lamina, product name: CT reactor) using 1 L of Kuet Taylor vortex.

25% 암모니아 수용액을 상기 반응기의 암모니아 수용액 공급부를 통하여 35mL/h의 속도로 투입하고, 여기에 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 85~100mL/h의 속도로 자동 투입하면서, pH 미터와 제어부를 통해 pH 11.2가 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)는 3시간으로 조절하였으며, 600rpm으로 교반하였다.25% aqueous ammonia solution was introduced at a rate of 35 mL / h through the ammonia aqueous solution supply of the reactor, and 40% aqueous sodium hydroxide solution was automatically added at a rate of 85-100 mL / h through the aqueous sodium hydroxide solution of the reactor. The pH meter and control were used to maintain pH 11.2. The temperature of the reactor was 40 ℃, the residence time (RT) was adjusted to 3 hours, and stirred at 600 rpm.

상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하는 추가 공정을 거쳐, 최종 양극활물질 전구체 입자를 수득하였다.
The obtained reaction solution was filtered through a filter, purified with distilled water, and then dried to obtain a final cathode active material precursor particle.

실시예 2: 양극활물질 전구체의 제조 (쿠에트테일러 반응기 사용)Example 2: Preparation of Cathode Active Material Precursor (Using Queuth Taylor Reactor)

NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O를 몰비 5 : 2 : 3 으로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 양극활물질 전구체를 제조하였다.
A cathode active material precursor was prepared in the same manner as in Example 1 except for mixing NiSO 4 6H 2 O, CoSO 4 7H 2 O, and MnSO 4 H 2 O in a molar ratio of 5: 2: 3. .

실시예 3: 양극활물질 전구체의 제조 (연속 반응기 사용)Example 3: Preparation of Cathode Active Material Precursor (Using Continuous Reactor)

NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O를 몰비 1 : 1 : 1 로 혼합하고, N2 퍼징을 거친 증류수를 첨가하여 전체 농도가 2M인 금속염 용액을 제조하였다. 제조된 금속염 용액을 연속 반응기(CSTR, 제조사: EMS Tech, 제품명: CSTR-L0)에 250mL/h의 속도로 투입하였다.NiSO 4 and 6H 2 O, CoSO 4 and 7H 2 O and the MnSO 4 and H 2 O molar ratio of 1: 1 were mixed in 1, adding the distilled water, subjected to N 2 purge the total concentration to prepare a 2M of the metal salt solution . The prepared metal salt solution was added to a continuous reactor (CSTR, manufacturer: EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h.

25% 암모니아 수용액을 상기 반응기의 암모니아 수용액 공급부를 통하여 40mL/h의 속도로 투입하고, 여기에 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 105~120mL/h의 속도로 자동 투입하면서, pH 미터와 제어부를 통해 pH 11.3이 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 800rpm의 속도로 교반하였다.25% aqueous ammonia solution was introduced at a rate of 40 mL / h through the ammonia aqueous solution supply of the reactor, while 40% sodium hydroxide aqueous solution was automatically added at a rate of 105-120 mL / h through the aqueous sodium hydroxide solution of the reactor. pH 11.3 was maintained via a pH meter and controls. The temperature of the reactor was 40 ℃, the residence time (RT) was adjusted to 10 hours, and stirred at a speed of 800rpm.

상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하 는 추가 공정을 거쳐, 최종 양극활물질 전구체 입자를 수득하였다.
The obtained reaction solution was filtered through a filter, purified with distilled water, and then dried to obtain a final cathode active material precursor particle.

비교예 1: 양극활물질 전구체의 제조 (연속 반응기 사용)Comparative Example 1: Preparation of Cathode Active Material Precursor (Using Continuous Reactor)

NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O를 몰비 1 : 1 : 1 로 혼합하고, N2 퍼징을 거친 증류수를 첨가하여 전체 농도가 2M인 금속염 용액을 제조하였다. 제조된 금속염 용액을 연속 반응기(CSTR, 제조사: EMS Tech, 제품명: CSTR-L0)에 250mL/h의 속도로 투입하였다.NiSO 4 and 6H 2 O, CoSO 4 and 7H 2 O and the MnSO 4 and H 2 O molar ratio of 1: 1 were mixed in 1, adding the distilled water, subjected to N 2 purge the total concentration to prepare a 2M of the metal salt solution . The prepared metal salt solution was added to a continuous reactor (CSTR, manufacturer: EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h.

