KR101374496B1 - Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby - Google Patents

Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby Download PDF

Info

Publication number
KR101374496B1
KR101374496B1 KR1020120126267A KR20120126267A KR101374496B1 KR 101374496 B1 KR101374496 B1 KR 101374496B1 KR 1020120126267 A KR1020120126267 A KR 1020120126267A KR 20120126267 A KR20120126267 A KR 20120126267A KR 101374496 B1 KR101374496 B1 KR 101374496B1
Authority
KR
South Korea
Prior art keywords
high pressure
fresh fish
mpa
minutes
sample
Prior art date
Application number
KR1020120126267A
Other languages
Korean (ko)
Inventor
김종태
김철진
김남수
조용진
맹진수
이호영
심의헌
김민지
권수진
Original Assignee
(주)선해에프앤에스
한국식품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)선해에프앤에스, 한국식품연구원 filed Critical (주)선해에프앤에스
Priority to KR1020120126267A priority Critical patent/KR101374496B1/en
Application granted granted Critical
Publication of KR101374496B1 publication Critical patent/KR101374496B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/03Drying; Subsequent reconstitution
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3472Compounds of undetermined constitution obtained from animals or plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

The present invention relates to a freshness maintaining method of fresh fish using a high pressure processing system and processed fresh fish produced by the method, and more specifically, to: a method of reducing bacteria from the fresh fish, extending the storage period of the fresh fish, and maintaining the texture of the fresh fish by processing a raw material at 10-25°C, in 25-300 MPa, for 2-40 minutes for 1-2 times using high pressure; and the processed fresh fish produced by the method. [Reference numerals] (AA) Raw material; (BB) Washing; (CC) Cutting treatment for twice to 3 times; (DD) Individual immersion in a film filled with 1-1.5 L of immersion water; (EE) Sealing; (FF) Primary high-pressure processing (100 MPa, 20 minutes, 25째C); (GG) Dehydration for 30 minutes; (HH) Individual vacuum packaging; (II) Second high-pressure processing (100 MPa, 20 minutes, 25째C); (JJ) Sample; (KK) Natural antimicrobial agent, Bamboo salt

Description

고압처리장치를 이용한 선어의 신선도 유지방법, 및 그에 의하여 생산되는 가공 선어{INCREASING FRESHNESS OF FRESH FISH USING HIGH PRESSURE SYSTEM AND PROCESSED FRESH FISH PRODUCED THEREBY}Method of maintaining freshness of fresh fish using high pressure treatment device, and processed fresh fish produced by it {INCREASING FRESHNESS OF FRESH FISH USING HIGH PRESSURE SYSTEM AND PROCESSED FRESH FISH PRODUCED THEREBY}

본 발명은 고압처리장치를 이용하여 선어의 신선도 유지 및 품질유지를 위한 방법 및 그에 의하여 생산되는 가공 선어에 관한 것으로서, 더욱 상세히 원료를 10-25℃, 25-300 MPa, 2-40분, 및 1-2회 고압처리하여 선어의 세균수 감소와 저장기간 연장, 및 조직감을 유지하는 방법 및 그에 의하여 생산되는 가공 선어에 관한 것이다.The present invention relates to a method for maintaining freshness and quality of fresh fish using a high pressure treatment apparatus and a processed fresh fish produced thereby, in more detail the raw material 10-25 ℃, 25-300 MPa, 2-40 minutes, and The present invention relates to a method of reducing the number of bacteria and extending the shelf life and maintaining the texture of the fresh fish by high-pressure 1-2 times, and the processed fresh fish produced thereby.

소비자 의식구조와 생활수준의 향상은 건강한 삶의 추구 및 장수에 대한 지속적인 관심으로 이어지고 있으며, 이러한 흐름으로 인하여 최근 식품산업분야에서는 신선식품 및 천연 지향적인 형태의 식품에 대한 수요가 크게 증가하고 있다. 일반적인 가열 가공법에 의하여 식품의 저장성을 확보할 수 있으나, 식품 품질저하, 영양성분의 파괴, 식품 고유의 조직감과 색의 변질, 향미 성분의 손실 등을 초래하기 때문에 채소, 과실, 어류, 패류, 육류 등을 신선식품으로 가공하고자 할 경우 그 이용이 제한적이다. 이에 비교하여 비가열 식품가공은 식품의 품질에는 영향을 미치지 않으면서 살균, 가공, 조리가 가능한 새로운 식품가공 기술로 주목받고 있으며, 방사선 조사, 초고압처리, 자외선조사, 고전압처리, 진동자기장, 전해수처리법 등이 이에 해당한다(박현진, 이철호, 식품저장학, 고려대학교출판부, 2008). Increasing consumer consciousness and standard of living have led to continued interest in the pursuit of healthy life and longevity. As a result of this trend, the demand for fresh foods and natural-oriented foods has increased greatly in the food industry. Although the shelf life of food can be secured by the general heat processing method, it causes deterioration of food quality, destruction of nutrients, deterioration of texture and color of food, loss of flavor, etc., so that vegetables, fruits, fish, shellfish, meat If you want to process the back to fresh food, its use is limited. In comparison, non-heated food processing is attracting attention as a new food processing technology that can sterilize, process and cook without affecting the quality of food.They are irradiated, ultra-high pressure treated, UV irradiated, high voltage treated, vibrating magnetic field, electrolytic water treatment. This is the case (Park Hyun-jin, Lee Chul-ho, Food preservation, Korea University Press, 2008).

비가열가공기술의 한 분야로써, 압력을 이용한 식품 가공 기술의 연구와 적용에 대한 연구가 활발히 이루어지고 있는 고압가공기술은 압력 매체로 물이나 오일을 이용해 압력을 순간적으로 균일하게 전달시키는 기술이다(Kwang-Soo Oh, jin-Soo Kim, and Jong-Wha Hur., 1998, Processing of Flavoring Substances from Small Kingfish, Korean J. Food Technol., 30(6): 1339-1344). 식품가공에 이용되는 고압의 범위는 일반적으로 100 MPa부터 1000 MPa를 의미하는데, 고압기술을 식품산업에 적용하면 식품의 살균은 물론 비열처리에 의한 제품의 영양성분 보존과 관능적 기호특성 유지, 특정 성분의 추출, 식품 보존 등의 다양한 장점이 알려져 있다(Yayanos, A. A., Biochimica et Biophisica Acta 392, 271.). 그에 따라 국내 및 일본을 중심으로 식품 생산 공정에 있어 살균 또는 멸균 목적 이외에도, 50℃ 이하의 온도에서 식품 영양소 및 고유 성분의 파괴나 손실 없이 상업적 규모의 이용이 가능한 고압처리 장치가 개발되어 중소 식품소재 및 미용소재 제조업체를 중심으로 활용도가 점차적으로 증가하는 추세에 있다. 비가열 가공기술의 하나인 고압기술은 기존의 열처리가공법과 비교하여 다음과 같은 장점들이 제시되었다(Song-Yi Koo, Kwang-Hyun Cha, and Dong-Un Lee, 2007, Effects of High Hydrostatic Pressure on Foods and Biological System, Food Science and Industry, 40(3): 23-30). ① 열처리가공에 비해 현저히 적은 열에너지를 소비하며, 상온 또는 저온에서 실행 가능함. ② 고압살균 처리된 식품은 천연의 맛과 향미, 색, 신선도를 유지할 수 있음. ③ 모든 방향에서 압력이 균일하게 작용하므로, 처리 정도의 차이가 존재하지 않음. ④ 미생물 사멸 외에도 단백질 변성 또는 변형, 효소 활성화 또는 불활성화, 효소기질 특이성 변화, 탄수화물과 지방의 특성 변화 등을 유도할 수 있음. ⑤ 공유결합이나 수소결합에 영향을 주지 않음. ⑥ 초고압가공처리는 플라스틱 필름과 같은 파우치형태의 bag을 이용할 수 있어 실험을 용이하게 할 수 있음.As a field of non-heating technology, high pressure processing technology, which is actively researched and applied to food processing technology using pressure, is a technology that transmits pressure uniformly using water or oil as a pressure medium. Kwang-Soo Oh, jin-Soo Kim, and Jong-Wha Hur., 1998, Processing of Flavoring Substances from Small Kingfish, Korean J. Food Technol ., 30 (6): 1339-1344). The range of high pressure used in food processing generally means 100 MPa to 1000 MPa. When the high pressure technology is applied to the food industry, the sterilization of food, the preservation of nutritional properties of products by non-heat treatment, the maintenance of sensory taste characteristics, and the specific ingredients Extracts, food preservation and other advantages are known (Yayanos, AA, Biochimica et Biophisica Acta 392, 271.). Therefore, in addition to the purpose of sterilization or sterilization in food production process mainly in Korea and Japan, a high pressure treatment device has been developed that can be used on a commercial scale without destroying or losing food nutrients and intrinsic components at temperatures below 50 ℃. Increasingly, utilization of cosmetics and beauty material manufacturers is increasing. The high pressure technology, one of the non-heat processing technologies, has the following advantages compared to the conventional heat treatment methods (Song-Yi Koo, Kwang-Hyun Cha, and Dong-Un Lee, 2007, Effects of High Hydrostatic Pressure on Foods). and Biological System, Food Science and Industry, 40 (3): 23-30). ① It consumes significantly less heat energy than heat treatment and can be executed at room or low temperature. ② Autoclaved foods can maintain natural flavor, flavor, color and freshness. ③ There is no difference in the degree of processing because the pressure acts uniformly in all directions. ④ In addition to the killing of microorganisms can lead to protein denaturation or modification, enzyme activation or inactivation, enzyme substrate specificity changes, carbohydrates and fat properties change. ⑤ Does not affect covalent or hydrogen bonds. ⑥ Ultra-high pressure processing can use pouch type bag such as plastic film to facilitate experiment.

그러나, 위에서 언급한 많은 장점을 갖고 있음에도 불구하고 초고압 가공기술은 고가의 초고압처리장치 설치 비용 등 처리능력 부분에서 제조비용이 높기 때문에 고부가가치 식품에만 한정적으로 이용하여 왔다(Gi Dong Han, and Bo-Young Jeong, 2005, High Pressure Processing on Foods. Food Industry and Nutrition, 10(3): 30-35).However, despite the many advantages mentioned above, ultra-high pressure processing technology has been used only for high value-added foods because of its high manufacturing cost in terms of processing capacity, such as the installation of expensive ultra-high pressure processing equipment (Gi Dong Han, and Bo-). Young Jeong, 2005, High Pressure Processing on Foods.Food Industry and Nutrition, 10 (3): 30-35).

