KR101367558B1 - Polymer membranes for fuel cells, based on interpolyelectrolyte complexes of polyaniline and nafion or it's analogues - Google Patents
Polymer membranes for fuel cells, based on interpolyelectrolyte complexes of polyaniline and nafion or it's analogues Download PDFInfo
- Publication number
- KR101367558B1 KR101367558B1 KR1020100062593A KR20100062593A KR101367558B1 KR 101367558 B1 KR101367558 B1 KR 101367558B1 KR 1020100062593 A KR1020100062593 A KR 1020100062593A KR 20100062593 A KR20100062593 A KR 20100062593A KR 101367558 B1 KR101367558 B1 KR 101367558B1
- Authority
- KR
- South Korea
- Prior art keywords
- acid
- membrane
- polymer membrane
- ether
- reducing agent
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2275—Heterogeneous membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2287—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1051—Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/1088—Chemical modification, e.g. sulfonation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
본 발명은 에메럴딘 형태의 폴리아닐린 및 Nafion(듀폰사 제조) 또는 MF-4SK(JSC Plastpolymer사 제조, 러시아, 상 페테스부르크) 또는 그 유사체를 함유하는 인터폴리일렉트로라이트(interpolyelectrolyte) 복합체를 포함하는 제형에 기초한 연료전지용 중합체 막에 관한 것이다. 상기 막 재료는 용매 혼합물 형태의 상기 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체의 용액을 캐스팅하여 제조된다. 이렇게 제조된 막은 추가적으로 유기 술폰산 또는 무기 첨가물로 처리되어, 폴리아닐린에 양성자가 첨가되고, 부가적으로 술포기(sulfo group)가 부착되어, 상기 막의 양성자 전도도가 증가될 수 있다. 이렇게 제조된 막의 양성자 전도성은 미처리된 나피온 또는 MF-4SK 또는 다른 나피온 유사 중합체의 양성자 전도도를 초과하고, 더 우수한 내구성을 가지며, 90℃에서 고장나지 않으므로, 나피온 또는 그 유사체보다 높은 온도에서 작동하고, 더 안정하다. 본 발명은 저온 또는 고온 중합체 연료 전지에의 사용을 위한 상기 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체에 기초한 중합체 막의 제조 방법을 제공한다.The present invention is a formulation comprising an interpolyelectrolyte complex containing emeraldine polyaniline and Nafion (manufactured by Dupont) or MF-4SK (manufactured by JSC Plastpolymer, St. Petersburg, Russia) or an analog thereof A polymer membrane for fuel cells based on The membrane material is prepared by casting a solution of the interpolyelctrolyte complex in the form of a solvent mixture. The membrane thus prepared may be further treated with organic sulfonic acid or inorganic additives to add protons to the polyaniline and additionally attach sulfo groups, thereby increasing the proton conductivity of the membrane. The proton conductivity of the membrane thus prepared exceeds the proton conductivity of untreated Nafion or MF-4SK or other Nafion-like polymers, has better durability, and does not fail at 90 ° C., therefore, at higher temperatures than Nafion or its analogs. Work, more stable. The present invention provides a process for producing a polymer membrane based on the interpolyelctrolyte composite for use in low temperature or high temperature polymer fuel cells.
Description
본 발명은 폴리아닐린 및 나피온 또는 그 유사체의 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체에 기초한 연료전지용 중합체 막에 관한 것이다. The present invention relates to polymer membranes for fuel cells based on interpolyelctrolyte composites of polyaniline and Nafion or analogs thereof.
현재 가장 널리 사용되는 전해질 막은 나피온(듀폰사 제조)로 알려진 과불소화술폰산계열 전해질 막이다. 나피온은 소수성 폴리테트라플루오로에틸렌(PTFE)의 주쇄에 결합되는 측쇄를 가지며, 상기 측쇄는 그 말단에 술폰산기를 갖는다. 술폰산기와 수화 상태의 물분자가 모여 이온 클러스터가 형성된다. 클러스터 중 술폰기의 고농도 때문에, 클러스터는 높은 양성자 전도성을 갖는 양성자의 경로가 된다.Currently, the most widely used electrolyte membrane is a perfluorinated sulfonic acid series electrolyte membrane known as Nafion (manufactured by DuPont). Nafion has a side chain attached to the main chain of hydrophobic polytetrafluoroethylene (PTFE), which side chain has sulfonic acid groups at its ends. Sulfonate groups and hydrated water molecules combine to form ion clusters. Because of the high concentration of sulfone groups in the cluster, the cluster becomes a proton pathway with high proton conductivity.
