KR101369092B1 - Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same - Google Patents
Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same Download PDFInfo
- Publication number
- KR101369092B1 KR101369092B1 KR20120023660A KR20120023660A KR101369092B1 KR 101369092 B1 KR101369092 B1 KR 101369092B1 KR 20120023660 A KR20120023660 A KR 20120023660A KR 20120023660 A KR20120023660 A KR 20120023660A KR 101369092 B1 KR101369092 B1 KR 101369092B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon fiber
- fiber reinforced
- reinforced plastic
- chip
- composite material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/08—Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
- B29B2017/0213—Specific separating techniques
- B29B2017/0286—Cleaning means used for separation
- B29B2017/0289—Washing the materials in liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
- B29B2017/0424—Specific disintegrating techniques; devices therefor
- B29B2017/0464—Solid state shear extrusion pulverisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
본 발명은 강화 페놀 복합재료 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 탄소섬유 강화 플라스틱(CFRP)을 분쇄하는 단계, 상기 분쇄된 탄소섬유 강화 플라스틱을 pH 6.2 내지 pH 6.5의 약산 용액으로 세척하는 단계, 및 상기 약산 용액으로 세척된 탄소섬유 강화 플라스틱을 페놀 수지가 침지된 C1-4 알코올 용액 또는 아세톤에 첨가한 후 초음파 처리하는 단계를 포함하는 강화페놀복합재료의 제조방법에 관한 것이다. 이에 따라, 상기 제조방법으로 제조된 강화 페놀 복합재료를 제공하고, 탄소섬유 강화 플라스틱의 재활용 방법 등에 활용한다.The present invention relates to a reinforced phenolic composite material and a method for manufacturing the same, and more specifically, to grinding a carbon fiber reinforced plastic (CFRP), washing the pulverized carbon fiber reinforced plastic with a weak acid solution of pH 6.2 to pH 6.5. And a step of adding the carbon fiber reinforced plastic washed with the weak acid solution to a C 1-4 alcohol solution or acetone impregnated with a phenol resin and then ultrasonicating the same. Accordingly, to provide a reinforced phenolic composite material prepared by the above production method, and utilized in the recycling method of carbon fiber reinforced plastics.
Description
본 발명은 강화 페놀 복합재료 제조방법 및 이를 이용한 탄소섬유 강화 플라스틱(CFRP)의 재활용 방법에 관한 것으로, 더욱 상세하게는 탄소섬유 강화 플라스틱 홀 가공시 발생하는 폐 chip을 페놀 수지와 결합시킨 강화 페놀 복합재료를 제조하는 방법 및 이를 통한 탄소섬유 강화 플라스틱의 재활용 방법에 관한 것이다.
The present invention relates to a method for producing a reinforced phenolic composite material and a recycling method of carbon fiber reinforced plastics (CFRP) using the same, and more particularly, a reinforced phenolic composite in which waste chips generated during carbon fiber reinforced plastic hole processing are combined with a phenolic resin. It relates to a method of manufacturing the material and a method of recycling the carbon fiber reinforced plastic through the same.
21세기 산업의 주축 분야로 주목 받고 있는 항공우주, 자동차, 산업·건축용 구조재료 및 레저스포츠 분야에서 사용되던 복합재료가 신소재를 이용한 복합재료로 대체됨에 따라, 그 경제적 중요성 및 탁월한 특성으로 인해 소재 분야에 대한 재조명과 새로운 견해를 창출하여, 무한한 응용 가능성을 가질 수 있게 하였다.
As the composite materials used in the aerospace, automobile, industrial and architectural structural materials and leisure sports sectors, which are attracting attention as the main pillars of the 21st century industry, are replaced by composite materials using new materials, their economic importance and outstanding characteristics We have reexamined and created new perspectives, which have unlimited application possibilities.
대표적인 고분자 복합재료로서, 탄소섬유 강화 플라스틱(corbon fibers-reinforced composites, CFRP)가 개발되었으며, 이는 1950년대 이후 항공우주산업의 발달과 더불어 급속하게 발전하기 시작하여 첨단소재로서의 탁월한 특성이 인정됨에 따라, 오늘날 그 응용범위가 점차적으로 확대되고 있다.