단백질의 변성은 주로 근육식품의 미세구조와 효소의 불활성화에서 오는 변화의 기초를 이루는 인자로서, 고압처리 수준과 시간에 따라서 가역적 및 비가역적 변화를 수반한다. 일반적으로 고압의 가역적 효과는 100-200 MPa 범위에서 일어나며, 단백질의 subunit 으로 분해가 일어난다. 200 MPa 이상에서는 효소의 불활성화와 단백질의 변성이 완전하게 일어나는 비가역적 변화가 수반되며, 단백질 변성은 온도, pH, 용매조성(당, 염, 기타 첨가물)에 좌우된다. 소수성 상호작용은 최초 150 MPa 이하에서 영향을 받으며, 단백질의 4차 구조가 먼저 변하며, 3차 구조변화는 200 MPa 이상에서, 2차 구조변화는 700 MPa 이상에서 일어난다. 고압이 수반되는 단백질 변성은 단백질의 4차 및 3차 구조에 있어 수소결합, 소수 상호작용, 이온결합 같은 비공유결합의 재배열 또는 파괴에 의하여 발생하며, 공유결합은 영향을 받지 않는다. 어류근육의 주된 단백질은 myofibrillar 및 sacroplasmic 단백질인데, myofibrillar 단백질은 근육구조를 결정하는 단백질이고, sacroplasmic 단백질은 수용성의 비구조성(non-structural) 단백질이다. Myofibrillar 단백질은 어류 근육에서 총단백질의 65-80%를 차지하며, 수축성 단백질 actin과 myosin, 조절단백질, 탄성단백질 및 기타 단백질로 구성되어 있다. Myosin은 100-200 MPa, actin은 300 MPa 압력에서 변성되며, 극히 일부 수용성 단백질이 800 MPa에서 온전하게 존재한다(M. Gudmundsson and H. Hafsteinsson., 2002, New non-thermal techniques for processing seafoods, In Safety and quality issues in fish processing, CRC, 309-316). 압력에 따른 상온에서의 부피 변화는 100 MPa에서 4%인 반면, 600 MPa에서는 15%가 압축된다. 고압처리 방법으로 연어 페이스트, 다진 고기, 다진 고등어 등 다양한 생선의 저장방법에 대해 실험한 결과, 유통기한은 연장되었으나, 높은 관능품질을 유지하는 데는 실패하였다(박현진, 이철호, 식품저장학, 고려대학교출판부, 2008). 25-100 MPa 사이의 압력은 냉동, 해동과 관련 있는 가공분야에서 일부 다루어지고 있다. Protein denaturation is a factor underlying changes in the microstructure of muscle foods and inactivation of enzymes, and involves reversible and irreversible changes depending on the level and time of autoclaving. In general, the reversible effect of high pressures occurs in the range of 100-200 MPa, with the breakdown into subunits of proteins. Above 200 MPa is accompanied by irreversible changes in which enzyme inactivation and protein denaturation occur completely, and protein denaturation depends on temperature, pH, solvent composition (sugars, salts, and other additives). Hydrophobic interactions are initially affected below 150 MPa, the quaternary structure of the protein changes first, the tertiary structural change occurs above 200 MPa, and the secondary structural change occurs above 700 MPa. Protein denaturation accompanied by high pressure is caused by rearrangement or destruction of non-covalent bonds such as hydrogen bonds, minority interactions, and ionic bonds in the quaternary and tertiary structures of the protein, and the covalent bonds are not affected. The main proteins of fish muscle are myofibrillar and sacroplasmic proteins, myofibrillar proteins are proteins that determine muscle structure, and sacroplasmic proteins are water-soluble, non-structural proteins. Myofibrillar protein makes up 65-80% of the total protein in fish muscle and consists of contractile proteins actin and myosin, regulatory proteins, elastic proteins and other proteins. Myosin denatures at 100-200 MPa and actin at 300 MPa pressure, with very few water-soluble proteins intact at 800 MPa (M. Gudmundsson and H. Hafsteinsson., 2002, New non-thermal techniques for processing seafoods, In Safety and quality issues in fish processing, CRC, 309-316). The volume change at room temperature with pressure is 4% at 100 MPa, while 15% is compressed at 600 MPa. As a result of experiments on the storage method of various fish such as salmon paste, minced meat and minced mackerel by high pressure treatment, the shelf life was extended, but it failed to maintain high sensory quality (Park Hyun-jin, Lee Chul-ho, Food preservation, Korea University Press) , 2008). Pressures between 25 and 100 MPa are partly addressed in the processing sectors associated with freezing and thawing.

한편, 어류 고도불포화지방산(n-3 fatty acid)은 사람의 건강유지에 큰 역할을 하는 것으로 인식되면서, 지난 20 년간 섭취 후 영양에 대한 연구가 수행되어 고도불포화지방산의 인체에 대한 긍정적 효과에 대한 다양한 연구가 이루어지고 있다. 고도불포화지방산중 eicosapentanoic acid (EPA)와 docosahexaenoic acid (DHA)는 심장근육, 혈액흐름 증가, 부정맥 감소, 동맥탄성 증진, 경색 크기 감소, 심장기능에 관계하는 화학적 및 세포과정의 감소 등에 직접적인 효과가 보고되어 있다. 그러나 어류제품은 수분함량이 많고 단백질이 풍부하며 수육에 비하여 사후강직이 빠르고 그 지속시간도 짧아 해경, 숙성 ,변질의 속도가 빨라서 부패가 빨리 일어나기 때문에 적절한 저장 방법을 선택하는 것이 매우 중요하다. On the other hand, it has been recognized that fish polyunsaturated fatty acid (n-3 fatty acid) plays a big role in maintaining human health. Various studies are being done. Among polyunsaturated fatty acids, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) have direct effects on cardiac muscle, increased blood flow, decreased arrhythmia, enhanced arterial elasticity, decreased infarct size, and reduced chemical and cellular processes related to heart function. It is. However, it is very important to select the proper storage method because fish products are high in water, rich in protein, and have a fast post-stiffness and short duration compared to fish, resulting in rapid decay of seascape, ripening, and deterioration.

소비자들이 요구하는 어류제품의 품질유지와 저장수명 연장기간은 14일 정도로 조사되었으며, 이를 위하여 현재까지 산업적으로 냉동법, 건조법, 반건조 제품(In-Sung Lee, In Cheol Kim, Myoung-Jee Chae, and Hae Choon Chang, 2009, Storage and Acceptability of a Smoked Sebastes schlegeli Product, J Korean Soc. Food Sci Nutr. 36(11): 1458-1464) 또는 훈연처리(Chan-Sung Park and Kyoung-Ho Choi, 1997, Changes in the Freshness of Frozen-thawed Fish Fillet, Korean J. Food & Nutri. 10(4): 553-558) 등의 cooking 방법을 적용하여 어류 내의 미생물 발육과 지방분해효소 활성을 억제하고 있으나, 이 같은 cooking 방법은 어류 내에 존재하는 비타민, 향기성분, 다중불포화지방산 등과 같은 중요 영양성분을 손실을 초래하며 물성, 관능적 품질 특성 등이 저하되는 단점을 초래한다. The quality maintenance and extended shelf life of fish products required by consumers have been investigated for 14 days. To this end, industrial methods of freezing, drying and semi-dried products (In-Sung Lee, In Cheol Kim, Myoung-Jee Chae, and Hae Choon Chang, 2009, Storage and Acceptability of a Smoked Sebastes schlegeli Product, J Korean Soc.Food Sci Nutr. 36 (11): 1458-1464) or smoked (Chan-Sung Park and Kyoung-Ho Choi, 1997, Changes In the Freshness of Frozen-thawed Fish Fillet, Korean J. Food & Nutri. 10 (4): 553-558) is applied to inhibit the growth of microorganisms and lipolytic enzymes in fish. The method results in the loss of important nutrients such as vitamins, fragrances, polyunsaturated fatty acids, etc. present in fish, and the disadvantages of deterioration of physical properties, organoleptic quality, and the like.

현재까지 고압처리기술은 식품산업에서 식품의 신선도를 연장하여 품질을 유지할 수 있도록 하는 보존방법으로 활용되고 있다. 특히, 고압처리기술을 적용하여 감성돔, 참돔, 가자미, 넙치, 멸치, 조기, 병어, 민어, 갈치, 오징어, 새우, 광어 및 농어 등과 같은 어류를 사용한 고품질의 선어상품을 국내 시장 판매유통은 전혀 시도되고 있지 않은 현실이다. 따라서 신선도를 유지하는 고품질의 선어제품을 개발한다면 현행 어류시장에서 제품차별화 전략으로 신규 수요를 창출할 것으로 예상된다. Until now, high pressure treatment technology has been used as a preservation method in the food industry to maintain the quality by extending the freshness of food. In particular, domestic market distribution of high quality fresh fish products using high-pressure treatment technology using fish such as black sea bream, red sea bream, flounder, flounder, anchovy, early age, bottlefish, freshfish, cuttlefish, squid, shrimp, flatfish and perch It is not becoming reality. Therefore, developing high-quality fresh fish products that maintain freshness will generate new demand in the current fish market with product differentiation strategies.

따라서 본 발명의 목적은 선어의 품질을 신선하게 유지하면서 조직감을 오래도록 유지할 수 있도록 하는 방법을 제공함에 있다.Therefore, an object of the present invention is to provide a method for maintaining the texture of the fresh fish while maintaining a fresh texture.

본 발명의 다른 목적은 상기 방법에 의하여 생산되는 가공 선어를 제공함에 있다.Another object of the present invention is to provide a processed fresh fish produced by the above method.

본 발명의 또 다른 목적은 고압가공의 장점과 상업적 경제성을 동시에 만족시킬 수 있는 압력범위, 25-300 MPa 범위의 고압처리장치를 이용하여 선어 또는 그 가공품의 품질 유지와 저장중 신선도 유지를 위한 표준화된 고압처리공정과 공정변수의 범위를 제공함에 있다. It is another object of the present invention to maintain the quality of fresh fish or its processed products and maintain freshness during storage by using a high pressure treatment device in the range of 25-300 MPa, which can satisfy both the advantages of high pressure processing and commercial economics. To provide a range of high-pressure treatment processes and process parameters.

본 발명에서 “선어”라 함은 현재 유통시장의 관행에 의하여 일반적으로 통용되는 신선한 상태로 판매하거나 아니면, 양식 후 또는 바다에서 잡은 후 즉시 냉동 하고 판매시 해동해서 판매하고 있는 생선을 의미한다.In the present invention, the term "fish" refers to fish that are sold in the fresh state generally used by current distribution market practices, or are immediately frozen after being farmed or caught in the sea and thawed upon sale.

