KR101342923B1 - Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer - Google Patents

Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer Download PDF

Info

Publication number
KR101342923B1
KR101342923B1 KR1020130096173A KR20130096173A KR101342923B1 KR 101342923 B1 KR101342923 B1 KR 101342923B1 KR 1020130096173 A KR1020130096173 A KR 1020130096173A KR 20130096173 A KR20130096173 A KR 20130096173A KR 101342923 B1 KR101342923 B1 KR 101342923B1
Authority
KR
South Korea
Prior art keywords
hours
fuel cell
hydrothermal synthesis
lacro
solution
Prior art date
Application number
KR1020130096173A
Other languages
Korean (ko)
Other versions
KR20130095716A (en
Inventor
강민경
태원필
Original Assignee
(재)울산테크노파크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)울산테크노파크 filed Critical (재)울산테크노파크
Priority to KR1020130096173A priority Critical patent/KR101342923B1/en
Publication of KR20130095716A publication Critical patent/KR20130095716A/en
Application granted granted Critical
Publication of KR101342923B1 publication Critical patent/KR101342923B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 수열합성을 이용하여 고체산화물 연료전지 접속자용 LaCrO3 페로브스카이트형 전도성 나노 분말 합성 및 그 제조 방법에 관한 것이다. 출발물질로 Nitrate precursor와 Acetate precursor, Precipitant로 NaOH, KOH, NH4OH, NH2CONH2등을 이용하여 반응온도 100~250℃에서 수열 합성한 분말을 100~350℃에서 8~24시간 열처리함으로써 단일상의 페로브스카이트형 doped LaCrO3나노분말을 제조할 수 있다. 입자의 형태는 구형 및 타원형이며 입자 크기는 30~400nm이다.The present invention relates to the synthesis of LaCrO 3 perovskite-type conductive nanopowder for solid oxide fuel cell interconnector using hydrothermal synthesis and a method of manufacturing the same. By using Nitrate precursor, Acetate precursor, Precipitant as NaOH, KOH, NH 4 OH, NH 2 CONH 2 as starting materials, hydrothermally synthesized powder at reaction temperature of 100 ~ 250 ℃ for 8 ~ 24 hours at 100 ~ 350 ℃ Single-phase perovskite doped LaCrO 3 nanopowders can be prepared. The particles are spherical and elliptical in shape and have a particle size of 30 to 400 nm.

Description

수열합성법을 이용한 고체산화물 연료전지 접속자용 LaCrO₃ 나노분말의 제조방법{Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer}Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer}

본 발명은 수열합성법에 의한 고체산화물 연료전지 접속자용 페로브스카이트형 나노 분말의 제조방법에 관한 것으로, 보다 상세하게는 수열합성법에 의한  판상, 타원형, 구상 등의 형태로 2차상이 없는 고순도 및 전도성을 갖는 페로브스카이트형 LaCrO3 나노분말의 합성방법에 관한 것이다. 입자 나노화 및 고순도 물질 제조가 가능한 습식법 기반의 수열합성법을 이용하여 금속염 기반의 최적 전구체를 선정하여 입자 나노화를 위한 최적 수열 조건 도출, 입자형상제어를 위한 출발물질 및 합성조건을 최적화함으로써 치밀막 성형체 형성을 위해 필수적인 분말 입자의 나노화를 도모하여 2차상이 없는 고체산화물 연료전지(SOFC) 접속자  전도성 나노분말 합성 공정을 개발하고자 한다.The present invention relates to a method for producing a perovskite-type nanopowder for a solid oxide fuel cell connector by a hydrothermal synthesis method, and more specifically, high purity and conductivity without secondary phase in the form of plate, ellipse, sphere, etc. by hydrothermal synthesis method. The present invention relates to a method for synthesizing a perovskite type LaCrO 3 nanopowder having. Selecting the optimal precursor based on metal salts using the wet method based hydrothermal synthesis, which enables particle nanonization and manufacturing of high-purity materials, to derive optimal hydrothermal conditions for particle nanoparticles, and to optimize starting materials and synthesis conditions for particle shape control The nanoparticle synthesis process, which is essential for the nanoparticles, aims to develop a nanoparticle synthesis process for secondary oxide-free solid oxide fuel cell (SOFC) connectors.

