KR101351280B1 - Anion exchange membrane for redox flow battery and method for preparing the same - Google Patents

Anion exchange membrane for redox flow battery and method for preparing the same Download PDF

Info

Publication number
KR101351280B1
KR101351280B1 KR1020110088980A KR20110088980A KR101351280B1 KR 101351280 B1 KR101351280 B1 KR 101351280B1 KR 1020110088980 A KR1020110088980 A KR 1020110088980A KR 20110088980 A KR20110088980 A KR 20110088980A KR 101351280 B1 KR101351280 B1 KR 101351280B1
Authority
KR
South Korea
Prior art keywords
exchange membrane
anion exchange
membrane
vbc
redox
Prior art date
Application number
KR1020110088980A
Other languages
Korean (ko)
Other versions
KR20130025582A (en
Inventor
황택성
백영민
곽노석
박희만
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020110088980A priority Critical patent/KR101351280B1/en
Publication of KR20130025582A publication Critical patent/KR20130025582A/en
Application granted granted Critical
Publication of KR101351280B1 publication Critical patent/KR101351280B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

레독스 전지용 음이온교환막 및 이를 제조하는 방법에 관한 것이다. 본 발명에 따른 음이온교환막은 4-비닐벤질클로라이드(VBC), 스티렌(St) 및 2-히드록시에틸 아크릴레이트(HEA) 단량체를 이용하여 공중합체를 합성한 후, 아민화 반응 및 가교 반응시키는 것을 포함한다. 본 발명에서는 구조상 치수안정성이 우수한 벤젠구조를 대부분 함유하고 있으며 막의 제조 시 가교 반응이 포함되어 내구성이 우수하고, 레독스 쌍인 바나듐 이온의 투과가 없어 효율적으로 레독스 흐름 전지에서 사용이 가능한 음이온교환막 및 이에 대한 제조방법을 제공한다.An anion exchange membrane for a redox battery and a method of manufacturing the same. The anion exchange membrane according to the present invention synthesizes a copolymer using 4-vinylbenzyl chloride (VBC), styrene (St) and 2-hydroxyethyl acrylate (HEA) monomer, and then performs amination and crosslinking reaction. Include. In the present invention, the anion-exchange membrane containing most of the benzene structure excellent in structural dimensional stability, including the crosslinking reaction in the manufacture of the membrane is excellent in durability, there is no permeation of vanadium ions, which is a redox pair, and can be efficiently used in a redox flow battery; It provides a manufacturing method for this.

Description

레독스-흐름 전지용 음이온교환막 및 이의 제조방법 {Anion exchange membrane for redox flow battery and method for preparing the same}Anion exchange membrane for redox flow battery and method for preparing the same {Anion exchange membrane for redox flow battery and method for preparing the same}

본 발명은 레독스-흐름 전지용 음이온교환막 및 이의 제조방법에 관한 것이다. 보다 상세하게는, 본 발명은 4-비닐벤질 클로라이드(4-vinylbenzyl chloride, VBC), 스티렌(styren) 및 2-히드록시에틸 아크릴레이트(2-hydroxyethyl acrylate, HEA) 단량체를 이용하여 공중합체를 합성한 후, 아민화 반응 및 가교 반응을 통하여 음이온교환막을 제조하는 방법에 관한 것이다.The present invention relates to an anion exchange membrane for a redox-flow battery and a method for preparing the same. More specifically, the present invention synthesizes a copolymer using 4-vinylbenzyl chloride (VBC), styren and 2-hydroxyethyl acrylate (HEA) monomer. After that, the present invention relates to a method for producing an anion exchange membrane through an amination reaction and a crosslinking reaction.

레독스-흐름 전지 (redox flow battery, RFB) 는 태양열, 풍력 및 조력 에너지와 같은 친환경적 에너지의 저장기술 중의 하나로서 세계적인 환경문제 및 에너지원의 확보 문제와 맞물려 관심이 증가되고 있다.Redox flow battery (RFB) is one of the environmentally friendly energy storage technologies such as solar, wind and tidal energy, and is increasing interest in conjunction with global environmental problems and securing energy sources.