본 발명에서는 고압분해 또는 아임계 분해 조건을 유지하는 기존의 초고압 범위인 800-1500 MPa범위보다 낮은 25-300 MPa 범위에서 2-40분 내에서 처리시킨다. 본 발명에서의 고압처리기술을 적용하면 기존 고압처리기술의 장점인 영양성분 유지, 색상과 향미의 보존 등에 의한 신선품질 유지와 살균 또는 멸균에 의한 제품의 저장수명 극대화 효과는 물론, 낮은 에너지투입에 의한 생산효율, 품질향상, 비용절감 등과 같은 산업적 파급이 있는 장점을 제공하는 것이 기대된다.In the present invention, it is treated within 2-40 minutes in the 25-300 MPa range lower than the 800-1500 MPa range of the existing ultra-high pressure range maintaining the high pressure decomposition or subcritical decomposition conditions. Applying the high pressure treatment technology in the present invention, as well as maximizing the shelf life of the product by sterilization or sterilization as well as maintaining the fresh quality by the maintenance of nutritional ingredients, color and flavor, which are advantages of the existing high pressure treatment technology, It is expected to provide advantages with industrial ripples such as production efficiency, quality improvement and cost reduction.

상기의 목적을 달성하기 위하여 본 발명은 고압처리장치를 이용하여 10-25℃, 25-300 MPa, 2-40분의 조건으로 1-2회 반응시킴으로써 이루어질 수 있다. In order to achieve the above object, the present invention can be made by using a high pressure treatment apparatus to react 1-2 times under conditions of 10-25 ° C., 25-300 MPa, and 2-40 minutes.

상기의 목적을 달성하기 위하여 본 발명은 시료대비 1-6%(w/v)의 죽염을 첨가한다.In order to achieve the above object, the present invention adds 1-6% (w / v) bamboo salt relative to the sample.

상기의 목적을 달성하기 위하여 본 발명은 시료대비 0.067-1%(w/v)의 천연항균제를 첨가한다.In order to achieve the above object, the present invention adds 0.067-1% (w / v) natural antimicrobial agent to the sample.

보다 구체적으로 본 발명은 상기의 목적을 달성하기 위하여 원료를 1차 세척하여 이물질과 핏물을 제거하는 단계; 원료 양쪽에 2-3회 칼집을 처리하는 단계; 침지수에 시료대비 1-6%(w/v)의 죽염을 교반, 용해시키는 단계; 침지수에 시료대비 0.067-1%(v/v)의 천연항균제를 희석시키는 단계; 침지수에 원료를 침지시키는 단계; 침지수가 담긴 필름을 밀봉시키는 단계; 고압처리장치에서 10-25℃, 25-300 MPa, 2-40분 1차 고압반응을 시키는 단계; 20-30분 동안 탈수시키는 단계; 개별 진공 포장 단계; 고압처리장치에서 10-25℃, 25-300 MPa, 2-40분 동안 2차 고압반응을 시키는 단계; 급속냉각 단계 및 ; 제품화 시키는 단계로 이루어진다. More specifically, the present invention comprises the steps of removing the foreign matter and blood by first washing the raw material to achieve the above object; Treating the sheath 2-3 times on both sides of the raw material; Stirring and dissolving 1-6% (w / v) bamboo salt relative to the sample in immersion water; Diluting 0.067-1% (v / v) natural antimicrobial agent in the immersion water relative to the sample; Immersing the raw material in immersion water; Sealing the film containing the immersion water; Performing a first high pressure reaction at 10-25 ° C., 25-300 MPa, and 2-40 minutes in a high pressure treatment apparatus; Dehydration for 20-30 minutes; Individual vacuum packaging step; Performing a second high pressure reaction at 10-25 ° C., 25-300 MPa, 2-40 minutes in a high pressure treatment apparatus; Rapid cooling step; It consists of the steps of productization.

이상의 조건은 이하의 실시예에 제시된 결과에 근거한다.The above conditions are based on the results presented in the following examples.

소금은 생체조절물질, 치료제로서의 역할 뿐만 아니라, 식품 가공에 있어서 식품의 유해균을 억제하고, 유용균을 선택적으로 증식시키며, 보존제로 쓰여 가공 식품의 저장성 연장에 중요한 역할을 하는 물질이다. 특히, 수산 가공 제품에 소금을 사용하면 저장성 향상의 목적 이외에도 생선의 근원섬유(myofibrils)를 조성하고 있는 염용성 단백질의 일종인 글로부린 등이 2-3%의 묽은 염 용액에 가용화되며, 겔화되는 성질을 가지게 되며, 이를 가열하면 물이 고정화된 상태에서 단백질의 3차원적 망상구조를 형성하게 되어 물리적 성질이 점성의 유체상태에서 탄성의 고체로 변환되기 때문에 씹힘성이 향상된다고 알려져 있다(Byung-Jin Na, and Sang-Do Ha, 2009, Effectiveness and Safety of Salt. Food Science and Industry. 42(2). 60-73; Niwa, E., Nakayama, T., and Hamada, I., 1983, Effect of setting on th network structure of protein in fish gel, Bull . Jap . Soc . Sci . Fish ., 49. 245). Salt not only acts as a bioregulator, therapeutic agent, but also inhibits harmful bacteria in food, selectively grows useful bacteria, and serves as a preservative to play an important role in extending shelf life of processed food. In particular, when salt is used in processed fish products, globulin, a kind of salt-soluble protein that forms myofibrils of fish, is solubilized in a dilute salt solution of 2-3% in addition to the purpose of improving storage properties. When heated, it forms a three-dimensional network of proteins in the immobilized water, which is known to improve chewiness because physical properties are converted into viscous solids in a viscous fluid state (Byung-Jin Na). , and Sang-Do Ha, 2009, Effectiveness and Safety of Salt.Food Science and Industry.42 (2) .60-73; Niwa, E., Nakayama, T., and Hamada, I., 1983, Effect of setting on th network structure of protein in fish gel, Bull . Jap . Soc . Sci . Fish . , 49. 245).

죽염은 엷은 회색을 띠며 삶은 달걀의 노른자 맛이 약간 나는 가공염으로 우리나라에서는 오래전부터 민간요법에 사용되어왔다. 죽염의 제조원료는 천일염, 대나무, 소나무, 진흙으로, 천일염을 고온에서 특수가공처리하여 사용한다. 죽염은 예로부터 여러 가지 질환에 효과가 있다고 전해져 왔으며, 이와 관련하여 위염, 위궤양, 소화기계통의 질환에 대한 효과와 외상치료, 해독작용에 대한 효과가 보고되어 있다(Ji Sun Yang, Ok Hee Kim, Soo Youn Chung, Tae Moo Yoo, Yong Nam Roh, Sook Young Yi, Myeon Woo Chung, Mee Ryung Ahn, Hyun Jin Choi, and Hang Mook Rheu, 1999, Pharmacological Evaluation of Bamboo Salt, The Journal of Applied Pharmacology, 7; 178-184; Byung-Jin Na and Sang-Do Ha, 2009, Effectiveness and Safety of Salt, Food Science and Industry, 42(2): 60-73).Bamboo salt has a light gray color and is a processed salt that has a slight taste of yolk of boiled egg. It has been used in folk medicine for a long time in Korea. The raw materials of bamboo salt are sun salt, bamboo, pine and mud, and the sun salt is used by special processing at high temperature. Bamboo salt has long been reported to be effective in various diseases, and related effects of gastritis, gastric ulcer and digestive system diseases, trauma treatment and detoxification have been reported (Ji Sun Yang, Ok Hee Kim, Soo Youn Chung, Tae Moo Yoo, Yong Nam Roh, Sook Young Yi, Myeon Woo Chung, Mee Ryung Ahn, Hyun Jin Choi, and Hang Mook Rheu, 1999, Pharmacological Evaluation of Bamboo Salt, The Journal of Applied Pharmacology, 7; 178 Byung-Jin Na and Sang-Do Ha, 2009, Effectiveness and Safety of Salt, Food Science and Industry, 42 (2): 60-73).

그러므로, 죽염이 첨가된 침지수에 원료를 침지하여 고압처리를 거치는 동안 죽염수의 풍부한 미네랄 성분과 특유의 향이 원료 전체와 그 내부까지 균일하게 침투하고, 그 결과 맛과 영양분을 충족시키고 동시에 생선 특유의 비린내를 제거하고 유통 기간 연장이 가능한 최종 제품을 생산할 수 있다(대한민국 특허출원 제10-2002-0018423호 죽염을 이용한 간고등어 제조방법 및 동 방법에 의해 생산된 간고등어). 본 발명에서는 죽염의 이러한 특성을 이용하여 선어를 염장하기 위하여 죽염을 시료 대비 1-6%(w/v) 이용한다.Therefore, during the high pressure treatment by immersing the raw material in bamboo salt-added immersion water, the rich mineral content and characteristic scent of bamboo salt uniformly penetrates the whole raw material and its inside, resulting in satisfying taste and nutrients and at the same time It is possible to produce a final product that can remove fishy smell and extend the shelf life (Korean patent application No. 10-2002-0018423 method for manufacturing liver mackerel using bamboo salt and liver mackerel produced by the same method). In the present invention, 1-6% (w / v) of bamboo salt is used in order to salt fresh fish using this property of bamboo salt.

천연 항균 물질에는 전통적으로 사용해 온 소금, 식초 등 일반 식품 소재 뿐만 아니라 동물이나 식물에서 천연적으로 존재하는 특정 단백질 및 탄수화물 분해효소, 단백질 분해효소, 지방분해 효소군으로부터 선택되는 효소류, 갑각류의 키틴질에서 추출한 키토산, 유기산, 마늘, 생강, 양파, 계피, 고추, 허브등의 식물 정유 및 미생물에서 유래된 나이신(nisin), 입실론-폴리라이신(ε-polylysine), 내타마이신(natamycin) 등이 있다. 항균작용을 가진 식물 유래 물질은 페놀릭(phenolic), 폴리페놀(polyphenol), 퀴닌(quinine), 플라본(flavone), 플라보노이드(flavonoid), 플라보놀(flavonol), 타닌(tannin), 쿠마린(coumarin), 터페노이드(terpenoid), 알칼로이드(alkaloid), 렉틴(lectin), 폴리펩타이드(polypeptide) 등으로 분류될 수 있다. Natural antibacterial substances include chitin from crustaceans, enzymes selected from a group of proteins, carbohydrates, proteases and lipolytic enzymes that are naturally present in animals and plants, as well as conventional foods such as salt and vinegar. Plant essential oils such as chitosan, organic acid, garlic, ginger, onion, cinnamon, red pepper, and herbs, and nisin derived from microorganisms, epsilon-polylysine, and natamycin. have. Plant-derived substances with antimicrobial activity are phenolic, polyphenol, quinine, flavone, flavonoid, flavonol, tannin, coumarin , Terpenoids, alkaloids, lectins, polypeptides, and the like.