나피온 이외의 다른 전해질 막으로, 탄화수소 전해질 막, 방향족 탄화수소 전해질 막 등이 있다. 이들 막 모두 술폰산기, 인산기, 카르복실산기 등와 같은 양성자 공여체를 가진다. 나피온과 같이, 이들 전해질 막은 수화상태일 때 양성자를 자유화시킴으로써 양성자 전도성을 보인다. 나피온의 경우 술폰산기와 같은 양성자 공여체의 양이 증가하면, 슬폰산기 수화작용에 의한 물 소비의 증가, 및 막의 채널과 클러스터 시스템 내의 연속적 수소결합 네트워크의 생성으로 인해 양성자 전도도가 증가한다.Other electrolyte membranes other than Nafion include hydrocarbon electrolyte membranes and aromatic hydrocarbon electrolyte membranes. Both of these membranes have proton donors such as sulfonic acid groups, phosphoric acid groups, carboxylic acid groups and the like. Like Nafion, these electrolyte membranes exhibit proton conductivity by freeing protons when hydrated. In the case of Nafion, increasing the amount of proton donors, such as sulfonic acid groups, increases proton conductivity due to increased water consumption by sulfonic acid hydration and the generation of continuous hydrogen bonding networks in the membrane channels and cluster systems.
그럼에도 불구하고 90℃에서 발생하는 나피온의 양성자 전도도의 감소는 100℃이상에서 막의 사용을 제한한다. 나피온의 다른 부정적 요인은 나피온의 수팽창성인데, 이는 막의 기계적 내구성을 감소시킨다. 또한 낮은 습도에서의 나피온의 오작동은 특정 이용의 경우에 나피온 막의 사용을 제한하는 요인이다.Nevertheless, the reduction in the proton conductivity of Nafion occurring at 90 ° C. limits the use of the membrane above 100 ° C. Another negative factor of Nafion is the water expandability of Nafion, which reduces the mechanical durability of the membrane. Malfunction of Nafion at low humidity is also a limiting factor in the use of Nafion membranes in certain applications.
이에 본 발명은 미처리된 나피온보다 향상된 양성자 전도도, 향상된 내구성, 낮은 물 흡수력 및 낮은 수팽창성을 갖는 양성자 전도성 중합체 막을 제공하고자 한다.Accordingly, the present invention seeks to provide a proton conductive polymer membrane having improved proton conductivity, improved durability, low water absorption and low water expandability than untreated Nafion.
본 발명은 나피온과 폴리아닐린, 또는 MF-4SK(러시아 나피온 유사체)와 폴리아닐린, 또는 나피온에 한정되지 않고, 플레미온(Flemion), 아씨플렉스(Aciplex), 다우 막(Dowmembrane), 네오셉타(Neosepta), MF-4SK, 및 카르복실산기와 술폰산기를 함유하는 다른 이온교환수지의 고분자 전해질 복합체에 기초하고, 미처리 나피온보다 향상된 양성자 전도도, 향상된 내구성, 낮은 물 흡수력 및 낮은 수팽창성을 갖는 양성자 전도성 중합체 막을 제공한다. The present invention is not limited to Nafion and polyaniline, or MF-4SK (Russian Nafion analogue) and Polyaniline, or Nafion, and is not limited to Flemion, Aciplex, Dowmembrane, Neocepta ( Neosepta), MF-4SK, and proton conductivity based on polymer electrolyte composites of other ion exchange resins containing carboxylic acid groups and sulfonic acid groups and having improved proton conductivity, improved durability, low water absorption and low water expandability than untreated Nafion. Provide a polymer membrane.
다음의 혼합물:Mixture of
(a) 중합용 단량체로서, 아닐린 또는 아닐린 디히드로설페이트에 한정되지 않고, 염산 아닐린, 불산 아닐린, 아닐린 트리히드로포스페이트, 브롬산 아닐린, 요오드산 아닐린 등의 산 부가염,(a) As the monomer for polymerization, not only aniline or aniline dihydrosulfate, but acid addition salts such as aniline hydrochloride, aniline hydrofluoric acid, aniline trihydrophosphate, aniline bromide and aniline iodide,
(b) 산화제로서, 암모늄 퍼옥시디설페이트, 과황산 나트륨, 과요오드화 나트륨, 중크로뮴산 칼륨, 과망간산 칼륨, 하이포브롬화 칼륨, 하이포아염화 칼륨, 질산 세륨, 황산 세륨, 과산화수소, 염화철(III), 황산철(III), 펜톤 시약(과산화수소와 2가철의 혼합물) 및 상기에 한정되지 않는 다른 화합물 또는 그 조합, 상기 [산화제/아닐린] 비율은 0.1 내지 5, 보다 바람직하게는 0.5 내지 2, 그리고 가장 바람직하게는 1 내지 1.5이고,(b) Ammonium peroxydisulfate, sodium persulfate, sodium periodate, potassium dichromate, potassium permanganate, potassium hypobromide, potassium hypochloride, cerium nitrate, cerium sulfate, hydrogen peroxide, iron (III) chloride, sulfuric acid Iron (III), Fenton's reagent (a mixture of hydrogen peroxide and divalent iron) and other compounds not limited to the above, or combinations thereof, wherein the [oxidant / aniline] ratio is 0.1 to 5, more preferably 0.5 to 2, and most preferred Preferably 1 to 1.5,
(c) 술폰 작용기 및 적어도 1보다 큰 당량을 갖는 양성화 형태의 MF-4SK 또는 나피온 또는 다른 나피온 유사 중합체, 상기 [아닐린/나피온 또는 나피온 유사 중합체] 비율은 0.001 내지 3이고,(c) MF-4SK or Nafion or other Nafion-like polymers in a positive form with sulfone functionality and at least greater than 1, wherein the [aniline / nafion or Nafion-like polymer] ratio is 0.001 to 3,
