KR101371699B1 - Fe-based Amorphous alloy - Google Patents
Fe-based Amorphous alloy Download PDFInfo
- Publication number
- KR101371699B1 KR101371699B1 KR1020060130639A KR20060130639A KR101371699B1 KR 101371699 B1 KR101371699 B1 KR 101371699B1 KR 1020060130639 A KR1020060130639 A KR 1020060130639A KR 20060130639 A KR20060130639 A KR 20060130639A KR 101371699 B1 KR101371699 B1 KR 101371699B1
- Authority
- KR
- South Korea
- Prior art keywords
- amorphous
- iron
- alloy
- amorphous alloy
- based amorphous
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Soft Magnetic Materials (AREA)
Abstract
철계 비정질 합금이 제공된다. An iron-based amorphous alloy is provided.
이 비정질 합금은, 원자%로, Cr:11-13%, Mo:1-3%, C:5-7%, B:5-7%, P:8-10%, Si:0.5-3%를 포함하고 나머지 Fe로 조성되고, 추가적으로 Co, Cu, Nb, W의 그룹에서 선택되는 적어도 1종이 포함된다. This amorphous alloy is, in atomic%, Cr: 11-13%, Mo: 1-3%, C: 5-7%, B: 5-7%, P: 8-10%, Si: 0.5-3% It includes and is composed of the remaining Fe, and further includes at least one selected from the group of Co, Cu, Nb, W.
본 발명의 철계 비정질 합금은, 비정질 안정화능과 비정질 형성능이 개선되어 벌크상태 또는 판재로서의 제조가 용이해진다. The iron-based amorphous alloy of the present invention has improved amorphous stabilizing ability and amorphous forming ability, making it easy to manufacture in a bulk state or as a sheet material.
비정질, 벌크, 철계 합금, 비정질 형성능 Amorphous, bulk, ferroalloy, amorphous forming ability
Description
도 1은 본 발명의 일실시예에 따르는 철계 비정질 합금의 XRD 분석 결과이다. 1 is an XRD analysis result of the iron-based amorphous alloy according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따르는 철계 비정질 합금에 대한 열분석(DSC) 곡선을 나타내는 그래프이다. Figure 2 is a graph showing the thermal analysis (DSC) curve for the iron-based amorphous alloy according to an embodiment of the present invention.
도 3은 Cu첨가 철계 비정질 합금에 대한 압축테스트 결과를 보여주는 그래프이다. Figure 3 is a graph showing the compression test results for the Cu-based iron-based amorphous alloy.
도 4는 석션 캐스터(Suction Caster) 장비를 이용하여 제조된 지름 2mm 의 봉상 형태의 시편을 보여주는 사진이다. 4 is a photograph showing a rod-shaped specimen having a diameter of 2 mm manufactured using a suction caster equipment.
본 발명은 철계 비정질 합금에 관한 것으로, 보다 상세하게는 비정질 안정화능과 비정질 형성능을 개선할 수 있는 철계 비정질 합금에 관한 것이다. 이러한 특성이 개선된 철계 비정질 합금은 벌크상태 또는 판재로서의 제조가 용이해진다.The present invention relates to an iron-based amorphous alloy, and more particularly to an iron-based amorphous alloy that can improve the amorphous stabilizing ability and the amorphous forming ability. Iron-based amorphous alloys having improved properties can be easily manufactured in bulk or as a sheet material.
철계 벌크 비정질 합금은 타 비정질 재료에 비해 가격이 저렴하고 강도 및 내식성이 뛰어나므로 많은 연구가 진행되고 있는 분야이다. 하지만 철계 비정질 합금의 특징상 높은 용융온도, 낮은 비정질 형성능 및 이로 인한 비정질 상의 낮은 분율 등으로 인해 제조에 한계를 가지고 있었다. Iron-based bulk amorphous alloy is a field in which a lot of research is being conducted because it is cheaper than other amorphous materials and excellent in strength and corrosion resistance. However, due to the characteristics of the iron-based amorphous alloys due to the high melting temperature, low amorphous formability and the resulting low fraction of the amorphous phase had a limitation in manufacturing.