천연항균제의 일종인 자몽종자추출물은 다량의 토코페롤을 함유하며 항균, 항진균, 항산화효과가 있다고 발표되었으며, 독성도 거의 없어 인체에 무해하다는 것이 확인되었다. 특히, 자몽종자추출물의 성분 중 아스코르브산(ascorbic acid), 아스코빌 팔미테이트(ascorbyl palmitate) 및 토코페롤(tocopherol) 등이 부패성 및 병원성 미생물의 세포벽 및 세포막의 기능을 약화시키고 효소활성을 억제한다고 하였고, DNA/RNA에서 비롯되는 세포증식 메커니즘을 방지하여 세균, 효모 및 곰팡이 등에 살균효과를 나타내며 곰팡이의 생육 및 독소합성에 저해효과를 가진다고 보고된 바 있고, 상기의 고압처리반응에 쓰인 자몽종자추출물 특유의 시트러스향은 식품의 비린내를 제거하는 역할을 기대할 수 있다. 따라서 세균 및 진균류 등 폭넓은 범위에서 높은 살균력을 가지고 있으며, 인체에 무해하고 산패를 방지하는 성질을 가진 자몽종자추출물의 천연 항균작용을 이용하여, 미생물의 초기 감염수를 줄이고 저장중 미생물 증가를 억제시켜 선어의 초기품질유지와 저장기간을 연장시킬 수 있다. Grapefruit seed extract, a kind of natural antimicrobial, contains a large amount of tocopherol and has been reported to have antibacterial, antifungal, and antioxidant effects. In particular, ascorbic acid, ascorbyl palmitate and tocopherol, among the components of grapefruit seed extract, weaken the function of cell walls and cell membranes of decaying and pathogenic microorganisms, and inhibit enzymatic activity. It has been reported to have a bactericidal effect on bacteria, yeasts and molds by preventing the cell proliferation mechanism derived from DNA / RNA, and to inhibit the growth and toxin synthesis of the fungus, and the grapefruit seed extract used in the high pressure treatment reaction. Citrus flavor can be expected to remove the fishy smell of food. Therefore, it has high bactericidal power in a wide range such as bacteria and fungi, and by using the natural antibacterial action of grapefruit seed extract, which is harmless to the human body and prevents rancidity, reduces the initial infectious water of microorganisms and suppresses the increase of microorganisms during storage. The initial quality of the freshwater fish and the shelf life can be extended.

본 발명에 의하여 제조되는 선어는 세균수가 감소되어 초기의 신선한 품질이 유지되며, 이에 의해 저장기간이 향상되고, 저장중 미생물의 증가를 억제시키며, 저장기간중 생선의 초기 조직감이 유지되는 효과를 누릴 수 있다. Fresh fish produced by the present invention is reduced in the number of bacteria to maintain the initial fresh quality, thereby improving the shelf life, suppress the increase of microorganisms during storage, and enjoy the effect of maintaining the initial texture of the fish during the storage period Can be.

도 1은 본 발명의 구현을 위한 단계를 나타내는 구체적인 흐름도이다.
도 2는 본 발명에 의하여 구현된 참돔(선어)의 고압처리후 제품을 나타낸다.
도 3a는 본 발명에 의하여 구현된 병어의 저장 0일, 1차고압처리후 총호기성 세균수를 측정한 도이고, 도 3b는 5℃ 저장 기간중 총호기성 세균수 변화를 측정한 도이다.
도 4는 침지수의 죽염 농도(w/v)에 따른 우럭(선어)의 염도이다.
도 5는 고압처리 횟수에 따른 참조기(해동)의 총호기성 세균수 변화를 나타낸 도이다.
도 6은 고압처리 시간에 따른 우럭(선어)의 총호기성 세균수 변화를 나타낸 도이다.
도 7a는 본 발명에 의하여 구현된 우럭(선어)의 저장 0일, 고압처리 압력에 따른 총호기성 세균수를 측정한 도이고, 도 7b는 5℃ 저장 7일째, 고압처리 압력에 따른 참돔(해동)의 총호기성 세균수 변화를 측정한 도이다.
도 8는 5℃ 저장 7일째, 고압처리 압력에 따른 참돔(해동)의 열전이특성 변화를 나타낸 도이다.
도 9는 침지수의 죽염농도를 달리하여 고압처리한 우럭(선어)의 총호기성 세균수 변화를 나타낸 도이다.
도 10은 침지수의 죽염농도를 달리하여 고압처리한 우럭(선어)의 동적점탄성 특성을 나타낸 도이다.
도 11은 침지수의 죽염농도를 달리하여 고압처리한 백조기(선어) 근육조직 횡단면 미세구조를 200배와 500배 확대하여 관찰한 결과이다.
도 12는 4% 죽염침지수에 천연항균제 종류를 달리하여 고압처리한 우럭(선어)의 총호기성 세균수를 측정한 도이다.
도 13은 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 총호기성 세균수를 측정한 도이다.
도 14는 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 동적점탄성을 측정한 도이다.
도 15는 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 5℃ 저장 기간중 동적점탄성을 측정한 도이다.
도 16은 고압처리 온도에 따른 우럭(선어)의 총호기성 세균수 변화를 나타낸 도이다.
도 17은 침지수의 죽염농도에 따른 우럭(선어)의 관능적 기호 특성을 나타낸 도이다.
1 is a specific flow diagram illustrating steps for implementing the present invention.
Figure 2 shows the product after the high-pressure treatment of red snapper (fish) implemented by the present invention.
Figure 3a is a measure of the total number of aerobic bacteria after storage of day 0, the first high-pressure treatment of the bottle embodied by the present invention, Figure 3b is a view of measuring the change in total aerobic bacteria during the storage period of 5 ℃.
4 is a salinity of urok (fish) according to the bamboo salt concentration (w / v) of immersion water.
5 is a view showing the change in the total aerobic bacteria number of the reference group (thaw) according to the number of high pressure treatment.
6 is a view showing the change in the total aerobic bacteria number of urok (fish) according to the high pressure treatment time.
Figure 7a is a measurement of the total aerobic bacteria according to the storage 0 day, high pressure treatment pressure of the uruk (fish) implemented by the present invention, Figure 7b is 7 days storage 5 ℃, red snapper (thaw) according to the high pressure treatment pressure Figure showing the change in the total aerobic bacterial count of
8 is a view showing the change in heat transfer characteristics of red snapper (thaw) according to the high pressure treatment day 7 days at 5 ℃ storage.
9 is a diagram showing the change in the total aerobic bacteria number of urok (fish) treated by varying the bamboo salt concentration of immersion water.
10 is a diagram showing the dynamic viscoelastic properties of urok (fish) treated by varying the bamboo salt concentration of immersion water.
Figure 11 is a result of observing the cross-sectional microstructure of the swan (fish) muscle tissue cross section 200 times and 500 times enlarged by varying the bamboo salt concentration of immersion water.
12 is a diagram measuring the total aerobic bacteria number of urok (fish) treated with different types of natural antimicrobial agents in 4% bamboo salt immersion water.
13 is a diagram measuring the total aerobic bacteria number of the reference group (thaw) subjected to high pressure treatment by varying the concentration of natural antibacterial agent.
14 is a diagram measuring the dynamic viscoelasticity of the reference group (thaw) subjected to high pressure treatment by varying the concentration of natural antibacterial agent in 4% bamboo salt immersion index.
FIG. 15 is a diagram measuring dynamic viscoelasticity at 5 ° C. storage period of a reference group (thaw) subjected to high pressure treatment by varying the concentration of natural antimicrobial agent in 4% bamboo salt immersion water.
16 is a view showing the change in the total aerobic bacteria number of urok (fish) according to the high pressure treatment temperature.
17 is a diagram showing the sensory preference characteristics of urok (fish) according to the bamboo salt concentration of immersion water.

이하, 본 발명을 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자가 용이하게 실시할 수 있도록 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 고압처리장치(Super-High Pressure Liquefying System (TFS-10L, (주) 디마퓨어텍, 대한민국)를 이용하여 수행하였다.Hereinafter, the present invention will be described in detail by examples so that those skilled in the art can easily practice the present invention. However, the following examples are merely to illustrate the invention, the scope of the present invention is not limited to the following examples. The embodiment of the present invention was carried out using a high-pressure processing apparatus (Super-High Pressure Liquefying System (TFS-10L, Dima Puretech, Korea).

[실시예 1] 선어와 그 가공품의 고압처리Example 1 High Pressure Treatment of Fresh Fish and Its Work

공급받은 시료를 흐르는 수돗물에 1회 세척하여 이물질을 제거하고 생선의 양면에 1.5 cm의 간격으로 칼집을 3회 넣었다. 원료 1마리당 침지수 1.5L가 담긴 Ny/PE 재질의 진공필름에 침지, 밀봉한 필름팩은 1차 고압처리(온도 18℃, 압력 100 MPa, 시간 20분) 처리하였다. 1차 고압처리한 시료는 침지수를 제거, 건조대에서 세로로 매달아 30분 동안 탈수한 후, 18*28 cm 크기의 Ny/PE 진공필름에 1마리씩 넣어 Vacuum 30 cm Hg, Seal time 1.5 sec, Cooling time 1.5 sec의 조건으로 진공포장(대해물산, 한국)하였다(도 1). 1차 고압처리조건과 같이 시료를 2차 고압처리하여, 도 2와 같이 제품을 제조하였다. The supplied sample was washed once with running tap water to remove foreign substances, and three times at 1.5 cm intervals were placed on both sides of the fish. The film pack immersed and sealed in a vacuum film made of Ny / PE containing 1.5 L of immersion water per raw material was subjected to a first high pressure treatment (temperature 18 ° C., pressure 100 MPa, time 20 minutes). The first high-pressure sample was removed by immersion water, hung vertically on a drying rack for 30 minutes, and then put into 1 x 18 * 28 cm Ny / PE vacuum film. Vacuum 30 cm Hg, Seal time 1.5 sec, Cooling Vacuum packaging (seawater, Korea) under the condition of time 1.5 sec (Fig. 1). The sample was subjected to a second high pressure treatment as in the first high pressure treatment condition to prepare a product as shown in FIG. 2.

