KR101344076B1 - Method for preparation of tetrahydroquinlones under microwave irradiation - Google Patents

Method for preparation of tetrahydroquinlones under microwave irradiation Download PDF

Info

Publication number
KR101344076B1
KR101344076B1 KR1020110058969A KR20110058969A KR101344076B1 KR 101344076 B1 KR101344076 B1 KR 101344076B1 KR 1020110058969 A KR1020110058969 A KR 1020110058969A KR 20110058969 A KR20110058969 A KR 20110058969A KR 101344076 B1 KR101344076 B1 KR 101344076B1
Authority
KR
South Korea
Prior art keywords
compound
halogen
formula
tetrahydroquinoline
tetrahydroquinoline compound
Prior art date
Application number
KR1020110058969A
Other languages
Korean (ko)
Other versions
KR20120139260A (en
Inventor
김대영
권유경
강영구
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority to KR1020110058969A priority Critical patent/KR101344076B1/en
Publication of KR20120139260A publication Critical patent/KR20120139260A/en
Application granted granted Critical
Publication of KR101344076B1 publication Critical patent/KR101344076B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultra-violet light
    • B01J19/124Ultra-violet light generated by microwave irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/04Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine
    • C07D455/06Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine containing benzo [a] quinolizine ring systems

Abstract

마이크로웨이브 에너지를 이용한 테트라하이드로퀴놀린 화합물의 제조방법에 관한 것으로, 마이크로웨이브 조사 조건 하에서 아민 촉매와 산 첨가제 존재하에서 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물을 반응시켜 테트라하이드로퀴놀린 화합물을 제조하는 구성을 마련한다.
상기와 같은 테트라하이드로퀴놀린 화합물의 제조방법을 이용하는 것에 의해, 반응시간이 매우 짧고, 높은 수율로 테트라하이드로퀴놀린 화합물을 합성할 수 있다는 효과가 얻어진다.
The present invention relates to a method for preparing a tetrahydroquinoline compound using microwave energy, wherein a tetrahydroquinoline compound is prepared by reacting a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at an ortho position in the presence of an amine catalyst and an acid additive under microwave irradiation conditions. Prepare a configuration to manufacture.
By using the above-described method for producing a tetrahydroquinoline compound, an effect that the reaction time is very short and a tetrahydroquinoline compound can be synthesized in high yield is obtained.

Description

마이크로웨이브 에너지를 이용한 테트라하이드로퀴놀린 화합물의 제조방법 {Method for preparation of tetrahydroquinlones under microwave irradiation}Method for preparation of tetrahydroquinoline compound using microwave energy {Method for preparation of tetrahydroquinlones under microwave irradiation}

본 발명은 마이크로웨이브 에너지를 이용한 테트라하이드로퀴놀린 화합물의 제조방법에 관한 것으로, 특히 마이크로웨이브 에너지를 이용하여 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물을, 아민 촉매와 산 첨가제 존재하에서, 테트라하이드로퀴놀린 화합물을 제조하는 방법에 관한 것이다.
The present invention relates to a method for preparing a tetrahydroquinoline compound using microwave energy, in particular, a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at the ortho position using microwave energy in the presence of an amine catalyst and an acid additive. And a method for producing a tetrahydroquinoline compound.

물질을 가열시키는 일반적인 가열방법은 열원으로 전도열(conductive heating)을 이용하여 열이 내부로 전달되는 외부 가열방식이다. 열은 시료와 용매에 전달되기 위해 먼저 시료 용기를 지난 후 물질에 전달된다. 이러한 가열방법은 투과되어야 하는 다양한 물질의 열전도도에 영향을 받기 때문에 에너지 전달 면에서 매우 느리고 비효율적인 방법이다. A general heating method for heating a material is an external heating method in which heat is transferred to the inside by using conductive heating as a heat source. Heat is first passed through the sample vessel and then to the material for transfer to the sample and solvent. This heating method is very slow and inefficient in terms of energy transfer because it is affected by the thermal conductivity of various materials to be transmitted.

그리고 시료 용기와 혼합물이 열평형에 도달하기 전까지는 시료 용기의 온도가 혼합물의 온도보다 높아진다. 또한, 전도열은 반응의 컨트롤을 어렵게 한다. 이와 달리 마이크로웨이브는 반응종(reactive species)에 에너지를 직접 전달할 수 있기 매우 효율적이다. 소위, 분자 가열(molecular heating)이라 말하는 이것은 기존 가열방법보다 매우 효율적이다. 왜냐하면 화합물을 합성하는데 수시간 내지 수일 걸리던 반응을 수분 내에 완성할 수 있기 때문이다. The temperature of the sample vessel is higher than the temperature of the mixture until the sample vessel and mixture reach thermal equilibrium. In addition, conduction heat makes control of the reaction difficult. Microwaves, on the other hand, are very efficient at delivering energy directly to reactive species. So-called molecular heating, which is more efficient than conventional heating methods. This is because the reaction, which took several hours to several days to synthesize the compound, can be completed in a few minutes.

특히, 키랄 테트라하이드로퀴놀린 화합물은 제약, 재료과학, 생명과학 분야에 사용되는 유용한 화합물이므로 많은 연구가 진행되고 있는 분야이다. 촉매를 이용한 테트라하이드로퀴놀린 화합물을 합성하는 방법은 일부 알려져 있다 (J. Am. Chem. Soc. 2009, 131, 13226; Org. Lett. 2009, 11, 129; J. Am. Chem. Soc. 2011, 133, 2100; Org. Lett. 2011, 13, 600; J. Am. Chem. Soc. 2011, 133. 6166; Chem. Comunn. 2010, 46, 6593; Chem. Eur. J. 2011, 17, 3101). 본 발명자는 키랄 촉매를 이용한 테트라하이드로퀴놀린 화합물의 제조 방법(출원번호 10-2010-0123997)을 출원하였으나 수율이 낮고 반응시간이 매우 길다는 단점을 가지고 있다.
In particular, the chiral tetrahydroquinoline compound is a useful compound that is used in the pharmaceutical, material science, and life science fields, and thus, much research is being conducted. Some methods for synthesizing tetrahydroquinoline compounds using catalysts are known (J. Am. Chem. Soc. 2009, 131, 13226; Org. Lett. 2009, 11, 129; J. Am. Chem. Soc. 2011, 133, 2100; Org. Lett. 2011, 13, 600; J. Am. Chem. Soc. 2011, 133. 6166; Chem. Comunn. 2010, 46, 6593; Chem. Eur. J. 2011, 17, 3101) . The present inventor has applied for a method for preparing a tetrahydroquinoline compound using a chiral catalyst (Application No. 10-2010-0123997), but has a disadvantage in that the yield is low and the reaction time is very long.