As a representative polymer composite material, carbon fibers-reinforced composites (CFRP) have been developed, which began to develop rapidly with the development of the aerospace industry since the 1950s, and recognized for its outstanding characteristics as advanced materials. Today, its application is gradually expanding.
탄소섬유 강화 플라스틱(CFRP)은 플라스틱계 복합재료로 철보다 1/5 가볍고 강도는 10배 강하며 내충격성 및 내열성이 뛰어난 고강도/고탄성 첨단소재로서, 항공우주, 방산 및 반도체 등 고부가가치 제품 소재로 사용되어 왔다. 하지만, 1990년대에 들어와서 세계 정치의 냉전체제가 종료됨에 따라 군사, 항공우주 용도에 있어서 첨단 복합재료의 수요 정체가 발생하여 침체기를 겪었으며, 섬유산업에서 차지하는 비중 또한 유리섬유에 비해 매우 작아 그 용도에 있어서도 스포츠·레저산업 등과 같은 2차 소재로서만 사용되어 왔다. 그러나, 최근에는 탄소섬유의 경량, 고강도, 고내열성 특성 등을 살릴 수 있는 착실한 용도 개발의 노력에 힘입어 건재, 콘크리트 구조물·내진 보강 등의 토목·건축 분야, CNG 탱크, 풍력 발전용 블레이드, 원심 분리 로터, 플라이 호일 등의 대체 에너지·클린 에너지 분야, 선박, 차량 등의 고속 운송 기기분야, 해양 개발·심해저 유전 채굴 분야, 기기의 고성능화, 의료 복지 기기, 전기 전도 용도, 초내열 용도 등 우주·항공분야에서부터 건설산업에 이르기까지 다양한 산업 분야에 대한 적용분야의 폭넓은 확대 및 성장 가능성이 높아지고 있다.
Carbon Fiber Reinforced Plastic (CFRP) is a plastic composite material that is 1/5 lighter than iron, 10 times stronger, and has high impact and heat resistance. It is a high-strength and high elastic material with high value-added products such as aerospace, defense, and semiconductors. Has been used. However, with the end of the Cold War system of world politics in the 1990s, the stagnation of demand for advanced composite materials in military and aerospace applications caused a recession, and the share of the textile industry was much smaller than that of glass fiber. In use, it has been used only as a secondary material such as sports and leisure industry. However, in recent years, thanks to efforts to develop solid applications that can make use of carbon fiber's light weight, high strength, and high heat resistance characteristics, CNG tanks, wind turbine blades, centrifuges, civil engineering and construction fields such as building materials, concrete structures and seismic reinforcement Alternative energy and clean energy fields such as separation rotors and fly foils, high speed transportation equipment fields such as ships and vehicles, marine development and deep sea oil field mining, high performance of equipment, medical welfare equipment, electric conduction applications, and superheat applications. There is a growing possibility of widespread expansion and growth of applications in various industries, from aviation to construction.
한편, 탄소섬유 강화 플라스틱(CFRP)는 고가의 재료로, 제조하기 위해서는 다량의 에너지와 원재료를 필요로 하는 문제점이 있다. 따라서, 폐기단계에서 탄소섬유를 회수하여 재이용하는 기술을 개발하기 위하여 많은 노력이 이루어 지고 있으나, 경제적인 이유로 선진 국가 이외에는 개발이 되고 있지 않은 상황에 있다.
On the other hand, carbon fiber reinforced plastic (CFRP) is an expensive material, there is a problem that requires a large amount of energy and raw materials to manufacture. Therefore, many efforts have been made to develop a technology for recovering and reusing carbon fibers in the disposal stage, but for economic reasons, they are not being developed except in advanced countries.
현재까지 개발되고 있는 탄소섬유 회수기술은 대표적으로 산 및 유기용매를 이용한 화학적인 방법, 수지를 열분해하는 열적인 방법 및 초임계방법 등을 들 수 있다. 그러나 이들 방법은 환경적인 문제를 가지고 있을 뿐 아니라 탄소섬유의 표면결함과 강도저하 등의 결점을 보이고 있다.
Carbon fiber recovery techniques that have been developed to date include chemical methods using acids and organic solvents, thermal methods of thermally decomposing resins, and supercritical methods. However, these methods not only have environmental problems, but also have defects such as surface defects and reduced strength of carbon fibers.
