KR101353545B1 - Corrosion inhibiting method of alloy - Google Patents

Corrosion inhibiting method of alloy Download PDF

Info

Publication number
KR101353545B1
KR101353545B1 KR1020120014752A KR20120014752A KR101353545B1 KR 101353545 B1 KR101353545 B1 KR 101353545B1 KR 1020120014752 A KR1020120014752 A KR 1020120014752A KR 20120014752 A KR20120014752 A KR 20120014752A KR 101353545 B1 KR101353545 B1 KR 101353545B1
Authority
KR
South Korea
Prior art keywords
alloy steel
corrosion
alloy
solution
inhibiting
Prior art date
Application number
KR1020120014752A
Other languages
Korean (ko)
Other versions
KR20130093293A (en
Inventor
정길봉
위양현
Original Assignee
재단법인 국방기술품질원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 국방기술품질원 filed Critical 재단법인 국방기술품질원
Priority to KR1020120014752A priority Critical patent/KR101353545B1/en
Publication of KR20130093293A publication Critical patent/KR20130093293A/en
Application granted granted Critical
Publication of KR101353545B1 publication Critical patent/KR101353545B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

본 발명은 합금강의 부식억제방법에 관한 것으로, 특히 부식억제제로서 NaDDC(C5H10NS2Na)를 이용하여 Cu-Ni-Fe 합금강의 부식을 억제하는 방법을 제공한다.The present invention relates to a method of inhibiting corrosion of alloy steel, and in particular, to provide a method of suppressing corrosion of Cu—Ni—Fe alloy steel using NaDDC (C 5 H 10 NS 2 Na) as a corrosion inhibitor.

Description

합금강의 부식억제방법{Corrosion inhibiting method of alloy}Corrosion inhibiting method of alloy

본 발명은 합금강의 부식억제방법에 관한 것으로, 특히 Cu-Ni-Fe 합금강의 부식을 억제하는 방법에 관한 것이다.
The present invention relates to a method of inhibiting corrosion of alloy steel, and more particularly, to a method of suppressing corrosion of Cu-Ni-Fe alloy steel.

부식(corrosion)은 금속이 외부로부터의 화학적 작용에 의해 소모되어 가는 현상으로 습식과 건식으로 크게 구별된다. 부식은 계속적으로 일어나는 성질이 있으며, 도금과 도장, 표면 산화피막의 형성, 전기방식 등의 부식 방지법이 있다.Corrosion is a phenomenon in which metal is consumed by chemical reactions from the outside. Corrosion occurs continuously and there are corrosion prevention methods such as plating and painting, surface oxide film formation, and electrical methods.

방식(anticorrosion)은 금속이 기체 또는 액체와 같은 부식성 물질의 화학작용에 의하여 침식되지 않도록 방지하는 일이다. 금속의 표면이 부식성 물질에 닿지 않도록 화학적으로 안정된 다른 물질로 덮어 주는 방법과, 금속에 다른 원소를 첨가함으로써 금속 자체를 화학적으로 안정된 합금으로 만드는 방법의 두 가지가 있다. 전자의 예로는 페인트 도장, 금속 도금(양철, 함석 등), 금속 용사, 인산염 피막처리, 법랑, 고무, 플라스틱 등을 부착시키는 방법 등이 있고, 후자의 예로는 철에 크롬, 니켈을 첨가하여 얻은 스테인리스 강이 대표적이다.Anticorrosion is to prevent metals from being eroded by the chemical action of corrosive substances such as gases or liquids. There are two ways to cover the surface of the metal with other chemically stable materials to avoid contact with corrosive materials, and to make the metal itself chemically stable alloys by adding other elements to the metal. Examples of the former include paint coating, metal plating (tin, tin, etc.), metal spraying, phosphate coating, enamel, rubber, plastic, etc., and the latter is obtained by adding chromium and nickel to iron. Stainless steel is typical.