본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 이루어진 것으로서, 낮은 수율과 반응시간이 긴 단점을 보완하고, 유도체의 범위를 확대할 수 있는 제조방법을 제공하는 것이다. An object of the present invention is to solve the problems described above, to provide a manufacturing method that can compensate for the disadvantages of low yield and long reaction time, and can extend the range of the derivative.

본 발명의 다른 목적은 마이크로웨이브 에너지를 이용한 테트라하이드로퀴놀린 화합물의 제조방법을 제공하는 것이다.
Another object of the present invention is to provide a method for preparing a tetrahydroquinoline compound using microwave energy.

상기 목적을 달성하기 위해 본 발명에 따른 테트라하이드로퀴놀린 화합물의 제조방법은 마이크로웨이브 조사 조건 하에서 아민 촉매와 산 첨가제 존재하에서 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물을 반응시켜 테트라하이드로퀴놀린 화합물을 제조하는 것을 특징으로 한다.
In order to achieve the above object, a method for preparing a tetrahydroquinoline compound according to the present invention is a tetrahydro by reacting a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at an ortho position in the presence of an amine catalyst and an acid additive under microwave irradiation conditions. It is characterized by producing a quinoline compound.

상술한 바와 같이, 본 발명에 따른 테트라하이드로퀴놀린 화합물의 제조방법에 의하면, 마이크로웨이브 에너지를 이용하기 때문에 반응시간이 매우 짧고, 높은 수율로 테트라하이드로퀴놀린 화합물을 합성할 수 있다는 효과가 얻어진다.
As described above, according to the method for producing a tetrahydroquinoline compound according to the present invention, since microwave energy is used, the reaction time is very short, and the effect of synthesizing the tetrahydroquinoline compound with high yield is obtained.

본 발명의 상기 및 그 밖의 목적과 새로운 특징은 본 명세서의 기술 및 첨부 도면에 의해 더욱 명확하게 될 것이다.These and other objects and novel features of the present invention will become more apparent from the description of the present specification and the accompanying drawings.

본 발명의 일 실시 예에 따른 테트라하이드로퀴놀린 화합물의 제조방법은, 마이크로웨이브 조사 조건하에, 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물을, 아민 촉매와 산 첨가제 존재하에서 반응시켜 테트라하이드로퀴놀린 화합물을 제조한다. In the method for preparing a tetrahydroquinoline compound according to an embodiment of the present invention, under a microwave irradiation condition, a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at an ortho position is reacted in the presence of an amine catalyst and an acid additive to tetra Prepare a hydroquinoline compound.

상기 제조방법은 마이크로 웨이브 에너지를 이용하여 테트라하이드로퀴놀린 화합물을 매우 효율적으로 제조하기 위한 것이다. 또 다른 일 실시 예에서, 마이크로웨이브 조사 조건하에 상기 아민 촉매와 산 첨가제를 이용한 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물의 1,5-수소 전이 반응은 테트라하이드로퀴놀린 화합물을 고수율, 고순도로 얻을 수 있는 매우 간편하고 유용한 반응이다.The preparation method is for producing a tetrahydroquinoline compound very efficiently using microwave energy. In another embodiment, the 1,5-hydrogen transfer reaction of a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at an ortho position using the amine catalyst and an acid additive under microwave irradiation conditions is used to obtain a tetrahydroquinoline compound. It is a very simple and useful reaction that can be obtained in yield, high purity.

일 실시 예에서, 상기 아민 촉매와 산 첨가제의 함량은, 반응 물질들의 전체 몰수를 기준으로 5 내지 30 몰% 이다. In one embodiment, the content of the amine catalyst and the acid additive is 5 to 30 mole percent, based on the total moles of reactants.

일 실시 예에서, 상기 아민 촉매는, 하기 화학식 1로 표현될 수 있다.In one embodiment, the amine catalyst may be represented by the following formula (1).

Figure 112011045971204-pat00001
Figure 112011045971204-pat00001

상기 아민 촉매로는 화학식 1 촉매 외에 C1-C8인 알킬 아민, 고리형 아민 및 헤테로원자가 포함된 고리형 아민을 사용할 수 있다. 일 실시 예에서 산 첨가제는 F3CCO2H(TFA), HCl, HBr, HPF6, DNBS(2,4-다이나이트로 벤젠 술포닉 산), 그리고 TfOH (트리플루오로메탄 술포닉 산) 중 어느 하나를 반응에 사용할 수 있다.As the amine catalyst, in addition to the catalyst of Formula 1, C 1 -C 8 alkyl amine, cyclic amine and cyclic amine including heteroatoms may be used. In one embodiment, the acid additives are in F 3 CCO 2 H (TFA), HCl, HBr, HPF 6 , DNBS (2,4-Dytrobenzene Sulfonic Acid), and TfOH (Trifluoromethane Sulphonic Acid) Which one Can be used for the reaction.

또 다른 일 실시 예에서, 상기 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물은 하기 화학식 2로 표현될 수 있다. In another embodiment, the cinnamic aldehyde compound substituted with the dialkylamino group cyclized in the ortho position may be represented by the following formula (2).

Figure 112011045971204-pat00002
Figure 112011045971204-pat00002

상기 R1 및 R2는 테트라하이드로아이소퀴놀린이다.R 1 and R 2 are tetrahydroisoquinoline.