[실시예 2] 선어와 그 가공품의 고압처리후 총호기성 세균수 측정 Example 2 Measurement of Total Aerobic Bacteria after High Pressure Treatment of Fresh Fish and Its Processed Products

고압처리한 선어 가공품의 총호기성 세균수는 시료 5g을 무균적으로 채취하여 45 mL 멸균 희석수(0.85% NaCl + 1% pepton water, pH 7.2)를 가하고 stomacher로 5분간 균질화 한 여과액을 시료 원액으로 사용하였다. 생균수는 total aerobic plate용 3M film을 사용하여 37℃에서 48 시간 배양한 후 나타난 colony를 계수하였다. [실시예 1]의 방법에 같은 고압처리에 따른 병어의 1차고압/죽염수 처리에 따른 총호기성 세균수의 저해 효과는 도 3과 같았다. 고압/죽염수 병행 처리구(100 MPa-10%)는 상압대조구(상압-0%), 고압/무염 처리구(100 MPa-0%) 그리고 상압/죽염 처리구(상압-10%)와 비교하여 저장 0일 초기 총호기성 세균수가 유의적으로 저해되었다. 또한, 5℃에서 저장 14일까지의 총호기성 세균수도 다른 세 처리구와 비교하여 총호기성 세균수가 102 적게 검출되어, 고압/죽염수 병행 처리에 의한 선어와 그 가공품의 총호기성 세균수의 제어효과를 확인하였다.The total aerobic bacterial count of the high-pressure treated freshwater processed product was aseptically collected from 5 g of sample, added with 45 mL of sterile dilution water (0.85% NaCl + 1% pepton water, pH 7.2), and homogenized with a stomacher for 5 minutes. Used as. The viable cell count was counted after 48 hours incubation at 37 ° C. using a 3M film for total aerobic plate. Inhibitory effect of the total aerobic bacterial water according to the first high pressure / bamboo salt treatment of the diseased by the high pressure treatment in the same manner as in [Example 1] was as shown in FIG. High pressure / bamboo salt treatment (100 MPa-10%) compared to normal pressure control (normal pressure-0%), high pressure / salt salt (100 MPa-0%) and atmospheric pressure / bamboo salt treatment (normal pressure-10%) Early total aerobic bacterial counts were significantly inhibited. In addition, the total aerobic bacterial counts up to 14 days of storage at 5 ° C. were also detected by 10 2 total aerobic bacterial counts compared to the other three treatment groups, and the control effect of the total aerobic bacterial counts of fresh fish and its processed products by the high pressure / bamboo salt treatment Confirmed.

[실시예 3] 고압처리에 따른 선어와 그 가공품의 염도 측정EXAMPLE 3 Salinity Measurement of Fresh Fish and Its Processed Products by High Pressure Treatment

선어 제조공정에 있어서 죽염농도를 낮출 수 있는 가능성과 가공 선어의 기호도(짠맛정도, 조직감 정도)를 확인하기 위하여 가공 선어내에 함유된 염분함량을 측정하였다. 죽염농도와 처리시간과는 반비례관계에 있다. 즉, 농도가 높으면 침지시간이 짧고, 농도가 높으면 침지시간을 줄일 수 있다. In order to confirm the possibility of lowering bamboo salt concentration and the degree of acceptability (salt taste, texture) of processed fresh fish, salt content in processed fresh fish was measured. Bamboo salt concentration is inversely related to treatment time. In other words, if the concentration is high, the immersion time is short, and if the concentration is high, the immersion time can be reduced.

염도는 Mohr법에 의하여 측정하였다. 각 시료 10g을 마쇄하고 종이여과지(Whatman No. 1.)에 여과한 여과액을 100 mL 정용플라스크에 정용한 여과액 20 mL를 취하여 2% K2CrO4 1mL를 첨가하고 0.02N AgNO3 로 적정하여 정량하였다. 도 4는 죽염 0-10 %(w/v) 침지수에 [실시예1]의 공정에 따라 처리한 우럭 근육의 염도이다. 시료 근육조직의 염도는 침지수 염도와 높은 정의 상관관계(R2=0.9362)를 나타내었다. 그러나 침지수의 염도 6%(w/v) 이후에는 시료 근육조직의 염도는 0.71-0.78% 이내의 농도를 유지하였다. 그러므로 [실시예1]에 따른 고압처리에 적용하는 시료의 죽염 침지수의 농도는 1-6%(w/v)가 적당한 것으로 판단되었다.Salinity was measured by the Mohr method. Grind 10 g of each sample, filter the filtrate on paper filter paper (Whatman No. 1.), take 20 mL of the filtrate, which was applied to a 100 mL volumetric flask, add 1 mL of 2% K 2 CrO 4 , and titrate with 0.02N AgNO 3 . Quantification 4 is a salinity of muscles treated with bamboo salt 0-10% (w / v) immersion water according to the process of [Example 1]. Salinity of the sample muscle tissue showed a high positive correlation (R 2 = 0.9362) with immersion salinity. However, after 6% (w / v) salinity of the immersion water, the salinity of the sample muscle tissue was maintained within 0.71-0.78%. Therefore, it was determined that the concentration of bamboo salt immersion water in the sample to be subjected to the high pressure treatment according to [Example 1] was 1-6% (w / v).

[실시예 4] 고압처리 횟수에 따른 영향[Example 4] Effect of the number of high pressure treatment

고압처리 횟수를 달리 한 참조기(해동)시료를 [실시예 2]의 실험방법에 의하여 측정한 총호기성 세균수는 2회 처리하여 유의적으로 미생물 제어 효과가 있음을 확인하였다(도 5).The total number of aerobic bacteria measured by the experimental method of [Example 2] of the reference group (thawing) samples having different high-pressure treatments was treated twice to confirm that there was a significant microbial control effect (FIG. 5).

[실시예 5] 고압처리 시간에 따른 영향Example 5 Effect of High Pressure Treatment Time

최적 처리조건은 고압처리온도 18℃, 압력 100 MPa로 고정하고, 압력처리시간을 각각 0, 2, 10, 20, 30, 40 분으로 하였다. 상기 고압처리(1차공정만 진행)에 의하여 측정된 우럭(선어)의 호기성 총균수는 다음과 같다. 도 6은 실시예 1]의 고압처리 시간을 달리 한 우럭(선어)의 시료 5g을 무균적으로 채취하여 45 mL 멸균 희석수(0.85% NaCl + 1% pepton water, pH 7.2)를 가하고 stomacher로 5분간 균질화 한 여과액을 시료 원액으로 사용하여 측정한 총호기성 세균수 결과로써 처리시간은 20분이 효과적임을 확인하였다. The optimum treatment conditions were fixed at a high pressure treatment temperature of 18 ° C. and a pressure of 100 MPa, and the pressure treatment times were 0, 2, 10, 20, 30, and 40 minutes, respectively. The aerobic total bacteria count of the urok (fish) measured by the high pressure treatment (only the primary process) is as follows. FIG. 6 is a sterile sample of 5 g of urok (fish) with different autoclave times of Example 1], added 45 mL sterile dilution water (0.85% NaCl + 1% pepton water, pH 7.2) and 5 as stomacher. As a result of the total aerobic bacterial count measured using the filtrate homogenized for a minute as a sample stock solution, it was confirmed that the treatment time was effective for 20 minutes.

[실시예 6] 고압처리 압력에 따른 총호기성 세균수Example 6 Total Aerobic Bacterial Count According to High Pressure Treatment Pressure

도 7 a는 [실시예 1]의 고압처리의 처리압력을 상압(비처리구), 25, 50, 75, 100, MPa 범위로 하여 저장 0일째 우럭(선어)의 총호기성 세균수 변화를 측정한 도이며, 압력처리 온도는 18℃, 압력처리 시간은 20 분으로 고정하였다. 도 7 b는 처리압력을 상압, 100, 200, 300 MPa 범위로 달리하여 4분 동안 고압처리한 참돔(해동)의 5℃ 저장 7일째, 총호기성 세균수를 측정한 결과이다. 처리압력이 증가할수록 총호기성 세균수가 유의적으로 감소하였고 100 MPa부터 총호기성 세균수가 유의적으로 저해되었다. 따라서 경제성까지 고려할 때 100 MPa로 선어를 고압처리하는 것이 적합하다고 할 수 있다. 7 a shows the change in the total aerobic bacterial count of urok (fresh fish) on day 0 of storage, with the treatment pressure of the high pressure treatment of [Example 1] being normal pressure (non-treated), 25, 50, 75, 100, MPa The pressure treatment temperature was fixed at 18 ° C. and the pressure treatment time at 20 minutes. 7 b is the result of measuring the total aerobic bacteria number on the 7th day of storage at 5 ° C. of red snapper (thaw) subjected to high pressure for 4 minutes by varying the treatment pressure in the range of normal pressure, 100, 200, and 300 MPa. As the treatment pressure increased, the total aerobic bacterial count was significantly decreased and the total aerobic bacterial count was significantly inhibited from 100 MPa. Therefore, considering the economics, high pressure treatment of fresh fish at 100 MPa may be appropriate.

[실시예 7] 고압처리 압력에 따른 생선단백질의 열전이특성 변화Example 7 Changes in Heat Transfer Characteristics of Fish Protein According to High Pressure Treatment Pressure

생선단백질의 열전이 특성변화는 시료 약 60 mg 취하여 열시차주사분석용 알루미늄제 pan에 충진하고 열시차주사분석 장치(DSC-7, Perkin Elmer, USA)에서 가열온도구간 10-100℃, 가열속도 10℃/min의 조건으로 측정하여 흡열 Peak로부터 개시온도 (TO : onset temperature), 최대온도 (TP : maximum peak temperature), 종결온도(TC : conclusion temperature)와 흡열곡선 엔탈피 (ΔH : Overall gelatinization enthalpy, Crystal malting enthalpy)등의 열전이특성 자료를 얻었다. reference는 empty cell을, calibration material은 indium을 사용하였다. 엔탈피는 시료 고형분당 joule로 나타내었다. 도 8은 고압처리 압력을 상압(비처리구), 100 MPa, 200 MPa, 300 MPa로 하여 4분 동안 처리한 참돔(해동)의 열전이특성 변화이다. The heat transfer characteristics of the fish protein were taken in about 60 mg of sample and filled in a pan for thermal differential scanning analysis, and the heating temperature range was 10-100 ℃ and heating rate in the thermal differential scanning analyzer (DSC-7, Perkin Elmer, USA). Measured under the condition of 10 ℃ / min, the end temperature (T O : onset temperature), maximum temperature (T P : maximum peak temperature), end temperature (T C : conclusion temperature) and endothermic curve enthalpy (ΔH: Overall) Heat transfer characteristics such as gelatinization enthalpy and crystal malting enthalpy were obtained. Empty cells were used as reference and indium was used as calibration material. Enthalpy is expressed in joules per sample solids. FIG. 8 is a change in heat transfer characteristics of red snapper (thaw) treated for 4 minutes at a high pressure of normal pressure (untreated), 100 MPa, 200 MPa, and 300 MPa.

35℃ 정도에서 열전이가 시작되어 계속적으로 myosin(≒45℃), sarcoplasmic protein(≒53℃), 그리고 actin(≒75℃)의 연속적인 곡선이 유사한 경향으로 나타났다. 압력이 증가하면서 미오신 곡선이 현저히 감소하였고 미오신 변성으로 형성된 것으로 추측되는 구조를 의미하는 새로운 곡선(40℃)이 나타났다. 특히 300 MPa 처리후의 열전이 곡선은 100-200 MPa 처리후와 비교하여 현저하게 액틴 곡선이감소함을 확인하였다. The heat transfer started at about 35 ℃ and the continuous curves of myosin (≒ 45 ℃), sarcoplasmic protein (≒ 53 ℃), and actin (≒ 75 ℃) showed similar trends. As the pressure increased, the myosin curve decreased significantly and a new curve (40 ° C.) was developed, indicating a structure that was supposed to be formed by myosin denaturation. In particular, the heat transfer curve after 300 MPa treatment was confirmed that the actin curve is significantly reduced compared to after 100-200 MPa treatment.