RFB는 전해액 중 활물질의 산화 환원반응에 의한 충방전 시스템으로 전해액의 화학적 에너지를 전기에너지 형태로 저장하는 축전장치이다. 1973년 NASA에서 연구가 시작된 이래 1980년 M. Skyllas-Kazacos 등이 시스템을 제작 운전하였으며 이후 많은 연구자들에 의해 레독스 커플, 전극소재 및 이온교환막의 개발 및 레독스-흐름 전지 내에서 성능시험에 대한 연구가 활발히 진행되고 있다.RFB is a charge and discharge system by the redox reaction of the active material in the electrolyte is a power storage device for storing the chemical energy of the electrolyte in the form of electrical energy. Since the research began at NASA in 1973, M. Skyllas-Kazacos et al. Built and operated the system in 1980. Since then, many researchers have been involved in the development of redox couples, electrode materials and ion exchange membranes and performance tests in redox-flow batteries Research is actively being conducted.

RFB는 레독스 커플에 따라 Cr/Cr, V/Sn, V/Fe, 및 V/V 등과 같은 종류가 있다. 그 중 전 바나듐 레독스-흐름 전지(All-vanadium redox flow battery, VRB)는 긴 수명, 빠른 반응시간, 높은 충방전 효율로 많은 관심을 받고 있다.RFBs are classified into Cr / Cr, V / Sn, V / Fe, and V / V according to the redox couple. Among them, all vanadium redox flow battery (VRB) has received much attention due to its long life, fast reaction time and high charge and discharge efficiency.

이온교환막은 VRB의 핵심 소재로 전지의 수명 및 가격 결정에 중요한 역할을 하며. VRB용 이온교환막은 전해질로 전이금속 포함 강산성 물질을 사용하고 있어 선택투과성은 물론 내산성, 내산화성이 우수해야 하고 전기저항 및 확산계수가 작고, 내화학성 및 기계적 물성이 우수하고 제조 가격이 저렴해야 한다. 현재 VRB에 적용하는 이온교환막은 Daramic, Selemion사의 CMV 막, Selemion사 AMV 막 그리고 Dufone사의 Nafion 등이 있다. 그러나 Daramic, Selemion사의 CMV 막과 Selemion사 AMV 막은 VRB에서 내구성이 낮으며, 듀퐁 사의 Nafion 막은 바나듐 이온 투과에 의한 에너지 효율이 낮은 단점이 있다.Ion exchange membrane is the core material of VRB and plays an important role in battery life and price determination. The ion exchange membrane for VRB uses strong acid-containing materials including transition metals as electrolytes, so it must have excellent permeability, acid resistance and oxidation resistance, low electrical resistance and diffusion coefficient, excellent chemical resistance and mechanical properties, and low manufacturing cost. . Current ion exchange membranes for VRB include Daramic, Selemion's CMV membrane, Selemion's AMV membrane, and Dufone's Nafion. However, Daramic, Selemion's CMV membrane and Selemion's AMV membrane have low durability in VRB, and Dupont's Nafion membrane has low energy efficiency due to vanadium ion permeation.

본 발명은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 4-비닐벤질 클로라이드(VBC), 스티렌(St) 및 2-히드록시에틸 아크릴레이트(HEA)를 합성한 후 아민화 반응 및 가교 반응을 통하여 제조한 바나듐 이온 투과도가 적고 내구성이 우수한 이온교환막 및 이에 대한 제조방법을 제공하는데 목적이 있다.The present invention has been made to solve the problems of the prior art, the object of the present invention is the synthesis of 4-vinylbenzyl chloride (VBC), styrene (St) and 2-hydroxyethyl acrylate (HEA) and then amination It is an object of the present invention to provide an ion exchange membrane having low vanadium ion permeability and excellent durability and a method for manufacturing the same, which are prepared through the reaction and the crosslinking reaction.

이러한 과제를 해결하는 본 발명의 요지는 다음과 같다.The gist of the present invention to solve such a problem is as follows.