따라서, 탄소섬유 함유량의 증가와 탄소섬유 손상 감소를 위한 재제조 기술의 추가적인 개발에 필요성이 높아지고 있다.
Therefore, there is a growing need for further development of remanufacturing techniques for increasing carbon fiber content and reducing carbon fiber damage.
이러한 배경 하에서, 본 발명자들은 탄소섬유 강화 플라스틱(CFRP) 가공 시 발생하는 chip을 재활용하여 강화페놀복합재료 제조방법을 개발하였으며, 상기 강화페놀복합재료의 내열성 및 내연성 우수한 효과를 확인함으로써 본 발명을 완성하였다.
Under this background, the present inventors have developed a method for producing a reinforced phenolic composite material by recycling chips generated during carbon fiber reinforced plastic (CFRP) processing, and completed the present invention by confirming the excellent heat resistance and flame resistance of the reinforced phenolic composite material. It was.
본 발명의 목적은 탄소섬유 강화 플라스틱의 폐 chip을 재활용한 강화 페놀 복합재료의 제조방법을 제공하는 것이다. An object of the present invention is to provide a method for producing a reinforced phenolic composite material recycled waste chip of carbon fiber reinforced plastics.
본 발명의 다른 목적은 상기 제조방법으로 제조된 강화 페놀 복합재료를 제공하기 위한 것이다. Another object of the present invention is to provide a reinforced phenolic composite prepared by the above production method.
본 발명의 또 다른 목적은 상기 제조방법으로 구성된 탄소섬유 강화 플라스틱의 재활용 방법을 제공하기 위한 것이다.
Still another object of the present invention is to provide a method for recycling a carbon fiber reinforced plastic composed of the above production method.
상기 과제를 해결하기 위해, 탄소섬유 강화 플라스틱(CFRP)을 기계적 분쇄하는 단계(단계 1); 상기 분쇄된 탄소섬유 강화 플라스틱을 pH 6.2 내지 pH 6.5의 약산 용액으로 세척하는 단계(단계 2); 및 상기 약산 용액으로 세척된 탄소섬유 강화 플라스틱을 페놀 수지가 침지된 C1-4 알코올 용액 또는 아세톤에 첨가한 후 초음파 처리하는 단계(단계 3)를 포함하는 강화페놀복합재료의 제조방법을 제공한다.
In order to solve the above problems, mechanically grinding the carbon fiber reinforced plastic (CFRP) (step 1); Washing the pulverized carbon fiber reinforced plastic with a weak acid solution having a pH of 6.2 to pH 6.5 (step 2); And adding a carbon fiber reinforced plastic washed with the weak acid solution to a C 1-4 alcohol solution or acetone impregnated with a phenolic resin, and then performing an ultrasonic treatment (step 3). .
상기 단계 1은, 응력이 고르게 분산되게 하기 위해 탄소섬유 강화 플라스틱 chip 내에 함유되어 있는 탄소섬유의 길이를 일정하게 만들기 위한 기계적 분쇄를 이용한 탄소섬유 강화 플라스틱 chip을 파쇄하는 단계이다. 상기 기계적 분쇄는 막자사발을 이용할 수 있으나, 이에 제한되는 것은 아니다.
상기 탄소섬유 강화 플라스틱은 폐 탄소섬유 강화 플라스틱 chip인 것이 바람직하나, 이에 한정되는 것은 아니다.
The carbon fiber reinforced plastic is preferably a waste carbon fiber reinforced plastic chip, but is not limited thereto.
상기 단계 2는, 단계 1을 거친 상기 탄소섬유 강화 플라스틱과 페놀수지가 강한 화학 결합을 할 수 있도록 탄소섬유 강화 플라스틱을 약산 용액으로 세척하는 단계이다. 상기 약산 용액으로는 pH 6.2 내지 pH 6.5의 과산화수소를 사용하는 것이 바람직하나 이에 제한되는 것은 아니다.