철계 비정질 합금의 높은 용융점은 제조공정상 높은 냉각속도를 필요로 하므로 급냉효과가 뛰어난 멜트 스핀 공정(Melt Spin Process)에서는 비정질화가 가능하나 벌크화에 한계를 지니고 있다. 따라서 공정상의 냉각능에 한계가 있으므로 비정질 형성능이 우수한 합금계를 개발하여 대량 및 연속 생산이 가능한 공정에 적용하면 충분한 물성과 가격 경쟁력을 가진 재료의 개발이 가능하다. Since the high melting point of the iron-based amorphous alloy requires a high cooling rate in the manufacturing process, it can be amorphous in the melt spin process having excellent quenching effect, but has a limitation in bulking. Therefore, there is a limit in the cooling capacity in the process, and if the alloy system having excellent amorphous forming ability is developed and applied to a process capable of mass production and continuous production, it is possible to develop materials having sufficient physical properties and price competitiveness.
문헌 등에 보고되고 있는 철계 비정질 합금은 주로 Y, Er 등의 고가의 원소 첨가에 의해 비정질 형성능을 수mm까지 가능하게 만든 합금계가 대부분이다. 저가의 원소를 사용하여 설계된 합금계는 대부분 비정질 형성능이 우수하지 못하여 실용화에 이르지 못하고 있다. Most of the iron-based amorphous alloys reported in the literature and the like are alloys made to enable amorphous formation ability up to several millimeters by the addition of expensive elements such as Y and Er. Most alloy systems designed using inexpensive elements do not have excellent amorphous forming ability and thus have not been put to practical use.
이에 본 발명에서는 저가의 합금원소를 첨가하면서 비정질 안정화능과 비정질 형성능이 개선되는 철계 비정질합금이 제공되는 것이다.Accordingly, the present invention provides an iron-based amorphous alloy in which amorphous stabilizing ability and amorphous forming ability are improved while adding an inexpensive alloy element.
상기 목적을 달성하기 위한 본 발명의 철계 비정질 합금은, 원자%로, Cr:11-13%, Mo:1-3%, C:5-7%, B:5-7%, P:8-10%, Si:0.5-3%를 포함하고 나머지 Fe로 조성되는 것이다.Iron-based amorphous alloy of the present invention for achieving the above object, in atomic%, Cr: 11-13%, Mo: 1-3%, C: 5-7%, B: 5-7%, P: 8- It contains 10%, Si: 0.5-3% and is composed of the remaining Fe.
본 발명의 일실시예에 따르면 철계 비정질 합금에는 추가로 Co, Cu, Nb, W의 그룹에서 선택되는 적어도 1종이 포함될 수 있다. According to one embodiment of the present invention, the iron-based amorphous alloy may further include at least one selected from the group of Co, Cu, Nb, and W.
본 발명의 일실시예에 따르면 철계 비정질 합금은 비정질 형성능(Trg=Tg/Ti)이 0.44-0.75의 값을 갖는다. 본 발명의 철계 비정질 합금은 리본, 봉상, 판재에서 선택된 어느 하나의 형상을 갖는다. 상기 비정질 합금은 두께 0.5-2mm, 폭 100-150mm의 판재를 갖을 수 있다. According to an embodiment of the present invention, the iron-based amorphous alloy has an amorphous forming ability (Trg = Tg / Ti) of 0.44-0.75. The iron-based amorphous alloy of the present invention has any one shape selected from ribbons, rods, and plates. The amorphous alloy may have a plate material having a thickness of 0.5-2 mm and a width of 100-150 mm.