25% 암모니아 수용액을 상기 반응기의 암모니아 수용액 공급부를 통하여 40mL/h의 속도로 투입하고, 여기에 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 105~120mL/h의 속도로 자동 투입하면서, pH 미터와 제어부를 통해 pH 11이 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 450rpm의 속도로 교반하였다.25% aqueous ammonia solution was introduced at a rate of 40 mL / h through the ammonia aqueous solution supply of the reactor, while 40% sodium hydroxide aqueous solution was automatically added at a rate of 105-120 mL / h through the aqueous sodium hydroxide solution of the reactor. pH 11 was maintained via a pH meter and controls. The temperature of the reactor was 40 ℃, the residence time (RT) was adjusted to 10 hours, and stirred at a speed of 450rpm.

상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하는 추가 공정을 거쳐, 최종 양극활물질 전구체 입자를 수득하였다.
The obtained reaction solution was filtered through a filter, purified with distilled water, and then dried to obtain a final cathode active material precursor particle.

비교예 2: 양극활물질 전구체의 제조 (연속 반응기 사용)Comparative Example 2: Preparation of Cathode Active Material Precursor (Using Continuous Reactor)

NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O를 몰비 5 : 2 : 3 으로 혼합하는 것을 제외하고는, 상기 비교예 1과 동일하게 수행하여 양극활물질 전구체를 제조하였다.
A cathode active material precursor was prepared in the same manner as in Comparative Example 1 except for mixing NiSO 4 6H 2 O, CoSO 4 7H 2 O, and MnSO 4 H 2 O in a molar ratio of 5: 2: 3. .

비교예 3: 양극활물질 전구체의 제조 (연속 반응기 사용)Comparative Example 3: Preparation of Cathode Active Material Precursor (Using Continuous Reactor)

pH 미터와 제어부를 통해 pH 11.35를 유지시키고, 교반 속도를 400rpm으로 하는 것을 제외하고는, 상기 비교예 1과 동일하게 수행하여 양극활물질 전구체를 제조하였다.
A pH active material was prepared in the same manner as in Comparative Example 1 except that the pH was maintained at 11.35 through a pH meter and a controller, and the stirring speed was 400 rpm.

시험예 1: SEM 분석Test Example 1: SEM Analysis

상기 실시예 및 비교예에서 얻은 양극활물질 전구체를 주사전자현미경(scanning electron microscope: SEM)을 이용하여 관찰하였다. The positive electrode active material precursors obtained in Examples and Comparative Examples were observed using a scanning electron microscope (SEM).

도 1 및 2는 각각 실시예 1에서 얻은 전구체 입자의 고배율 및 저배율 SEM 이미지이고, 도 3은 실시예 2에서 얻은 전구체 입자의 고배율 SEM 이미지이고, 도 4는 실시예 3에서 얻은 전구체 입자의 고배율 SEM 이미지이고, 도 5 및 6는 각각 비교예 1에서 얻은 전구체 입자의 고배율 및 저배율 SEM 이미지이고, 도 7은 비교예 2에서 얻은 전구체 입자의 고배율 SEM 이미지이고, 도 8은 비교예 3에서 얻은 전구체 입자의 고배율 SEM 이미지이다.1 and 2 are high and low magnification SEM images of the precursor particles obtained in Example 1, FIG. 3 is a high magnification SEM image of the precursor particles obtained in Example 2, and FIG. 4 is a high magnification SEM of the precursor particles obtained in Example 3 5 and 6 are high and low magnification SEM images of the precursor particles obtained in Comparative Example 1, FIG. 7 is a high magnification SEM image of the precursor particles obtained in Comparative Example 2, and FIG. 8 is a precursor particle obtained in Comparative Example 3 High magnification SEM image of.