상기 단계 3은, 상기 페놀 수지 내에 상기 탄소섬유 강화 플라스틱 chip을 균일하게 분산 시키기 위해 초음파 처리하여 강화 페놀 복합재료를 얻는 단계이다. 상기 초음파 처리의 초음파 세기는 400 W, 24 kHz이며, 진폭 50% 조건으로 0.5초 속도로 반복적으로 초음파를 발산시키는 것이 바람직하다. 또한, 처리 시간은 3시간인 것이 바람직하나 이에 한정되는 것은 아니다.
또한, 상기 단계 3은 입자의 분산도를 높이기 위한 것으로 고분자 수지의 점도를 낮추기 위해 상기 페놀수지를 C1-4 알코올 용액 또는 아세톤에 침지시키는 단계를 포함한다. 상기 C1-4 알코올 용액은 에탄올인 것이 바람직하나 이에 제한되는 것은 아니다.
In addition, the
또한, 본 발명은 상기의 제조방법으로 제조된 강화 페놀 복합재료를 제공한다. 본 발명에 따른 강화 페놀 복합재료는 저렴한 내열성 재료로 활용할 수 있으며, 이에 제한되는 것은 아니다.
The present invention also provides a reinforced phenolic composite prepared by the above production method. The reinforced phenolic composite according to the present invention may be utilized as a low cost heat resistant material, but is not limited thereto.
또한, 본 발명의 탄소섬유 강화 플라스틱의 폐 chip을 이용한 강화 페놀 복합재료의 제조방법은 탄소섬유 강화 플라스틱(CFRP)의 재활용 방법으로 활용할 수 있다.
In addition, the manufacturing method of the reinforced phenolic composite material using the waste chip of the carbon fiber reinforced plastic of the present invention can be utilized as a recycling method of carbon fiber reinforced plastic (CFRP).
본 발명은 탄소섬유 강화 플라스틱 홀 가공시 발생하는 폐 chip을 강화 페놀 복합재료 제조에 사용하여 저렴한 내열성 재료를 제공할 수 있으며, 탄소섬유 강화 플라스틱의 환경 친화적인 재활용 방법을 제공할 수 있는 효과가 있다.
The present invention can provide an inexpensive heat-resistant material by using the waste chip generated during the processing of carbon fiber reinforced plastic holes for the production of reinforced phenolic composites, and can provide an environmentally friendly recycling method of carbon fiber reinforced plastics. .
도 1은, 본 발명의 일실시예에 따른 TGA를 통해 확인한 탄소섬유 강화 플라스틱(CFRP) chip 내부의 탄소섬유 함량 확인 그래프를 나타낸 것이다.
도 2는, 본 발명의 일실시예에 따른 파쇄된 chip의 입자 크기 변화를 나타낸 것이다.
도 3은, 본 발명의 일실시예에 따른 FT-IR을 이용한 chip의 화학적 조성 변화 확인 그래프를 나타낸 것이다.
도 4는, 본 발명의 일 실시예에 따른 강화 페놀 복합재료의 (a) 인장 강도 및 (b) 압축 강도의 기계적 강도 평가 그래프를 나타낸 것이다.
도 5는, 본 발명의 일 실시예에 따른 강화 페놀 복합재료의 (a) TGA(Thermogravimetry analyzer, 열중량분석기) 및 (b) DSC(Differential scanning calorimetry, 시차 주사 열량측정법)을 이용한 내열성 평가 그래프를 나타낸 것이다.
도 6은, 본 발명의 일 실시예에 따른 강화 페놀 복합재료의 (a) 페놀수지 및 (b) 강화 페놀 복합재료의 난연성 비교 평가 결과 그래프를 나타낸 것이다. 1 is a graph showing the carbon fiber content confirmation graph inside the carbon fiber reinforced plastic (CFRP) chip identified through the TGA according to an embodiment of the present invention.
Figure 2 shows the particle size change of the crushed chip according to an embodiment of the present invention.
3 is a graph showing a change in chemical composition of the chip using the FT-IR according to an embodiment of the present invention.
Figure 4 shows the mechanical strength evaluation graph of (a) tensile strength and (b) compressive strength of the reinforced phenolic composite material according to an embodiment of the present invention.
5 is a graph of evaluation of heat resistance using (a) TGA (thermogravimetry analyzer) and (b) differential scanning calorimetry (DSC) of a reinforced phenolic composite material according to an embodiment of the present invention. It is shown.