(1) 벤젠구조를 가지고 있어 치수안정성이 우수하며 메틸 클로라이드기를 함유하고 있어 클로로메틸화 반응 없이 아민화 반응이 가능한 4-비닐벤질 클로라이드 단량체, 벤젠구조를 가지고 있어 치수 안정성이 우수한 스티렌 그리고 가교반응이 가능하며 유연성을 제공하는 2-히드록시에틸 아크릴레이트를 자유 라디칼 중합을 통하여 합성하는 단계.(1) It has benzene structure, which has excellent dimensional stability, and contains methyl chloride group, so it has 4-vinylbenzyl chloride monomer which can be amination reaction without chloromethylation reaction. Synthesizing through free radical polymerization a 2-hydroxyethyl acrylate that provides flexibility.

(2) 상기 (1)에서 합성된 공중합체에 이온교환능력을 부여하기 위하여 4급 아민을 이용하여 아민화 반응을 진행하는 단계.(2) proceeding the amination reaction using a quaternary amine to give ion exchange capacity to the copolymer synthesized in (1).

(3) 상기 (2)에서 합성된 아민화된 공중합체에 글루타릭 디알데하이드(glutaric dialdehyde)를 가교제 첨가하여 캐스팅 방법을 이용하여 이온교환막을 제조하는 단계.(3) preparing an ion exchange membrane using a casting method by adding a crosslinking agent to glutamine dialdehyde in the aminated copolymer synthesized in (2).

(4) 상기 (1)~(3)을 포함하는 레독스 전지용 음이온교환막의 제조 방법.(4) The manufacturing method of the anion exchange membrane for redox batteries containing said (1)-(3).

(5) 막의 두께가 0.01~0.017 cm인 레독스 전지용 음이온교환막(5) Anion exchange membrane for redox battery whose thickness is 0.01 ~ 0.017 cm

(6) 막의 이온교환용량이 0.41~1.17 meq/g이고 함수율이 22.9~40.1%인 음이온교환막.(6) Anion exchange membrane having an ion exchange capacity of 0.41 to 1.17 meq / g and a water content of 22.9 to 40.1%.

(7) 합성물의 VBC의 몰비가 1.63~2.29 임을 특징으로 하는 음이온교환막.(7) Anion exchange membrane, characterized in that the molar ratio of VBC of the compound is 1.63 ~ 2.29.

VBC의 몰비가 1.63 미만일 경우 4급 아민의 아민화 반응을 할 수 있는 site가 부족하여 이온교환능력이 높지 않으며, 2.29 초과일 경우 막의 함수율이 커 레독스 전지용 음이온교환막으로서 적합하지 못하다.If the molar ratio of VBC is less than 1.63, the ion exchange capacity is not high due to the lack of sites capable of amination of quaternary amines.

본 발명에 따른 레독스 전지용 음이온교환막은 구조상 치수안정성이 우수한 벤젠구조를 대부분 함유하고 있으며 막의 제조 시 가교 반응이 포함되어 내구성이 우수하다. 또한 레독스 쌍인 바나듐 이온의 투과가 없어 효율이 우수한 음이온교환막을 제공한다. 본 발명은 내화학성 및 내구성을 필요로 하는 레독스 흐름 전지에서 사용이 가능한 내구성이 우수하며 효율이 우수한 레독스 흐름 전지용 음이온교환막 및 이에 대한 제조방법을 제공한다.The anion exchange membrane for redox batteries according to the present invention contains most of the benzene structure with excellent dimensional stability in structure and includes a crosslinking reaction in the preparation of the membrane, and thus has excellent durability. In addition, there is no permeation of vanadium ions, which are redox pairs, to provide an anion exchange membrane having excellent efficiency. The present invention provides an anion exchange membrane for a redox flow battery having excellent durability and excellent efficiency that can be used in a redox flow battery requiring chemical resistance and durability, and a manufacturing method thereof.

도 1은 본 발명 레독스 흐름 전지용 음이온교환막 제조방법을 도식화한 것이다.
도 2는 본 발명 레독스 흐름 전지용 음이온교환막의 제조 메카니즘이다.
1 is a schematic diagram illustrating a method for preparing an anion exchange membrane for a redox flow battery of the present invention.
Figure 2 is a production mechanism of the anion exchange membrane for the redox flow battery of the present invention.