도 1 내지 8에서 보듯이, 실시예 1 내지 3에서 얻은 전구체 입자는 평균적으로 타원형에 가까운 형상을 하고 있다는 사실을 알 수 있으며, 비교예 1 내지 2에서 얻은 전구체 입자는 거의 구에 가까운 형상을 하고 있고, 비교예 3에서 얻은 전구체 입자는 실시에 1 내지 3에서 얻어진 것보다 더욱 타원형의 형상을 하고 있다는 사실을 알 수 있다.
As shown in Figures 1 to 8, it can be seen that the precursor particles obtained in Examples 1 to 3 have an elliptical shape on average, and the precursor particles obtained in Comparative Examples 1 to 2 have a shape almost close to a sphere. In addition, it can be seen that the precursor particles obtained in Comparative Example 3 have a more elliptical shape than those obtained in Examples 1 to 3.

시험예 2: 구형도의 측정Test Example 2: Measurement of Sphericality

상기 얻은 양극활물질 전구체 중의 대표적인 입자의 장축(l) 및 단축(w)의 길이를 SEM에 의한 이미지를 통해 구한 뒤, 구형도(l/w)를 계산하였다. 결과는 하기 표 1에 나타내었다. After obtaining the length of the major axis (l) and the minor axis (w) of the representative particles in the positive electrode active material precursor obtained through an SEM image, the sphericity (l / w) was calculated. The results are shown in Table 1 below.

구형도 측정을 위해 실시예 1 내지 3 및 비교예 1 내지 3의 샘플을 30개씩 채집하여 입자에 대한 장축과 단축의 길이를 측정하여 평균값을 구한 뒤 이를 3회 반복하였다. 즉, 각각의 실시예 또는 비교예 별로 모두 90개의 입자의 장축과 단축의 길이를 측정하여 평균값을 하기 표 1에 나타내었다.
In order to measure the sphericity, samples of Examples 1 to 3 and Comparative Examples 1 to 3 were collected by 30, and the long and short axes of the particles were measured, and the average value was determined. That is, the length of the long axis and short axis of all 90 particles for each Example or Comparative Example was measured and the average value is shown in Table 1 below.

시험예 3: SPAN 측정Test Example 3: SPAN Measurement

SPAN 측정기(S3000, 마이크로트랙사)로 SPAN 값을 측정하여 하기 표 1에 나타내었다.The SPAN value was measured with a SPAN meter (S3000, Microtrack, Inc.) and is shown in Table 1 below.

SPAN 값은 입자크기분포 규정 지수로서 사용되고 (D90 - D10) / D50 으로 정의되며, 여기서, D90, D10 및 D50 각각은 크기분포도에서 부피를 기준으로 90%, 10% 및 50%에 해당하는 입자의 직경을 의미하고, SPAN 값이 0 에 가까울수록 균일함을 의미한다.
The SPAN value is used as the particle size distribution specification index and is defined as (D90-D10) / D50, where D90, D10 and D50 each represent 90%, 10% and 50% of the particles by volume in the size distribution. It means the diameter, and the closer to SPAN value, the more uniform.

시험예 4: 탭밀도의 측정Test Example 4 Measurement of Tap Density

탭밀도 측정기(Auto Tap Analyzer, Quantachrome)로 탭밀도를 측정하여, 하기 표 1에 나타내었다.
The tap density was measured by a tap density meter (Auto Tap Analyzer, Quantachrome), and is shown in Table 1 below.

시험예 5: XRD 측정Test Example 5: XRD Measurement

양극활물질 전구체에 대하여 X선 회절 분석(X-ray diffraction)을 실시하였다. 도 9는 실시예 1에서 제조된 양극활물질 전구체의 XRD 결과를 나타낸 것이며, 이를 볼 때 금속 복합 수산화물이 정상적으로 얻어졌음을 알 수 있다.
X-ray diffraction was performed on the positive electrode active material precursor. Figure 9 shows the XRD results of the positive electrode active material precursor prepared in Example 1, it can be seen that the metal complex hydroxide was obtained normally.