Cu-Ni-Fe 합금강은 양호한 내부식성을 지녀서, 해수배관 등의 해수계통에 사용될 수 있다. 그러나, 이러한 Cu-Ni-Fe 합금강도 장시간 동안 해수의 부식 환경에 노출될 경우 침식을 야기시켜 파공에 이르게 된다. 이를 방지하기 위해 부식억제제를 처리할 수 있는데, 일반적인 부식억제제는 처리농도가 높고 처리비용도 높은 문제점이 있다.
Cu-Ni-Fe alloy steel has good corrosion resistance and can be used in seawater systems such as seawater piping. However, such Cu-Ni-Fe alloy steels also cause erosion when exposed to the corrosive environment of seawater for a long time, leading to breakage. In order to prevent this can be treated with a corrosion inhibitor, a general corrosion inhibitor has a high treatment concentration and high processing costs.

본 발명의 목적은 합금강, 특히 Cu-Ni-Fe 합금강에 대한 표면 부식을 억제하는 방법을 제공하는 것이다.
It is an object of the present invention to provide a method of suppressing surface corrosion for alloy steels, in particular Cu-Ni-Fe alloy steels.

본 발명은 상기 목적을 달성하기 위하여, 하기 화학식 1의 부식억제제를 포함하는 용액에 합금강을 침지시켜 합금강 표면에 부동태 피막을 형성시키는 단계를 포함하는 합금강의 부식억제방법을 제공한다.In order to achieve the above object, the present invention provides a method for inhibiting corrosion of an alloy steel, comprising the step of immersing the alloy steel in a solution containing the corrosion inhibitor of Formula 1 to form a passivation film on the surface of the alloy steel.

[화학식 1][Formula 1]

Figure 112012011738232-pat00001
Figure 112012011738232-pat00001

상기 식에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 12의 알킬기이고, M은 알칼리 금속일 수 있다.In the above formula, R 1 and R 2 are each independently an alkyl group having 1 to 12 carbon atoms, and M may be an alkali metal.

본 발명의 일 실시형태에 따르면, R1 및 R2는 각각 에틸기이고, M은 나트륨일 수 있다.According to one embodiment of the invention, R 1 and R 2 are each ethyl groups and M may be sodium.

본 발명에서 합금강은 구리를 포함하는 합금강일 수 있으며, 예를 들어 Cu-Ni-Fe 합금강일 수 있다. 본 발명에서 합금강은 침지하기 전에 탈지 및 탈청할 수 있다.In the present invention, the alloy steel may be an alloy steel including copper, for example, Cu-Ni-Fe alloy steel. In the present invention, the alloy steel can be degreased and degreased prior to dipping.

본 발명에 따르면, 합금강의 구리와 부식억제제의 황이 결합하여 복합체를 형성하는 것을 특징으로 한다.According to the present invention, the copper of the alloy steel and the sulfur of the corrosion inhibitor are combined to form a composite.

본 발명에서 용액 중 부식억제제의 농도는 50 내지 150 mg/L일 수 있고, 침지시간은 10 내지 60시간일 수 있으며, 용액 제조온도는 0 내지 40℃일 수 있다.In the present invention, the concentration of the corrosion inhibitor in the solution may be 50 to 150 mg / L, the immersion time may be 10 to 60 hours, the solution preparation temperature may be 0 to 40 ℃.

본 발명에서 용액의 pH는 8 내지 9일 수 있는데, 용액의 pH가 8 미만일 경우 염기성 화합물을 첨가하여 pH 8 이상으로 조절할 수 있으며, 이때 염기성 화합물로는 Na2CO3 또는 NaONH3을 사용할 수 있다.In the present invention, the pH of the solution may be 8 to 9, when the pH of the solution is less than 8 can be adjusted to pH 8 or more by adding a basic compound, wherein the basic compound may be used Na 2 CO 3 or NaONH 3 .

또한, 본 발명은 상술한 방법에 따라 부식억제용 부동태 피막이 형성된 합금강을 제공한다.
The present invention also provides an alloy steel in which a passivation film for corrosion inhibiting is formed according to the above-described method.