본 발명은 레독스 흐름 전지용 음이온교환막 및 이에 대한 제조방법으로써, 본 발명을 보다 상세히 설명하면 다음과 같다.The present invention is an anion exchange membrane for a redox flow battery and a method for manufacturing the same, and the present invention will be described in more detail as follows.

본 발명은 VBC-co-St-co-HEA 합성과정, VBC-co-St-co-HEA 공중합체의 아민화 과정, 아민화된 공중합체에 가교제를 첨가하여 막을 제조하는 가교 과정으로 나눌 수 있다.The present invention can be divided into VBC-co-St-co-HEA synthesis process, amination process of the VBC-co-St-co-HEA copolymer, crosslinking process for preparing a membrane by adding a crosslinking agent to the aminated copolymer. .

(1) VBC-co-St-co-HEA 합성 단계(1) VBC-co-St-co-HEA synthesis step

교반기, 냉각기, 질소 주입구, 시료 주입구 장치가 부착된 1 L 4구 플라스크 반응기에 용매인 톨루엔과 4-비닐벤질 클로라이드(VBC), 스티렌(St), 2-히드록시에틸 아크릴레이트(HEA) 단량체를 넣고 중합 반응을 진행한다. 중합반응은 질소분위기 하에 70 에서 36시간 동안 수행하였고, 반응물을 증류수로 세척한 후 25 진공오븐에서 12시간 건조시켜 공중합체를 합성한다.Toluene, 4-vinylbenzyl chloride (VBC), styrene (St), and 2-hydroxyethyl acrylate (HEA) monomers were added to a 1 L four-necked flask reactor equipped with a stirrer, a cooler, a nitrogen inlet, and a sample inlet device. And proceed with the polymerization reaction. The polymerization was carried out in a nitrogen atmosphere for 70 to 36 hours, the reaction was washed with distilled water and then dried in a 25 vacuum oven for 12 hours to synthesize a copolymer.

(2) VBC-co-St-co-HEA 공중합체의 아민화 단계(2) Amination Step of VBC-co-St-co-HEA Copolymer

상기 (1)에서 합성한 공중합체에 아민기를 도입하기 위하여 공중합체의 아민화 반응을 진행하는 단계이다. 아민화 반응을 위하여 공중합체를 N,N-디메틸포름아미드(N,N-dimethylformamide)에 60wt%로 용해시킨 후 4급 아민의 함량을 VSH 공중합체의 1.5 몰 비로 하여 상온에서 3시간 동안 아민화 반응을 진행한다.In order to introduce an amine group into the copolymer synthesized in (1), the amination reaction of the copolymer is performed. For the amination reaction, the copolymer was dissolved in N, N-dimethylformamide (N, N-dimethylformamide) at 60wt%, and the amination of the quaternary amine at 1.5 molar ratio of VSH copolymer was performed at room temperature for 3 hours. Proceed with the reaction.

(3) 아민화된 공중합체에 가교제를 첨가하여 막을 제조하는 가교 단계(3) crosslinking step of preparing a membrane by adding a crosslinking agent to the aminated copolymer

음이온교환막을 제조하기 위해서 (2)에서 제조된 아민화된 공중합체에 글루타릭 디알데하이드(glutaric dialdehyde)를 혼합한 후 독터 블레이드(doctor blade)를 이용하여 두께(120)를 조절하고 캐스팅한 후, 80 진공오븐에서 7시간 건조하여 음이온교환막을 제조한다. 제조된 음이온교환막을 1 M KOH 용액에 24시간 동안 함침시켜 OH- 형 음이온교환막을 제조하였다.
In order to prepare an anion exchange membrane, glutaric dialdehyde was mixed with the aminated copolymer prepared in (2), and then the thickness 120 was adjusted and cast using a doctor blade. After drying for 7 hours at 80 vacuum oven to prepare an anion exchange membrane. The prepared anion exchange membrane was impregnated with 1 M KOH solution for 24 hours to prepare an OH-type anion exchange membrane.