본 발명의 일실시예에 따르면, 본 발명의 철계 비정질 합금은 석션 캐스팅이나 쌍롤식 스트립 캐스팅과 같은 주조공정에 의해서도 비정질의 특성을 갖을 수 있다. According to one embodiment of the present invention, the iron-based amorphous alloy of the present invention may have an amorphous characteristic by a casting process such as suction casting or twin roll casting.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명에서는 고가의 희토류 원소의 첨가 없이도 비정질의 특성을 구현할 수 있는 철계 비정질 합금을 개발하기 위한 연구과정에서 철계 비정질합금의 기본성분의 조합과 그 조성비의 최적화에 의하여 본 발명을 완성한 것이다.In the present invention, the present invention was completed by optimizing the composition ratio and the combination of the basic components of the iron-based amorphous alloy in the research process for developing an iron-based amorphous alloy that can implement the amorphous properties without the addition of expensive rare earth elements.
본 발명에 따라 철계 비정질 합금을 얻기 위해서는, 기본 성분계가 Fe-Cr-Mo-C-B-P-Si로 되는 것이며, 그 함량은 Cr:약 11%-약 13%, Mo:약1%-약3%, C:약5-약7%, B:약5%-약7%, P:약8%- 약10%, Si :약0.5%- 약3%를 포함하고 나머지 Fe로 되는 것이다. 이를 구체적으로 후술하고자 한다. 이하에서 조성범위를 나타내는 숫자의 앞에는 약이라는 기재가 없는 것은 그 기재를 생략한 것이다. 이 약은 언명한 값을 포함하며, 그 특정한 값을 측정할 때의 에러의 정도를 포함한다.In order to obtain the iron-based amorphous alloy according to the present invention, the basic component system is Fe-Cr-Mo-CBP-Si, the content of which is Cr: about 11%-about 13%, Mo: about 1%-about 3%, C: about 5- about 7%, B: about 5%-about 7%, P: about 8%-about 10%, Si: about 0.5%-about 3% and the remaining Fe. This will be described in detail later. In the following, the description of the composition range is omitted in the absence of a description of the drug. This drug contains stated values and includes the degree of error in measuring that particular value.
철계 비정질 합금에서 Cr, Mo는 비정질형성능과 강도를 고려하여 첨가하는 것으로, Cr의 경우에는 11-13%가, Mo의 경우에는 1-3%가 바람직하다. Cr, Mo의 조성범위의 하한은 비정질 성형능과 강도를 확보하기 위하여 설정한 것이며, 그 상한은 비정질 성형능의 저하를 막기 위한 측면에서 설정한 것이다.In the iron-based amorphous alloy, Cr and Mo are added in consideration of amorphous forming ability and strength, and 11-13% is preferable for Cr and 1-3% for Mo. The lower limit of the composition ranges of Cr and Mo is set in order to secure amorphous molding ability and strength, and the upper limit is set in terms of preventing the degradation of amorphous molding ability.
철계 비정질 합금에서 C, B, P는 비정질 형성능을 고려하여 첨가하는 것으로, C의 경우에는 5-7%, B의 경우에는 5-7%, P의 경우에는 8-10%로 하는데, 이는 이 범위를 벗어나면 비정질 형성능을 확보하기 어렵기 때문이다. In iron-based amorphous alloys, C, B, and P are added in consideration of amorphous forming ability, 5-7% for C, 5-7% for B, and 8-10% for P. If it is out of range, it is difficult to secure amorphous forming ability.
이 철계 비정질 합금에서 Si은 0.5-3% 첨가되는데, 이는 주조성을 확보하기 위한 것이다. In this iron-based amorphous alloy, Si is added in an amount of 0.5-3% to ensure castability.
본 발명의 일실시예에 따라 가장 바람직한 기본성분계의 조성예는, Fe64Cr12Mo2C6B6P9Si1로서, 여기서 함량은 원자%이다.According to an embodiment of the present invention, the most preferred composition of the basic component system is Fe 64 Cr 12 Mo 2 C 6 B 6 P 9 Si 1 , wherein the content is atomic%.