(d) 메탄올, 에틸 알코올, n-프로필 알코올, 이소프로필 알코올, n-부틸 알코올, 이소부틸 알코올, tert-부틸 알코올 등의 알코올, 디에틸 에테르, 디프로필 에테르, 디부틸 에테르 등의 에테르, 메틸에틸 에테르, 에틸프로필 에테르 등의 비대칭성 에테르, 락톤, 락탐, 케톤, 에스테르, 포름아미드, 디메틸술폭시드, 테트라히드로퓨란, 아세토니트릴 및 기타 다른 용매 또는 그 혼합물을 포함하는 용매와 증류수의 다른 [물]/[알코올] 비율의 혼합물(d) alcohols such as methanol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, ethers such as diethyl ether, dipropyl ether, dibutyl ether, methyl Asymmetric ethers such as ethyl ether, ethyl propyl ether, lactones, lactams, ketones, esters, formamides, dimethyl sulfoxide, tetrahydrofuran, acetonitrile and other solvents or mixtures thereof and other distilled water [water Mixture of] / [alcohol] ratios
을 포함하는 혼합물로부터 액체 제형이 조제된다.Liquid formulations are prepared from mixtures comprising:
상기 액체 제형을 수평면에 캐스팅하고 공기 중에 건조시켜 중합체 막이 형성된다.The liquid formulation is cast on a horizontal plane and dried in air to form a polymer film.
다른 구체예에서, 본 발명은 완전 수화상태에 도달하는 데 필요한 양성자 전도성 중합체 막 조정에 관한 것으로 다음과 같이 행해질 수 있다: In another embodiment, the present invention relates to the proton conducting polymer membrane adjustment needed to reach full hydration and can be done as follows:
a) 1 M 산, 예를 들어 질산에 한정되지 않고, 황산, 염산, 인산, 포름산, 아세트산, 또는 과산화수소 수용액(바람직하게는 0.5 내지 50% 용액, 더욱 바람직하게는 1% 내지 20% 용액 및 가장 바람직하게는 5 내지 10% 용액)으로 조정된 막. 상기 조건부여는 100℃에서 30분 내지 6시간, 더욱 바람직하게는 1시간 내지 5시간, 그리고 가장 바람직하게는 2시간 내지 4시간 동안 실행된다.a) aqueous solutions of sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid, or hydrogen peroxide (preferably between 0.5 and 50% solutions, more preferably between 1 and 20% solutions and most) Preferably 5-10% solution). The conditioning is carried out at 100 ° C. for 30 minutes to 6 hours, more preferably 1 hour to 5 hours, and most preferably 2 hours to 4 hours.
b) 30분 내지 6시간, 더욱 바람직하게는 1시간 내지 5시간, 그리고 가장 바람직하게는 2시간 내지 4시간 동안 100℃에서 탈이온 증류수 중에서 조정된 막.b) Membrane adjusted in deionized distilled water at 100 ° C. for 30 minutes to 6 hours, more preferably 1 hour to 5 hours, and most preferably 2 hours to 4 hours.
또 다른 구체예에서, 본 발명은 유기 티올 자체, 머캅토벤젠술폰산에 한정되지 않고, 머캅토에탄올, 머캅토프로판올, 머캅토부탄올, 머캅토펜탄올, 머캅토헥산올, 머캅토에탄술폰산, 머캅토프로판술폰산, 머캅토부탄술폰산, 머캅토펜탄술폰산, 머캅토헥산술폰산, 머캅토아세트산, 머캅토프로피온산, 머캅토부티르산, 머캅토펜탄산, 머캅토헥산 등으로 폴리아닐린을 도핑하여 막의 양성자 전도도를 더욱 향상시키는 것에 관한 것이다. 이들 티올은 나피온 또는 그 유사체의 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체로 포함되는 폴리아닐린의 퀴논디이민 고리와의 친전자 부가반응을 가능하게 하는 친전자체로 작용한다. 이 반응은 불활성 분위기 및 실온에서 폴리아닐린 및 예컨대 나피온 또는 고분자 전해질 복합체 용액으로부터 제조된 원막(raw membrane), 및 과량의 티올을 포함하는 복합체 용액을 함유하는 알칼리성 용액 중에서 실행될 수 있다. 과량의 티올은 2배 내지 2000배, 바람직하게는 10배 내지 1000배, 그리고 가장 바람직하게는 50배 내지 500배이어야 한다. 그 다음 티올 처리된 막의 조정이 필요하다.In another embodiment, the invention is not limited to organic thiols themselves, mercaptobenzenesulfonic acid, mercaptoethanol, mercaptopropanol, mercaptobutanol, mercaptopentanol, mercaptohexanol, mercaptoethansulfonic acid, mercury Further improve the proton conductivity of the membrane by doping polyaniline with captopropanesulfonic acid, mercaptobutanesulfonic acid, mercaptopentanesulfonic acid, mercaptohexanesulfonic acid, mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, mercaptopentanoic acid, mercaptohexane, etc. It's about making things happen. These thiols act as electrophiles that allow electrophilic addition of polyaniline to the quinonediimine ring, which is included in the interpolyelctrolyte complex of Nafion or its analogs. This reaction can be carried out in an alkaline solution containing polyaniline and a raw membrane prepared from a solution of Nafion or polyelectrolyte complex, for example, and an excess of thiol in an inert atmosphere and at room temperature. Excess thiol should be 2 to 2000 times, preferably 10 to 1000 times, and most preferably 50 to 500 times. Then adjustment of the thiol treated membrane is necessary.