[실시예1 내지 실시예15][Examples 1 to 15]

상기 (1)~(3)단계를 통하여 제조된 음이온교환막의 VBC, St, HEA, TMA 그리고 가교제 GA의 함량을 하기 표 1에 나타내었다.The contents of VBC, St, HEA, TMA and the crosslinking agent GA of the anion exchange membrane prepared through the steps (1) to (3) are shown in Table 1 below.

Figure 112011068785022-pat00001
Figure 112011068785022-pat00001

[실험예1 내지 실험예15][Experimental Example 1 to Example 15]

상기 표 1에 대한 이온교환용량을 측정하기 위하여 Mohr 적정법을 이용하여 시료를 NaCl용액에 침적시켜 제4급 암모늄기를 -N+(CH3)3Cl 형태로 완전히 치환시킨 후 다시 0.5 M Na2CO3 용액에 침적시켜 N+(CH3)3CO3 -로 치환하고, 이 용액에 5 % 크롬산칼륨 용액을 1~2방울 적가한 후 AgNO3로 적갈색 침전이 일어날 때까지 적가하여 소모된 AgNO3의 양을 구하여 식 (2)에 의해 음이온교환막의 이온교환용량을 계산하였다.In order to measure the ion exchange capacity for Table 1, the sample was immersed in NaCl solution using Mohr titration to completely displace the quaternary ammonium group in the form of -N + (CH 3 ) 3 Cl, and then again 0.5 M Na 2 CO. immersed in the third solution N + (CH 3) 3 CO 3 - to a substituted and, after dropwise addition of 5% potassium chromate solution was 1 to 2 drops to this solution was added dropwise until occur maroon precipitated with AgNO 3 consumption AgNO 3 The ion exchange capacity of the anion exchange membrane was calculated by equation (2).

Figure 112011068785022-pat00002
Figure 112011068785022-pat00002

여기서는 건조된 막의 무게, 은 소모된 AgNO3의 부피, 은 적정에 사용된 AgNO3 용액의 농도이다. 측정한 이온교환능력 값은 표 2에 나타내었다.Here is the weight of the dried membrane, the volume of AgNO 3 consumed, and the concentration of AgNO 3 solution used for titration. The measured ion exchange capacity values are shown in Table 2.

Figure 112011068785022-pat00003
Figure 112011068785022-pat00003

[실험예16 내지 실험예30]Experimental Examples 16 to 30

상기 표 1에 대한 함수율 측정을 위하여 3cm×3cm로 절단한 건조된 이온교환막의 무게를 측정하고, 이들을 증류수에 24시간 동안 침적시켜 충분히 팽윤시킨 후 이온교환막 표면의 수분을 제거하고 무게를 측정한 후 하기 식에 의해 음이온교환막의 함수율을 측정하였다. 측정된 함수율 값을 표 3에 나타내었다.After measuring the weight of the dried ion-exchange membrane cut to 3cm × 3cm for the moisture content for Table 1, and swelled sufficiently by dipping them in distilled water for 24 hours after removing the moisture on the surface of the ion-exchange membrane and weighed The water content of the anion exchange membrane was measured by the following formula. The measured moisture content values are shown in Table 3.

Figure 112011068785022-pat00004
Figure 112011068785022-pat00004

Figure 112011068785022-pat00005
Figure 112011068785022-pat00005

[실험예31 내지 실험예45][Examples 31 to 45]

상기 표 1에 대한 레독스 전지 효율 테스트를 위하여 Maccor사의 Maccor 4000을 이용하여 효율 측정을 실시하였다. 이온교환막의 반응이 일어나는 면적은 6 cm2이고 충전 및 방전을 시작할 때 2.0 mol/L V(IV) 용액 3 ml와 2.0 mol/L V(III) 용액 3ml를 카본 펠트(carbon felt)에 주입하고 진공펌프를 이용하여 carbon felt에 남아있는 잔여 공기를 완전히 제거한 후에 실험을 진행하였다. 충전 및 방전시 전압의 최고와 최저점을 각각 1.6 V와 0.8 V로 고정하였으며 전류밀도는 40 mA/cm2으로 하여 충전 및 방전을 100회 반복하여 AVSH 이온교환막의 충방전효율과 에너지효율 및 전압효율을 측정하였다. 측정된 효율은 표 4에 나타나 있다.For the redox battery efficiency test for Table 1, the efficiency measurement was performed using Maccor 4000 Maccor. The reaction area of the ion exchange membrane is 6 cm2, and 3 ml of 2.0 mol / LV (IV) solution and 3 ml of 2.0 mol / LV (III) solution are injected into the carbon felt at the start of charging and discharging. The experiment was carried out after removing the residual air remaining on the carbon felt. The maximum and minimum points of the voltage during charging and discharging were fixed at 1.6 V and 0.8 V, respectively, and the current density was 40 mA / cm2. Measured. The measured efficiencies are shown in Table 4.

