KR101349478B1 - Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification - Google Patents

Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification Download PDF

Info

Publication number
KR101349478B1
KR101349478B1 KR1020130090406A KR20130090406A KR101349478B1 KR 101349478 B1 KR101349478 B1 KR 101349478B1 KR 1020130090406 A KR1020130090406 A KR 1020130090406A KR 20130090406 A KR20130090406 A KR 20130090406A KR 101349478 B1 KR101349478 B1 KR 101349478B1
Authority
KR
South Korea
Prior art keywords
activated carbon
mixed
manufacturing
active liquid
active carbon
Prior art date
Application number
KR1020130090406A
Other languages
Korean (ko)
Inventor
김홍기
이진석
Original Assignee
주식회사 엘바이오
심혜경
(주)바요
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘바이오, 심혜경, (주)바요 filed Critical 주식회사 엘바이오
Priority to KR1020130090406A priority Critical patent/KR101349478B1/en
Application granted granted Critical
Publication of KR101349478B1 publication Critical patent/KR101349478B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

The present invention relates to a method for manufacturing mixed microorganism attached active carbon for water purification, comprising the steps of: injecting wood materials in a chamber where the air is blocked then heating the chamber at 700-1300°C for 24-26 hours; manufacturing active carbon with enlarged air gaps by activating the carbonized wood materials; manufacturing an activating solution by using mixed microorganisms; attaching the mixed microorganisms on the active carbon by injecting the activating solution to the active carbon; cutting or crushing the active carbon attached with the mixed microorganisms into a fixed size; and packing the cut active carbon in a pack having air gaps whose size is not bigger than 1 mm. In the step of manufacturing the activating solution, a culture solution is made by mixing 1-10 wt% of mixed microorganism solid culture medium, 1-5 wt% of molasses or brown sugar, and 85-98 wt% of water. The activating solution is made by culturing the culture solution at 15-35°C for 3-7 days. A fixed amount of air is injected to the culture solution every 4-12 hours during the culturing step. The manufacturing method of active carbon can maximize the purification effect continuously in an economical and environment friendly way. [Reference numerals] (S10) Carbonizing step; (S20) Activated carbon manufacturing step; (S30) Activating solution manufacturing step; (S31) Blending step; (S32) Cultivating step; (S33) Air injecting step; (S40) Activating solution injecting step; (S41) Dilution step; (S42) Mixing step; (S50) Activated carbon cutting step; (S60) Packing step

Description

수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법{Manufacturing Process of Activating Carbon attached Micro-organisms Mixed for Water Quality Purification}Manufacturing Process of Activating Carbon attached Micro-organisms Mixed for Water Quality Purification}

본 발명은 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법에 관한 것으로서, 특히 악취 및 오염이 심한 하천, 폐쇄성 해역, 가두리 양식장, 적조발생 우려지역 등에 살포하여 유해성 적조미생물 및 독성물질을 흡착시켜 수중에서 제거한 뒤, 침전된 후 미생물의 작용에 의해 바닥에 침전된 유기물 또한 지속적으로 분해하여 자정작용 속도를 촉진할 수 있는 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법에 관한 것이다.
The present invention relates to a method for producing mixed microorganism-attached activated carbon for water purification, and in particular, by spraying on odors and highly polluted rivers, closed waters, cages, and areas of red tide occurrence, the harmful red microorganisms and toxic substances are adsorbed. The present invention relates to a method for preparing mixed microorganism-attached activated carbon for water purification, which can be removed and then precipitated, and organic matter precipitated at the bottom by the action of microorganisms can be continuously decomposed to promote the rate of self-cleaning.

호수 및 하천, 연안 등의 수질오염을 개선하기 위하여 많은 기술들이 개발되었다. 바닥에 침전된 오염물질을 준설하는 물리적인 방법과 갈대나 부레옥잠과 같은 수생식물의 식재, 오염물질을 분해하는 미생물을 현장에 살포하는 생물학적 방법 그리고 인위적인 산화를 위해 과산화수소와 같은 약품을 투입하는 화학적인 방법과 활성탄을 이용하는 방법 등이 대표적인 예이다.Many techniques have been developed to improve water pollution in lakes, rivers and coasts. Physical methods of dredging contaminants deposited on the ground, planting aquatic plants such as reeds and water hyacinths, biological methods of spraying microorganisms that break down pollutants, and chemicals such as hydrogen peroxide for artificial oxidation. The method and the method using activated carbon are typical examples.