[실시예 8] 침지수의 죽염농도를 달리하여 고압처리한 우럭(선어)의 총호기성 세균수Example 8 Total Aerobic Bacterial Count of Urug (Fresh Fish) Treated with Different Salts in Soaked Water

도 9는 침지수의 죽염농도를 달리하여 [실시예 1]의 순서에 따라 100 MPa, 25℃, 20분간 고압처리한 우럭(선어)의 시료 5g을 무균적으로 채취하여 45 mL 멸균 희석수(0.85% NaCl + 1% pepton water, pH 7.2)를 가하고 stomacher로 5분간 균질화 한 여과액을 시료 원액으로 사용하여 측정한 총호기성 세균수 결과이다. 도 9에 의하면 무염처리구(0%)와 비교하여 1-10%까지 모든 염처리구에서 유의적으로 미생물 제어효과가 있었고, 염도가 증가할수록 유의적으로 총호기성 세균수가 감소됨을 확인하였다. 9 is a sterilized dilution of 45 mL sterile water by aseptically collecting 5 g of a sample of urethane (fresh fish) subjected to high pressure treatment at 100 MPa, 25 ° C. for 20 minutes according to the order of [Example 1] by varying the bamboo salt concentration of immersion water. Total aerobic bacterial counts were measured using a filtrate homogenized with 0.85% NaCl + 1% pepton water (pH 7.2) and homogenized with stomacher for 5 minutes. According to Figure 9 it was confirmed that there was a significant microbial control effect in all salt treatments up to 1-10% compared to the salt-free treatment (0%), the total aerobic bacteria was significantly reduced as the salinity increased.

[실시예 9] 침지수의 죽염농도를 달리하여 고압처리한 우럭(선어)의 동적점탄성 특성Example 9 Dynamic Viscoelastic Properties of Urok (Fresh Fish) Treated with Different Salts in Soaked Water

침지수의 죽염농도를 달리하여 [실시예 1]의 순서에 따라 100 MPa, 18℃, 20분간 고압처리한 우럭(선어)의 동적점탄성 특성 측정방법은 다음과 같다. 육류나 생선류는 응력이 커질수록 탄성 성분이 뚜렷해지는 점탄성 특성을 지닌다. 죽염 침염수 농도에 따른 우럭(선어)의 동적점탄성 특성은 시료의 등근육 부분을 25×25×10 mm의 크기로 절단하여 지퍼팩에 넣고 아이스팩 위에서 10분 이상 유지하며 물성을 측정하였다. 측정은 CLS100/Carri-Med Rheometer(TA Instrument, UK)를 이용하여 Frequency sweep test로 측정하였으며 직경 20mm, 각도 2° Steel cone type의 geometry를 사용하였다. Plate 온도는 30℃로 설정하고 Strain을 일정하게 유지한 상태에서 진동수 1-10Hz의 범위에서 applied value 0.3으로 총 30 Point를 측정하였으며, 3-4회 반복한 평균값으로 저장 탄성률(storage 7 modulus, G'), 손실 탄성률(loss modulus, G''), 손실각(loss angle,δ)을 구하였다. 고압처리한 모든 시료가 1-10 Hz의 모든 진동수범위에서 파장에 비례하는 변화를 나타내었으며 저장탄성률이 손실탄성률보다 높은 값을 나타내었다. 또한 6% 죽염침지수 농도까지 근육조직의 탄성을 의미하는 시료 G'값이 대체로 높게 측정되었으나 7% 이상의 시료는 G'값이 오히려 낮아지는 경향을 보였다(도 10). The method of measuring the dynamic viscoelastic properties of urok (fresh fish) subjected to high pressure treatment at 100 MPa, 18 ° C. for 20 minutes according to the order of [Example 1] by varying the bamboo salt concentration of immersion water is as follows. Meat and fish have viscoelastic properties that make elastic components more pronounced as stress increases. The dynamic viscoelastic properties of urok (fish) according to the bamboo salt saline concentration were cut into 25 × 25 × 10 mm in the back muscle part of the sample, put in a zipper pack, and maintained for 10 minutes or more on an ice pack. The measurement was performed with a frequency sweep test using a CLS100 / Carri-Med Rheometer (TA Instrument, UK) and a 20 mm diameter, 2 ° angle steel cone type geometry. The plate temperature was set to 30 ℃ and the strain was kept constant. A total of 30 points were measured with an applied value of 0.3 at a frequency of 1-10 Hz, and the storage elastic modulus (storage 7 modulus, G was repeated 3-4 times). '), Loss modulus (G' '), and loss angle (δ) were obtained. All samples subjected to autoclaving showed a change in proportion to the wavelength in all frequency ranges of 1-10 Hz, and the storage modulus was higher than the loss modulus. In addition, the sample G 'value indicating the elasticity of the muscle tissue was measured to a high value up to 6% bamboo salt immersion index concentration, but more than 7% of the sample showed a tendency to decrease the G' value (Fig. 10).

고압처리한 모든 시료가 1-10 Hz의 모든 진동수범위에서 파장에 비례하는 변화를 나타내었으며 저장탄성률이 손실탄성률보다 높은 값을 나타내었다. 전반적으로 6% 죽염침지수 농도까지 근육조직의 탄성을 의미하는 시료 G'값이 높게 측정되었으나 7% 이상의 시료는 G'값이 오히려 낮아지는 경향을 보였다. 이는 [실시예 3]과 같은 결과로써 죽염침지수의 적정농도는 1-6%로 생각되었다. All samples subjected to autoclaving showed a change in proportion to the wavelength in all frequency ranges of 1-10 Hz, and the storage modulus was higher than the loss modulus. In general, the sample G 'value indicating the elasticity of the muscle tissue was measured up to 6% bamboo salt immersion concentration concentration, but more than 7% sample tended to decrease the G' value. This was the same result as in [Example 3], and the proper concentration of bamboo salt immersion index was considered to be 1-6%.

[실시예 10] 침지수의 죽염농도를 달리하여 고압처리한 백조기(선어) 근육조직의 횡단면 미세 구조 관찰Example 10 Observation of the cross-sectional microstructure of swan muscle (fish) muscle tissue subjected to high pressure treatment by varying bamboo salt concentration of immersion water

주사전자현미경(SEM : Scanning electron microscope)표본은 시료를 가로, 세로, 높이 2-3 mm의 정육면체 크기로 잘라 제작하였다. 제작한 시료는 2.5% glutaraldehyde, 2.0% paraformaldehyde의 0.1 M phosphate buffer (pH 7.4)로 상온에서 2시간 고정시킨 후, 동일 buffer로 10분 동안 담가 washing 한 다음 1-2% osmium tetroxide(OsO4)의 0.1 M phosphate buffer (pH 7.4)로 90분 동안 2차 고정 시키고 다시 10분 washing 하였다. 이렇게 처리한 시료는 에탄올 용액 25%, 50%, 70%, 95% 순서로 농도를 증가시키면서 10분씩 처리하고 마지막 100% 에탄올 용액에서 10분씩 3반복 처리하여 탈수하였다. 탈수한 시료는 동결건조 시키고 은으로 코팅하여 주사전자현미경(SEM)을 통해 저배율(x50)에서 고배율(x500)로 이동하면서 미세조직을 관찰하였다. Scanning electron microscope (SEM) specimens were prepared by cutting samples into cubes of 2-3 mm in width, length, and height. The prepared sample was fixed at room temperature for 2 hours with 0.1 M phosphate buffer (pH 7.4) of 2.5% glutaraldehyde and 2.0% paraformaldehyde, and then immersed in the same buffer for 10 minutes and washed with 1-2% osmium tetroxide (OsO 4 ). Secondary fixation was performed with 0.1 M phosphate buffer (pH 7.4) for 90 minutes and washed again for 10 minutes. The treated samples were treated with 10 minutes of increasing concentrations in the order of 25%, 50%, 70%, and 95% of the ethanol solution, and dehydrated by 3 repeated treatments of 10 minutes in the last 100% ethanol solution. The dehydrated sample was lyophilized and coated with silver, and the microstructure was observed while moving from low magnification (x50) to high magnification (x500) through a scanning electron microscope (SEM).

김 등(Yun-Ji Kim, Eun-Jung Lee, Nam-Hyouck Lee, Young-Ho Kim, and Katsuhiro Yamamoto. Effects of Hydrostatic Pressure Treatment on th Physicochemical, Morphological, and Textural Properties of Bovine Semitendinosus muscle. Food Sci . Biotechnol. 16(1). 49-54. (2007))은 반응압력이 증가하면서 근육섬유가 파괴되고, 일련의 근장 단백질이 응고 또는 응집하거나 근원섬유 단백질이 축적되어, 근육의 미세섬유가 좀 더 가늘고 조밀해지는 결과를 보고하였는데, 본 실험에서도 도 11에서 보여지는바와 같이 대조구(RAW; 상압 - 0%)와 비교하여 고압처리후(100 MPa - 0%) 표피와 근육의 미세섬유가 좀 더 가늘어졌으며 이는 고압/염 처리를 병행하여(100 MPa - 10%) 더욱 가늘고 조밀해지는 것을 확인하였다. Etc. steaming (Yun-Ji Kim, Eun- Jung Lee, Nam-Hyouck Lee, Young-Ho Kim, and Katsuhiro Yamamoto. Effects of Hydrostatic Pressure Treatment on th Physicochemical, Morphological, and Textural Properties of Bovine Semitendinosus muscle. Food Sci . Biotechnol . 16 (1). 49-54. (2007) reported that muscle fibers are destroyed with increasing reaction pressure, a series of muscle proteins coagulate or aggregate, or myofibrillar proteins accumulate, resulting in thinner and denser muscle fibers. As shown in FIG. 11, after the high pressure treatment (100 MPa-0%) compared to the control (RAW; normal pressure-0%), the epidermis and muscle microfibers became thinner, which was combined with the high pressure / salt treatment (100 MPa-10%) It was confirmed that it became thinner and denser.