구분division 장축길이
(l,㎛)
Long axis length
(l, ㎛)
단축길이
(w,㎛)
Short Length
(w, μm)
구형도
(l/w)
Spherical diagram
(l / w)
SPANSPAN 탭밀도
(g/cc)
Tap density
(g / cc)

실시예 1

Example 1
측정1Measurement 1 7.527.52 5.615.61 1.341.34 평균
1.48
Average
1.48
0.590.59 2.152.15
측정2Measurement 2 7.977.97 5.135.13 1.551.55 0.610.61 2.172.17 측정3Measurement 3 6.236.23 4.004.00 1.561.56 0.620.62 2.172.17
실시예 2

Example 2
측정1Measurement 1 8.328.32 4.654.65 1.791.79 평균
1.69
Average
1.69
0.660.66 2.252.25
측정2Measurement 2 7.717.71 4.774.77 1.611.61 0.630.63 2.182.18 측정3Measurement 3 6.846.84 4.104.10 1.671.67 0.640.64 2.202.20
실시예 3

Example 3
측정1Measurement 1 9.349.34 5.325.32 1.761.76 평균
1.56
Average
1.56
0.670.67 2.142.14
측정2Measurement 2 6.656.65 4.944.94 1.351.35 0.590.59 2.132.13 측정3Measurement 3 10.2210.22 6.526.52 1.571.57 0.620.62 2.162.16
비교예 1

Comparative Example 1
측정1Measurement 1 5.165.16 4.134.13 1.251.25 평균
1.20
Average
1.20
0.990.99 1.881.88
측정2Measurement 2 5.455.45 4.654.65 1.171.17 0.950.95 1.911.91 측정3Measurement 3 4.524.52 3.813.81 1.191.19 0.960.96 1.921.92
비교예 2

Comparative Example 2
측정1Measurement 1 7.527.52 6.816.81 1.101.10 평균
1.19
Average
1.19
0.820.82 2.032.03
측정2Measurement 2 8.328.32 6.686.68 1.251.25 0.860.86 2.102.10 측정3Measurement 3 8.848.84 7.327.32 1.211.21 0.850.85 2.082.08
비교예 3

Comparative Example 3
측정1Measurement 1 2.932.93 1.541.54 1.901.90 평균
1.90
Average
1.90
0.940.94 1.901.90
측정2Measurement 2 2.702.70 1.361.36 1.991.99 1.011.01 1.761.76 측정3Measurement 3 2.332.33 1.291.29 1.811.81 0.990.99 1.831.83

상기 표 1에서 보듯이, 실시예 1 내지 3의 전구체 입자는 구형도(l/w) 평균값이 1.3~1.8의 범위로서 구형의 형상에서 다소 벗어나 있음을 알 수 있으며, SPAN 값이 적어 입자가 균일하며, 탭밀도가 2.1g/cc 이상으로 우수함을 알 수 있다. 반면, 비교예 1 및 2의 전구체 입자는 구형도(l/w) 평균값이 1에 가까워 거의 구형에 가까운 형상임을 알 수 있으며, SPAN 값이 높아 입자가 불균일하고, 탭밀도가 저조함을 알 수 있다. 또한, 비교예 3의 전구체 입자는 구형도(l/w) 평균값(l/w)이 거의 2에 가까워 가장 구형과 거리가 멀었으며, SPAN 값이 가장 높아 입자가 불균일하고, 탭밀도가 저조함을 알 수 있다.
As shown in Table 1, the precursor particles of Examples 1 to 3 can be seen that the average value of the sphericity (l / w) is 1.3 to 1.8 is slightly out of the spherical shape, the SPAN value is small, the particles are uniform It can be seen that the tap density is excellent at 2.1g / cc or more. On the other hand, the precursor particles of Comparative Examples 1 and 2 can be seen that the spherical degree (l / w) average value is close to 1, the shape is almost spherical, the SPAN value is high, the particles are non-uniform, the tap density is low. have. In addition, the precursor particles of Comparative Example 3 were far from the spherical shape because the average value (l / w) of the spherical degree (l / w) was nearly 2, and the particles were uneven and the tap density was low due to the highest SPAN value. It can be seen.

양극활물질의 제조Preparation of Cathode Active Material

상기 실시예 및 비교예에서 얻은 양극활물질 전구체를 각각 사용하여, 양극활물질 전구체와 Li2CO3를 화학양론적 몰비율(Li:M = 1.1:1)로 혼합하고, 혼합물을 공기 중에서 950 ~ 1000℃의 온도 범위에서 10 시간 동안 소성(calcination)하여, 리튬 혼합 전이금속 산화물을 포함하는 양극활물질을 각각 제조하였다.
Using the positive electrode active material precursors obtained in Examples and Comparative Examples, respectively, the positive electrode active material precursor and Li 2 CO 3 are mixed in a stoichiometric molar ratio (Li: M = 1.1: 1), and the mixture is 950-1000 in air. By calcining (calcination) for 10 hours at a temperature range of ℃, to prepare a positive electrode active material containing a lithium mixed transition metal oxide, respectively.