상기한 기본성분계에 필요에 따라 합금원소가 첨가되는데, 그러한 예로는 Al, Co, Co, MM(미시메탈), Nb, Ti, W, Zr 등이 있다. 이중에서도 Co, Cu, Nb, W이 바람직하다. 이들 합금원소의 함량은 1-3원자%로 하는 것이다. 이는 비정질 안정화능과 비정질 형성능을 고려한 것이다.Alloy elements are added to the basic component system as needed, such as Al, Co, Co, MM (mimetal), Nb, Ti, W, Zr, and the like. Among these, Co, Cu, Nb, and W are preferable. The content of these alloying elements is 1-3 atomic%. This is considering the amorphous stabilizing ability and the amorphous forming ability.
본 발명의 일실시예에 따르면, 기본 합금계에 Cu를 2% 첨가하는 경우에 비정질 형성능(Trg)값이 가장 높고 압축강도나 파괴연신율도 크게 증가한다. 이는 Cu 원소의 첨가로 인해 비정질화가 훨씬 용이하며, 이에 따라 기계적 물성도 향상되는 것이다.According to one embodiment of the present invention, when 2% of Cu is added to the base alloy system, the amorphous forming ability (Trg) value is the highest and the compressive strength or the elongation at break is greatly increased. This is much easier to amorphous due to the addition of the Cu element, thereby improving the mechanical properties.
본 발명의 일실시예에 따르면, 본 발명의 철계 비정질 합금에서 Fe의 함량은 62-64%이고, Fe이외의 성분의 합은 36-38%로 하는 것이다. Fe이외의 성분에서 C+B+P의 합은 19-23%가 바람직하다.According to one embodiment of the present invention, the iron content of the iron-based amorphous alloy of the present invention is 62-64%, the sum of the components other than Fe is 36-38%. The sum of C + B + P in components other than Fe is preferably 19-23%.
본 발명의 일실시예에 따르면, 철계 비정질 합금은 비정질 형성능(Trg=Tg/Ti)이 0.44-0.75를 갖을 수 있다. 상기 비정질 합금은 리본, 봉상, 판재에서 선택된 어느 하나의 형상을 가질 수 있다. 상기 비정질 합금은 두께 0.5-2mm, 폭 100-150mm의 판재일 수 있다.According to one embodiment of the present invention, the iron-based amorphous alloy may have an amorphous forming ability (Trg = Tg / Ti) of 0.44-0.75. The amorphous alloy may have any one shape selected from ribbons, rods, and plates. The amorphous alloy may be a plate having a thickness of 0.5-2 mm and a width of 100-150 mm.
본 발명의 철계 비정질 합금은 비정질 형성능(Trg)이 개선되기 때문에 사출주조나 석션주조 또는 쌍롤식 스트립 캐스팅 등에 의해 주조가 가능하다.Since the iron-based amorphous alloy of the present invention has improved amorphous forming ability (Trg), it can be cast by injection casting, suction casting, twin roll type casting, or the like.
상기한 바와 같이, 본 발명의 비정질 합금은 우수한 비정질 형성능 및 기계적 물성으로 인해 철계 비정질 합금이 가지고 있는 고융점으로 인한 철계 비정질 합금의 제조한계를 극복할 수 있다는 점이다. 높은 비정질 형성능은 고융점으로 인해 필요한 높은 냉각속도의 한계의 극복을 가능하게 하며, 철계 비정질 합금의 벌크화를 가능하게 한다. 본 발명의 비정질 철계 비정질 합금은 고강도, 고내식을 필요로 하는 많은 분야에 적용이 가능할 것이다. As described above, the amorphous alloy of the present invention can overcome the manufacturing limitations of the iron-based amorphous alloy due to the high melting point of the iron-based amorphous alloy due to its excellent amorphous forming ability and mechanical properties. The high amorphous formability allows the high melting point to overcome the limitations of the high cooling rate required and the bulking of iron-based amorphous alloys. The amorphous iron-based amorphous alloy of the present invention will be applicable to many fields that require high strength, high corrosion resistance.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
<실시 예><Examples>
표 1과 같은 조성을 갖는 철계 비정질 합금에 대하여 비정질 형성능 및 기계적 물성 변화를 측정하였다. The amorphous formability and the mechanical property change of the iron-based amorphous alloy having the composition shown in Table 1 were measured.