그러나 이러한 기술을 적용하기 위해서는 많은 비용을 지출해야 하기에 현실적으로 적용하기가 쉽지 않다. 예를 들면 준설의 경우는 오염이 극심한 지역에 한하여 적용하는데, 준설 후에 추가적으로 오염준설토를 최종 처리해야하며, 오염준설토의 경우는 톤당 지정폐기물로 간주되어 지역별로 차이는 있으나 200,000 ~ 400,000원/톤에 처리된다.However, it is not easy to apply such technology because it requires a lot of money to apply it. For example, dredging is applied only to areas with severe pollution. After dredging, additional dredged soil should be treated. And dredged soil is considered designated waste per ton, which varies depending on the region, but varies from 200,000 to 400,000 won / ton. Is processed.

또, 수생식물의 경우는 식재할 수 있는 지리적인 여건, 즉 수심이 완만하고 유속이 느리며, 하상이 비교적 안정된 지역에 한하여 적용가능하고, 식재비용 또한 100,000 ~ 120,000원/㎡으로 매우 고가이며, 상당한 기간에 지나야만 정화효과가 나타나는 단점이 있다.In addition, aquatic plants can be planted geographically, that is, only when the water depth is slow, the flow rate is slow, and the riverbed is relatively stable. There is a drawback that the purification effect appears only after a period of time.

아울러 순수균주의 미생물 살포방법 또한 실험실에서의 효율과 매우 많은 차이가 있어 신뢰할 만한 기술이라 하기에는 무리가 있다.In addition, the microbial spreading method of pure strain is also very different from the efficiency in the laboratory, it is impossible to say a reliable technology.

약품살포의 경우, 수중의 다른 생물체에 영향을 미칠 수 있으므로 사용에 매우 많은 주의를 기울려야 한다.Drug spraying may affect other organisms in the water, so great care must be taken with their use.

활성탄은 산소가 제한된 조건에서 야자수와 같은 나무에 고온의 열을 가하여 열분해시킨 뒤, 화학적 활성화 과정을 거쳐 완성된다. 증가된 표면적을 통하여 오염물질이 활성탄 내부로 흡착되는데 활성탄 내부의 용적이 오염물질로 채워지게 되면 더 이상 흡착현상은 일어나지 않게 된다.
Activated carbon is thermally decomposed by applying heat to a tree such as a palm tree under oxygen-limited conditions, and then chemically activated. Contaminants are adsorbed into the activated carbon through the increased surface area. When the volume inside the activated carbon is filled with the contaminants, no further adsorption occurs.

출원번호:10-2000-0018043, 등록번호:10-0372405, 발명명칭:미생물을 흡착한 활성탄의 제조 방법과 이에 의해 제조한 활성탄Patent Application No. 10-2000-0018043, Registration No. 10-0372405, Invention Name: Method for producing activated carbon adsorbed microorganisms and activated carbon produced thereby

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 수질정화를 위하여 환경 적응성이 높은 혼합미생물을 사용하고, 이 혼합미생물을 활성탄에 부착시켜 지속적으로 오염물질을 제거할 수 있을 뿐만 아니라 경제적이고 친환경적인 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above-mentioned problems of the prior art, using a mixed microorganism with high environmental adaptability for water purification, and the mixed microorganism can be attached to activated carbon to continuously remove contaminants The purpose of the present invention is to provide a method for producing mixed microorganism-attached activated carbon for economical and eco-friendly water purification.

상기한 과제를 해결하기 위한 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법은 공기가 차단된 챔버 내부에 목재를 투입한 후 챔버를 700~1300℃ 온도로 24~26시간동안 가열하는 탄화단계와; 탄화된 목재를 활성화시켜 공극이 확장된 활성탄을 만드는 활성탄 제조단계와; 혼합미생물을 이용하여 활성액을 만드는 활성액 제조단계와; 상기 활성액을 상기 활성탄에 주입하여 혼합미생물을 활성탄에 부착시키는 활성액 주입단계와; 혼합미생물이 부착된 활성탄을 일정한 크기로 절단 또는 분쇄하는 활성탄 절단단계와; 일정크기로 절단된 활성탄을 1mm 이하의 공극을 갖는 팩에 포장하는 활성탄 팩킹단계;로 구성되되; 상기 활성액 제조단계는 혼합미생물 고체배지 1~10중량%, 당밀 또는 황설탕 1~5중량%, 물 85~98중량%를 혼합하여 배양액을 만드는 혼합단계와; 상기 배양액을 15~35℃의 온도에서 3~7일간 배양하여 활성액을 만드는 배양단계와; 상기 배양과정 중 상기 배양액에 4~12시간 간격으로 일정량의 공기를 주입하는 공기주입단계;로 구성된다.Method for producing a mixed microorganism-attached activated carbon for water purification according to the present invention for solving the above problems is to heat the chamber at 700 ~ 1300 ℃ temperature for 24 to 26 hours after the wood into the air-blocked chamber A carbonization step; An activated carbon manufacturing step of activating carbonized wood to make activated carbon with expanded pores; An active liquid preparation step of making an active liquid using mixed microorganisms; An active liquid injection step of injecting the active liquid into the activated carbon to attach mixed microorganisms to the activated carbon; Activated carbon cutting step of cutting or pulverizing activated carbon to which the mixed microorganism is attached to a predetermined size; Activated carbon packing step of packing the activated carbon cut into a predetermined size in a pack having a pore of 1mm or less; The active liquid preparation step is a mixed step of mixing the culture medium 1 ~ 10% by weight of the medium, molasses or brown sugar 1 ~ 5% by weight, water 85 ~ 98% by weight to form a culture solution; A culture step of culturing the culture solution at a temperature of 15 to 35 ° C. for 3 to 7 days to make an active solution; Consists of an air injection step of injecting a predetermined amount of air at intervals of 4 to 12 hours to the culture solution during the culture process.