다른 구체예에서 본 발명은 다른 환원제 자체, 히드라진 수화물에 한정되지 않고, 페닐 히드라진, 붕수소화 나트륨, 히드라진 보란, 아스코르브산, 티오황산 나트륨, 알칼리금속, 예컨대 리튬, 나트륨, 칼륨, 세슘, 알칼리토 금속, 예컨대 칼슘, 마그네슘 등으로 폴리아닐린을 도핑하여 막의 양성자 전도성을 더욱 향상시키는 것에 관한 것이다. 상기 환원제는 폴리아닐린 퀴논디이민 고리를 p-페닐렌디아민 고리로 환원시키고 나피온 유사 중합체와 폴리아닐린간의 정전기적 결합의 양을 감소시켜 막 내부의 양성자 이동성을 증가시킨다. 이러한 개질은 0.001 내지 10M, 더욱 바람직하게는 0.01 내지 5M, 그리고 가장 바람직하게는 0.1 내지 1M 농도의 환원제 농도를 갖는 환원제 용액, 또는 물에 한정되지 않고 지방족 알코올, 예컨대 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올 및 그 이성질체, 에테르, 예컨대 디에틸 에테르에 한정되지 않고, 디프로필 에테르, 디부틸 에테르 및 비대칭성 에테르, 예컨대 메틸에틸 에테르에 한정되지 않고, 에틸프로필 에테르 등, 락톤, 락탐, 케톤, 에스테르, 포름아미드, 디메틸술폭시드, 테트라히드로퓨란, 아세토니트릴 등을 포함하는 적당한 용매 중의 환원제 분산액에서 실행될 수 있다. 상기 환원반응은 적당한 용매 중의 환원제 현탁용액에 원막(raw membrane)을 침지시키거나 적당한 용액 중의 고분자 전해질 복합체 용액에 환원제 용액 또는 현탁액을 부가하여 실행될 수 있다. 그 다음 환원된 복합체가 평면 상에 캐스팅되고 수득하거나 처리된 건조 막은 상기와 같이 조정된다.In another embodiment the invention is not limited to other reducing agents per se, hydrazine hydrates, phenyl hydrazine, sodium borohydride, hydrazine borane, ascorbic acid, sodium thiosulfate, alkali metals such as lithium, sodium, potassium, cesium, alkaline earth metals For example, the present invention relates to doping polyaniline with calcium, magnesium and the like to further improve the proton conductivity of the membrane. The reducing agent increases the proton mobility inside the membrane by reducing the polyaniline quinonediimine ring to the p-phenylenediamine ring and reducing the amount of electrostatic bond between the Nafion-like polymer and polyaniline. Such modifications are not limited to reducing agent solutions having a reducing agent concentration of 0.001 to 10 M, more preferably 0.01 to 5 M, and most preferably 0.1 to 1 M, or water, but are not limited to aliphatic alcohols such as methanol, ethanol, propanol, butanol, Not limited to pentanol, hexanol and isomers thereof, ethers such as diethyl ether, but not limited to dipropyl ether, dibutyl ether and asymmetric ethers such as methylethyl ether, such as ethylpropyl ether, lactones, lactams, It may be carried out in a reducing agent dispersion in a suitable solvent including ketones, esters, formamides, dimethylsulfoxides, tetrahydrofuran, acetonitrile and the like. The reduction reaction can be carried out by immersing the raw membrane in a reducing agent suspension solution in a suitable solvent or by adding a reducing agent solution or suspension to a polymer electrolyte complex solution in a suitable solution. The reduced composite is then cast onto a plane and the obtained or treated dry membrane is adjusted as above.