우선 Fe64Cr12Mo2C6B6P9Si1 합금 또는 이 합금에 대해 표 1과 같이 첨가원소를 첨가하여 모합금을 제조하였다. 제조된 모합금을 아크 용해를 통해 재용융하여 편 석을 최대한 방지하고자 하였다. 준비된 합금은 석션(Suction Casting) 장비를 이용하여 2mm 봉상으로 급냉 제조한 다음, 다시 높이 3mm, 지름 2mm 형상으로 가공하여 압축 테스트를 실시하였다. 열분석 곡선을 통해 측정된 Tg(유리전이온도), Tx(결정화온도), Tl(액상온도)값을 바탕으로 비정질 형성능(Trg=Tg/Tl)을 계산하였다.First Fe 64 Cr 12 Mo 2 C 6 B 6 P 9 Si 1 An alloy or an alloying element was added to the alloy as shown in Table 1 to prepare a master alloy. The prepared master alloy was remelted through arc melting to prevent segregation. The prepared alloy was rapidly quenched into a 2 mm rod using a suction casting machine, and then processed into a shape of
(K)T x
(K)
(K)T g
(K)
(K)T l
(K)
(Tx-Tg)DT x
(T x -T g )
(Tg/Tl)T rg
(T g / T l )
강도
(GPa)compression
burglar
(GPa)
연신율
(%)Destruction
Elongation
(%)
(Hv)Hardness
(Hv)
표 1에 나타난 바와 같이, Nb를 첨가한 합금계(F)는 기본 합금계(A)가 가진 비정질 형성능(Trg~0.44)를 크게 향상(Trg~0.58)시켰다. 이것은 Nb의 원자 반경이 1.46Å으로 Fe의 원자반경 1.26Å에 비해 16 %정도 크고 Fe와의 혼합 엔탈피 값이 ΔHFe- Nb = -15 kJ/mol로 보다 비정질 형성능에 유리하기 때문이다.As shown in Table 1, the alloy system (F) to which Nb was added greatly improved (Trg to 0.58) the amorphous forming ability (Trg to 0.44) of the base alloy system (A). This is because the atomic radius of the Nb mixing enthalpy value with a large Fe 16% compared to the atomic radius of 1.26Å Fe to 1.46Å ΔH Fe- Nb = -15 kJ / mol to the glass than the amorphous-forming ability.
특히, 기본 합금계(A)에 Cu를 2% 첨가한 경우에는 비정질 형성능(Trg)값이 0.75로 급격하게 향상되었다. 압축 강도(~1.29GPa) 및 파괴연신율(~5.46%)도 크게 증가하였다. 이러한 현상은 Cu 원소의 첨가로 인해 비정질 화가 훨씬 용이하게 되었고, 따라서 많은 비정질 분율이 기계적 물성을 향상시킨 것으로 판단된다.In particular, when 2% of Cu was added to the base alloy system (A), the amorphous forming ability (Trg) value rapidly increased to 0.75. The compressive strength (~ 1.29GPa) and fracture elongation (~ 5.46%) also increased significantly. This phenomenon made amorphous much easier due to the addition of Cu element, and therefore, it is believed that many amorphous fractions improved mechanical properties.