리튬이차전지의 제조Manufacture of Lithium Secondary Battery

상기 얻은 양극활물질들을 각각 활물질, 도전재, 바인더의 비율이 95 : 3 : 2의 비율이 되도록 혼합하여 슬러리를 얻고, 상기 슬러리를 Al 호일 위에 닥터블레이드 방식으로 코팅하여 각각의 전극을 얻었다. 음극으로 Li 금속을 사용하고, 전해액으로는 EC:EMC (1:2)에 1M LiPF6가 포함되어 있는 전해액을 사용하였으며, 양극과 음극 사이에 분리막을 두어 리튬이차전지를 각각 제조하였다.
The obtained cathode active materials were mixed so that the ratio of the active material, the conductive material, and the binder were 95: 3: 2, thereby obtaining a slurry, and the slurry was coated on the Al foil by a doctor blade method to obtain respective electrodes. Li metal was used as the negative electrode, and electrolytic solution containing 1 M LiPF 6 in EC: EMC (1: 2) was used as an electrolyte, and a lithium secondary battery was prepared by placing a separator between the positive electrode and the negative electrode.

상기 제조된 리튬이차전지를 이용하여, 다음과 같은 다양한 특성 평가를 실시하였으며, 결과는 하기 표 2에 나타내었다.
Using the prepared lithium secondary battery, various characteristics were evaluated as follows, and the results are shown in Table 2 below.

시험예 6: 충방전 용량 평가Test Example 6: Evaluation of Charge and Discharge Capacity

상기 실시예 및 비교예에서 제조된 양극활물질을 이용하여 제조된 리튬이차전지에 대하여 충방전 특성 평가를 하였으며, 이 때 컷오프 전압 범위 3.0~4.5V, 1C=180mAh/g, 0.1C 초기 충방전 후 0.2C - 0.5C - 1C - 2C - 5C 의 조건으로 상온에서 테스트를 실시하였다. 그 결과를 도 10 및 11에 나타내었다.
Charging and discharging characteristics of the lithium secondary battery manufactured by using the cathode active materials prepared in Examples and Comparative Examples were evaluated. At this time, after the cutoff voltage range was 3.0 to 4.5V, 1C = 180mAh / g, and 0.1C initial charge and discharge. The test was performed at room temperature under the conditions of 0.2C-0.5C-1C-2C-5C. The results are shown in FIGS. 10 and 11.

시험예 7: 고율 방전 특성의 평가Test Example 7 Evaluation of High Rate Discharge Characteristics

상기 실시예 및 비교예에서 제조된 양극활물질을 이용하여 제조된 리튬이차전지에 대하여, 1 C 및 5 C 의 전류를 방출하여 전지의 방전 전압이 3.0 V가 될 때까지의 전지 방전 용량을 실측하였다. 그 결과를 하기 표 2에 나타내었다.
For lithium secondary batteries manufactured using the positive electrode active materials prepared in Examples and Comparative Examples, the battery discharge capacity was measured until the discharge voltage of the battery became 3.0 V by discharging currents of 1 C and 5 C. . The results are shown in Table 2 below.

1C 용량
(mAh/g)
1C capacity
(mAh / g)
5C 용량
(mAh/g)
5C capacity
(mAh / g)
(5C용량/1C용량)x100
(%)
(5C capacity / 1C capacity) x 100
(%)
실시예1Example 1 167.6167.6 145.4145.4 86.886.8 실시예2Example 2 171.4171.4 149.7149.7 87.387.3 비교예1Comparative Example 1 157.3157.3 132.5132.5 84.284.2 비교예2Comparative Example 2 166.1166.1 134.4134.4 80.980.9

상기 표 2로부터, 실시예 1 및 2에서 얻어진 전구체를 이용하여 제조한 양극활물질이 높은 1C 용량 및 우수한 고출력 특성을 보여주고 있음을 알 수 있다.
From Table 2, it can be seen that the positive electrode active material prepared using the precursors obtained in Examples 1 and 2 shows high 1C capacity and excellent high output characteristics.