여기서, 상기 활성액 주입단계는 상기 활성액 제조단계에서 제조된 활성액에 물을 혼합하여 희석하는 희석단계와; 배양기 내부에 상기 활성탄과 희석된 활성액을 투입한 후 상기 배양기를 회전시키는 교반단계;로 구성된다.
Here, the active liquid injection step is a dilution step of diluting by mixing water in the active liquid prepared in the active liquid manufacturing step; It consists of a stirring step of rotating the incubator after injecting the activated liquid diluted with the activated carbon into the incubator.

상기와 같이 구성되는 본 발명의 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법은 이 방법에 의하여 제조된 활성탄을 사용할 경우 활성탄의 정화력과 혼합미생물의 정화력을 함께 이용할 수 있으므로 하천, 폐쇄성 수역, 연안의 오염물질로 인한 수질악화 지역 및 악취발생지역에 적용할 경우, 경제적이고 친환경적인 방법으로 정화효과를 극대화시킬 수 있는 이점이 있다.The method for preparing mixed microorganism-attached activated carbon for water purification of the present invention configured as described above can be used in combination with the purifying power of activated carbon and the purifying power of mixed microorganisms when using activated carbon produced by this method. When applied to water deterioration areas and odor generating areas due to the pollutants of the, there is an advantage that can maximize the purification effect in an economical and environmentally friendly way.

또한, 일시적이고 단발적인 정화가 아닌 혼합미생물에 의하여 지속적인 정화가 가능한 이점이 있다.
In addition, there is an advantage that can be continuously purified by mixed microorganisms rather than temporary and one-time purification.

도 1은 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법을 보인 블록도.
도 2는 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법에 의하여 제조된 활성탄을 오염 하천에 적용한 경우 그 모습을 보인 도.
1 is a block diagram showing a method for producing a mixed microorganism attached activated carbon for water purification according to the present invention.
Figure 2 is a view showing the state when the activated carbon prepared by the method for producing a mixed microorganism attached activated carbon for water purification according to the present invention applied to the polluted river.

이하, 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법의 실시 예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings an embodiment of a method for producing a mixed microorganism attached activated carbon for water purification according to the present invention will be described in detail.

도 1은 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법을 보인 블록도이고, 도 2는 본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법에 의하여 제조된 활성탄을 오염 하천에 적용한 경우 그 모습을 보인 도이다.
1 is a block diagram showing a method for producing mixed microorganism-attached activated carbon for water purification according to the present invention, and FIG. 2 is an activated carbon prepared by the method for preparing mixed microorganism-attached activated carbon for water purification according to the present invention. The figure shows its application to a contaminated stream.

본 발명에 의한 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법은 탄화단계(S10)와, 활성탄 제조단계(S20)와, 활성액 제조단계(S30)와, 활성액 주입단계(S40)와, 활성탄 절단단계(S50) 및 팩킹단계(S60)로 구성된다.
Method for producing a mixed microorganism attached activated carbon for water purification according to the present invention is a carbonization step (S10), activated carbon production step (S20), active liquid production step (S30), active liquid injection step (S40), cutting activated carbon It consists of a step S50 and a packing step S60.

상기 탄화단계(S10)는 목재를 탄화시키는 과정으로서, 공기가 차단된 챔버 내부에 대나무, 야자수, 참나무 등과 같은 목재를 투입한 후 챔버를 700~1300℃ 온도로 24~26시간동안 가열하는 과정이 탄화단계(S10)이다.The carbonization step (S10) is a process of carbonizing wood, the process of heating the chamber at 700 ~ 1300 ℃ temperature for 24 to 26 hours after the wood, such as bamboo, palm, oak, etc. in the air-blocked chamber Carbonization step (S10).