상기와 같이 제조된 막은 미처리된 나피온보다 10배 더 높은 양성자 전도도를 나타내고, 90℃에서도 고장나지 않고, 더욱 내구적이고, 중저온 중합체 막 연료전지(PMFC)에의 사용에 적합하다. Membranes prepared as described above exhibit 10 times higher proton conductivity than untreated Nafion, do not fail at 90 ° C., and are more durable and suitable for use in low to low temperature polymer membrane fuel cells (PMFC).
이하에서는 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것이며, 하기 실시예에 의하여 본 발명의 범위가 한정될 것을 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are for the purpose of illustrating the present invention and are not intended to limit the scope of the present invention by the following examples.
<실시예 1> 폴리아닐린-MF-4SK 복합체 막의 제조Example 1 Preparation of Polyaniline-MF-4SK Composite Membrane
액체 제형의 제조를 위해 용매 혼합물에 용해된 염산 아닐린을 용매 혼합물 중 현탁된 MF-4SK와 혼합하여 균질화를 위해 30분 동안 교반시켰다([염산 아닐린]/[MF-4SK]=0.01-1.5). 그 다음 용매 혼합물에 용해된 암모늄 퍼옥시디설페이트 용액을 염산 아닐린과 MF-4SK 혼합물에 즉시 가하고([암모늄 퍼옥시디설페이트]/[염산 아닐린]=1.25), 상기 반응 혼합물을 짧게 교반한 후 실온에서 밤새 방치하여 중합하였다. 수득한 폴리아닐린과 MF-4SK로 구성되는 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체의 균질액을 페트리 캡(petri cap)의 평면 또는 유리 고리 상에 전개된 폴리에틸렌 막 위에 캐스팅하고 실온 건조시켜 양성자 전도성 막을 수득하였다. 그 다음 이 막을 표면에서 분리시켜 끓는 1M HCl 중에서 3시간 동안 그리고 끓는 증류수 중에서 3시간 동안 예비조정하였다.Aniline hydrochloride dissolved in the solvent mixture for preparation of the liquid formulation was mixed with MF-4SK suspended in the solvent mixture and stirred for 30 minutes for homogenization ([Aniline hydrochloride] / [MF-4SK] = 0.01-1.5). The ammonium peroxydisulfate solution dissolved in the solvent mixture was then added immediately to the mixture of aniline hydrochloride and MF-4SK ([ammonium peroxydisulfate] / [aniline hydrochloride] = 1.25), and the reaction mixture was stirred briefly and then at room temperature overnight. It was left to polymerize. The homogeneous solution of the obtained polyaniline and interpolyelctrolyte complex composed of MF-4SK was cast on a polyethylene membrane developed on a flat or glass ring of a petri cap and dried at room temperature to obtain a proton conductive membrane. . The membrane was then separated from the surface and preconditioned for 3 hours in boiling 1M HCl and 3 hours in boiling distilled water.
<실시예 2> 머캅토프로판술폰산을 이용한 폴리아닐린-MF-4SK 복합체 막의 개질Example 2 Modification of Polyaniline-MF-4SK Composite Membrane Using Mercaptopropanesulfonic Acid
초기 혼합물 중 [염산 아닐린]/[MF-4SK]=0.01-1.5의 비를 갖는 폴리아닐린-MF-4SK 막을 1M NaOH 수용액이 담긴 유리 바이알에 넣고 1시간 이내 침지시켰다. 그 다음 침지된 폴리아닐린-MF-4SK 막을 함유하는 1M NaOH 용액에 10분 동안 아르곤을 불어넣었다. 그 다음 100배 과잉의 머캅토프로판술폰산(폴리아닐린 단량체 단위를 기준으로 산출)을 1M NaOH에 용해시켜 아르곤을 불어넣고 폴리아닐린-MF-4SK 막을 포함하는 NaOH용액의 잔액에 즉시 가하였다. 상기 반응 시스템을 폐쇄된 바이알 내에서 1주일 동안 방치하였다. 그 다음 모든 막을 탈이온수로 세척하고 실시예 1과 같이 조정하였다.The polyaniline-MF-4SK membrane having a ratio of [Aniline hydrochloride] / [MF-4SK] = 0.01-1.5 in the initial mixture was placed in a glass vial containing 1M NaOH aqueous solution and immersed within 1 hour. Argon was then blown into the 1M NaOH solution containing the submerged polyaniline-MF-4SK membrane for 10 minutes. A 100-fold excess of mercaptopropanesulfonic acid (calculated based on polyaniline monomer units) was then dissolved in 1 M NaOH, blown with argon and immediately added to the balance of NaOH solution containing polyaniline-MF-4SK membrane. The reaction system was left for 1 week in a closed vial. All membranes were then washed with deionized water and adjusted as in Example 1.