이상, 본 발명을 상기 실시예를 중심으로 하여 설명하였으나 이는 예시에 지나지 아니하며, 본 발명은 본 발명의 기술분야에서 통상의 지식을 가진 자에게 자명한 다양한 변형 및 균등한 기타의 실시예를 이하에 첨부한 청구범위 내에서 수행할 수 있다는 사실을 이해하여야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, It is to be understood that the invention may be practiced within the scope of the appended claims.

Claims (8)

하기 화학식 1로 표시되는 니켈망간코발트의 수산화물의 입자를 포함하며, 상기 입자의 단축길이(w)에 대한 장축길이(l)의 비율(l/w)인 구형도(sphericity coefficient)의 평균값이 1.3 내지 1.8인, 리튬이차전지용 양극활물질 전구체:
화학식 1
NixCoyMn(1-x-y)(OH)2
상기 식에서, 0.33 ≤ x ≤ 0.80이고 0 ≤ y ≤ 0.33이되, 0 < x+y < 1이다.
An average value of a sphericity coefficient including particles of a hydroxide of nickel manganese cobalt represented by the following Chemical Formula 1 and a ratio (l / w) of the major axis length (l) to the minor axis length (w) of the particle is 1.3 To 1.8, a cathode active material precursor for a lithium secondary battery:
Formula 1
Ni x Co y Mn (1-xy) (OH) 2
Wherein 0.33 ≦ x ≦ 0.80 and 0 ≦ y ≦ 0.33, where 0 <x + y <1.
제1항에 있어서,
상기 구형도의 평균값이 1.4 내지 1.7인 것을 특징으로 하는, 리튬이차전지용 양극활물질 전구체.
The method of claim 1,
The average value of the sphericity is 1.4 to 1.7, the cathode active material precursor for a lithium secondary battery.
제1항에 있어서,
상기 입자의 평균 입경은 5 내지 20 ㎛이고, 소성 후의 탭밀도는 2.0 내지 2.6 g/cc인 것을 특징으로 하는, 리튬이차전지용 양극활물질 전구체.
The method of claim 1,
An average particle diameter of the particles is 5 to 20 ㎛, the tap density after firing is 2.0 to 2.6 g / cc, the cathode active material precursor for a lithium secondary battery.
니켈망간코발트의 혼합 금속염 용액에 알칼리 용액을 첨가하여 pH 10 내지 13으로 조절한 뒤 500 내지 1,000 rpm으로 교반을 실시하며 공침반응을 수행하여 하기 화학식 1의 니켈망간코발트 수산화물 입자를 제조하는 단계를 포함하는, 제1항의 리튬이차전지용 양극활물질 전구체의 제조방법:
화학식 1
NixCoyMn(1-x-y)(OH)2
상기 식에서, 0.33 ≤ x ≤ 0.80이고 0 ≤ y ≤ 0.33이되, 0 < x+y < 1이다.
Adding an alkaline solution to the mixed metal salt solution of nickel manganese cobalt to adjust the pH to 10 to 13, followed by stirring at 500 to 1,000 rpm, and performing a coprecipitation reaction to prepare nickel manganese cobalt hydroxide particles of Formula 1 below. Method for producing a cathode active material precursor for a lithium secondary battery according to claim 1:
Formula 1
Ni x Co y Mn (1-xy) (OH) 2
Wherein 0.33 ≦ x ≦ 0.80 and 0 ≦ y ≦ 0.33, where 0 <x + y <1.
제4항에 있어서,
상기 공침반응은, 니켈망간코발트의 혼합 금속염 용액에 알칼리 용액을 첨가하여 pH 11.0 내지 11.4 로 조절한 뒤 600 내지 900 rpm으로 교반을 실시하며 수행되는 것을 특징으로 하는, 리튬이차전지용 양극활물질 전구체의 제조방법.
5. The method of claim 4,
The coprecipitation reaction is performed by adding an alkaline solution to a mixed metal salt solution of nickel manganese cobalt to adjust the pH to 11.0 to 11.4 and stirring at 600 to 900 rpm, to prepare a cathode active material precursor for a lithium secondary battery. Way.
제4항에 있어서,
상기 알칼리 용액은 수산화나트륨 수용액, 암모니아 수용액 또는 이들의 혼합물인 것을 특징으로 하는, 리튬이차전지용 양극활물질 전구체의 제조방법.
5. The method of claim 4,
The alkaline solution is a sodium hydroxide aqueous solution, ammonia aqueous solution or a mixture thereof, characterized in that the method for producing a cathode active material precursor for a lithium secondary battery.
제4항에 있어서,
상기 공침반응은 연속 반응기(CSTR) 또는 쿠에트테일러 반응기를 이용하여 실시되는 것을 특징으로 하는, 리튬이차전지용 양극활물질 전구체의 제조방법.
5. The method of claim 4,
The coprecipitation reaction is characterized in that carried out using a continuous reactor (CSTR) or Kuet Taylor reactor, a method for producing a cathode active material precursor for a lithium secondary battery.
제1항의 리튬이차전지용 양극활물질 전구체에 리튬 화합물을 첨가하고 소결하여 제조된, 리튬이차전지용 양극활물질. A cathode active material for a lithium secondary battery prepared by adding a lithium compound to the cathode active material precursor for a lithium secondary battery of claim 1 and sintering.
KR1020110124300A 2011-11-25 2011-11-25 Precursor of cathode active material for lithium secondary battery and preparation method thereof KR101375704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110124300A KR101375704B1 (en) 2011-11-25 2011-11-25 Precursor of cathode active material for lithium secondary battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110124300A KR101375704B1 (en) 2011-11-25 2011-11-25 Precursor of cathode active material for lithium secondary battery and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20130058342A KR20130058342A (en) 2013-06-04
KR101375704B1 true KR101375704B1 (en) 2014-03-20