이러한 탄화단계(S10)를 거치면 목재 내부의 유기성분들이 가스화되어 목재에서 빠져나오게 되고, 가스가 빠져나감으로 인해 목재에는 수많은 공극들이 발달하게 된다. 이 공극들에 바로 오염물질이 흡착되어 정화된다.
Through this carbonization step (S10), the organic components inside the wood are gasified to escape from the wood, due to the gas escapes a number of voids are developed in the wood. Pollutants immediately adsorb to these pores and purify them.

상기 활성탄 제조단계(S20)는 탄화된 목재를 활성화시켜 상기 탄화단계(S10)에서 목재에 형성된 공극이 더욱 확장되도록 하는 과정이다. 이러한 활성탄 제조단계(S20)는 120℃ 정도의 수증기나 NaOH 등을 이용하여 공극을 확장시킴으로써 활성탄의 비표면적이 확장되고 공극이 보다 더 잘 유지가 된다. 이러한 활성화 과정은 종래에도 많이 사용되고 있던 과정이므로 여기에서는 자세한 설명은 생략하도록 한다.
The activated carbon manufacturing step (S20) is a process of activating the carbonized wood to further expand the pores formed in the wood in the carbonization step (S10). In the activated carbon manufacturing step (S20), the specific surface area of the activated carbon is expanded by expanding the pores using steam or NaOH, or the like, so that the pores are better maintained. Since this activation process has been used a lot in the prior art, a detailed description thereof will be omitted.

상기 활성액 제조단계(S30)는 혼합미생물을 이용하여 활성액을 만드는 과정으로서, 혼합단계(S31)와 배양단계(S32) 및 공기주입단계(S33)로 구성된다.The active liquid manufacturing step (S30) is a process of making the active liquid using a mixed microorganism, it is composed of a mixing step (S31), the culture step (S32) and the air injection step (S33).

상기 혼합단계(S31)는 혼합미생물 고체배지 1~10중량%, 당밀 또는 황설탕 1~5중량%, 물 85~98중량%를 혼합하여 배양액을 만드는 과정이다. 본 발명에서는 단일균주가 아닌 혼합미생물을 사용하는데, 혼합미생물은 환경에 대한 적응력이 높아서 오랫동안 오염된 지역의 유기물을 분해할 수 있는 효과가 있다. 한편, 본 발명에서 사용하는 혼합미생물은 상황에 따라 작업자가 여러 가지 단일균주를 혼합하여 또는 여러 가지 혼합균주를 혼합하여 만든 것으로 사용하는 것도 가능하다.
The mixing step (S31) is a process of mixing 1 to 10% by weight of mixed microbial solid medium, molasses or sugar 1 to 5% by weight, and water by mixing 85 to 98% by weight of the culture medium. In the present invention, a mixed microorganism is used instead of a single strain. The mixed microorganism has a high adaptability to the environment, and thus has an effect of decomposing organic substances in a long contaminated area. On the other hand, the mixed microorganisms used in the present invention may be used by the worker by mixing various single strains or by mixing various mixed strains depending on the situation.

상기 배양단계(S32)는 상기 혼합단계(S31)에서 만들어진 배양액을 15~35℃의 온도에서 3~7일간 배양하여 활성액을 만드는 과정이다.The culture step (S32) is a process of making the active solution by culturing the culture solution made in the mixing step (S31) for 3 to 7 days at a temperature of 15 ~ 35 ℃.

상기 공기주입단계(S33)는 상기 배양과정 중 상기 배양액에 4~12시간 간격으로 일정량의 공기를 주입하는 과정이다. 타이머를 사용하여 하루에 1회에서 6회까지 각 회당 4시간동안 전기를 공급하여 배양액에 공기를 주입시키면 배양액이 활성화가 촉진된다. 이때 주입되는 공기량은 DO 1~10mg/L가 유지되도록 한다. 공기가 주입되지 않는 동안에는 교반기를 작동시켜 배양액이 교반되도록 한다. 이러한 과정을 거치면 4이하(통상 3.3~3.8)의 pH를 갖는 활성액이 만들어진다.
The air injection step (S33) is a process of injecting a predetermined amount of air into the culture solution at intervals of 4 to 12 hours during the culture process. When the air is supplied to the culture by supplying electricity for 4 hours each time from once to six times a day using a timer, the culture is activated. The amount of air injected at this time is to maintain DO 1 ~ 10mg / L. While the air is not injected, the stirrer is operated to stir the culture solution. This process produces an active liquid with a pH of 4 or less (usually 3.3-3.8).