본 발명에 따르면, 해수배관 등에 사용되는 합금강, 특히 Cu-Ni-Fe 합금강의 부식방지를 위해, 특정 구조의 부식억제제를 적용하고 최적처리조건을 설정함으로써, 운용간에 발생할 수 있는 침식 및 파공을 방지할 수 있고, 이에 따라 배관손상에 따른 정비부품 및 정비시간을 절약함으로써 정비관련 소요예산을 줄일 수 있다.
According to the present invention, in order to prevent corrosion of alloy steels, particularly Cu-Ni-Fe alloy steels used in seawater piping, etc., by applying a corrosion inhibitor of a specific structure and setting the optimum treatment conditions, to prevent erosion and breakage that may occur between operations Therefore, it is possible to reduce maintenance related budget by saving maintenance parts and maintenance time due to pipe damage.

도 1은 본 발명의 일 실시형태에 따라 사용되는 부식억제제 NaDDC(C5H10NS2Na)의 구조(a), 그리고 NaDDC의 음이온인 DDC가 Cu-Ni-Fe 합금강에 흡착되어 Cu-DDC 복합체(complex)를 형성한 구조(b)를 나타낸 것이다.
도 2는 본 발명의 일 실시형태에 따라 Cu-Ni-Fe 합금강에 NaDDC(C5H10NS2Na)가 흡착(adsorption)된 구조를 입체적으로 묘사한 것으로, (a)는 위에서 본 모습이고, (b)는 측면에서 본 모습이다.
1 is a structure (a) of a corrosion inhibitor NaDDC (C 5 H 10 NS 2 Na) used in accordance with an embodiment of the present invention, and DDC, an anion of NaDDC, is adsorbed onto a Cu-Ni-Fe alloy steel, thereby providing Cu-DDC. The structure (b) which forms a complex is shown.
FIG. 2 is a three-dimensional depiction of a structure in which NaDDC (C 5 H 10 NS 2 Na) is adsorbed onto Cu—Ni—Fe alloy steel according to an embodiment of the present invention. , (b) is seen from the side.

이하, 본 발명은 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 합금강의 부식억제방법에 관한 것으로, 본 발명에 따른 방법은 하기 화학식 1의 부식억제제를 포함하는 용액에 합금강을 침지시켜 합금강 표면에 부동태 피막을 형성시키는 단계를 포함한다.The present invention relates to a corrosion inhibiting method of alloy steel, the method according to the invention comprises the step of immersing the alloy steel in a solution containing a corrosion inhibitor of the formula (1) to form a passivation film on the surface of the alloy steel.

[화학식 1][Formula 1]

Figure 112012011738232-pat00002
Figure 112012011738232-pat00002

상기 식에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 12의 알킬기이고, M은 알칼리 금속일 수 있다.In the above formula, R 1 and R 2 are each independently an alkyl group having 1 to 12 carbon atoms, and M may be an alkali metal.

바람직하게는 R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기이고, 더욱 바람직하게는 R1 및 R2는 각각 독립적으로 탄소수 1 내지 4의 알킬기이며, 가장 바람직하게는 R1 및 R2는 각각 독립적으로 탄소수 1 내지 2의 알킬기이고, 특히 바람직하게는 R1 및 R2는 각각 에틸기이다.Preferably, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, more preferably R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, and most preferably R 1 and R 2 Are each independently an alkyl group having 1 to 2 carbon atoms, and particularly preferably R 1 and R 2 are each an ethyl group.

M은 바람직하게는 나트륨 또는 칼륨이고, 더욱 바람직하게는 나트륨이다.M is preferably sodium or potassium, more preferably sodium.