우수한 전도성 특성을 갖는 나노분말을 합성하는 방법에는 균일침전법, Sol-Gel법, 기상산화법, 분무열분해법, 수열합성법 등이 시도되고 있다. 그중 수열합성법은 입자크기 및 형태 제어가 용이하고, 저온에서 합성할 수 있는 큰 장점을 갖고 있으며 금속염, 산화물, 수화물 혹은 금속 분말을 용액상태나 현탁액 상태에서 물질의 용해도, 온도, 압력 및 용매의 농도에 의해 의존하는 특성을 이용하여 입자를 합성하는 공정이다. As a method of synthesizing nanopowders having excellent conductivity characteristics, homogeneous precipitation, Sol-Gel, gas phase oxidation, spray pyrolysis, hydrothermal synthesis, and the like have been attempted. Among them, hydrothermal synthesis is easy to control the particle size and shape, and has a great advantage in synthesizing at low temperature. It is a process of synthesize | combining particle | grains using the characteristic which depends on.

이러한 방법들은 나노 스케일인 원자나 분자 단위로 화학적인 반응을 설계함으로써 원하는 나노 분말을 얻고자 하는 시도이다. 각각의 공정은 장단점을 가지고 있으며, 원하는 나노 분말의 합성에 적합한 공정을 선택하는 것이 필요하다. 700℃~1000℃ 범위의 고온에서 작동되는 고체산화물 연료전지(SOFC)의 접속자는 반드시 가스밀폐성, 산화 및 환원성 분위기에서 화학적 안정성, 높은 전기전도도, 높은 열전도도, 전해질과 비슷한 열팽창계수, 높은 기계적 강도, 우수한 제조성을 가져야한다. 지금까지 고체산화물 연료전지의 접속자 소재로 가장 많이 대두되고 있는 소재는 LaCrO3계 소재이다. 세라믹 소재를 접속자 소재로 사용하게 되면 기존 금속분리판의 산화피막 형성에 따른 접촉 저항 증가 및 크롬 휘발에 따른 캐소드 피독 현상을 억제할 수 있는 장점이 있다. 이에 고전자전도성의 신규 세라믹 소재 설계, 분말 합성, 코팅 슬러리 기술 개발이 필수적이다. 세라믹 접속자 소재를 나노 복합화 할 경우, 소결 온도를 저감시킬 수 있고 전자전도성을 향상시킬 수 있으며, 미세구조 제어가 용이하여 고내구성의 치밀막 형성에 유리하다, 본 발명은 수열합성법에 의한 접속자 소재로 출발 원료의 종류 및 합성 조건에 따른 입자크기, 형상을 제어할 수 있는 고순도 및 전도성을 갖는 doped LaCrO3 나노분말의 조성 및 합성 기술을 개발하고자 한다. These methods attempt to obtain the desired nanopowder by designing chemical reactions at the nanoscale, atomic or molecular scale. Each process has advantages and disadvantages and it is necessary to select a process suitable for the synthesis of the desired nanopowder. Solid oxide fuel cells (SOFCs) operating at high temperatures in the range of 700 ° C to 1000 ° C must have chemical stability, high electrical conductivity, high thermal conductivity, thermal expansion coefficient similar to that of electrolyte, and high mechanical strength in gas-tight, oxidizing and reducing atmospheres. , Should have excellent manufacturability. Until now, the most popular material for connecting the solid oxide fuel cell is LaCrO 3 system. Using a ceramic material as a connector material has an advantage of suppressing cathode poisoning caused by chromium volatilization and increase in contact resistance due to the formation of an oxide film of the existing metal separator plate. Therefore, it is necessary to develop new ceramic materials, powder synthesis, and coating slurry technology. When the nano-composite material is nanocomposite, the sintering temperature can be reduced, the electronic conductivity can be improved, and the microstructure can be easily controlled to form a highly durable dense film, and the present invention provides a connector material by the hydrothermal synthesis method. The purpose of this study is to develop a composition and synthesis technology of doped LaCrO 3 nanopowder with high purity and conductivity to control particle size and shape according to the type of starting material and synthesis conditions.