<실시예 3> 환원제(NaBH4)를 이용한 폴리아닐린-MF-4SK 복합체 막의 처리Example 3 Treatment of Polyaniline-MF-4SK Composite Membrane Using Reducing Agent (NaBH 4 )
초기 혼합물 중 [염산 아닐린]/[MF-4SK]=0.01-1.5의 비를 갖는 폴리아닐린-MF-4SK 막을 1M NaBH4 수용액을 담은 유리 바이알에 넣고 1시간 이내 침지시켰다. 그 다음 모든 막을 탈이온수로 세척하고 실시예 1과 같이 조정하였다.Polyaniline-MF-4SK membrane having a ratio of [Aniline hydrochloride] / [MF-4SK] = 0.01-1.5 in the initial mixture was added with 1M NaBH 4 It was put in a glass vial containing an aqueous solution and immersed within 1 hour. All membranes were then washed with deionized water and adjusted as in Example 1.
상기와 같은 폴리아닐린 및 Nafion 또는 그 유사체를 포함하는 인터폴리일렉트로라이트(interpolyelctrolyte) 복합체의 현탁 제형은 우수한 기계적 특성을 갖는 막들을 형성하였다. 이들 막은 실온에서의 나피온의 양성자 전도도보다 10 배 이상 높은 양성자 전도도를 가지고 승온 상태에서도 높은 물 흡수력을 가진다. 그리고 100℃에서의 양성자 전도도 감소가 관찰되지 않는다. 또한 이들 막은 물에서 덜 팽창하고 중저온 연료 전지 용 양성자 전도성 막(PMFC)으로 사용될 수 있다.Suspension formulations of interpolyelctrolyte complexes comprising such polyaniline and Nafion or analogs thereof have formed membranes with good mechanical properties. These membranes have proton conductivity 10 times higher than Nafion's proton conductivity at room temperature and high water absorption even at elevated temperatures. And no decrease in proton conductivity at 100 ° C. In addition, these membranes expand less in water and can be used as proton conducting membranes (PMFC) for low and low temperature fuel cells.
Claims (12)
상기 양성자 전도성 중합체 막은 머캅토벤젠술폰산, 머캅토에탄올, 머캅토프로판올, 머캅토부탄올, 머캅토펜탄올, 머캅토헥산올, 머캅토에탄술폰산, 머캅토프로판술폰산, 머캅토부탄술폰산, 머캅토펜탄술폰산, 머캅토헥산술폰산, 머캅토아세트산, 머캅토프로피온산, 머캅토부티르산, 머캅토펜탄산 및 머캅토헥산 중에서 선택되는 유기 티올 자체로 추가적으로 도핑되거나,
상기 양성자 전도성 중합체 막은 히드라진 수화물, 페닐 히드라진, 붕수소화 나트륨, 히드라진 보란, 아스코르브산, 티오황산 나트륨, 리튬, 나트륨, 칼륨, 세슘, 칼슘, 마그네슘 중에서 선택되는 환원제 자체로 추가적으로 도핑되는 것을 특징으로 하는 양성자 전도성 중합체 막.A proton conductive polymer membrane that is a cast of a polymer electrolyte composite of polyaniline and Nafion, wherein the molar ratio of polyaniline to Nafion is in the range of 0.001 to 3, methanol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol , n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, diethyl ether, dipropyl ether, dibutyl ether, methylethyl ether, ethylpropyl ether, lactone, lactam, ketone, ester, formamide, dimethyl sulfoxide, Oxidizing agent or ammonium peroxydisulfate, sodium persulfate, sodium periodide, potassium dichromate, permanganic acid in a mixture of one or more solvents selected from tetrahydrofuran, acetonitrile and mixtures thereof and other [water / alcohol] ratios of distilled water Potassium, potassium hypobromide, potassium hypochloride, cerium nitrate, cerium sulfate, hydrogen peroxide, iron chloride (III ), Using an oxidant mixture selected from iron (III) sulfate and Fenton's reagent (a mixture of hydrogen peroxide and ferric iron),
The proton conductive polymer membrane may include mercaptobenzenesulfonic acid, mercaptoethanol, mercaptopropanol, mercaptobutanol, mercaptopentanol, mercaptohexanol, mercaptoethanesulfonic acid, mercaptopropanesulfonic acid, mercaptobutanesulfonic acid, mercaptopentane Additionally doped with an organic thiol selected from sulfonic acid, mercaptohexanesulfonic acid, mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, mercaptopentanoic acid and mercaptohexane, or
The proton conductive polymer membrane is further doped with a reducing agent itself selected from hydrazine hydrate, phenyl hydrazine, sodium borohydride, hydrazine borane, ascorbic acid, sodium thiosulfate, lithium, sodium, potassium, cesium, calcium, magnesium Conductive polymer membrane.