본 발명에서 바람직하게 사용되는 부식억제제는 R1 및 R2이 각각 에틸기이고, M은 나트륨인 것, 즉 소디움 디에틸디티오 카르바메이트(sodium diethyldithio carbamate, 이하 NaDDC이라고 함)이며, 이 화합물의 분자식은 C5H10NS2Na이고, 그 구조는 도 1의 (a)에 나타나 있다.Corrosion inhibitors preferably used in the present invention are those wherein R 1 and R 2 are each an ethyl group, M is sodium, that is, sodium diethyldithio carbamate (hereinafter referred to as NaDDC). The molecular formula is C 5 H 10 NS 2 Na, the structure of which is shown in Figure 1 (a).

본 발명에서 사용되는 합금강은 바람직하게는 구리를 포함하는 합금강이고, 더욱 바람직하게는 Cu-Ni-Fe 합금강이다.The alloy steel used in the present invention is preferably an alloy steel containing copper, more preferably Cu-Ni-Fe alloy steel.

본 발명에 따르면, 합금강의 구리와 부식억제제의 황이 결합하여 복합체를 형성하는 것을 특징으로 한다. 특히, 도 1의 (b)에 나타낸 바와 같이, 본 발명의 바람직한 실시형태에 따르면, 부식억제제가 NaDDC이고 합금강이 Cu-Ni-Fe 합금강일 경우, NaDDC의 음이온인 DDC가 Cu-Ni-Fe 합금강에 흡착되어 Cu-DDC 복합체(complex)를 형성한다. 도 2는 Cu-Ni-Fe 합금강에 NaDDC가 흡착된 구조를 입체적으로 묘사한 것이다.According to the present invention, the copper of the alloy steel and the sulfur of the corrosion inhibitor are combined to form a composite. In particular, as shown in (b) of FIG. 1, according to a preferred embodiment of the present invention, when the corrosion inhibitor is NaDDC and the alloy steel is Cu-Ni-Fe alloy steel, DDC, which is an anion of NaDDC, is Cu-Ni-Fe alloy steel Adsorbed to form a Cu-DDC complex. 2 is a three-dimensional depiction of a structure in which NaDDC is adsorbed on Cu-Ni-Fe alloy steel.

이와 같이, Cu-Ni-Fe 합금강은 NaDDC용액에서 전기화학적인 반응이 없이 DDC- 음이온의 S원자가 Cu원자와 화학적 흡착을 하여 Cu-DDC complex를 형성함으로써 Cu원자의 부식을 억제시키는 작용을 한다. 이처럼 피처리재를 NaDDC 용액에 침지함으로써 원하는 부동태 피막을 획득할 수 있으며, 형성된 부동태 피막은 장시간 사용에도 내식성을 쉽게 잃지 않는다.In this way, Cu-Ni-Fe alloy steels suppress the corrosion of Cu atoms by forming a Cu-DDC complex by S adducting S atoms of DDC - anion with Cu atoms without electrochemical reaction in NaDDC solution. Thus, the desired passivation film can be obtained by immersing the treated material in the NaDDC solution, and the formed passivation film does not easily lose corrosion resistance even for long time use.

본 발명에서 용액 중 부식억제제의 농도는 50 내지 150 mg/L, 바람직하게는 60 내지 140 mg/L, 더욱 바람직하게는 80 내지 120 mg/L, 가장 바람직하게는 90 내지 110 mg/L이다.In the present invention, the concentration of the corrosion inhibitor in the solution is 50 to 150 mg / L, preferably 60 to 140 mg / L, more preferably 80 to 120 mg / L, and most preferably 90 to 110 mg / L.

본 발명에서 침지시간은 10 내지 60시간, 바람직하게는 12 내지 50시간, 더욱 바람직하게는 24 내지 48시간, 가장 바람직하게는 30 내지 40시간이다.Immersion time in the present invention is 10 to 60 hours, preferably 12 to 50 hours, more preferably 24 to 48 hours, most preferably 30 to 40 hours.

본 발명에서 용액 제조온도는 40℃를 넘어서면 안 되며, 바람직하게는 0 내지 40℃, 더욱 바람직하게는 10 내지 40℃, 가장 바람직하게는 20 내지 40℃이다.Solution preparation temperature in the present invention should not exceed 40 ℃, preferably 0 to 40 ℃, more preferably 10 to 40 ℃, most preferably 20 to 40 ℃.