6 is a graph illustrating a comparative evaluation result of flame retardancy of (a) phenol resin and (b) reinforced phenol composite material of the reinforced phenolic composite material according to one embodiment of the present invention.
실시예 1: CFRP chip 분쇄 및 세척 처리Example 1 CFRP Chip Grinding and Washing Treatment
탄소섬유 강화 플라스틱(CFRP) chip을 막자사발을 이용하여 5분간 분쇄한 후 pH 6.2의 과산화수소를 이용하여 세척하였다.
Carbon fiber reinforced plastic (CFRP) chip was ground for 5 minutes using a mortar and then washed with hydrogen peroxide at pH 6.2.
비교예: CFRP chipComparative Example: CFRP chip
CFRP chip의 상태확인 및 상기 실시예 1에서 처리된 CFRP chip과 입자 크기를 비교하기 위하여 65개의 샘플을 준비하였다.
65 samples were prepared to check the status of the CFRP chip and to compare the particle size with the CFRP chip treated in Example 1.
실시예 2: 강화 페놀 복합재료 제조Example 2: Preparation of Reinforced Phenolic Composites
상기 실시예 1에서 세척 처리한 chip을 탄소섬유 기재로 사용하였다. 페놀수지를 에탄올 용매에 침지하여 고분자 수지의 점도를 낮춘 후 상기 chip을 투여하고 0.5초 속도로 반복적인 초음파 처리를 3시간 동안 시행하여 균일한 분산을 얻도록 유도하였다. 오토클레이브를 이용하여 강화 페놀 복합재료를 경화하여 제조하였으며, 80, 120 및 150 ℃의 3단계 온도 조건 하에서 각각 2시간 씩 경화처리를 하였다. 상기 경화처리시 재료에 버블이 발생하는 것을 방지하기 위하여 100 psi의 압력을 가해주었다.
The chip washed in Example 1 was used as the carbon fiber substrate. The phenol resin was immersed in an ethanol solvent to lower the viscosity of the polymer resin, and then the chip was administered and repeated ultrasonic treatment was performed at 0.5 sec for 3 hours to induce uniform dispersion. It was prepared by curing the reinforced phenolic composite using an autoclave, and was cured for 2 hours under three temperature conditions of 80, 120 and 150 ° C. In the curing process, a pressure of 100 psi was applied to prevent bubbles from forming in the material.
실험예 1: CFRP chip 내부의 탄소섬유 함량 측정Experimental Example 1 Measurement of Carbon Fiber Content in CFRP Chip
상기 비교예에서 준비한 샘플 chip 65개를 TGA(Thermogavimetry analyzer, 열중량분석기)을 이용하여 열분석을 진행하였으며, 결과를 도 1에 나타내었다. 도 1에 나타난 바와 같이, chip 내부에 탄소섬유 비율은 평균 77%의 함량을 지니고 있음을 확인 하였으며, 이를 통해 chipd을 강화제로 이용할 경우 짧은 탄소섬유를 이용하는 것과 유사한 결과를 얻을 수 있음을 확인할 수 있었다.65 samples of chips prepared in Comparative Example were subjected to thermal analysis using a TGA (Thermogavimetry analyzer, thermogravimetric analyzer), and the results are shown in FIG. 1. As shown in Figure 1, it was confirmed that the average carbon fiber content of the chip has a content of 77%, through which it can be seen that similar results using short carbon fiber when using the chipd as a reinforcing agent .
실험예 2: chip의 입자 크기 변화 및 화학적 조성변화 측정Experimental Example 2: Measurement of change in particle size and chemical composition of chip
1) chip의 입자 크기 변화1) Change of particle size of chip
실시예 1 및 비교예의 chip을 사용하여 chip의 입자 크기 변화를 측정하였으며, 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 도 2의 (a) 무처리 chip의 경우 입자 길이가 일정하지 않거나 길어 기지와 화학적 결합을 하는데 문제가 되는 반면, 도 2의 (b) 분쇄 chip의 경우 직경 7.5 ㎛, 길이는 평균 40 내지 50 ㎛를 갖는 일정한 형태의 입자를 이루는 것을 확인하였다.