상기 양성자 전도성 중합체 막은 머캅토벤젠술폰산, 머캅토에탄올, 머캅토프로판올, 머캅토부탄올, 머캅토펜탄올, 머캅토헥산올, 머캅토에탄술폰산, 머캅토프로판술폰산, 머캅토부탄술폰산, 머캅토펜탄술폰산, 머캅토헥산술폰산, 머캅토아세트산, 머캅토프로피온산, 머캅토부티르산, 머캅토펜탄산 및 머캅토헥산 중에서 선택되는 유기 티올 자체로 추가적으로 도핑되거나,
상기 양성자 전도성 중합체 막은 히드라진 수화물, 페닐 히드라진, 붕수소화 나트륨, 히드라진 보란, 아스코르브산, 티오황산 나트륨, 리튬, 나트륨, 칼륨, 세슘, 칼슘, 마그네슘 중에서 선택되는 환원제 자체로 추가적으로 도핑되는 것을 특징으로 하는 양성자 전도성 중합체 막.Of polyaniline and MF-4SK (Russian Nafion analogue) or Flemion, Aciplex, Dowmembrane, Neosepta, and other ion exchange resins containing carboxylic and sulfonic acid groups A proton conductive polymer membrane based on a polymer electrolyte composite, wherein the ratio of polyaniline to MF-4SK is in the range of 0.001 to 3, and methanol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl Alcohols, tert-butyl alcohol, diethyl ether, dipropyl ether, dibutyl ether, methylethyl ether, ethylpropyl ether, lactones, lactams, ketones, esters, formamide, dimethylsulfoxide, tetrahydrofuran and acetonitrile or their Formed in a mixture of different [water / alcohol] ratios of solvent and distilled water selected from the mixture,
The proton conductive polymer membrane may include mercaptobenzenesulfonic acid, mercaptoethanol, mercaptopropanol, mercaptobutanol, mercaptopentanol, mercaptohexanol, mercaptoethanesulfonic acid, mercaptopropanesulfonic acid, mercaptobutanesulfonic acid, mercaptopentane Additionally doped with an organic thiol selected from sulfonic acid, mercaptohexanesulfonic acid, mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, mercaptopentanoic acid and mercaptohexane, or
The proton conductive polymer membrane is further doped with a reducing agent itself selected from hydrazine hydrate, phenyl hydrazine, sodium borohydride, hydrazine borane, ascorbic acid, sodium thiosulfate, lithium, sodium, potassium, cesium, calcium, magnesium Conductive polymer membrane.
도핑 후 질산, 황산, 염산, 인산, 포름산 및 아세트산 중에서 선택되는 산, 또는 과산화수소 수용액 중에서 30분 내지 6시간 동안 100℃에서 조정되는 것을 특징으로 하는 중저온 연료전지용 중합체 막의 제조 방법.The method according to claim 9, wherein the reaction further doped with the organic thiol itself is carried out in an inert atmosphere and at room temperature in an alkaline solution containing a composite solution comprising a thiol and a raw membrane prepared from a polyaniline and a polymer electrolyte composite solution,
Method of producing a polymer membrane for low-temperature fuel cell, characterized in that after the doping is adjusted at 100 ℃ for 30 minutes to 6 hours in an acid selected from nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, formic acid and acetic acid, or aqueous hydrogen peroxide solution.
도핑 후 질산, 황산, 염산, 인산, 포름산 및 아세트산 중에서 선택되는 산, 또는 과산화수소 수용액 중에서 30분 내지 6시간 동안 100℃에서 조정되는 것을 특징으로 하는 중저온 연료전지용 중합체 막의 제조 방법.10. The method of claim 9, wherein the further doping with the reducing agent itself is a reducing agent solution having a reducing agent concentration of 0.001 to 10 M or water, methanol, ethanol, propanol, butanol, pentanol, hexanol and its isomers, diethyl ether, di The reduction reaction is carried out in a reducing agent dispersion in a solvent selected from propyl ether, dibutyl ether, methylethyl ether, ethylpropyl ether, lactone, lactam, ketone, ester, formamide, dimethylsulfoxide, tetrahydrofuran and acetonitrile. By dipping the raw membrane in the silver reducing agent suspension or by adding the reducing agent solution or suspension to the polymer electrolyte complex solution,
Method of producing a polymer membrane for low-temperature fuel cell, characterized in that after the doping is adjusted at 100 ℃ for 30 minutes to 6 hours in an acid selected from nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, formic acid and acetic acid, or aqueous hydrogen peroxide solution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010107927 | 2010-03-03 | ||
RU2010107927/07A RU2428767C1 (en) | 2010-03-03 | 2010-03-03 | Polymer membranes for fuel elements, which are based on interpolyelectrolyte complexes of polyaniline and nafion or its equivalents (versions) |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110100120A KR20110100120A (en) | 2011-09-09 |
KR101367558B1 true KR101367558B1 (en) | 2014-02-26 |
Family
ID=44757745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100062593A KR101367558B1 (en) | 2010-03-03 | 2010-06-30 | Polymer membranes for fuel cells, based on interpolyelectrolyte complexes of polyaniline and nafion or it's analogues |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101367558B1 (en) |
RU (1) | RU2428767C1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2487145C1 (en) * | 2011-12-05 | 2013-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") | Method of producing composite cation-exchange membrane |
RU2542261C1 (en) * | 2013-08-20 | 2015-02-20 | Динар Дильшатович Фазуллин | Method of obtaining cation-exchange composite membrane |
RU2573523C2 (en) * | 2013-10-16 | 2016-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Polymer membranes for fuel elements, based on mixtures of nitrogen-containing polymers and naphion or thereof analogues |