상기 활성액 주입단계(S40)는 상기 활성액 제조단계(S30)에서 만들어진 활성액을 상기 활성탄 제조단계(S20)에서 만들어진 활성탄에 주입하여 혼합미생물을 활성탄에 부착시키는 과정으로서, 희석단계(S41)와 교반단계(S42)로 구성된다.The active liquid injection step (S40) is a process of attaching the mixed microorganisms to the activated carbon by injecting the active liquid made in the active liquid manufacturing step (S30) into the activated carbon produced in the activated carbon manufacturing step (S20), the dilution step (S41) and the stirring step It consists of S42.

상기 희석단계(S41)는 상기 활성액 제조단계(S30)에서 제조된 활성액에 물을 혼합하여 10~50배 가량 희석하는 과정이다. 부연하면, 제조된 활성액은 혼합미생물의 농도가 높기 때문에 활성탄에 부착했을 때 상호 간섭효과가 나타난다. 이러한 간섭효과 때문에 혼합미생물의 밀도에 비하여 정화효과가 충분히 나타나지 않으므로 활성액을 희석하여 사용하고, 여러 가지 실험을 해본 결과 희석을 했을 경우 혼합미생물의 부착 배양율이 높은 것으로 파악되었다.The dilution step (S41) is a process of diluting 10 to 50 times by mixing water with the active liquid prepared in the active liquid manufacturing step (S30). In other words, since the prepared active liquid has a high concentration of mixed microorganisms, mutual interference effects appear when attached to activated carbon. Because of the interference effect, the purification effect is not sufficiently compared to the density of the mixed microorganisms. Thus, when the active liquid was diluted and various experiments were conducted, the adhesion culture rate of the mixed microorganisms was high.

상기 교반단계(S42)는 배양기 내부에 상기 활성탄과 희석된 활성액을 투입한 후 상기 배양기를 회전시키는 과정이다. 좀 더 자세히 설명하면, 배양기에 노즐이 설치되어 있어서 활성탄을 배양기 내부에 투입하여 회전시키면서 노즐을 통하여 희석된 활성액을 주입한다. 이때, 활성액은 배양기 내부에 투입되는 활성탄 중량의 25~35중량%를 주입한다.
The stirring step (S42) is a process of rotating the incubator after inputting the activated liquid diluted with the activated carbon into the incubator. In more detail, the nozzle is installed in the incubator, and activated carbon is injected into the incubator and rotated to inject the diluted active liquid through the nozzle. At this time, the active liquid is injected 25 to 35% by weight of the weight of activated carbon introduced into the incubator.

상기 활성탄 절단단계(S50)는 혼합미생물이 부착된 활성탄을 일정한 크기로 절단 또는 분쇄하는 과정이다. 본 발명에 의하여 제조된 혼합미생물 부착형 활성탄은 그 사용처에 따라 크기가 각각 다르기 때문에 각각의 용도에 맞게 활성탄을 절단한다. 예를 들어, 1mm 이하의 크기를 갖는 활성탄(PAC)은 적조 및 독성물질이 유입된 양식장이나 오염물질이 유입된 상수원 보호지역의 신속한 조치를 위하여 사용될 수 있으며, 1mm 이상의 크기를 갖는 활성탄(GAC)은 오염물질의 퇴적이 심한 하천이나 하상변화가심한 곳 또는 유속이 빠른 곳에 사용될 수 있다.
The activated carbon cutting step (S50) is a process of cutting or pulverizing activated carbon to which a mixed microorganism is attached to a predetermined size. The mixed microorganism-attached activated carbon produced by the present invention is different in size depending on the intended use, and thus the activated carbon is cut in accordance with each use. For example, activated carbon (PAC) with a size of less than 1 mm can be used for rapid action in farms where red tide and toxic substances are introduced or in protected water supply areas where contaminants are introduced, and activated carbon (GAC) with a size of 1 mm or more Silver can be used in streams with severe deposits of pollutants, in areas with severe river changes, or at high flow rates.

상기 팩킹단계(S60)는 상기 활성탄 절단단계(S50)에서 일정크기로 절단된 활성탄을 1mm 이하의 공극을 갖는 팩에 포장하는 과정이다. 상기 활성탄 절단단계(S50)에서 1mm 이상의 크기로 절단된 활성탄을 나일론과 같은 재질의 팩에 담은 후 포장한다. 이렇게 패팅을 하는 이유는 유속이 강한 수중에서 활성탄이 유실될 우려가 크기 때문에 활성탄의 유실을 막고, 더불어 이미 사용된 활성탄을 재사용하기 위하여 회수할 때 그 회수를 편하게 하기 위함이다. 부연하면, 본 발명에서 상기 팩킹단계(S60)는 선택적 사항이다. 즉, 상기 활성탄 절단단계(S50)의 이행으로 상기 활성탄을 일정크기로 절단함으로써 본 발명이 완료될 수도 있지만, 경우에 따라서는 활성탄 파우더를 팩에 포장하는 것도 가능하다는 것이다.
The packing step (S60) is a process of packaging the activated carbon cut to a predetermined size in the activated carbon cutting step (S50) in a pack having a pore of 1mm or less. In the activated carbon cutting step (S50), the activated carbon cut to a size of 1 mm or more is packed in a pack made of a material such as nylon. The reason for this patterning is to prevent the loss of activated carbon because the activated carbon is likely to be lost in the high velocity water, and to facilitate the recovery of the activated carbon when it is recovered for reuse. In other words, the packing step (S60) in the present invention is optional. That is, the present invention may be completed by cutting the activated carbon to a certain size by implementing the activated carbon cutting step (S50), but in some cases, it is also possible to pack the activated carbon powder in a pack.