본 발명에서 용액의 pH는 8 이상 이어야 하며, 예를 들어 8 내지 9, 바람직하게는 8 내지 8.8, 더욱 바람직하게는 8.1 내지 8.6, 가장 바람직하게는 8.2 내지 8.4이다.The pH of the solution in the present invention should be at least 8, for example 8 to 9, preferably 8 to 8.8, more preferably 8.1 to 8.6 and most preferably 8.2 to 8.4.

본 발명에서 용액의 pH가 8 미만일 경우 염기성 화합물을 첨가하여 pH 8 이상으로 조절하는 것이 바람직하다. 이때 염기성 화합물로는 NaOH, Na2CO3, NaONH3 등을 사용할 수 있다.In the present invention, when the pH of the solution is less than 8, it is preferable to adjust the pH to 8 or more by adding a basic compound. In this case, NaOH, Na 2 CO 3 , NaONH 3, etc. may be used as the basic compound.

본 발명의 가장 바람직한 실시형태에 따르면, 본 발명에 따른 Na계 부식억제제를 용해한 용액에 pH 8.2 내지 8.4, 처리농도 100 mg/L에서 36시간 동안 Cu-Ni-Fe 합금강을 침지함으로써 부식억제 효과를 최대로 얻을 수 있다.According to the most preferred embodiment of the present invention, the corrosion inhibitory effect is obtained by immersing the Cu-Ni-Fe alloy steel for 36 hours at a pH of 8.2 to 8.4 and a treatment concentration of 100 mg / L in a solution containing Na-based corrosion inhibitor according to the present invention. You can get the maximum.

본 발명에서 피처리제인 합금강은 탈지 및 탈청된 상태를 요한다. 탈지는 유지류를 제거하는 작업으로, 용제 세정법, 알칼리 세정법, 에멀젼 세정법, 전해 알칼리 세정법, 초음파 세정법 등의 화학적 처리법; 포를 이용한 탈지법, 소부법, 분사법 등의 기계적(물리적) 세정법이 있다. 탈청은 탈지가 끝나고 금속 표면에 생성, 부착되어 있는 산화물이나 수산화물 층을 제거하는 작업으로, 산세법, 전해 산세법, 알칼리에 의한 탈청 등의 화학적 처리법; 튜브 크리너 법, 화염 세정법, 샌드 블라스트 법, 진공 블라스트 법, 와이어 브러시 법, 샌드 페이퍼 법 등의 기계적 처리법; 인산염 피막 처리법, 크로메이트 피막 처리법, 양극 산화 피막 처리법 등의 화성처리가 있다.In the present invention, the alloy steel, which is a treatment target, requires a degreasing and degreasing state. Degreasing | defatting is an operation | work which removes fats and oils, Chemical processing methods, such as a solvent washing method, an alkali washing method, an emulsion washing method, an electrolytic alkali washing method, an ultrasonic washing method; There are mechanical (physical) cleaning methods such as degreasing, firing, and spraying using a cloth. Degreasing is an operation for removing oxides or hydroxide layers formed and adhered to the metal surface after degreasing, and includes chemical treatment methods such as pickling, electrolytic pickling and alkali degreasing; Mechanical treatment methods such as a tube cleaner method, a flame cleaning method, a sand blast method, a vacuum blast method, a wire brush method, and a sand paper method; There are chemical conversion treatments such as phosphate coating, chromate coating and anodizing.

또한, 본 발명은 상술한 방법에 따라 부식억제용 부동태 피막이 형성된 합금강을 제공한다.The present invention also provides an alloy steel in which a passivation film for corrosion inhibiting is formed according to the above-described method.