상기 R3 는 C1-C10 알킬기, 할로겐이며, 상기 알킬기는 선형 또는 가지형 알킬기, 트리플루오로메틸기 중 어느 하나이며, 할로겐은 플루오로(F), 클로로(Cl), 브로모(Br), 아이오도(I) 중 어느 하나이다.R 3 is a C 1 -C 10 alkyl group, halogen, the alkyl group is any one of a linear or branched alkyl group, trifluoromethyl group, halogen is fluoro (F), chloro (Cl), bromo (Br) , Iodo (I) is any one.

또 일 실시 예에서, 상기 테트라하이드로퀴놀린 화합물은, 화학식 3의 구조를 갖는 화합물일 수 있다.In another embodiment, the tetrahydroquinoline compound may be a compound having a structure of Formula 3.

Figure 112011045971204-pat00003
Figure 112011045971204-pat00003

상기 화학식 3에서 R1 내지 R2, R3 는 위에서 정의한 바와 같다.In Formula 3, R 1 to R 2 , R 3 are as defined above.

일 실시 예에서 마이크로웨이브 에너지 조사 조건하에, 오쏘 위치에 고리화된 다이알킬아미노기가 치환된 신남알데하이드 화합물를 [화학식 1]의 아민 촉매의 존재하에서 반응시켜 테트라하이드로퀴놀린 화합물을 제조할 수 있다. 구체적인 반응식은 하기 반응식 1과 같다. In an embodiment, the tetrahydroquinoline compound may be prepared by reacting a cinnamic aldehyde compound substituted with a dialkylamino group cyclized at an ortho position in the presence of an amine catalyst of [Formula 1] under microwave energy irradiation conditions. The specific reaction formula is shown in the following Reaction Scheme 1.

[반응식 1][Reaction Scheme 1]

Figure 112012107703511-pat00009
Figure 112012107703511-pat00009

위 반응식 1에서 R1 내지 R2, R3 는 위에서 정의한 바와 같다. 상기 아민 촉매는 피롤리딘(pyrrolidine)일 수 있으며, 상기 산첨가제는 TFA일 수 있다. 상기 용매(solvent)는 1,2-디클로로에탄, 톨루엔, 에탄올, 아세토나이트릴 중 어느 하나이다. 마이크로웨이브(MW)의 출력(W)의 범위는 30-200 W 이며, 구체적으로 30, 50, 100, 150, 그리고 200 W 이다.
In Scheme 1, R 1 to R 2 , R 3 are as defined above. The amine catalyst may be pyrrolidine, and the acid additive may be TFA. The solvent is any one of 1,2-dichloroethane, toluene, ethanol and acetonitrile. Microwave (MW) output power (W) ranges from 30-200 W, specifically 30, 50, 100, 150, and 200 W.

이하, 본 발명의 일 실시 예에 따른 테트라하이드로퀴놀린 화합물의 제조방법에 대하여 보다 구체적으로 살펴본다. 다만, 하기 실시 예 등은 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
Hereinafter, a method for preparing a tetrahydroquinoline compound according to an embodiment of the present invention will be described in more detail. However, the following examples and the like are intended to illustrate the present invention, but the scope of the present invention is not limited thereto.

마이크로웨이브 에너지를 이용한 테트라하이드로퀴놀린 화합물의 합성에 관한 구체적인 반응조건 및 수율은 표 1에 나타내었다.Specific reaction conditions and yields for the synthesis of the tetrahydroquinoline compound using microwave energy are shown in Table 1.

Figure 112011045971204-pat00005
Figure 112011045971204-pat00005

용매는 아세토나이트릴이 가장 좋은 것을 볼 수 있으며 50 W 조건에서도 좋은 수율로 테트라하이드로퀴놀린 유도체를 합성할 수 있다.Acetonitrile is the best solvent, and tetrahydroquinoline derivatives can be synthesized in good yield even at 50 W.

마이크로웨이브 에너지를 이용한 테트라하이드로 퀴놀린 유도체 반응결과는 표 2에 나타내었다The results of tetrahydroquinoline derivative reaction using microwave energy are shown in Table 2.

Figure 112011045971204-pat00006
Figure 112011045971204-pat00006

Figure 112011045971204-pat00007
Figure 112011045971204-pat00007

[실시 예 1] [Example 1]

5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]quinoline-6-carbaldehyde (2a)5,6,6a, 7,8,9,10,11,12,13-Decahydroazonino [1,2-a] quinoline-6-carbaldehyde (2a)

콘덴서가 장착된 10 mL 플라스크에 o-피롤리딜-신남알데하이드(화학식 2) 0.3 mmol을 넣고 아세토나이트릴 3 mL를 넣는다. 그런 다음, 아민 촉매(화학식 1) 0.09 mmol, TFA(trifluoroacetic acid) 0.09 mmol을 넣은 후 반응 혼합물을 마이크로웨이브 반응기로 옮긴 후 50 W 조건에서 10분간 반응시킨다. 반응이 완료되면 반응 혼합물을 상온으로 내린 후, 반응혼합물을 에틸 아세테이트와 암모니움클로라이드 포화 수용액으로 추출 후 유기층을 농축한다. 컬럼크로마토그래피(SiO2, EA : Hex = 1 : 15)로 분리 정제하여 5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a] quinoline-6-carbaldehyde (화학식 3)을 93% 수율, 부분입체이성질체 비율 77 : 23으로 얻었다.In a 10 mL flask equipped with a condenser, add 0.3 mmol of o-pyrrolidyl-cinnamaldehyde (Formula 2) and 3 mL of acetonitrile. Then, after adding 0.09 mmol of amine catalyst (Formula 1) and 0.09 mmol of trifluoroacetic acid (TFA), the reaction mixture was transferred to a microwave reactor and reacted at 50 W for 10 minutes. After the reaction was completed, the reaction mixture was cooled to room temperature, the reaction mixture was extracted with a saturated aqueous solution of ethyl acetate and ammonium chloride, and the organic layer was concentrated. Separation and purification by column chromatography (SiO 2 , EA: Hex = 1: 15) 5,6,6a, 7,8,9,10,11,12,13-Decahydroazonino [1,2-a] quinoline-6 -carbaldehyde (Formula 3) was obtained in 93% yield, diastereomeric ratio 77:23.