The particle size change of the chip was measured using the chips of Example 1 and Comparative Example, and the results are shown in FIG. 2. As shown in FIG. 2, in the case of (a) the untreated chip of FIG. 2, the particle length is not constant or long, which causes a problem in chemical bonding with the matrix, whereas in the case of the crushing chip of FIG. 2, the diameter of 7.5 μm, The length was confirmed to form a particle of a constant shape having an average of 40 to 50 ㎛.
2) chip의 화학적 조성 변화 측정2) Measurement of chemical composition change of chip
FT-IR을 이용하여 상기 실시예 1의 chip의 화학적 조성 변화를 확인 하였으며, 그 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이, 과산화수소를 이용해 chip을 세척할 경우 수산화기가 발생됨을 확인할 수 있었다. 또한, 수산화기가 발생됨으로써 페놀 수지와 강한 화학적 결합을 유도할 수 있음을 확인하였다.
The chemical composition of the chip of Example 1 was confirmed using FT-IR, and the results are shown in FIG. 3. As shown in Figure 3, it was confirmed that the hydroxyl group is generated when washing the chip using hydrogen peroxide. In addition, it was confirmed that the generation of hydroxyl groups can induce a strong chemical bond with the phenol resin.
실험예 3: 강화 페놀 복합재료의 기계적 특성 측정Experimental Example 3 Measurement of Mechanical Properties of Reinforced Phenolic Composites
1) 강화 페놀 복합재료의 기계적 강도 측정1) Mechanical strength measurement of reinforced phenolic composites
상기 실시예 2에서 제조한 강화 페놀 복합재료의 기계적 물성 평가를 위해 인장 압축 실험을 진행하였으며, 그 결과를 도 4에 나타내었다. 도 4에 나타난 바와 같이, 기본적으로 강도는 일반 수지에 비해 더 증가 되었으며, 신율은 소폭 감소한 경향을 확인하였다. 이는 chip 내 탄소섬유가 강화재 역할을 함으로써 기계적 물성이 증가된 것으로, 구조용 재료로 이용될 경우 일반 페놀에 비해 강도가 높은 재료 특성을 보일 수 있음을 확인할 수 있었다.
Tensile compression experiments were conducted to evaluate the mechanical properties of the reinforced phenolic composite prepared in Example 2, and the results are shown in FIG. As shown in Figure 4, basically the strength was increased more than the general resin, the elongation was confirmed a tendency to decrease slightly. This is because the mechanical properties of the carbon fiber in the chip as a reinforcing material is increased, it can be seen that when used as a structural material can exhibit a material strength is higher than the general phenol.
2) 강화 페놀 복합재료의 내열성 측정2) Heat resistance measurement of reinforced phenolic composites
상기 실시예 2에서 제조한 강화 페놀 복합재료의 내열성 평가를 위해 TGA 및 DSC 실험을 진행하였으며, 그 결과를 도 5에 나타내었다. 도 5에 나타난 바와 같이, 전반적으로 CFRP chip을 페놀 기지에 삽입함으로써 내열성이 증가되는 것을 확인할 수 있었다.
TGA and DSC experiments were conducted to evaluate the heat resistance of the reinforced phenolic composite prepared in Example 2, and the results are shown in FIG. 5. As shown in Figure 5, it was confirmed that the heat resistance is increased by inserting the CFRP chip into the phenolic substrate as a whole.
특히, 도 5의 (a) TGA 실험 결과 일반 페놀 수지는 약 500도 부근에서 급격한 열에 의한 분해가 진행되는 것을 확인할 수 있으나 CFRP chip을 삽입한 페놀복합재료의 경우에는 약 100도 높은 600도 부근에서 급격한 산화가 됨을 확인할 수 있었다.
Particularly, as a result of the TGA test of FIG. 5, the general phenolic resin is decomposed by rapid heat at about 500 ° C. However, in the case of the phenol compound material in which the CFRP chip is inserted, at about 100 ° C., about 600 ° C. It was confirmed that the rapid oxidation.
또한, 도 5의 (b) DSC 측정을 통해 열적 안정성을 확인하였으며, 그 결과 CFRP chip을 삽입함으로써 28.47 J/g이였던 엔탄피가 64.82 J/g으로 증가되는 경향을 확인하였다. 이는 재료 자체의 잔류응력을 직접적으로 고분자 기지가 받지 않고, 탄소섬유로 이루어진 chip에 의한 응력분산효과를 나타냄으로써 기존의 페놀수지보다 내열성이 높아진 결과를 얻음을 확인할 수 있었다.