부동태 피막(Film on Passive State Metals)은 플래드 전위보다도 높은 전위로 금속상에 발생하는 산화물, 수화산화물의 박막을 말한다. 예를 들어, Fe-Cr 합금의 경우, 그 두께는 두껍더라도 6 ㎚ 정도이며, 전위가 높을수록 두꺼워지며, Cr량이 많을수록 얇아진다. 플래드 전위(Flade Potential)는 Fe, Ni, Cr 등 부동태화 되기 쉬운 용액과의 조합으로 부동태화할 때, 부동태화가 시작되는 전위를 말하며, 금속의 내식성을 판단하는 하나의 수단이다.Film on Passive State Metals refers to thin films of oxides and hydrides that occur on metals at potentials higher than the plade potential. For example, in the case of a Fe-Cr alloy, the thickness thereof is about 6 nm even though it is thick. The higher the potential is, the thicker it is, and the larger the amount of Cr, the thinner it is. Plade Potential refers to a potential at which passivation starts when passivating in combination with a solution that is easily passivated, such as Fe, Ni, Cr, etc., and is a means of determining the corrosion resistance of a metal.

[실시예][Example]

부식억제제로서 NaDDC(순도 99.9% 이상)를 이용하여 Cu-Ni-Fe 합금강의 배관을 처리하였다. pH 8.2, 처리농도 50 내지 150 mg/L의 NaDDC 용액을 이용하여 배관을 12 내지 36시간 동안 순환시켜 침지시켰다.The pipe of Cu-Ni-Fe alloy steel was processed using NaDDC (purity 99.9% or more) as a corrosion inhibitor. NaDDC solution at pH 8.2, treatment concentration 50-150 mg / L was immersed by circulating the pipe for 12-36 hours.

[시험예][Test Example]

표 1은 Cu-Ni-Fe 합금강에 대한 NaDDC 처리농도 및 처리시간에 따른 부식억제효율(Inhibition efficiencies)을 나타낸 것이다.Table 1 shows the corrosion inhibition efficiency (Inhibition efficiencies) according to NaDDC treatment concentration and treatment time for Cu-Ni-Fe alloy steel.

부식억제효율은 다음 식으로 계산할 수 있다.The corrosion inhibition efficiency can be calculated by the following equation.

[수학식 1][Equation 1]

Figure 112012011738232-pat00003
Figure 112012011738232-pat00003

상기 식에서 (CR)p 및 (CR)a는 각각 부식억제제가 있을 때와 없을 때의 부식속도를 나타난다. CR은 다음 식으로 계산할 수 있다.Where (CR) p and (CR) a represent the corrosion rates with and without a corrosion inhibitor, respectively. CR can be calculated by the following equation.

[수학식 2]&Quot; (2) "

Figure 112012011738232-pat00004
Figure 112012011738232-pat00004

상기 식에서 w는 시료(합금강)의 중량 손실, t는 침지시간, A는 표면적을 나타낸다.Where w is the weight loss of the sample (alloy steel), t is the immersion time, and A is the surface area.

concentration
(㎎/L)
concentration
(Mg / L)
Time
(hrs)
Time
(hrs)
Polarization potential
(V)
Polarization potential
(V)
Corrosion current density
(I/A㎝-2)
Corrosion current density
(I / Acm -2 )
IE(%)IE (%)
5050 1212 -0.361-0.361 7.935×10-9 7.935 × 10 -9 56.6756.67 2424 -0.278-0.278 5.799×10-9 5.799 × 10 -9 68.3368.33 3636 -0.289-0.289 1.526×10-9 1.526 × 10 -9 91.6791.67 100100 1212 -0.257-0.257 5.493×10-9 5.493 × 10 -9 70.0070.00 2424 -0.282-0.282 3.357×10-9 3.357 × 10 -9 81.6781.67 3636 -0.286-0.286 1.221×10-9 1.221 × 10 -9 93.3393.33 150150 1212 -0.267-0.267 3.052×10-9 3.052 × 10 -9 83.3383.33 2424 -0.271-0.271 1.465×10-8 1.465 × 10 -8 20.0020.00 3636 -0.494-0.494 1.221×10-8 1.221 × 10 -8 33.3333.33