Family

ID=48857637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110124300A KR101375704B1 (en) 2011-11-25 2011-11-25 Precursor of cathode active material for lithium secondary battery and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101375704B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923542B2 (en) 2017-12-21 2024-03-05 Research Institute Of Industrial Science & Technology Positive active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery including same positive active material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766969B (en) * 2015-04-23 2017-05-10 华南师范大学 Method for preparing cathode material of lithium ion battery
CN106450155B (en) * 2016-09-18 2019-11-29 贵州振华新材料股份有限公司 Spherical or spherical anode material for lithium-ion batteries and preparation method and application
KR101883406B1 (en) * 2017-02-03 2018-07-30 재단법인 포항산업과학연구원 Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material
KR102657727B1 (en) * 2018-08-21 2024-04-17 에스케이이노베이션 주식회사 Separator for lithium secondary battery, and lithium secondary battery comprising the same
CN112352333A (en) * 2019-03-29 2021-02-09 Jx金属株式会社 Oxide-based positive electrode active material for all-solid lithium ion battery, method for producing precursor of oxide-based positive electrode active material for all-solid lithium ion battery, method for producing oxide-based positive electrode active material for all-solid lithium ion battery, and all-solid lithium ion battery
KR102212713B1 (en) * 2019-08-13 2021-02-04 경희대학교 산학협력단 Method and Apparatus for Preparing Precursors of Cathode Active Material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923542B2 (en) 2017-12-21 2024-03-05 Research Institute Of Industrial Science & Technology Positive active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery including same positive active material

Also Published As

Publication number Publication date
KR20130058342A (en) 2013-06-04

Similar Documents

Publication Publication Date Title
CN110121481B (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
JP5638232B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material nickel cobalt manganese composite hydroxide particles and production method thereof, non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, and non-aqueous electrolyte secondary battery
KR101272411B1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5798681B2 (en) Positive electrode material having a size-dependent composition
KR101375704B1 (en) Precursor of cathode active material for lithium secondary battery and preparation method thereof
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2012169083A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
JP7135856B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6895105B2 (en) A method for producing nickel-manganese composite hydroxide particles and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
CN109843811B (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same
JP2011116580A5 (en)
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6871320B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a method for producing the precursor thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the precursor.
KR102494298B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
KR20130059029A (en) Process for producing composite metal oxide
JP6436335B2 (en) Transition metal composite hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using the same
JP7172301B2 (en) Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
KR101525000B1 (en) Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR101449811B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191224

Year of fee payment: 7