In addition, thermal stability was confirmed through the DSC measurement of FIG. 5 (b), and as a result, the enthalpy which was 28.47 J / g was increased to 64.82 J / g by inserting the CFRP chip. It was confirmed that this results in higher heat resistance than the conventional phenolic resins, because the polymer itself is not directly subjected to the residual stress of the material itself and exhibits a stress dispersion effect by the chip made of carbon fiber.
3) 강화 페놀 복합재료의 난연성 측정3) Flame retardancy measurement of reinforced phenolic composites
상기 실시예 2에서 제조된 강화 페놀 복합재료를 ASTM D635-06 방법을 이용하여 재료의 난연성을 평가하였으며, 그 결과를 도 6에 나타내었다. 도 6에 나타난 바와 같이, 검게 그을린 정도가 페놀수지(도 6(a))는 전반적으로 검게 그을린 상태를 나타낸 것을 확인하였으며, CFRP chip을 함유한 강화 페놀 복합재료(도 6(b))는 농도 의존적으로 강한 난연성을 보이는 경향을 확인할 수 있었다. 하기 표 1에 강화 페놀 복합재료의 농도에 따른 불씨의 소화 시간을 나타내었다.The flame retardance of the reinforced phenolic composite material prepared in Example 2 was evaluated using the ASTM D635-06 method, and the results are shown in FIG. 6. As shown in Figure 6, the degree of tanning was confirmed that the phenolic resin (Fig. 6 (a)) is generally tanned, the reinforced phenolic composite material containing a CFRP chip (Fig. 6 (b)) concentration The tendency to show strong flame retardancy was confirmed. Table 1 shows the fire time of the ember according to the concentration of the reinforced phenolic composite.
Claims (7)
상기 분쇄된 탄소섬유 강화 플라스틱을 pH 6.2 내지 pH 6.5의 약산 용액으로 세척하는 단계; 및
상기 약산 용액으로 세척된 탄소섬유 강화 플라스틱을 페놀 수지가 침지된 C1-4 알코올 용액 또는 아세톤에 첨가한 후 초음파 처리하는 단계를 포함하는 강화페놀복합재료의 제조방법.
Mechanically pulverizing carbon fiber reinforced plastic (CFRP);
Washing the pulverized carbon fiber reinforced plastic with a weak acid solution having a pH of 6.2 to pH 6.5; And
Method for producing a reinforced phenolic composite material comprising the step of adding a carbon fiber reinforced plastic washed with the weak acid solution to a C 1-4 alcohol solution or acetone immersed in a phenolic resin and then ultrasonicating.
The method of claim 1, wherein the mechanical grinding using a mortar and pestle manufacturing method of the reinforced phenolic composite material.
The method of claim 1, wherein the carbon fiber reinforced plastic is a waste chip generated during carbon fiber reinforced plastic hole processing.
The method of claim 1, wherein the weak acid solution is hydrogen peroxide.
The method of claim 1, wherein the C 1-4 alcohol solution is ethanol.