Figure 112011068785022-pat00006
Figure 112011068785022-pat00006

[실험예46]Experimental Example 46

상기 실시예 15에 대한 음이온교환막의 내구성 테스트를 위하여 막을 일정한 크기 (55 cm)로 자른 후 진공오븐에서 24시간 동안 완전히 건조시킨 후에 각각 2.0 mol/L의 황산 용액에 용해되어 있는 2.0 mol/L의 V(III), V(IV), V(V) 용액에 넣어 시간에 따른 무게 변화를 관찰하여 다음 식에 의해 계산하였다. V(II)에 대한 내구성 시험은 V(II)가 공기 중에서 산화가 빠르게 일어나 측정할 수가 없었다.For durability test of the anion exchange membrane for Example 15, the membrane was cut to a constant size (55 cm) and dried completely in a vacuum oven for 24 hours and then dissolved in 2.0 mol / L sulfuric acid solution of 2.0 mol / L, respectively. It was calculated by the following equation by observing the change in weight over time in the V (III), V (IV), V (V) solution. Durability test for V (II) could not be measured due to rapid oxidation of V (II) in air.

Figure 112011068785022-pat00007
Figure 112011068785022-pat00007

위 식에서 W1과 W2는 각각 건조된 막의 무게와 변화된 막의 무게를 나타낸다. 측정된 내구성 평가는 하기 표 5에 나타나 있다.In the above formula, W 1 and W 2 represent the weight of the dried membrane and the changed membrane weight, respectively. The durability ratings measured are shown in Table 5 below.

Figure 112011068785022-pat00008
Figure 112011068785022-pat00008

[비교예 1 내지 4][Comparative Examples 1 to 4]

레독스 전지에 사용이 가능한 상용화 막인 Nafion 117을 상기 실험예와 동일한 실험 방법으로 성능을 측정하였다. 측정한 함수율, 이온교환용량, 레독스 전지 효율, 내구성 평가의 결과값은 하기 표 6 내지 9에 나타나 있다.The performance of Nafion 117, a commercially available membrane that can be used in a redox battery, was measured by the same experimental method as the above experimental example. The measured water content, ion exchange capacity, redox battery efficiency, and the results of durability evaluation are shown in Tables 6 to 9 below.

Figure 112011068785022-pat00009
Figure 112011068785022-pat00009

Figure 112011068785022-pat00010
Figure 112011068785022-pat00010

Figure 112011068785022-pat00011
Figure 112011068785022-pat00011

Figure 112011068785022-pat00012
Figure 112011068785022-pat00012

이상에서는 본 발명의 바람직한 구체예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined in the following claims. It can be understood that it is possible.

Claims (6)