상기와 같은 본 발명의 방법으로 제조된 활성탄을 양식장(활용예 1)과 오염이 심한 하천(활용예 2)에 사용하였다.Activated carbon prepared by the method of the present invention as described above was used in aquaculture farms (Utilization Example 1) and severely polluted rivers (Utilization Example 2).

[활용예 1]적조가 발생된 양식장[Utilization example 1] Farm which red tide occurred

혼합미생물을 사용한 입자 크기 1mm 이하의 활성탄을 가두리양식장으로 유입되는 적조에 살포하였다. 적조생물은 대부분 표층으로부터 1.5m이내에 집중되어 있기 때문에 1mm 이하의 입경이 작은 활성탄을 살포하면, 활성탄이 수 시간동안 표층에 표류하면서 적조생물을 흡착하여 개체밀도를 저감시키고, 침전된 활성탄에 부착된 혼합미생물이 지속적으로 유기물을 분해하여 자정작용을 유도하여 양식장의 폐사를 획기적으로 저감시키는 것을 확인할 수 있었다.Activated charcoal with a particle size of 1 mm or less using mixed microorganisms was applied to the red tide flowing into the cage. Since most of the red tide are concentrated within 1.5m from the surface layer, spraying activated carbon with a small particle size of 1mm or less, the activated carbon drifts on the surface for several hours, adsorbing the red tide organisms, reducing the individual density and adhering to the precipitated activated carbon. It was confirmed that mixed microorganisms continuously decomposed organic matter and induced self-cleaning action to drastically reduce the death of aquaculture farms.

적조발생지역에 활성탄 살포 후 적조생물 개체수 변화Changes in Red Tide Populations after Spraying Activated Carbon in Red Tide Areas 경과시간(분)Elapsed time (minutes) 00 3030 6060 9090 120120 150150 180180 210210 코클로디니움
(개체/ml)
Coclodinium
(Object / ml)
46004600 25002500 800800 150150 8585 4040 3535 2828

[활용예 2]오염이 심한 하천[Utilization example 2] River with severe pollution

혼합미생물이 부착된 입경 1mm 이상의 대나무 활성탄을 오염이 심한 하천에 살포하였다. 활성탄은 나일론 재질(입경 0.5mm)로 팩킹 처리하였고, 대나무 활성탄을 오염하천에 투입하였으며, 시간 경과에 따른 하천의 COD를 분석하였다. 이러한 데이터는 [표 2]에 기재하였고, 그 모습은 [도 2]를 통하여 확인할 수 있다.Bamboo activated carbon having a particle size of 1 mm or more with mixed microorganisms was sprayed on a highly polluted river. Activated carbon was packed with nylon (0.5 mm in diameter), bamboo activated carbon was added to the polluted stream, and the COD of the stream was analyzed over time. These data are listed in [Table 2], the appearance can be confirmed through [Figure 2].

오염하천지역에 활성탄을 살포한 후 COD 관측COD observation after spraying activated carbon on polluted river area 경과시간(일)Elapsed time (days) 00 1One 33 55 77 99 1212 1515 CODCOD 117.8117.8 94.394.3 89.389.3 60.560.5 46.646.6 27.327.3 19.819.8 20.320.3

S10: 탄화단계 S20: 활성탄 제조단계
S30: 활성액 제조단계 S31: 혼합단계
S32: 배양단계 S33: 공기주입단계
S40: 활성액 주입단계 S41: 희석단계
S42: 교반단계 S50: 활성탄 절단단계
S60:팩킹단계
S10: carbonization step S20: activated carbon manufacturing step
S30: active liquid preparation step S31: mixing step
S32: culture step S33: air injection step
S40: active liquid injection step S41: dilution step
S42: stirring step S50: activated carbon cutting step
S60: Packing Step

Claims (5)