본 발명의 목적은 수열합성법을 이용하여 2차상이 없는 고체산화물 연료전지(SOFC) 접속자용 나노분말을 저온에서 합성하는 데 있다. 즉, 본 발명은 출발물질 및 Precipitant의 종류에 따른 다양한 형태의 전도성 나노 분말을 저온에서 합성하기 위한 것으로서, 효과적으로 페로브스카이형 나노분말을 제조할 수 있는 수열합성법을 이용하여 고체산화물 연료전지 접속자 전도성 나노분말을 제조하는 방법을 제공하는 것이다. An object of the present invention is to synthesize a nano powder for a solid oxide fuel cell (SOFC) connector without secondary phase at low temperature by using hydrothermal synthesis. That is, the present invention is to synthesize various types of conductive nano powders according to the type of starting material and precipitant at low temperature, and solid oxide fuel cell connector conductivity using hydrothermal synthesis method that can effectively produce perovskite-type nanopowders. It is to provide a method for producing a nanopowder.

상기와 같은 목적을 달성하기 위하여 본 발명의 실시 예에 따른 수열합성법을 이용한 접속자용 전도성 나노분말의 제조 방법은 각각의 출발물질로 Nitrate precursor와 Acetate precursor를 정량하여 혼합한 용액에 Precipitant를 첨가하여 석출용액을 만든 다음 상기 용액을 수열 반응시켜 수세, 건조의 과정을 거쳐 페로브스카이트형 나노분말을 제조하는 방법을 제공한다. 본 발명의 수열합성을 이용한 나노분말의 제조방법은, Nitrate precursor를 이용하여 제조할 경우 출발물질 La(NO3)2·6H2O와 Cr(NO3)2·9H2O의 La/Cr 비가 0.8~1.3이 되도록 정량한 다음 정량한 상기 두 물질을 혼합한 용액에 Precipitant를 혼합하여 석출용액을 만드는 단계, 상기 혼합 수용액을 수열 처리하는 단계, 수열처리 후 얻은 슬러리를 수세 및 건조 과정을 거쳐 분말을 얻는 단계를 통해 불순물이 없는 LaCrO3 전도성 나노 분말을 제조하는 것을 특징으로 한다. In order to achieve the above object, a method for preparing a conductive nanopowder for a connector using the hydrothermal synthesis method according to an embodiment of the present invention is to precipitate by adding a precipitant to a solution obtained by quantitatively mixing Nitrate precursor and Acetate precursor as respective starting materials. After the solution is made, the solution is hydrothermally reacted to provide a method for producing perovskite-type nanopowders through washing and drying. In the method of preparing nanopowders using hydrothermal synthesis of the present invention, the La / Cr ratio of the starting materials La (NO 3 ) 2 · 6H 2 O and Cr (NO 3 ) 2 · 9H 2 O when prepared using nitrate precursor It is quantified to 0.8 ~ 1.3 and then mixed with the quantified solution of Precipitant to form a precipitation solution, the hydrothermal treatment of the mixed aqueous solution, the slurry obtained after the hydrothermal treatment by washing and drying the powder It is characterized in that to produce a LaCrO 3 conductive nano-powder free of impurities through a step of obtaining.

상기 기술적인 문제를 해결하기 위한 본 발명의 또 다른 실시 예에 따른 제조방법은, 출발물질로 Lanthanium(III) acetate hydrate(La(CH3CO2)3 · 1.5H2O)와 Chromium(III) acetate hydroxide ((CH3CO2)7Cr3(OH)2) La/Cr 몰 비가 0.7~1.7이 되도록 정량하여 혼합한 용액을 30mim정도 교반시킨 후 precipitant를 서서히 혼합 한 다음 130℃에서 4시간 교반하면서 반응하는 단계, 상기 혼합수용액을 200~230℃에서 24시간 수열 처리하는 단계, 수열처리 후 얻은 슬러리를 수세 및 건조 과정을 거쳐 분말을 얻는 단계를 통해 불순물이 없는 LaCrO3 전도성 나노 분말을 제조하는 것을 특징으로 한다. According to another embodiment of the present invention for solving the above technical problem, Lanthanium (III) acetate hydrate (La (CH 3 CO 2 ) 3 · 1.5H 2 O) and Chromium (III) as a starting material acetate hydroxide ((CH 3 CO 2 ) 7 Cr 3 (OH) 2 ) La / Cr molar ratio of 0.7 ~ 1.7 quantitatively mixed solution was stirred for about 30mim, the precipitant was slowly mixed and stirred at 130 ℃ for 4 hours Reacting while, the step of hydrothermally treating the mixed aqueous solution at 200 ~ 230 ℃ 24 hours, washing the slurry obtained after the hydrothermal treatment to obtain a powder by washing and drying process to produce a LaCrO 3 conductive nano-powder free of impurities It is characterized by.