표 1에서 확인할 수 있는 바와 같이, 부식억제효율은 NaDDC 농도와 침지시간에 따라 영향을 많이 받았는데, NaDDC 농도가 100 mg/L이고 처리시간이 36시간일 때, 부식억제효율이 93% 이상으로 가장 높았다.As can be seen from Table 1, the corrosion inhibition efficiency was greatly influenced by NaDDC concentration and immersion time. When NaDDC concentration is 100 mg / L and treatment time is 36 hours, the corrosion inhibition efficiency is more than 93%. High.

Claims (14)

하기 화학식 1의 부식억제제를 포함하는 용액에 합금강을 침지시켜 합금강 표면에 부동태 피막을 형성시키는 단계를 포함하며,
합금강은 Cu-Ni-Fe 합금강이고,
합금강의 구리와 부식억제제의 황이 결합하여 복합체를 형성하며,
용액 중 부식억제제의 농도는 50 내지 150 mg/L이고,
침지시간은 10 내지 60시간이며,
용액의 pH는 8 내지 9인 것을 특징으로 하는 합금강의 부식억제방법:
[화학식 1]
Figure 112013079913850-pat00005

상기 식에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 12의 알킬기이고, M은 알칼리 금속이다.
Comprising the step of immersing the alloy steel in a solution containing a corrosion inhibitor of the formula (1) to form a passivation film on the alloy steel surface,
Alloy steel is Cu-Ni-Fe alloy steel,
Copper of alloy steel and sulfur of corrosion inhibitor combine to form a composite,
The concentration of corrosion inhibitor in the solution is 50 to 150 mg / L,
Immersion time is 10 to 60 hours,
Method of inhibiting corrosion of alloy steel, characterized in that the pH of the solution is 8 to 9:
[Chemical Formula 1]
Figure 112013079913850-pat00005

In the above formula, R 1 and R 2 are each independently an alkyl group having 1 to 12 carbon atoms, and M is an alkali metal.
제1항에 있어서,
R1 및 R2는 각각 에틸기인 것을 특징으로 하는 합금강의 부식억제방법.
The method of claim 1,
R 1 and R 2 is a method for inhibiting corrosion of alloy steel, characterized in that each is an ethyl group.
제2항에 있어서,
M은 나트륨인 것을 특징으로 하는 합금강의 부식억제방법.
3. The method of claim 2,
M is sodium corrosion inhibiting method of the alloy steel, characterized in that.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
용액의 pH가 8 미만일 경우 염기성 화합물을 첨가하여 pH 8 이상으로 조절하는 것을 특징으로 하는 합금강의 부식억제방법.
The method of claim 1,
When the pH of the solution is less than 8, the corrosion control method of the alloy steel, characterized in that to adjust the pH to 8 or more by adding a basic compound.
제10항에 있어서,
염기성 화합물은 Na2CO3 또는 NaONH3인 것을 특징으로 하는 합금강의 부식억제방법.
The method of claim 10,
The basic compound is Na 2 CO 3 or NaONH 3 The method of inhibiting corrosion of alloy steels.
제1항에 있어서,
용액 제조온도는 0 내지 40℃인 것을 특징으로 하는 합금강의 부식억제방법.
The method of claim 1,
Solution production temperature is 0 to 40 ℃ method of inhibiting corrosion of alloy steels.
제1항에 있어서,
합금강을 침지하기 전에 탈지 및 탈청하는 것을 특징으로 하는 합금강의 부식억제방법.
The method of claim 1,
A method of inhibiting corrosion of alloy steels, characterized by degreasing and degreasing before dipping the alloy steels.
제1항에 따라 부식억제용 부동태 피막이 형성된 합금강.Alloy steel with a passivation film for corrosion inhibition according to claim 1.
KR1020120014752A 2012-02-14 2012-02-14 Corrosion inhibiting method of alloy KR101353545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120014752A KR101353545B1 (en) 2012-02-14 2012-02-14 Corrosion inhibiting method of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120014752A KR101353545B1 (en) 2012-02-14 2012-02-14 Corrosion inhibiting method of alloy