77 : 23 부분입체이성질체 혼합물(diastereomeric mixture). 1H NMR (200 MHz, CDCl3) = 9.83 (s, 1H), 9.52 (s, 0.3H), 7.16-7.05 (m, 2.6H), 6.81-6.60 (m, 2.6H), 3.87-3.61 (m, 2.6H), 3.28-3.05 (m, 2.6H), 2.99-2.81 (m, 1.3H), 2.73-2.62 (m, 1H), 2.58-2.52 (m, 0.3H), 1.91-1.38 (m, 15.6H); 13C NMR (50 MHz, CDCl3) = 203.3, 203.1, 144.8 (x 2), 129.6, 129.4, 127.3 (x 2), 118.1, 116.9, 116.2 (x 2), 113.4 (x 2). 59.8, 58.7, 56.8, 56.7, 48.9, 47.9, 32.9, 28.7, 28.1, 27.5, 26.9, 26.6, 26.3, 26.1, 25.3, 25.1, 25.0, 24.6, 23.9, 22.5; ESI-HRMS : m/z calcd for C17H24NO [M+H]+ : 258.1861; found 258.1858.
77: 23 Diastereomeric mixtures. 1 H NMR (200 MHz, CDCl 3 ) = 9.83 (s, 1H), 9.52 (s, 0.3H), 7.16-7.05 (m, 2.6H), 6.81-6.60 (m, 2.6H), 3.87-3.61 ( m, 2.6H), 3.28-3.05 (m, 2.6H), 2.99-2.81 (m, 1.3H), 2.73-2.62 (m, 1H), 2.58-2.52 (m, 0.3H), 1.91-1.38 (m , 15.6H); 13 C NMR (50 MHz, CDCl 3 ) = 203.3, 203.1, 144.8 (x 2), 129.6, 129.4, 127.3 (x 2), 118.1, 116.9, 116.2 (x 2), 113.4 (x 2). 59.8, 58.7, 56.8, 56.7, 48.9, 47.9, 32.9, 28.7, 28.1, 27.5, 26.9, 26.6, 26.3, 26.1, 25.3, 25.1, 25.0, 24.6, 23.9, 22.5; ESI-HRMS: m / z calcd for C 17 H 24 NO [M + H] + : 258.1861; found 258.1858.

[실시 예 2] [Example 2]

6,6a,7,8,9,10,11,12-Octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2b): 6,6a, 7,8,9,10,11,12-Octahydro-5H-azocino [1,2-a] quinoline-6-carbaldehyde (2b):

실시 예 1과 동일한 방법을 이용하여 화학식 3을 95% 수율, 부분입체이성질체 비율 75 : 25로 얻었다.Using the same method as in Example 1, formula 3 was obtained in a 95% yield, diastereoisomer ratio of 75:25.

75 : 25 diastereomeric mixture. 1H NMR (200 MHz, CDCl3) = 9.82 (s, 0.3H), 9.50 (s, 1H), 7.24-7.02 (m, 2.6H), 6.74-6.53 (m, 2.6H), 3.86-3.75 (m, 2.6H), 3.28-3.13 (m, 1.3H), 3.08-3.05 (m, 2H), 2.98-2.81 (m, 0.6H), 2.82-2.75 (m, 0.3H), 2.55-2.49 (m, 1H), 2.00-1.20 (m, 13H); 13C NMR (50 MHz, CDCl3) = 203.1, 202.6, 143.8, 143.6, 129.6, 129.4, 127.4, 126.9, 118.5, 117.3, 115.5, 115.4, 111.5, 111.2, 58.3, 58.0, 53.3, 53.0, 48.9, 48.5, 33.7, 30.6, 27.7 (x 2), 26.8, 26.4, 26.1, 25.9 (x 2), 24.0, 23.3; ESI-HRMS : m/z calcd for C16H22NO [M+H]+ : 244.1701.
75: 25 diastereomeric mixture. 1 H NMR (200 MHz, CDCl 3 ) = 9.82 (s, 0.3H), 9.50 (s, 1H), 7.24-7.02 (m, 2.6H), 6.74-6.53 (m, 2.6H), 3.86-3.75 ( m, 2.6H), 3.28-3.13 (m, 1.3H), 3.08-3.05 (m, 2H), 2.98-2.81 (m, 0.6H), 2.82-2.75 (m, 0.3H), 2.55-2.49 (m , 1H), 2.00-1.20 (m, 13H); 13 C NMR (50 MHz, CDCl 3 ) = 203.1, 202.6, 143.8, 143.6, 129.6, 129.4, 127.4, 126.9, 118.5, 117.3, 115.5, 115.4, 111.5, 111.2, 58.3, 58.0, 53.3, 53.0, 48.9, 48.5 , 33.7, 30.6, 27.7 (x 2), 26.8, 26.4, 26.1, 25.9 (x 2), 24.0, 23.3; ESI-HRMS: m / z calcd for C 16 H 22 NO [M + H] + : 244.1701.

[실시 예 3][Example 3]

3-(Trifluoromethyl)-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2c): 3- (Trifluoromethyl) -6,6a, 7,8,9,10,11,12-octahydro-5H-azocino [1,2-a] quinoline-6-carbaldehyde (2c):

실시 예 1과 동일한 방법을 이용하였으나 15분 동안 반응시켜 화학식 3을 90% 수율, 부분입체이성질체 비율 75 : 25로 얻었다.Using the same method as in Example 1, but by reacting for 15 minutes to obtain the formula 3 in 90% yield, diastereomeric ratio 75:25.