목재를 탄화시키는 탄화단계(S10)와; 탄화된 목재를 활성화시켜 공극이 확장된 활성탄을 만드는 활성탄 제조단계(S20)와; 혼합미생물을 이용하여 활성액을 만드는 활성액 제조단계(S30)와; 상기 활성액을 상기 활성탄에 주입하여 혼합미생물을 활성탄에 부착시키는 활성액 주입단계(S40)와; 혼합미생물이 부착된 활성탄을 일정한 크기로 절단 또는 분쇄하는 활성탄 절단단계(S50);로 구성되되,
상기 활성액 제조단계(S30)는 혼합미생물 고체배지 1~10중량%, 당밀 또는 황설탕 1~5중량%, 물 85~98중량%를 혼합하여 배양액을 만드는 혼합단계(S31)와;
상기 배양액을 15~35℃의 온도에서 3~7일간 배양하여 활성액을 만드는 배양단계(S32)와;
상기 배양과정 중 상기 배양액에 4~12시간 간격으로 일정량의 공기를 주입하는 공기주입단계(S33);로 구성된 것을 특징으로 하는 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법.
A carbonization step (S10) of carbonizing wood; Activated carbon production step (S20) to activate the carbonized wood to make the activated carbon expanded pores; An active liquid preparation step (S30) of making an active liquid using a mixed microorganism; An active liquid injection step (S40) of injecting the active liquid into the activated carbon to attach mixed microorganisms to the activated carbon; Activated carbon cutting step (S50) for cutting or pulverizing the activated carbon attached to the mixed microorganisms to a predetermined size;
The active solution preparation step (S30) is a mixed step (S31) of mixing the mixed microorganism solid medium 1 ~ 10% by weight, molasses or sulfur sugar 1 ~ 5% by weight, water 85 ~ 98% by weight;
A culture step (S32) of culturing the culture solution at a temperature of 15-35 ° C. for 3-7 days to make an active solution;
Air injection step (S33) for injecting a predetermined amount of air into the culture medium at intervals of 4 to 12 hours during the culturing process; manufacturing method of mixed microorganism-attached activated carbon for water purification, characterized in that consisting of.
청구항 1에 있어서,
상기 활성액 주입단계(S40)는 상기 활성액 제조단계(S30)에서 제조된 활성액에 물을 혼합하여 희석하는 희석단계(S41)와;
배양기 내부에 상기 활성탄과 희석된 활성액을 투입한 후 상기 배양기를 회전시키는 교반단계(S42);로 구성된 것을 특징으로 하는 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법.
The method according to claim 1,
The active liquid injection step (S40) is a dilution step (S41) of mixing and diluting water to the active liquid prepared in the active liquid manufacturing step (S30);
Method of producing a mixed microorganism-attached activated carbon for water purification, characterized in that consisting of; stirring step (S42) to rotate the incubator after the activated carbon and the diluted active liquid in the incubator.
삭제delete 청구항 1에 있어서,
상기 탄화단계(S10)는 공기가 차단된 챔버 내부에 목재를 투입한 후 챔버를 700~1300℃ 온도로 24~26시간동안 가열하는 것을 특징으로 하는 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법.
The method according to claim 1,
The carbonization step (S10) is a method of producing a mixed microorganism-attached activated carbon for water purification, characterized in that the wood is put into the air-blocked chamber and then the chamber is heated at a temperature of 700 ~ 1300 ℃ for 24 to 26 hours. .
청구항 1에 있어서,
상기 활성탄 절단단계(S50)에서 일정크기로 절단된 활성탄을 1mm 이하의 공극을 갖는 팩에 포장하는 활성탄 팩킹단계(S60);를 더 포함하는 것을 특징으로 하는 수질정화를 위한 혼합미생물 부착형 활성탄의 제조방법.
The method according to claim 1,
Activated carbon cutting step (S60) for packaging the activated carbon cut to a certain size in the activated carbon cutting step (S50) in a pack having a pore size of less than 1mm; S60 of the mixed microorganism-attached activated carbon for water purification Manufacturing method.
KR1020130090406A 2013-07-30 2013-07-30 Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification KR101349478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130090406A KR101349478B1 (en) 2013-07-30 2013-07-30 Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130090406A KR101349478B1 (en) 2013-07-30 2013-07-30 Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification

Publications (1)

Publication Number Publication Date
KR101349478B1 true KR101349478B1 (en) 2014-01-14

Family

ID=50145077

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130090406A KR101349478B1 (en) 2013-07-30 2013-07-30 Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification

Country Status (1)