상기 내용을 확인하여 위하여 Fe62Cr12Mo2C6B6P9Si1Nb2 합금을 2 ㎜ 봉상형 시편으로 제작하여 원형단면을 주사전자 현미경(SEM)을 이용하여 미세조직을 관찰하였다. 이때 SEM Image상에서는 어떠한 결정상도 관찰하지 못하였는데 이는 시편이 에칭이 잘되지 않는 경향을 보였기 때문이다. 이러한 사실은 일반적인 비정질 합금의 특징을 잘 나타내고 있다. 보다 정확한 비정질 분석을 하기 위해 투과전자 현미경(TEM)을 이용하여 관찰하였으며, 비정질 영역이 존재함을 확인하였다.In order to confirm the above contents, Fe 62 Cr 12 Mo 2 C 6 B 6 P 9 Si 1 Nb 2 alloy was made into a 2 mm rod-shaped specimen, and the circular cross section was observed by using a scanning electron microscope (SEM). At this time, no crystal phase was observed in the SEM image because the specimens tended to be difficult to etch. This fact well illustrates the characteristics of general amorphous alloys. In order to perform more accurate amorphous analysis, it was observed using a transmission electron microscope (TEM), and it was confirmed that an amorphous region exists.
도 2에는 표 1의 C, D, F, I 합금계에 대한 DSC분석 결과가 나타나 있다. 그리고, 도 3에는 D합금계에 대한 압축실험 결과가 나타나 있다. 그리고, 도 4에는 A합금계에 대한 봉상 형태의 시편사진이다.Figure 2 shows the DSC analysis results for the C, D, F, I alloy system of Table 1. 3 shows the compression test results for the D alloy system. And, Figure 4 is a specimen of the rod-shaped specimen for the alloy A.
일반적으로 철계 비정질 합금은 대략0.6 이상의 비정질 형성능을 나타내면 벌크화가 가능한 것으로 알려져 있다. 따라서, 본 발명의 철계 비정질 합금은 다양한 합금성분의 첨가에 의해 벌크화가 가능하다.In general, it is known that iron-based amorphous alloys can be bulked if they exhibit an amorphous forming ability of about 0.6 or more. Therefore, the iron-based amorphous alloy of the present invention can be bulked by the addition of various alloying components.
본 발명에서 상기 실시형태는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이어도 본 발명의 기술적 범위에 포함된다. 따라서, 당해 기술분야의 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 본 발명의 기술사상을 벗어나지 않는 범위내에서 다양한 형태의 치환, 변형, 변경이 가능할 것이며, 이러한 것들은 본 발명의 범위에 속한다고 할 것이다. 예를 들어, 청구범위 제1항에 기재된 본 발명의 비정질 철계 합금에 다양한 합금성분을 조합하는 변형이 가능할 것이다. In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Any thing that has substantially the same structure and the same effect as the technical idea described in the claim of the present invention is included in the technical scope of this invention. Accordingly, various forms of substitution, modification, and alteration may be made by those skilled in the art without departing from the technical spirit of the present invention described in the claims of the present invention. Will belong. For example, modifications may be made to combine various alloying components in the amorphous iron-based alloy of the present invention as defined in
이상과 같이, 본 발명의 철계 비정질 합금은 비정질 형성능(Trg) 향상되고, 높은 압축 강도와 우수한 파괴연신율을 갖는다. 나아가, 벌크화가 가능한 수준의 비정질 형성능을 갖는 것인 바, 상용화가 가능하다.As described above, the iron-based amorphous alloy of the present invention has improved amorphous forming ability (Trg), and has high compressive strength and excellent elongation at break. Furthermore, it has a level of amorphous forming ability that can be bulked, and thus commercialization is possible.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060130639A KR101371699B1 (en) | 2006-12-20 | 2006-12-20 | Fe-based Amorphous alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060130639A KR101371699B1 (en) | 2006-12-20 | 2006-12-20 | Fe-based Amorphous alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080057402A KR20080057402A (en) | 2008-06-25 |
KR101371699B1 true KR101371699B1 (en) | 2014-03-12 |
Family
ID=39803182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060130639A KR101371699B1 (en) | 2006-12-20 | 2006-12-20 | Fe-based Amorphous alloy |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101371699B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290342A (en) * | 2013-06-19 | 2013-09-11 | 天津非晶科技有限公司 | Fe-based amorphous alloy and preparation method thereof |