4-비닐벤질클로라이드(4-vinylbenzyl chloride, VBC), 스티렌(styrene, St) 및 2-히드록시에틸아크릴레이트(2-hydroxyethyl acrylate, HEA)의 공중합체를 합성한 후, 아민화 반응 및 가교 반응을 통하여 제조한 음이온 교환막.
4-vinylbenzyl chloride (VBC), styrene (styrene, St) and 2-hydroxyethyl acrylate (2-hydroxyethyl acrylate, HEA) after synthesis of the copolymerization, amination and crosslinking reaction Anion exchange membrane prepared through.
제 1항에 있어서,
상기 아민화 반응 시 트리메틸아민(trimethylamine, TMA)을 사용함을 특징으로하는 음이온교환막.
The method of claim 1,
Anion exchange membrane, characterized in that the trimethylamine (trimethylamine, TMA) is used during the amination reaction.
제 1항에 있어서,
상기 가교반응 시 글루타르디알데히드(glutaric dialdehyde, GA)을 사용함을 특징으로 하는 음이온교환막.
The method of claim 1,
An anion exchange membrane, characterized in that the use of glutaraldehyde (glutaric dialdehyde, GA) during the crosslinking reaction.
제 1항에 있어서,
상기 음이온교환막 중 스티렌의 함량이 4.32몰, 2-히드록시에틸아세테이트의 함량이 2.15몰 포함되었을 경우, 4-비닐벤질클로라이드(VBC)의 함량이 1.63 내지 2.29몰비임을 특징으로 하는 음이온교환막.
The method of claim 1,
When the content of styrene in the anion exchange membrane is 4.32 mol, the content of 2-hydroxyethyl acetate 2.15 mol is contained, the content of 4-vinylbenzyl chloride (VBC) is 1.63 to 2.29 molar ratio.
제 1항에 있어서,
상기 음이온 교환막은 레독스 전지에 적용됨을 특징으로 하는 음이온교환막.
The method of claim 1,
The anion exchange membrane is an anion exchange membrane, characterized in that applied to the redox battery.
VBC-co-St-co-HEA (4-vinylbenzyl chloride-styrene-2-hydroxyethyl acrylate, HEA 공중합체)합성 단계;
VBC-co-St-co-HEA 공중합체의 아민화 단계; 및
아민화된 공중합체에 가교제를 첨가하여 막을 제조하는 가교 단계;
를 포함하는 음이온교환막의 제조 방법.
VBC-co-St-co-HEA (4-vinylbenzyl chloride-styrene-2-hydroxyethyl acrylate, HEA copolymer) synthesis step;
Amination of the VBC-co-St-co-HEA copolymer; And
A crosslinking step of adding a crosslinking agent to the aminated copolymer to prepare a membrane;
Method for producing an anion exchange membrane comprising a.
KR1020110088980A 2011-09-02 2011-09-02 Anion exchange membrane for redox flow battery and method for preparing the same KR101351280B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110088980A KR101351280B1 (en) 2011-09-02 2011-09-02 Anion exchange membrane for redox flow battery and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110088980A KR101351280B1 (en) 2011-09-02 2011-09-02 Anion exchange membrane for redox flow battery and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20130025582A KR20130025582A (en) 2013-03-12
KR101351280B1 true KR101351280B1 (en) 2014-01-22