75 : 25 diastereomeric mixture. 1H NMR (200 MHz, CDCl3) = 9.83 (s, 0.3H), 9.50 (s, 1H), 7.34-7.26 (m, 2.6H), 6.65-6.60 (m, 0.3H), 6.58-6.53 (m, 1H), 4.00-3.80 (m, 2H), 3.80-3.73 (m, 0.6H), 3.33-3.20 (m, 1.6H), 3.18-3.05 (m, 2H), 3.04-2.95 (m, 0.6H), 2.80-2.70 (m, 0.3H), 2.62-2.56 (m, 1H), 2.00-1.25 (m, 13H); 13C NMR (50 MHz, CDCl3) = 202.0, 201.7, 146.2 (x 2), 126.4 (q, JC-F = 3.0 Hz) (x 2), 125.0 (q, JC-F = 268.2 Hz) (x 2), 124.6 (q, JC-F = 2.7 Hz) (x 2), 118.4, 117.1 117.2 (q. JC-F = 32.4 Hz) (x 2), 110.8, 110.6, 58.5 (x 2), 53.8, 53.1, 48.6, 48.3, 33.9, 30.1, 27.6 (x 2), 26.3, (x 2) 25.9 (x 2), 25.6 (x 2), 23.7, 23.2; ESI-HRMS : m/z calcd for C17H21F3NO [M+H]+ : 312.1575; found 312.1571.
75: 25 diastereomeric mixture. 1 H NMR (200 MHz, CDCl 3 ) = 9.83 (s, 0.3H), 9.50 (s, 1H), 7.34-7.26 (m, 2.6H), 6.65-6.60 (m, 0.3H), 6.58-6.53 ( m, 1H), 4.00-3.80 (m, 2H), 3.80-3.73 (m, 0.6H), 3.33-3.20 (m, 1.6H), 3.18-3.05 (m, 2H), 3.04-2.95 (m, 0.6 H), 2.80-2.70 (m, 0.3H), 2.62-2.56 (m, 1H), 2.00-1.25 (m, 13H); 13 C NMR (50 MHz, CDCl 3 ) = 202.0, 201.7, 146.2 (x 2), 126.4 (q, JC-F = 3.0 Hz) (x 2), 125.0 (q, JC-F = 268.2 Hz) (x 2), 124.6 (q, JC-F = 2.7 Hz) (x 2), 118.4, 117.1 117.2 (q. JC-F = 32.4 Hz) (x 2), 110.8, 110.6, 58.5 (x 2), 53.8, 53.1, 48.6, 48.3, 33.9, 30.1, 27.6 (x 2), 26.3, (x 2) 25.9 (x 2), 25.6 (x 2), 23.7, 23.2; ESI-HRMS: m / z calcd for C 17 H 21 F 3 NO [M + H] +: 312.1575; found 312.1571.

[실시 예 4] [Example 4]

3-Bromo-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinoline-6-carbaldehyde (2d) : 3-Bromo-6,6a, 7,8,9,10,11,12-octahydro-5H-azocino [1,2-a] quinoline-6-carbaldehyde (2d):

실시예 1과 동일한 방법을 이용하여 화학식 3을 93% 수율, 부분입체이성질체 비율 77 : 23으로 얻었다.Using the same method as in Example 1, Chemical Formula 3 was obtained in 93% yield and diastereomeric ratio 77:23.

77 : 23 diastereomeric mixture. 1H NMR (200 MHz, CDCl3) = 9.81 (s, 0.3H), 9.49 (s, 1H), 7.22-7.09 (m, 2.6H), 65.7-6.49 (m, 0.3H), 64.6-6.39 (m, 1H), 3.93-3.79 (m, 2H), 3.78-3.65 (m, 0.6H), 3.27-3.14 (m, 1.3H), 3.07-3.05 (m, 2H), 2.98-2.81 (m, 0.6H), 2.82-2.75 (m, 0.3H), 2.56-2.51 (m, 1H), 2.00-1.20 (m, 13H); 13C NMR (50 MHz, CDCl3) = 202.3, 202.0, 142.7 (x 2), 131.9, 131.7, 130.0 (x 2), 120.7, 119.4, 113.0, 112.7, 107.0 (x 2), 58.2, 57.9, 53.3, 53.0, 48.6, 48.5, 33.7, 29.9, 27.6 (x 2), 26.4, 26.2, 25.9 (x 4), 23.6, 23.1; ESI-HRMS : m/z calcd for C16H21BrNO [M+H]+ : 322.0807; found 322.0807.
77: 23 diastereomeric mixture. 1 H NMR (200 MHz, CDCl 3 ) = 9.81 (s, 0.3H), 9.49 (s, 1H), 7.22-7.09 (m, 2.6H), 65.7-6.49 (m, 0.3H), 64.6-6.39 ( m, 1H), 3.93-3.79 (m, 2H), 3.78-3.65 (m, 0.6H), 3.27-3.14 (m, 1.3H), 3.07-3.05 (m, 2H), 2.98-2.81 (m, 0.6 H), 2.82-2.75 (m, 0.3H), 2.56-2.51 (m, 1H), 2.00-1.20 (m, 13H); 13 C NMR (50 MHz, CDCl 3 ) = 202.3, 202.0, 142.7 (x 2), 131.9, 131.7, 130.0 (x 2), 120.7, 119.4, 113.0, 112.7, 107.0 (x 2), 58.2, 57.9, 53.3 , 53.0, 48.6, 48.5, 33.7, 29.9, 27.6 (x 2), 26.4, 26.2, 25.9 (x 4), 23.6, 23.1; ESI-HRMS: m / z calcd for C 16 H 21 BrNO [M + H] + : 322.0807; found 322.0807.

[실시 예 5] [Example 5]

5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinoline-6-carbaldehyde (2e): 5,6,6a, 7,8,9,10,11-Octahydroazepino [1,2-a] quinoline-6-carbaldehyde (2e):

실시 예 1과 동일한 방법을 이용하였으나 30분 동안 반응시켜 화학식 3을 95% 수율, 부분입체이성질체 비율 88 : 12로 얻었다.Using the same method as in Example 1, but was reacted for 30 minutes to obtain the formula 3 in 95% yield, diastereomeric ratio of 88: 12.