US20170209837A1 (en) * | 2014-08-01 | 2017-07-27 | University Of Delaware | Self-healing membranes for polymer electrolyte applications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070000689A (en) * | 2005-06-28 | 2007-01-03 | 삼성에스디아이 주식회사 | Polymer electrolyte for fuel cell, method of producing same and fuel cell system comprising same |
US7462298B2 (en) | 2002-09-24 | 2008-12-09 | E.I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
US8062553B2 (en) | 2006-12-28 | 2011-11-22 | E. I. Du Pont De Nemours And Company | Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith |
-
2010
- 2010-03-03 RU RU2010107927/07A patent/RU2428767C1/en active
- 2010-06-30 KR KR1020100062593A patent/KR101367558B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7462298B2 (en) | 2002-09-24 | 2008-12-09 | E.I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
KR20070000689A (en) * | 2005-06-28 | 2007-01-03 | 삼성에스디아이 주식회사 | Polymer electrolyte for fuel cell, method of producing same and fuel cell system comprising same |
US8062553B2 (en) | 2006-12-28 | 2011-11-22 | E. I. Du Pont De Nemours And Company | Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith |
Non-Patent Citations (2)
Title |
---|
Evelyn K. W. Lai. Conducting polymer compsite films for the electrocatalytic reduction of oxygen. Simon Fraser university: 1997년 * |
Evelyn K. W. Lai. Conducting polymer compsite films for the electrocatalytic reduction of oxygen. Simon Fraser university: 1997년* |
Also Published As
Publication number | Publication date |
---|---|
RU2428767C1 (en) | 2011-09-10 |
KR20110100120A (en) | 2011-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Chemically durable polymer electrolytes for solid-state alkaline water electrolysis | |
Lin et al. | Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells | |
Rikukawa et al. | Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers | |
Yang et al. | Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes | |
Yang et al. | Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix | |
Smitha et al. | Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application | |
Kakati et al. | An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid | |
Lu et al. | A Self-Anchored Phosphotungstic Acid Hybrid Proton Exchange Membrane Achieved via One-Step Synthesis. | |
Karimi et al. | Potential use of deep eutectic solvents (DESs) to enhance anhydrous proton conductivity of Nafion 115® membrane for fuel cell applications | |
CN111704731B (en) | Method for producing ionomer nanoparticle dispersion liquid | |
KR101764068B1 (en) | Method of preparing polymer electrolyte membrane using perfluorinated ionomer nanodispersion and polymer electrolyte membrane prepared by the same method | |
KR101367558B1 (en) | Polymer membranes for fuel cells, based on interpolyelectrolyte complexes of polyaniline and nafion or it's analogues | |
Deepa et al. | Synthesis and electrochemical properties of blend membranes of polysulfone and poly (acrylic acid-co-2-(2-(piperazin-1-yl) ethylamino)-2-hydroxyethyl methacrylate) for proton exchange membrane fuel cell | |
Tominaga et al. | Proton-conducting composite membranes based on polybenzimidazole and sulfonated mesoporous organosilicate | |
KR102105662B1 (en) | Sulfonated polyphenylene sulfide electrolyte membrane and process for producing the same | |
CN110444792A (en) | A kind of long-chain polyfunctional group Polyvinyl alcohol anion-exchange membrane and preparation method thereof | |
Gandhi et al. | Effect of addition of zirconium tungstate, lead tungstate and titanium dioxide on the proton conductivity of polystyrene porous membrane | |
CN114243070A (en) | Proton exchange composite membrane of coupling conductive macromolecule and preparation method | |
KR20180036183A (en) | Proton conductive materials based on porous organic polymer and its manufacturing process | |
Solanki et al. | Enhanced performance of DMFC prepared by 10Cu/CeO2 catalyst and nanocomposite SPVA membranes with layer-by-layer coating of polyacrylic acid and chitosan | |
CN115181420B (en) | Ionic solvent membrane containing hydrophilic auxiliary group and preparation method and application thereof | |
KR101728772B1 (en) | Anion exchange electrolyte membrane, method for preparing the same, energy storage and water treating apparatus comprising the same | |
Kerres et al. | Monomers, polymers and cross-linked membranes for membrane fuel cells and electrolysis | |
Benavides et al. | Electrochemical comparison of two sulfonated styrene PEM membranes synthesized by different methods | |
CN108448142A (en) | A kind of application of perfluorinated sulfonic acid ion exchange membrane in a fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170216 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180116 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190116 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20200116 Year of fee payment: 7 |