Publications (2)

Publication Number Publication Date
KR20130093293A KR20130093293A (en) 2013-08-22
KR101353545B1 true KR101353545B1 (en) 2014-01-23

Family

ID=49217626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120014752A KR101353545B1 (en) 2012-02-14 2012-02-14 Corrosion inhibiting method of alloy

Country Status (1)

Country Link
KR (1) KR101353545B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580301A1 (en) * 2004-03-26 2005-09-28 National Starch and Chemical Investment Holding Corporation Sulfur based corrosion inhibitors
US20070102671A1 (en) 2005-09-30 2007-05-10 Martin Kendig Corrosion inhibitors, methods of production and uses thereof
EP2027216B1 (en) * 2006-05-10 2010-01-20 The Boeing Company Article having a hexavalent-chromium-free, corrosion-inhibiting organic conversion coating thereon, and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580301A1 (en) * 2004-03-26 2005-09-28 National Starch and Chemical Investment Holding Corporation Sulfur based corrosion inhibitors
US20070102671A1 (en) 2005-09-30 2007-05-10 Martin Kendig Corrosion inhibitors, methods of production and uses thereof
EP2027216B1 (en) * 2006-05-10 2010-01-20 The Boeing Company Article having a hexavalent-chromium-free, corrosion-inhibiting organic conversion coating thereon, and its preparation

Also Published As

Publication number Publication date
KR20130093293A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5845563B2 (en) Manufacturing method of steel plate for containers
WO2011118588A1 (en) Steel sheet for container and method for producing same
KR102572078B1 (en) Passivation Surface Treatment of Stainless Steel
CN103710688B (en) The without phosphorus transforming agent of a kind of faintly acid
CN104073849B (en) A kind of technique of Sintered NdFeB magnet electroplating nickel on surface tungsten phosphorus
CN102482783A (en) Multistage method for treating metal surfaces prior to dip painting
CN107366010A (en) A kind of stainless steel pipes and device context highly corrosion resistant processing method
KR102373768B1 (en) Anti-corrosion treatment method for metal surfaces with reduced pickling of materials
LEIDHEISER Jr A review of proposed mechanisms for corrosion inhibition and passivation by metallic cations
CN104169468A (en) Multi-layer protective coating for an aluminum heat exchanger
LU102072B1 (en) Method for performing plating to prevent pipe from sulfur corrosion
JP2009001853A (en) Steel sheet for vessel, and method for producing the same
KR102369545B1 (en) Compositions for reducing material removal by pickling in pickling of metal surfaces comprising galvanized and/or ungalvanized steel
KR101353545B1 (en) Corrosion inhibiting method of alloy
JP5827792B2 (en) Chemically treated iron-based materials
EP3305943A1 (en) Aqueous solution and method for improving corrosion resistance of a cr(iii) conversion coating and modified cr(iii) conversion coating
CN102464902B (en) A kind of surface treatment method of chromium spelter coating of Nd-Fe-Bo permanent magnet material
JP5259168B2 (en) Surface treatment agent and steel plate
CN106367753A (en) Preparation method for corrosion-resistant hydrophobic film on metal surface
Fan et al. Studies of the conversion coatings formed by combined use of lanthanum salt and benzotriazole on commercial brass
CN106148935A (en) Passivating solution and deactivating process for the treatment of
JP2007321205A (en) Aqueous solution for metal surface treatment and metal surface treatment method utilizing the aqueous solution
CN109023271A (en) A kind of protective coating and preparation method thereof of superelevation corrosion-resistant R-Fe-B material
JP2013079422A (en) Production method for zinc-electroplated steel sheet
JP6682260B2 (en) Manufacturing method of anti-rust steel plate for automobile

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200114

Year of fee payment: 7