Major diastereoisomer. 1H NMR (500 MHz, CDCl3) = 9.53 (s, 1H), 7.06-7.01 (m, 2H), 6.53 (t , J = 8.5 Hz, 1H), 6.49 (d, J = 8.5 Hz, 1H), 3.85 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.82-3.79 (m, 1H), 3.22-3.09 (m, 2H), 3.02 (dd, J = 8.0 Hz, 6.5 Hz, 1 H), 2.54-2.52 (m, 1H), 2.09-2.05 (m, 1H), 1.74-1.71 (m, 1H), 1.67-1.57 (m, 5H), 1.37-1.34 (m, 1H); 13C NMR (50 MHz, CDCl3) = 203.3, 143.8, 129.4, 127.4, 117.0, 115.6, 110.3, 58.2, 49.5, 47.8, 34.9, 26.5, 26.0, 25.8, 23.7; ESI-HRMS : m/z calcd for C15H20NO [M+H]+ : 230.1545; found 230.1541.
Major diastereoisomer. 1 H NMR (500 MHz, CDCl 3 ) = 9.53 (s, 1H), 7.06-7.01 (m, 2H), 6.53 (t, J = 8.5 Hz, 1H), 6.49 (d, J = 8.5 Hz, 1H) , 3.85 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.82-3.79 (m, 1H), 3.22-3.09 (m, 2H), 3.02 (dd, J = 8.0 Hz, 6.5 Hz, 1H), 2.54-2.52 (m, 1H), 2.09-2.05 (m, 1H), 1.74-1.71 (m, 1H), 1.67-1.57 (m, 5H), 1.37-1.34 (m, 1H); 13 C NMR (50 MHz, CDCl 3 ) = 203.3, 143.8, 129.4, 127.4, 117.0, 115.6, 110.3, 58.2, 49.5, 47.8, 34.9, 26.5, 26.0, 25.8, 23.7; ESI-HRMS: m / z calcd for C 15 H 20 NO [M + H] + : 230.1545; found 230.1541.

[실시 예 6] [Example 6]

2,3,4,4a,5,6-Hexahydro-1H-pyrido[1,2-a]quinoline-5-carbaldehyde (2f): 2,3,4,4a, 5,6-Hexahydro-1H-pyrido [1,2-a] quinoline-5-carbaldehyde (2f):

실시 예 1과 동일한 방법을 이용하였으나 200 W, 120 분 반응시켜 화학식 3을 78% 수율, 부분입체이성질체 비율 78 : 22로 얻었다.Using the same method as in Example 1, but was reacted 200 W, 120 minutes to obtain the formula 3 in 78% yield, diastereomeric ratio of 78:22.

Major diastereoisomer. 1H NMR (200 MHz, CDCl3) = 9.63 (s, 1H), 7.21-7.00 (m, 2H), 6.78-6.57 (m, 2H), 4.01-3.80 (m, 1H), 3.50-3.42 (m, 1H), 3.19-2.50 (m, 3H), 2.64-2.55 (m, 1H), 2.00-1.30 (m, 6H), 13C NMR (50 MHz, CDCl3) = 202.6, 143.9, 128.8, 127.6, 122.0, 117.5, 112.5, 56.4, 51.9, 48.3, 31.2, 25.9, 24.9, 24.0.
Major diastereoisomer. 1 H NMR (200 MHz, CDCl 3 ) = 9.63 (s, 1H), 7.21-7.00 (m, 2H), 6.78-6.57 (m, 2H), 4.01-3.80 (m, 1H), 3.50-3.42 (m , 1H), 3.19-2.50 (m, 3H), 2.64-2.55 (m, 1H), 2.00-1.30 (m, 6H), 13 C NMR (50 MHz, CDCl 3 ) = 202.6, 143.9, 128.8, 127.6, 122.0, 117.5, 112.5, 56.4, 51.9, 48.3, 31.2, 25.9, 24.9, 24.0.

[실시 예 7] [Example 7]

7-Bromo-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4-carbaldehyde (2g): 7-Bromo-1,2,3,3a, 4,5-hexahydropyrrolo [1,2-a] quinoline-4-carbaldehyde (2 g):

실시 예 1과 동일한 방법을 이용하였으나 200 W, 150 분 반응시켜 화학식 3을 72% 수율, 부분입체이성질체 비율 78 : 22로 얻었다.Using the same method as in Example 1, but was reacted 200 W, 150 minutes to obtain the formula 3 in 72% yield, diastereomeric ratio of 78:22.

Major diastereoisomer. 1H NMR (200 MHz, CDCl3) = 9.90 (d, J = 1.8 Hz, 1H), 7.20-7.14 (m, 2H), 6.33-6.29 (m, 1H), 3.49-3.30 (m, 2H), 3.23-3.10 (m, 1H), 2.90 (d, J = 8.3 Hz, 2H), 2.43-2.31 (m, 2H), 2.30-1.96 (m, 2H), 1.70-1.53 (m, 1H); 13C NMR (50 MHz, CDCl3) = 202.0, 142.7, 130.9, 130.2, 116.4, 111.8, 107.3, 57.7, 49.8, 46.6, 31.5, 28.2, 23.9; ESI-HRMS : m/z calcd for C13H15BrNO [M+H]+ : 280.0337; found 280.0263.
Major diastereoisomer. 1 H NMR (200 MHz, CDCl 3 ) = 9.90 (d, J = 1.8 Hz, 1H), 7.20-7.14 (m, 2H), 6.33-6.29 (m, 1H), 3.49-3.30 (m, 2H), 3.23-3.10 (m, 1H), 2.90 (d, J = 8.3 Hz, 2H), 2.43-2.31 (m, 2H), 2.30-1.96 (m, 2H), 1.70-1.53 (m, 1H); 13 C NMR (50 MHz, CDCl 3 ) = 202.0, 142.7, 130.9, 130.2, 116.4, 111.8, 107.3, 57.7, 49.8, 46.6, 31.5, 28.2, 23.9; ESI-HRMS: m / z calcd for C 13 H 15 BrNO [M + H] + : 280.0337; found 280.0263.