[실시예 11] 4% 죽염침지수에 천연항균제 종류를 달리하여 고압처리한 우럭(선어)의 총호기성 세균수Example 11 Total Aerobic Bacterial Count of Urok (Fresh Fish) Treated with Different Types of Natural Antimicrobial Agents

천연항균제로써 키토산, 자몽종자추출물, 마늘정유추출물, 양파정유추출물을 4% 죽염침지수에 0.1% (w/v) 혼합하고, [실시예1]에 의하여 100 MPa, 18℃, 20분을 조건으로 고압처리후 총호기성 세균수를 측정하였다. 미생물 제어 효과는 천연항균제 첨가 없이 고압처리만으로 제조한 처리구(CON)와 비교하여 고압처리와 천연항균제 처리를 병행한 키토산, 마늘, 자종종자추출물, 생강 처리구가 높게 분석되었고, 다른 천연항균제와 비교하여 자몽종자추출물의 미생물 제어효과가 가장 뛰어난 것으로 측정되었다(도 12). As a natural antimicrobial agent, chitosan, grapefruit seed extract, garlic essential oil extract, and onion essential oil extract were mixed with 4% bamboo salt immersion index in 0.1% (w / v), and 100 MPa, 18 ° C., and 20 minutes under [Example 1]. After a high pressure treatment, the total number of aerobic bacteria was measured. The control effect of microorganism was higher in chitosan, garlic, seed seed extract, and ginger treatment, which were combined with high pressure treatment and natural antibacterial treatment, compared to other treatments prepared by high pressure treatment without addition of natural antimicrobial agents. The microbial control effect of grapefruit seed extract was determined to be the best (Fig. 12).

[실시예 12] 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 총호기성 세균수Example 12 Total Aerobic Bacterial Count of Reference Group (Thaw) by High Pressure Treatment with Different Natural Antibiotic Concentrations in 4% Bamboo Salt Dipping

[실시예 1]의 4% 죽염 침지수에 첨가하는 천연항균제로써 자몽종자추출물을 사용, 농도를 달리 하여 고압처리한 참조기(해동) 시료를 [실시예 11]과 같이 처리하여 측정한 총호기성 세균수는 도 13에서와 같이 0.1-1% (w/v) 자몽종자추출물 처리는 총호기성 세균수의 제어에 유의적인 효과를 나타내는 것으로 나타났다. 이하의 실시예 12에서 나타난 바와 같이 1% 천연항균제 처리구의 동적점탄성 특성이 오히려 0.1-0.2% 처리구와 비교하여 낮게 평가되는 것을 확인할 수 있어서 천연항균제의 최대 첨가치는 1%(w/v)로 정하는 것이 적당함을 알 수 있다. Total aerobic bacteria measured by treating the reference group (thaw) sample treated with high pressure using grapefruit seed extract as a natural antimicrobial agent added to 4% bamboo salt immersion water of [Example 1] as in [Example 11] As shown in Fig. 13, treatment with 0.1-1% (w / v) grapefruit seed extract was shown to have a significant effect on the control of the total aerobic bacteria. As shown in Example 12 below, it was confirmed that the dynamic viscoelastic properties of the 1% natural antimicrobial treatments were lower than those of the 0.1-0.2% treatment, so the maximum added value of the natural antimicrobial agents was determined to be 1% (w / v). It can be seen that it is appropriate.

[실시예 13] 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 동적점탄성 특성[Example 13] Dynamic Viscoelastic Properties of a High-Treated Reference Group (Thaw) with Different Natural Antibiotic Concentrations at 4% Bamboo Salt Dipping

[실시예 11]의 결과에서 0.1-1% (v/v) 천연항균제로써 자몽종자추출물 처리는 총호기성 세균수의 제어에 유의적인 효과를 나타내는 것으로 나타났다. 그러나 도 14의 천연항균제 농도에 따른 참조기(해동)의 동적점탄성 측정 결과, 1%(v/v) 천연항균제 죽염 침지수는 0.1% 또는 0.2% 천연항균제 처리한 시료와 비교하여 탄성을 나타내는 G‘값이 낮게 평가되었다. 0.1% 천연항균제 처리한 시료의 G'값이 가장 컸으나 진동수가 커질수록 탄젠트 델타값이 비례적으로 변화하였다. 그러므로 [실시예11]과 [실시예12]의 결과를 종합하였을 때 근육조직의 품질유지와 미생물 제거에 효과적인 천연항균제의 농도는 0.1-0.2% 범위로 생각되었다.In the result of [Example 11], treatment of grapefruit seed extract with 0.1-1% (v / v) natural antimicrobial agent showed a significant effect on the control of the total aerobic bacteria. However, as a result of measuring the dynamic viscoelasticity of the reference group (thawing) according to the natural antimicrobial concentration of FIG. 14, the 1% (v / v) natural antimicrobial bamboo salt immersion water showed G 'showing elasticity compared to the sample treated with 0.1% or 0.2% natural antimicrobial agent. Value was low. The G 'value of the 0.1% natural antimicrobial treatment was the largest, but the tan delta changed proportionally as the frequency increased. Therefore, when the results of [Example 11] and [Example 12] were combined, the concentration of natural antimicrobial agents effective for maintaining the quality of muscle tissue and removing microorganisms was considered to be in the range of 0.1-0.2%.

[실시예 13] 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 5℃ 저장 기간중 총호기성 세균수 변화Example 13 Change in Total Aerobic Bacterial Number During 5 ° C Storage Period of High-Treated Reference Group (Thaw) with Different Natural Antibiotic Concentrations in 4% Bamboo Salt Dipping

[실시예 1]의 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 저장온도 5 ℃에서의 저장기간중 총호기성 세균수 변화를 측정하였다. 그 결과 저장 14일까지 초기부패지표인 균수인 106을 넘지 않는 것으로 나타났다. 또한 0.2% 천연항균제 처리한 시료의 균수는 다른 구와 비교하여 101정도가 더 적게 유지되는 것으로 나타나, 천연항균제, 4% 죽염 침지수 병행한 고압처리방법의 저장성 제어효과를 확인하였다.The total aerobic bacterial count during the storage period of 5 ° C. at the storage temperature of the high pressure-treated reference group (thaw) at different concentrations of natural antimicrobial agents in 4% bamboo salt immersion water of [Example 1] was measured. The results showed that no more than the initial corruption indicator bacteria from 10 June to 14 stores. In addition, the number of bacteria in the sample treated with 0.2% natural antimicrobial agent was maintained to be less than 10 1 compared with other spheres, confirming the storage effect control effect of the high pressure treatment method combined with the natural antimicrobial agent, 4% bamboo salt immersion water.

[표 1][Table 1]

4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 5℃ 저장 기간중 총호기성 세균수 변화Changes in Total Aerobic Bacterial Number During 5 ℃ Storage Period of High-Temperature Reference Thawing (Thaw) with Different Natural Antibiotic Concentrations in 4% Bamboo Salt Dipping

Figure 112012091978090-pat00001
Figure 112012091978090-pat00001

RAW, 상압 + 0% 죽염침지수; 0%, 100 MPa + 4% 죽염침지수; 0.1%, 100 MPa + 4% 죽염침지수 + 0.1% 천연항균제; 0.2%, 100 MPa + 4% 죽염침지수 + 0.2% 천연항균제.RAW, atmospheric pressure + 0% bamboo salt immersion index; 0%, 100 MPa + 4% bamboo salt immersion index; 0.1%, 100 MPa + 4% bamboo salt immersion index + 0.1% natural antibacterial agent; 0.2%, 100 MPa + 4% bamboo salt immersion index + 0.2% natural antibacterial agent.

[실시예 14] 4% 죽염침지수에 천연항균제 농도를 달리하여 고압처리한 참조기(해동)의 5℃ 저장 기간중 동적점탄성 특성 변화[Example 14] Change of dynamic viscoelastic properties during 5 ° C storage period of a reference group (thaw) at high pressure with 4% bamboo salt immersion water

[실시예 1]의 4% 죽염침지수에 천연항균제 농도를 달리하여 100 MPa로 고압처리한 참조기(해동)의 저장온도 5 ℃에서의 저장기간중 동적점탄성 특성을 측정하였다. 진동수 5.04에서의 탄젠트델타값을 저장 0일의 동적점탄성 특성을 기준으로 하여 저장 4일, 저장 7일 저장 14일의 동적점탄성 특성을 각각 비교한 결과 저장 14일까지 큰 변화를 보이지 않는 것으로 나타나, 저장초기의 품질특성이 잘 유지되는 것으로 판단되었다(도 15). The dynamic viscoelastic properties were measured during the storage period at 5 ° C. of the reference group (thaw), which was autoclaved at 100 MPa at different concentrations of natural antibiotics in 4% bamboo salt immersion water of [Example 1]. The tangent delta at the frequency of 5.04 was compared with the dynamic viscoelastic properties of 4 days of storage and 7 days of storage and 14 days of storage on the basis of the dynamic viscoelastic properties of storage 0 days. The quality characteristics of the initial storage was judged to be well maintained (Fig. 15).

[실시예 15] 고압처리 온도에 따른 총호기성 세균수Example 15 Total Aerobic Bacterial Count According to High Pressure Treatment Temperature

고압처리압력 100MPa, 처리시간을 20분으로 고정하고, 압력처리온도를 각각 10℃, 20℃, 25℃, 30℃으로 하여. 상기한 실시예1에 의하여 고압처리(1차공정만 진행)하여 측정한 우럭(선어)의 총호기성 세균수는 10-25℃에서 유의적으로 미생물 제어효과가 있음을 확인하였다[도 16]. 10℃ 미만의 온도에서는 미생물 제어 효과는 높아질 수 있으나, 처리중 저온상태 유지를 위한 부대비용이 필요하며, 25℃ 이상의 온도에서 수행될 경우 원료의 자가분해효소가 활성화되어 품질 저하를 발생시킬 수 있다. The high pressure treatment pressure was 100 MPa and the treatment time was fixed at 20 minutes, and the pressure treatment temperatures were set at 10 ° C, 20 ° C, 25 ° C and 30 ° C, respectively. According to Example 1, the total aerobic bacteria count of urok (fish) measured by high pressure treatment (only the first step) was confirmed to have a microbial control effect at 10-25 ° C. [FIG. 16]. At temperatures below 10 ° C, microbial control effects can be enhanced, but additional costs are required to maintain low temperatures during processing, and when carried out at temperatures above 25 ° C, autolytic enzymes in the raw materials can be activated to cause degradation of quality. .

[실시예 16] 침지수의 죽염농도에 따른 우럭(선어)의 관능검사Example 16 Sensory Evaluation of Uruk (Fresh Fish) According to Bamboo Salt Concentration of Soaked Water

죽염농도를 달리한 각각의 죽염침지수에 0.2% 천연항균제를 첨가한 후, [실시예1]의 방법으로 100 MPa, 18℃, 20분, 1차고압처리한 우럭(선어)의 관능적 기호도를 9점 척도법에 의하여 조사하였다. 시료는 등근육 부위를 약 2㎝×5㎝×0.2mm 크기로 절단하여 횟감으로 썰어 2점 이상 숙련된 관능요원 30명에게 제시하였다. 그 결과 3-5% 죽염 침지수에 침지하여 고압처리한 우럭(선어)의 관능적 기호특성이 색깔, 회 고유의 맛, 회이외의 맛, 조직감, 총기호도에서 높게 평가되는 경향이었다[도 17].
After adding 0.2% natural antimicrobial agent to each bamboo salt immersion index having different bamboo salt concentrations, the sensory preference of 100 MPa, 18 ° C., 20 minutes and primary high pressure treatment was measured by the method of [Example 1]. It was investigated by the 9-point scale method. Samples were cut to about 2 cm × 5 cm × 0.2 mm in size and cut into sashimi and presented to 30 experienced sensory personnel with at least two points. As a result, the sensory taste characteristics of uruk (fresh fish) immersed in 3-5% bamboo salt immersion water were highly evaluated in color, taste unique to sashimi, taste other than sashimi, texture, and total preference [FIG. 17]. .