The method of claim 1, wherein the ultrasonic strength of the ultrasonic treatment is 400 W and 24 kHz, and repeated treatment for 3 hours at a rate of 0.5 seconds at a condition of 50% amplitude.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120023660A KR101369092B1 (en) | 2012-03-07 | 2012-03-07 | Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120023660A KR101369092B1 (en) | 2012-03-07 | 2012-03-07 | Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130102430A KR20130102430A (en) | 2013-09-17 |
KR101369092B1 true KR101369092B1 (en) | 2014-03-04 |
Family
ID=49452197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20120023660A KR101369092B1 (en) | 2012-03-07 | 2012-03-07 | Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101369092B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11548240B2 (en) | 2018-08-31 | 2023-01-10 | Dong Soo Shin | Apparatus and method for composite material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107082584A (en) * | 2016-02-15 | 2017-08-22 | 山东理工大学 | A kind of carbon fibre reinforced composite castoff regenerative carbon fiber method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000030606A (en) * | 2000-03-08 | 2000-06-05 | 유재령 | The method for regenerate of FRP |
KR20010046210A (en) * | 1999-11-11 | 2001-06-05 | 황의환 | Recycling of waste fiber reinforced plastics |
JP3911704B2 (en) | 1997-12-03 | 2007-05-09 | 東レ株式会社 | Phenol-based resin composition for fiber reinforced composite material, prepreg for fiber reinforced composite material, and method for producing prepreg for fiber reinforced composite material |
KR20100093080A (en) * | 2007-12-21 | 2010-08-24 | 미쓰비시 가가꾸 가부시키가이샤 | Fiber composite |
-
2012
- 2012-03-07 KR KR20120023660A patent/KR101369092B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3911704B2 (en) | 1997-12-03 | 2007-05-09 | 東レ株式会社 | Phenol-based resin composition for fiber reinforced composite material, prepreg for fiber reinforced composite material, and method for producing prepreg for fiber reinforced composite material |
KR20010046210A (en) * | 1999-11-11 | 2001-06-05 | 황의환 | Recycling of waste fiber reinforced plastics |
KR20000030606A (en) * | 2000-03-08 | 2000-06-05 | 유재령 | The method for regenerate of FRP |
KR20100093080A (en) * | 2007-12-21 | 2010-08-24 | 미쓰비시 가가꾸 가부시키가이샤 | Fiber composite |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11548240B2 (en) | 2018-08-31 | 2023-01-10 | Dong Soo Shin | Apparatus and method for composite material |
Also Published As
Publication number | Publication date |
---|---|
KR20130102430A (en) | 2013-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asim et al. | A review on phenolic resin and its composites | |
Kim et al. | Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic | |
Sekaran et al. | Evaluation on mechanical properties of woven aloevera and sisal fibre hybrid reinforced epoxy composites | |
CN109851848B (en) | Method for recovering carbon fibers from carbon fiber/phenolic resin composite material | |
Prabhakar et al. | A review on natural fibers and mechanical properties of banyan and banana fibers composites | |
Lim et al. | Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites | |
Venkatesan et al. | Evaluation and comparison of mechanical properties of natural fiber abaca-sisal composite | |
Yousef et al. | Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma | |
KR101978772B1 (en) | Method and composition for depolymerization of cured epoxy resin materials | |
KR101369092B1 (en) | Preparation method of reinforced phenolic composites using recycled-carbon fiber reinforced plastic chip and carbon fiber reinforced plastics recycling method using the same | |
Chanap | Study of mechanical and flexural properties of coconut shell ash reinforced epoxy composites | |
Kashizadeh et al. | Physico‐mechanical and thermal properties of date palm fiber/phenolic resin composites | |
Natali et al. | High temperature composites from renewable resources: A perspective on current technological challenges for the manufacturing of non-oil based high char yield matrices and carbon fibers | |
Veerasimman | Effect of redmud particulates on mechanical properties of bfrp composites | |
Saidah et al. | Design of composite material of rice straw fiber reinforced epoxy for automotive bumper | |
Madhusudhana Reddy et al. | Experimental investigation of mechanical properties of sisal fiber and rice husk reinforced polymer composite | |
KR100558073B1 (en) | A method for preparing carbon fiber reinforced composites having an improved mechanical property | |
Graceraj et al. | Analysis of mechanical behaviour of hybrid fiber (jute-gongura) reinforced hybrid polymer matrix composites | |
JP2022030256A (en) | Method of recovering carbon fiber from carbon fiber-reinforced resin | |
Kanthraju et al. | Effect of type and filler loading on the static mechanical properties of glass-basalt hybrid fabric reinforced epoxy composites | |
Jiang et al. | Recycling carbon fibre/epoxy resin composites using supercritical propanol | |
Hadigheh et al. | Characterisation of carbon fibre recovered by pyrolysis using thermal gravimetric analysis (TGA) | |
Fajrin | Compressive Properties of Tropical Natural Fibers Reinforced Epoxy Polymer Composites | |
Babu et al. | Mechanical and Thermal Properties of Epoxy Composites Reinforced with Carbon and Pineapple leaf fiber | |
CN116606522B (en) | Quartz fiber prepreg and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170111 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180112 Year of fee payment: 5 |