[실시 예 8] [Example 8]

7,11b,12,13-Tetrahydro-6H-isoquinolino[2,1-a]quinoline-12-carbaldehyde (2h): 7,11b, 12,13-Tetrahydro-6H-isoquinolino [2,1-a] quinoline-12-carbaldehyde (2h):

실시 예 1과 동일한 방법을 이용하였으나 20 분 반응시켜 화학식 3을 97% 수율, 부분입체이성질체 비율 57 : 43으로 얻었다.
In the same manner as in Example 1, but by reacting for 20 minutes to obtain the formula 3 in 97% yield, diastereomeric ratio 57:43.

Major diastereoisomer. 1H NMR (500 MHz, CDCl3) = 9.82 (s, 1H), 7.25-7.10 (m, 3H), 7.09-7.00 (m, 2H), 6.99-6.85 (m, 2H), 6.71-6.64 (m, 1H), 5.02 (d, J = 3.8 Hz, 1H), 4.20-4.04 (m, 1H), 3.49 (ddd, J = 13.5 Hz, 11.8 Hz, 4.0 Hz, 1H), 3.38-3.31 (m, 1H), 3.31-3.01 (m, 2H), 2.84 (dd, J = 16.2 Hz, 5.5 Hz, 1H), 2.65-2.59 (m, 1H); 13C NMR (50 MHz, CDCl3) = 202.6, 144.5, 136.7, 136.0, 129.3, 127.4, 126.9, 126.5, 124.3, 121.9, 118.4, 113.7 (one aromatic carbon missing due to overlapping), 56.9, 47.7, 46.3, 25.7, 24.3.
Major diastereoisomer. 1 H NMR (500 MHz, CDCl 3 ) = 9.82 (s, 1H), 7.25-7.10 (m, 3H), 7.09-7.00 (m, 2H), 6.99-6.85 (m, 2H), 6.71-6.64 (m , 1H), 5.02 (d, J = 3.8 Hz, 1H), 4.20-4.04 (m, 1H), 3.49 (ddd, J = 13.5 Hz, 11.8 Hz, 4.0 Hz, 1H), 3.38-3.31 (m, 1H ), 3.31-3.01 (m, 2H), 2.84 (dd, J = 16.2 Hz, 5.5 Hz, 1H), 2.65-2.59 (m, 1H); 13 C NMR (50 MHz, CDCl 3 ) = 202.6, 144.5, 136.7, 136.0, 129.3, 127.4, 126.9, 126.5, 124.3, 121.9, 118.4, 113.7 (one aromatic carbon missing due to overlapping), 56.9, 47.7, 46.3, 25.7, 24.3.

이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.Although the present invention has been described in detail with reference to the above embodiments, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the spirit of the present invention.

Claims (9)

마이크로 웨이브(MW) 에너지 30 ~ 200 W 출력조사범위하에 [화학식 2]의 오쏘 위치에 고리화된 다이알킬 아미노기가 치환된 신남알데하이드 화합물을 1,2-디클로로에탄, 톨루엔, 에탄올, 아세토나이트릴 중 어느 하나의 용매(solvent)로 사용하여, 아민 촉매(pyrrolidine)와 산첨가제(TFA) 존재하에서, 하기 [반응식 1]과 같이 1,5-수소전이 반응을 통해 [화학식 3]의 구조를 갖는 테트라하이드로퀴놀린 화합물을 합성하는 방법.
[화학식 2]
Figure 112013071001872-pat00010

상기 R1 및 R2는 테트라하이드로아이소퀴놀린이며, 상기 R3 는 트리플루오로메틸기 또는 할로겐이며, 상기 할로겐은 플루오로(F), 클로로(Cl), 브로모(Br) 또는 아이오도(I) 중 어느 하나임.
[반응식 1]
Figure 112013071001872-pat00013

상기 반응식 1에서 상기 R1 및 R2는 테트라하이드로아이소퀴놀린이며, 상기 R3 는 트리플루오로메틸기 또는 할로겐이며, 상기 할로겐은 플루오로(F), 클로로(Cl), 브로모(Br) 또는 아이오도(I) 중 어느 하나임.
[화학식 3]
Figure 112013071001872-pat00012

상기 R1 및 R2는 테트라하이드로아이소퀴놀린이며, 상기 R3 는 트리플루오로메틸기 또는 할로겐이며, 상기 할로겐은 플루오로(F), 클로로(Cl), 브로모(Br) 또는 아이오도(I) 중 어느 하나임.
A cinnamic aldehyde compound substituted with a dialkyl amino group cyclized at the ortho position of [Formula 2] under a microwave (MW) energy irradiation range of 30 to 200 W in 1,2-dichloroethane, toluene, ethanol, acetonitrile Tetra having a structure of [Formula 3] through a 1,5-hydrogen transfer reaction as shown in [Scheme 1] in the presence of an amine catalyst (pyrrolidine) and an acid additive (TFA) by using as a solvent. A method of synthesizing a hydroquinoline compound.
(2)
Figure 112013071001872-pat00010

R 1 and R 2 are tetrahydroisoquinoline, R 3 is trifluoromethyl group or halogen, and halogen is fluoro (F), chloro (Cl), bromo (Br) or iodo (I) Any one of
[Reaction Scheme 1]
Figure 112013071001872-pat00013

In Scheme 1, R 1 and R 2 are tetrahydroisoquinoline, R 3 is trifluoromethyl group or halogen, and halogen is fluoro (F), chloro (Cl), bromo (Br) or io Any one of degrees (I).
(3)
Figure 112013071001872-pat00012