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 선어를 가공함에 있어서,
시료를 1차 세척하여 이물질과 핏물을 제거하는 단계;
시료 양쪽에 2 내지 3회 칼집을 처리하는 단계;
침지수에 시료대비 1 내지 6%(w/v)의 죽염을 교반, 용해시키는 단계;
침지수에 시료대비 0.067 내지 1%(w/v)의 천연항균제를 희석시키는 단계;
침지수에 원료를 침지시키는 단계;
침지수가 담긴 필름을 밀봉시키는 단계;
고압처리장치에서 10 내지 25℃, 25 내지 300 MPa, 2 내지 40분의 조건 하에 1차 고압처리를 수행하는 단계;
20 내지 30분 동안 탈수시키는 단계;
개별 진공 포장 단계;
고압처리장치에서 10 내지 25℃, 25 내지 300 MPa, 2 내지 40분 동안 2차 고압처리를 수행하는 단계;
급속냉각 단계; 및
제품화 시키는 단계;를 포함하는 것을 특징으로 하는 선어 가공방법.
In processing fresh fish,
First washing the sample to remove foreign matter and blood;
Treating the sample two or three times on both sides of the sample;
Stirring and dissolving 1 to 6% (w / v) bamboo salt relative to the sample in immersion water;
Diluting 0.067-1% (w / v) natural antimicrobial agent in the immersion water relative to the sample;
Immersing the raw material in immersion water;
Sealing the film containing the immersion water;
Performing a first high pressure treatment under a condition of 10 to 25 ° C., 25 to 300 MPa, and 2 to 40 minutes in a high pressure treating apparatus;
Dehydrating for 20 to 30 minutes;
Individual vacuum packaging step;
Performing a second autoclave at 10-25 ° C., 25-300 MPa, 2-40 minutes in a high pressure treatment apparatus;
Rapid cooling step; And
Fresh fish processing method comprising the;
제6항에 있어서,
상기 천연항균제가 탄수화물 분해효소, 단백질 분해효소, 지방분해 효소군으로부터 선택되는 효소류, 갑각류의 키틴질에서 추출한 키토산, 유기산, 마늘, 생강, 양파, 계피, 고추, 허브의 식물 정유 및 미생물에서 유래된 나이신(nisin), 입실론-폴리라이신(e-polylysine), 내타마이신(natamycin), 항균작용을 가진 식물 유래 물질로서 페놀릭(phenolic), 폴리페놀(polyphenol), 퀴닌(quinine), 플라본(flavone), 플라보노이드(flavonoid), 플라보놀(flavonol), 타닌(tannin), 쿠마린(coumarin), 터페노이드(terpenoid), 알칼로이드(alkaloid), 렉틴(lectin), 폴리펩타이드(polypeptide)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 선어 가공방법.
The method according to claim 6,
The natural antimicrobial agent is an enzyme selected from carbohydrate degrading enzyme, protease, lipolytic enzyme group, chitosan extracted from chitin of crustacean, organic acid, garlic, ginger, onion, cinnamon, pepper, herb derived from plant essential oil and microorganism Nissin, epsilon-polylysine, natamycin, antibacterial plant-derived phenolic, polyphenol, quinine, flavone ( selected from the group consisting of flavones, flavonoids, flavonols, tannins, coumarins, terpenoids, alkaloids, lectins, and polypeptides Fresh fish processing method characterized in that it is at least one.
제6항에 있어서,
상기 천연항균제는 자몽종자추출물인 것을 특징으로 하는 선어 가공방법.
The method according to claim 6,
The natural antimicrobial agent is a fresh fish processing method characterized in that the grapefruit seed extract.
삭제delete 삭제delete
KR1020120126267A 2012-11-08 2012-11-08 Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby KR101374496B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120126267A KR101374496B1 (en) 2012-11-08 2012-11-08 Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120126267A KR101374496B1 (en) 2012-11-08 2012-11-08 Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby

Publications (1)

Publication Number Publication Date
KR101374496B1 true KR101374496B1 (en) 2014-03-26

Family

ID=50648742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120126267A KR101374496B1 (en) 2012-11-08 2012-11-08 Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby

Country Status (1)

Country Link
KR (1) KR101374496B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046972A (en) * 2014-10-20 2016-05-02 (주)다손 Softening fishes and shellfishes food and method for preparing the same
CN106261461A (en) * 2015-05-20 2017-01-04 浙江海洋学院 A kind of Fructus Myricae rubrae total flavones fresh-keeping liquid and the application in preservation of fishery thereof
KR101756735B1 (en) 2014-11-04 2017-07-19 (주)다손 Softening fishes and shellfishes food and method for preparing the same
KR101782127B1 (en) 2015-10-15 2017-09-27 건국대학교 산학협력단 Method of tenderizing seafood and tenderizing seafood prepared therefrom
CN108719410A (en) * 2018-06-12 2018-11-02 河南牧业经济学院 A kind of efficient bacteria reducing method in ox trunk surface
KR101934492B1 (en) 2018-06-04 2019-01-02 주식회사 아워홈 Method for softening meat and soft meat prepared by the same
KR20190113209A (en) * 2018-03-28 2019-10-08 동의대학교 산학협력단 Multifunctional portable toothbrush sterilizer
CN112006041A (en) * 2020-08-28 2020-12-01 江西和天然科技有限公司 Preparation process of polylysine-containing disinfectant
CN116267713A (en) * 2023-02-27 2023-06-23 南方海洋科学与工程广东省实验室(珠海) Method for breeding groupers with fresh and tender meat quality

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073196A (en) * 2008-12-22 2010-07-01 전라남도 Method for storing law oyster and prepairing low-salt fermented oyster
JP2011115076A (en) * 2009-12-02 2011-06-16 Minoru Nakamura Method for processing and preserving fresh fish and shellfish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073196A (en) * 2008-12-22 2010-07-01 전라남도 Method for storing law oyster and prepairing low-salt fermented oyster
JP2011115076A (en) * 2009-12-02 2011-06-16 Minoru Nakamura Method for processing and preserving fresh fish and shellfish

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046972A (en) * 2014-10-20 2016-05-02 (주)다손 Softening fishes and shellfishes food and method for preparing the same
KR101693807B1 (en) * 2014-10-20 2017-01-09 (주)다손 Softening fishes and shellfishes food and method for preparing the same
KR101756735B1 (en) 2014-11-04 2017-07-19 (주)다손 Softening fishes and shellfishes food and method for preparing the same
CN106261461A (en) * 2015-05-20 2017-01-04 浙江海洋学院 A kind of Fructus Myricae rubrae total flavones fresh-keeping liquid and the application in preservation of fishery thereof
KR101782127B1 (en) 2015-10-15 2017-09-27 건국대학교 산학협력단 Method of tenderizing seafood and tenderizing seafood prepared therefrom
KR20190113209A (en) * 2018-03-28 2019-10-08 동의대학교 산학협력단 Multifunctional portable toothbrush sterilizer
KR102093993B1 (en) * 2018-03-28 2020-03-26 동의대학교 산학협력단 Multifunctional portable toothbrush sterilizer
KR101934492B1 (en) 2018-06-04 2019-01-02 주식회사 아워홈 Method for softening meat and soft meat prepared by the same
CN108719410A (en) * 2018-06-12 2018-11-02 河南牧业经济学院 A kind of efficient bacteria reducing method in ox trunk surface
CN112006041A (en) * 2020-08-28 2020-12-01 江西和天然科技有限公司 Preparation process of polylysine-containing disinfectant
CN116267713A (en) * 2023-02-27 2023-06-23 南方海洋科学与工程广东省实验室(珠海) Method for breeding groupers with fresh and tender meat quality
CN116267713B (en) * 2023-02-27 2024-04-26 南方海洋科学与工程广东省实验室(珠海) Method for breeding groupers with fresh and tender meat quality

Similar Documents

Publication Publication Date Title
KR101374496B1 (en) Increasing freshness of fresh fish using high pressure system and processed fresh fish produced thereby
Qiu et al. Innovative technologies for producing and preserving intermediate moisture foods: A review
Hasmadi et al. Functional properties of composite flour: A review
Ju et al. The effects of vacuum package combined with tea polyphenols (V+ TP) treatment on quality enhancement of weever (Micropterus salmoides) stored at 0 C and 4 C
Gallo et al. Applications of chitosan as a functional food
CN102028263A (en) Method for preparing low-salt leisure marinated fish from salted fish
Vinnikova et al. THE PROBLEMS OF MEAT PRODUCTS THERMAL TREATMENT.
CN110495586A (en) A kind of pawpaw silk pickled vegetable and its preparation process
del Carmen Razola-Díaz et al. Application of pulsed electric field processing in the food industry
JP2017079729A (en) Deaeration/heating/high pressure processing method for food
Latifi et al. Effect of preservative of Anarijeh (Froriepia subpinnata) extract on shelf life of silver carp fish (Hypophthalmichthys molitrix) at superchilling temperature (-3 C)
CN107889884A (en) A kind of fresh lotus seeds become sour the control method of swollen bag
Elsabee Chitosan-based edible films
Mukhtar et al. Synergistic effect of chitosan and clove oil on raw poultry meat
KR102293285B1 (en) Method of manufacturing salmon gravlax and salmon gravlax manufactured by the same
CN113317354A (en) Antibacterial fresh-keeping coating liquid for refrigerated fish meat and preparation method and application thereof
Tran et al. The effect of additives supplementation on the limitation of lipid and protein oxidation in dried snakehead fish (Channa striata)
KR101144529B1 (en) Sea Food Manufacturing Method by Using Red Ginseng
KR20110006034A (en) A mackerel guamegi manufacturing method by using herb material
KR101184914B1 (en) Method for processing fish using blueberry and salted fish, salted mackerel thereof
KR20170035280A (en) Canned abalone containing chicken breast and manufacturing method thereof
RU2453129C2 (en) Method for production of preserves in flavoured oil
KR20090028960A (en) Preparation method of salted mackerel treated by using unripe peach extracts and chitosan
KR20100013008A (en) Method for making black soybean curd added ginseng and grapefruit seed extract
CN110896993A (en) Pseudosciaena crocea preservative and preparation method and use method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180307

Year of fee payment: 5