본 발명에 따른 수열합성에 의한 나노분말의 제조방법에 의해 2차상이 없는 단일상의 페로브스카이트형 나노분말을 경제적으로 제조할 수 있으며 입자크기 및 형태제어가 용이하고, 저온에서 합성할 수 있는 큰 장점이 있다. 또한 도펀드(Ca, Co) 도핑에 의해 전도성을 갖는 나노 분말을 합성할 수 있다. By the method of producing nanopowders by hydrothermal synthesis according to the present invention, single phase perovskite-type nanopowders without secondary phases can be economically prepared, and the particle size and shape can be easily controlled, and they can be synthesized at low temperatures. There is an advantage. In addition, nano powders having conductivity may be synthesized by doping (Ca, Co) doping.

도 1(a) 내지 도 7(a)는 본 발명의 실시예1~실시예7에 따라 각각의 각 반응 조건에서 수열 합성한 시료의 결정상을 나타내는 X-선 회절 패턴을 나타낸다
도 1(b) 내지 도 7(b)는 실시예1~실시예7에 따른 각각의 분말 형태 변화와 입경을 나타내는 주사전자현미경(Scanning Electron Microscope: SEM) 사진(5만 배율)을 나타낸다.
도 8은 각 조성의 소결시편을 4단자법을 이용하여 750℃, air 조건에서 전기전도도 측정값을 도시하였다.
1 (a) to 7 (a) show X-ray diffraction patterns showing crystal phases of hydrothermally synthesized samples under respective reaction conditions according to Examples 1 to 7 of the present invention.
1 (b) to 7 (b) show scanning electron microscopy (SEM) photographs (50,000 magnifications) showing powder form changes and particle sizes according to Examples 1-7.
8 shows electrical conductivity measurements of sintered specimens of each composition at 750 ° C. and air conditions using a four-terminal method.

이하 본 발명의 실시예에 의하여 더욱 상세하게 설명한다. 단 하기의 실시예들은 본 발명을 예시하는 것으로서, 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the embodiment of the present invention will be described in more detail. However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

[실시예 1]
[Example 1]

출발 물질로 사용된 La(NO3)3·6H2O (Sigma-Aldrich Co., USA)와 Cr(NO3)3·9H2O (Sigma-Aldrich Co., USA) 시료를 몰 비율에 맞게 La/Cr의 조성비가 0.8~1.3이 되도록 정량한 다음 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합물과 0.5M 농도의 수산화나트륨(GR, Kanto Chemical Co., Tokyo, Japan) 수용액을  서서히  혼합교반 시킨다. 상기 용액을 30분간 초음파 처리한 후, teflon liner가 내장된 수열 합성 용기에 넣고 밀봉하여 200~250℃에서 8~32시간동안 반응시킨다. 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 9회 세척한 다음 350℃에서 8시간 건조하여 LaCrO3 나노분말을 제조한다. 도 1(a)와 도 1(b)에 나타낸 바와 같이, 구형 및 타원형의 나노 입자는 100~300nm의 입자크기를 나타낸다. La (NO 3 ) 3 · 6H 2 O (Sigma-Aldrich Co., USA) and Cr (NO 3 ) 3 · 9H 2 O (Sigma-Aldrich Co., USA) samples used as starting materials were matched to the molar ratio. The composition ratio of La / Cr is 0.8-1.3 and dissolved in ultrapure water to prepare a mixture of 0.05 M concentration. The mixture and a 0.5 M sodium hydroxide (GR, Kanto Chemical Co., Tokyo, Japan) aqueous solution are slowly mixed and stirred. After sonicating the solution for 30 minutes, the solution was placed in a hydrothermal synthesis vessel with a teflon liner and sealed, and reacted for 8 to 32 hours at 200 to 250 ° C. The prepared slurry was washed 9 times with deionized water using Centrifuge (FLETA5, Hanil) and then dried at 350 ° C. for 8 hours to LaCrO 3 Nano powder is prepared. As shown in Figure 1 (a) and Figure 1 (b), the spherical and elliptical nanoparticles exhibit a particle size of 100 ~ 300nm.