Family

ID=48177185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110088980A KR101351280B1 (en) 2011-09-02 2011-09-02 Anion exchange membrane for redox flow battery and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101351280B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793567B2 (en) 2013-11-01 2017-10-17 Samsung Electronics Co., Ltd. Ion exchange membrane, method of preparing the same, and redox flow battery comprising the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802285B1 (en) 2013-10-28 2017-11-29 현대일렉트릭앤에너지시스템(주) Ion Exchange Membrane and Method for Manufacturing the Same
KR101785012B1 (en) 2015-04-28 2017-10-12 (주)에니켐텍 Ion-exchnage Membrane
KR101893461B1 (en) * 2016-11-21 2018-08-31 한국화학연구원 solution for anion exchange membrane, its cross-linking reaction through coating and anion exchange membrane production method using the same
WO2018194395A2 (en) 2017-04-21 2018-10-25 단국대학교 천안캠퍼스 산학협력단 Chemically modified anion exchange membrane and manufacturing method therefor
KR102066239B1 (en) 2017-09-18 2020-01-14 롯데케미칼 주식회사 Separator complex and redox flow battery
IL255766B (en) * 2017-11-20 2019-10-31 Pocell Tech Ltd Membranes for fuel cells and method of making same
KR102416727B1 (en) 2019-11-29 2022-07-06 단국대학교 천안캠퍼스 산학협력단 Method for preparing anion conducting ionomer using chemical modification and anion conducting ionomer prepared by the same method
KR102504461B1 (en) 2019-12-27 2023-03-06 단국대학교 천안캠퍼스 산학협력단 Method for preparing multilayered ion exchange membrane using partial modification and the multilayered ion exchange membrane prepared by the same method
KR102490321B1 (en) 2019-12-27 2023-01-20 단국대학교 천안캠퍼스 산학협력단 Method for preparing anion exchange membrane using anion conducting ionomer obtained via chemical modification and anion exchange membrane prepared by the same method
KR102504460B1 (en) 2019-12-27 2023-03-06 단국대학교 천안캠퍼스 산학협력단 Method for preparing multilayered ion exchange membrane using controlled chemical modification and the multilayered ion exchange membrane prepared by the same method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040100316A (en) * 2003-05-22 2004-12-02 광주과학기술원 Preparation of Polyethylene/Polyvinylbenzyl chloride anion-exchange membrane
KR20100013871A (en) * 2008-08-01 2010-02-10 한국화학연구원 Anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer and method for preparing the same
KR20110010960A (en) * 2009-07-27 2011-02-08 충남대학교산학협력단 Manufacturing method of copolymer for ion exchange membrane
KR20110040216A (en) * 2009-10-13 2011-04-20 한국화학연구원 Manufacturing method of anion-exchange membrane and anion-exchange membrane manufactured thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040100316A (en) * 2003-05-22 2004-12-02 광주과학기술원 Preparation of Polyethylene/Polyvinylbenzyl chloride anion-exchange membrane
KR20100013871A (en) * 2008-08-01 2010-02-10 한국화학연구원 Anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer and method for preparing the same
KR20110010960A (en) * 2009-07-27 2011-02-08 충남대학교산학협력단 Manufacturing method of copolymer for ion exchange membrane
KR20110040216A (en) * 2009-10-13 2011-04-20 한국화학연구원 Manufacturing method of anion-exchange membrane and anion-exchange membrane manufactured thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793567B2 (en) 2013-11-01 2017-10-17 Samsung Electronics Co., Ltd. Ion exchange membrane, method of preparing the same, and redox flow battery comprising the same

Also Published As

Publication number Publication date
KR20130025582A (en) 2013-03-12

Similar Documents

Publication Publication Date Title
KR101351280B1 (en) Anion exchange membrane for redox flow battery and method for preparing the same
Zhang et al. Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications
CN111040137B (en) Anion exchange polymer and preparation method and application thereof
Zhang et al. Anion exchange membranes from brominated poly (aryl ether ketone) containing 3, 5-dimethyl phthalazinone moieties for vanadium redox flow batteries
CN110903449B (en) Isatin arene copolymer, preparation method and application
Lin et al. Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells
Sun et al. Investigation of Nafion series membranes on the performance of iron‐chromium redox flow battery
Teng et al. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery
Choudhury et al. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CN104829814B (en) Polymer containing quaternized piperidine group, preparation method thereof, anion exchange membrane, and preparation method thereof
KR101535062B1 (en) Partially fluorinated anion exchange membrane and manufacturing method for thereof
Park et al. Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications
CN102702507B (en) Strong basicity polyarylether ionomer and Synthesis and applications thereof
Hwang et al. Synthesis and characterization of vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene anion-exchange membrane for all-vanadium redox flow battery
Li et al. Anion exchange membranes by bromination of benzylmethyl-containing poly (arylene ether) s for alkaline membrane fuel cells
CN111533938B (en) Densely sulfonated polyaryletherketone/SiO2Composite proton exchange membrane and preparation method thereof
CN108659243A (en) A kind of branching type polyether-ether-ketone anion-exchange membrane and preparation method thereof
Song et al. Imidazolium-functionalized anion exchange polymer containing fluorine group for fuel cell application
Bavdane et al. N-Sulfonated Poly (arylene-oxindole) for Vanadium Redox Flow Battery Applications
Abdi et al. Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application
CN101853947B (en) Compound crosslinking alkaline polymer film for fuel cell, preparation method and application
KR101379361B1 (en) Polymer electrolyte membrane comprising ionic liquid having sulfonic acid group, and method for preparing the same
CN111871222A (en) Preparation method of quaternary ammonium salt functionalized fluorine-containing polyfluorene ether anion exchange membrane based on pillared [5] arene
CN107978779B (en) Self-repairing anion exchange membrane for fuel cell and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 4