CN111850431A (en) * | 2019-09-23 | 2020-10-30 | 宁波中科毕普拉斯新材料科技有限公司 | Iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method and nanocrystalline alloy derivative thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100974807B1 (en) * | 2010-03-12 | 2010-08-06 | 김병두 | Composite for iron-based amorphous alloy with high oxidation resistance, method of manufacturing iron-based amorphous alloy powder and iron-based amorphous alloy powder manufactured the method |
CN103589936B (en) * | 2013-10-22 | 2016-04-06 | 溧阳市东大技术转移中心有限公司 | A kind of preparation method of Fe-based amorphous alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060056783A (en) * | 2004-11-22 | 2006-05-25 | 경북대학교 산학협력단 | Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase |
US20060130944A1 (en) | 2003-06-02 | 2006-06-22 | Poon S J | Non-ferromagnetic amorphous steel alloys containing large-atom metals |
US20060180252A1 (en) | 2005-02-11 | 2006-08-17 | Branagan Daniel J | Glass stability, glass forming ability, and microstructural refinement |
-
2006
- 2006-12-20 KR KR1020060130639A patent/KR101371699B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060130944A1 (en) | 2003-06-02 | 2006-06-22 | Poon S J | Non-ferromagnetic amorphous steel alloys containing large-atom metals |
KR20060056783A (en) * | 2004-11-22 | 2006-05-25 | 경북대학교 산학협력단 | Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase |
US20060180252A1 (en) | 2005-02-11 | 2006-08-17 | Branagan Daniel J | Glass stability, glass forming ability, and microstructural refinement |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290342A (en) * | 2013-06-19 | 2013-09-11 | 天津非晶科技有限公司 | Fe-based amorphous alloy and preparation method thereof |
CN111850431A (en) * | 2019-09-23 | 2020-10-30 | 宁波中科毕普拉斯新材料科技有限公司 | Iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method and nanocrystalline alloy derivative thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20080057402A (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8470103B2 (en) | Method of making a Cu-base bulk amorphous alloy | |
US7815753B2 (en) | Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase | |
US7052561B2 (en) | Bulk amorphous steels based on Fe alloys | |
US8518193B2 (en) | Low density be-bearing bulk glassy alloys excluding late transition metals | |
Zhang et al. | Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys | |
EP2483434B1 (en) | Zr-BASED AMORPHOUS ALLOY AND PREPARATION METHOD THEREOF | |
EP1380664B1 (en) | Cu-be base amorphous alloy | |
KR20090091211A (en) | Amorphous alloy composition | |
KR102220215B1 (en) | High entropy metallic glasses with high hardness | |
Wang et al. | Bulk amorphous Co–Ni-based alloys with a large supercooled liquid region | |
KR101371699B1 (en) | Fe-based Amorphous alloy | |
CN110923587B (en) | Low-density titanium-based block amorphous alloy | |
US20020057984A1 (en) | Nickel-based alloy for high-temperature technology | |
Chen et al. | Enhanced glass forming ability of Fe–Co–Zr–Mo–W–B alloys with Ni addition | |
JP2007063634A (en) | Cu-(Hf, Zr)-Ag METAL GLASS ALLOY | |
KR101752976B1 (en) | Fabricating method for metallic glass composite with controlling work hardening capacity and composites fabricated by the method | |
KR100723167B1 (en) | Fe-based bulk metallic glass alloys containing misch metal | |
Kato et al. | Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing μm-ZrC particle reinforcements | |
Li et al. | Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal | |
EP1482064B1 (en) | Soft magnetic metallic glass alloy | |
JP2000178700A (en) | HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY | |
JP2002332532A (en) | HIGH YIELD STRESS Zr BASED AMORPHOUS ALLOY | |
KR100530040B1 (en) | Cu-based Amorphous Alloys | |
KR100723162B1 (en) | Crystals-amorphous composite alloys with high strength and superior toughness | |
KR100838732B1 (en) | Fe-based bulk amorphous alloys with high glass forming ability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170106 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180228 Year of fee payment: 5 |