Country Link
KR (1) KR101349478B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564368B1 (en) 2014-08-20 2015-10-30 박서현 Manufacturing Process of Activating Carbon attached Mixed microorganism
KR101594822B1 (en) 2015-11-03 2016-02-17 박서현 The method and processing apparatus of the floating fish cage sludge using biological activated carbon
KR101594824B1 (en) 2015-11-03 2016-02-17 박서현 Floating fish cage of purification apparatus sludge sedimentation using biological activated carbon
KR101703850B1 (en) * 2015-12-28 2017-02-08 충남대학교 산학협력단 Environment-friendly water-bloom adsorbent using heat-treated wood and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274942A (en) * 1994-04-08 1995-10-24 Mutenka Shokuhin Hanbai Kyodo Kumiai Method for cumbinedly and massively culturing aerobic microorganism and anaerobic microorganism
KR19980072162A (en) * 1998-07-28 1998-10-26 이재복 Sewage Purification System Using Activated Carbon with Flow Microorganisms
KR100350242B1 (en) * 1999-12-09 2002-08-27 김동윤 Manufacturing method for an active coal in the kind of absorbing and biological means
KR20110108957A (en) * 2010-03-30 2011-10-06 한국해양대학교 산학협력단 Microbial agents using bamboo active carbon as a biocarrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274942A (en) * 1994-04-08 1995-10-24 Mutenka Shokuhin Hanbai Kyodo Kumiai Method for cumbinedly and massively culturing aerobic microorganism and anaerobic microorganism
KR19980072162A (en) * 1998-07-28 1998-10-26 이재복 Sewage Purification System Using Activated Carbon with Flow Microorganisms
KR100350242B1 (en) * 1999-12-09 2002-08-27 김동윤 Manufacturing method for an active coal in the kind of absorbing and biological means
KR20110108957A (en) * 2010-03-30 2011-10-06 한국해양대학교 산학협력단 Microbial agents using bamboo active carbon as a biocarrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564368B1 (en) 2014-08-20 2015-10-30 박서현 Manufacturing Process of Activating Carbon attached Mixed microorganism
KR101594822B1 (en) 2015-11-03 2016-02-17 박서현 The method and processing apparatus of the floating fish cage sludge using biological activated carbon
KR101594824B1 (en) 2015-11-03 2016-02-17 박서현 Floating fish cage of purification apparatus sludge sedimentation using biological activated carbon
KR101703850B1 (en) * 2015-12-28 2017-02-08 충남대학교 산학협력단 Environment-friendly water-bloom adsorbent using heat-treated wood and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Macaulay et al. Bioremediation of oil spills: a review of challenges for research advancement
CN106001103A (en) Ecological restoration method for soil in chemical industrial area
CN206337131U (en) A kind of ecological blanket of in-situ immobilization polluted bed mud
KR101349478B1 (en) Manufacturing process of activating carbon attached micro-organisms mixed for water quality purification
KR101238262B1 (en) The microbial seeds which having excellent wastewater treatment ability and producing method for the sames and the wastewater treatment method
Wang et al. Advances in research on petroleum biodegradability in soil
CN108996703B (en) Black smelly water soil and water hydrologic cycle ecological remediation system
Sojka et al. Synthetic-and bio-polymer use for runoff water quality management in irrigated agriculture
CN102515363A (en) Aquatic artificial wetland capable of purifying water, and manufacturing method thereof
ES2236988T3 (en) USE OF QUITINA AND / OR ITS DERIVATIVES AS BIOCATALIZERS IN THE SANITATION OF SOILS AND CONTAMINATED FLUIDS.
CN107442567A (en) A kind of method of aerobic wetland middle-shallow layer ecology treatment in situ contaminated soil
Gupta et al. Bioremediation and cyanobacteria an overview
KR101259416B1 (en) The manufacturing method of probiotics containing mixed strains bm-s-1 for soil contamination purification or soil environmental improvement and manufactured probiotics thereof
KR101340595B1 (en) Block for purification of water
KR100397540B1 (en) Bioremediation method of contaminated soil
CN114853153B (en) Microorganism-combined PRB repair system and application thereof in-situ repair of antibiotic-polluted groundwater
CN109467297A (en) A kind of black-odor riverway riverbed sediment in-situ is modified restorative procedure
CN101760455B (en) Method for immobilizing petroleum degradation bacteria by taking surface root hair of reed as carrier
CN108838205A (en) A kind of biological amassing capacity of rehabilitating soil arsenic pollution
CN103861865A (en) Method for repairing contaminated soil by using natural pore soil-conserving and planting device
CN105672202B (en) A kind of ecological river bed constructing method
Zhao et al. Isolation and identification of malathion-degrading strain of Brevundimonas diminuta
RU2191753C2 (en) Biological preparation for removing crude oil and petroleum products from water and ground
JP6866248B2 (en) Soil purification system and soil purification method
KR20150048581A (en) Floating detnursery for Red tide damage prevention

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181115

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191230

Year of fee payment: 7