R 1 and R 2 are tetrahydroisoquinoline, R 3 is trifluoromethyl group or halogen, and halogen is fluoro (F), chloro (Cl), bromo (Br) or iodo (I) Any one of
제1항에 있어서,
상기 아민 촉매는, 하기 [화학식 1]의 피롤리딘인 것을 특징으로 하는 테트라하이드로퀴놀린 화합물 합성 방법.
[화학식 1]
Figure 112012107703511-pat00008
The method of claim 1,
Said amine catalyst is pyrrolidine of the following [formula 1], The tetrahydroquinoline compound synthesis method characterized by the above-mentioned.
[Chemical Formula 1]
Figure 112012107703511-pat00008
삭제delete 제1항에 있어서,
상기 산 첨가제는 TFA (F3CCO2H) 인 것을 특징으로 하는 테트라하이드로퀴놀린 화합물 합성 방법.
The method of claim 1,
The acid additive is TFA (F 3 CCO 2 H) characterized in that the tetrahydroquinoline compound synthesis method.
제1항에 있어서,
상기 아민 촉매 및 산 첨가제의 함량은, 반응 물질들의 전체 몰수를 기준으로, 5 몰 내지 30 몰%인 것을 특징으로 하는 테트라하이드로퀴놀린 화합물 제조 방법.
The method of claim 1,
The amount of the amine catalyst and the acid additive, based on the total number of moles of the reactant, characterized in that the tetrahydroquinoline compound manufacturing method, characterized in that 5 to 30 mol%.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 마이크로웨이브(MW)의 출력(W)은 30, 50, 100, 150 또는 200W로 조사하는 것을 특징으로 하는 테트라하이드로퀴놀린 화합물을 제조하는 방법.
The method of claim 1,
The output (W) of the microwave (MW) is a method for producing a tetrahydroquinoline compound, characterized in that irradiated with 30, 50, 100, 150 or 200W.
KR1020110058969A 2011-06-17 2011-06-17 Method for preparation of tetrahydroquinlones under microwave irradiation KR101344076B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110058969A KR101344076B1 (en) 2011-06-17 2011-06-17 Method for preparation of tetrahydroquinlones under microwave irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110058969A KR101344076B1 (en) 2011-06-17 2011-06-17 Method for preparation of tetrahydroquinlones under microwave irradiation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130021626A Division KR101344070B1 (en) 2013-02-28 2013-02-28 Method for preparation of tetrahydroquinlones under microwave irradiation

Publications (2)

Publication Number Publication Date
KR20120139260A KR20120139260A (en) 2012-12-27
KR101344076B1 true KR101344076B1 (en) 2013-12-24

Family

ID=47905774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110058969A KR101344076B1 (en) 2011-06-17 2011-06-17 Method for preparation of tetrahydroquinlones under microwave irradiation

Country Status (1)

Country Link
KR (1) KR101344076B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453413B1 (en) * 2013-01-29 2014-11-12 순천향대학교 산학협력단 Method for preparation of alpha-carboline derivatives
KR101508303B1 (en) * 2013-08-29 2015-04-06 순천향대학교 산학협력단 Synthetic Method of chial tetrahydroquinoline derivatives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioorganic & Medicinal Chemistry Letters Volume 16, Issue 11, 2006, Pages 2925-2928.
Tetrahedron Letters Volume 50, Issue 24, 17 June 2009, Pages 2939-2942.

Also Published As

Publication number Publication date
KR20120139260A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
Liu et al. A General, Effcient and Green Procedure for Synthesis of Dihydropyrimidine‐5‐carboxamides in Low Melting Betaine Hydrochloride/Urea Mixture
KR101344076B1 (en) Method for preparation of tetrahydroquinlones under microwave irradiation
CN104447686A (en) Polysubstituted 2-pyrrolopyridine derivative and preparation method thereof
CN105646416B (en) A kind of method that 2,3 dihydro-benzofuran derivatives are synthesized by palladium chtalyst
Yuan et al. Visible-light-induced tandem difluoroalkylated spirocyclization of N-arylpropiolamides: access to C3-difluoroacetylated spiro [4, 5] trienones
KR101344070B1 (en) Method for preparation of tetrahydroquinlones under microwave irradiation
Wang et al. An efficient synthesis of 2-formyl-1, 4, 5, 8-tetramethoxynaphthalene
KR20160027537A (en) Process for preparing silodosin
CN109988108A (en) A kind of rich preparation method for Buddhist nun of card
CN109942633B (en) Preparation method of tenofovir alafenamide intermediate
CN110092751B (en) Synthesis method of 2-alkyl quinoline
CN102993088A (en) 4-hydroxy-2-pyridone preparation method
CN108250008B (en) Chiral resolution method of 3,3,3',3' -tetramethyl-1, 1 '-spiroindane-6, 6' -diol derivative
BR112021011084A2 (en) PROCESS FOR PREPARING 1-[(3R,4S)-4-CYANOTETRAHYDROPYRAN-3-IL]-3-[(2-FLUORO-6-METOXY-4-PYRIDYL)AMINO]PYRAZOLE-4-CARBOXAMIDE
CN116813525B (en) Synthesis method of polyacetyl substituted oxindole compound
CN114349684B (en) Synthetic method of benzo [ c, d ] indole imine derivative
KR101580821B1 (en) Development of a New Synthetic Method for Quinazolinones via Aerobic Oxidation in dimethylsulfoxide
CN104744263A (en) Novel method for efficiently synthesizing 6-hydroxy-2,3-dimethoxy-9-phenanthrenecarboxylic acid methyl ester
CN103113323A (en) Preparation method of lasofoxifene tartrate intermediate compound
CN108069977B (en) Synthetic method of fluoroalkyl-substituted pyrrole [1,2-a ] indole
RU2522460C1 (en) Method of producing alkenyl anthraquinones
CN109265391B (en) Biphenyl polysubstituted 1,2,5, 6-tetrahydropyridine compound and synthetic method and application thereof
KR101304952B1 (en) Method for preparation of tetrahydroquinoline derivatives
CN105693607B (en) A kind of synthetic method of 4- hydroxyls -8- bromo-isoquinolines
CN107021968B (en) The method of the polysubstituted organic photochemical catalyst catalyzing indole quinoline class compound oxidation dehydrogenation synthesis of indole class compound of BODIPY

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 6