 

[실시예 2]
[Example 2]

출발 물질로 사용된 La(NO3)3·6H2O (Sigma-Aldrich Co., USA)와 Cr(NO3)3·9H2O (Sigma-Aldrich Co., USA) 시료를 몰 비율에 맞게 La/Cr의 조성비가 0.8~1.3이 되도록 정량한 다음 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합물과 0.35~0.4M 수산화칼륨 (GR, Dae Jung Chemical, Korea) 수용액을 서서히 혼합하여 교반 시킨다. 상기 용액을 30분간 초음파 처리한 후, teflon liner가 내장된 수열 합성 용기에 넣고 밀봉하여 100~230℃에서 8~30시간 동안 반응시킨다. 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 7회 세척한 다음 250℃~300℃에서 12시간 건조하여 LaCrO3나노분말을 제조한다.  도 2(a)와 도 2(b)에 나타낸 바와 같이, 타원형의 나노 입자는 50~200nm의 입자크기를 나타낸다.
La (NO 3 ) 3 · 6H 2 O (Sigma-Aldrich Co., USA) and Cr (NO 3 ) 3 · 9H 2 O (Sigma-Aldrich Co., USA) samples used as starting materials were matched to the molar ratio. The composition ratio of La / Cr is 0.8-1.3 and dissolved in ultrapure water to prepare a mixture of 0.05 M concentration. This mixture and 0.35 ~ 0.4M potassium hydroxide (GR, Dae Jung Chemical, Korea) aqueous solution is slowly mixed and stirred. After sonicating the solution for 30 minutes, the solution was placed in a hydrothermal synthesis vessel with a teflon liner and sealed, and reacted at 100 to 230 ° C. for 8 to 30 hours. The prepared slurry was washed 7 times with deionized water using Centrifuge (FLETA5, Hanil), and then dried at 250 ° C to 300 ° C for 12 hours to prepare LaCrO 3 nanopowder. As shown in Fig. 2 (a) and 2 (b), the elliptical nanoparticles have a particle size of 50 ~ 200nm.

[실시예 3]
[Example 3]

출발 물질로 사용된 La(NO3)3·6H2O(Sigma-Aldrich Co., USA)와 Cr(NO3)3·9H2O (Sigma-Aldrich Co., USA) 시료를 몰 비율에 맞게 La/Cr의 조성비 범위가 0.8~1.3이 되도록 정량한 다음 초순수(Deionized water)에 녹여 1M농도의 혼합물을 제조한다. 이 혼합물에Precipitant로 Urea(NH2CONH2, Junsei, Chemical Co., Tokyo, Japan) 4M~6M농도의 수용액을 서서히 혼합시킨다. 상기 혼합용액을 70℃에서 3~5시간정도 교반 시킨 후 200~250℃에서 8~24시간동안 수열 반응시킨다. 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 4회 세척한 다음 250℃~300℃에서 12시간 건조하여  LaCrO3나노분말을 제조한다. 도 3(a)와 도 3(b)에 나타낸 바와 같이, 침상형태의 나노 입자는 50~400nm의 입자크기를 나타낸다.
La (NO 3 ) 3 · 6H 2 O (Sigma-Aldrich Co., USA) and Cr (NO 3 ) 3 · 9H 2 O (Sigma-Aldrich Co., USA) samples used as starting materials were matched to the molar ratio. The composition ratio of La / Cr ranges from 0.8 to 1.3, and then dissolved in ultrapure water to prepare a mixture of 1M concentration. Precipitant is slowly mixed with Urea (NH 2 CONH 2 , Junsei, Chemical Co., Tokyo, Japan) 4M-6M aqueous solution to this mixture. The mixed solution is stirred at 70 ° C. for 3 to 5 hours and then hydrothermally reacted at 200 to 250 ° C. for 8 to 24 hours. The prepared slurry was washed four times with deionized water using Centrifuge (FLETA5, Hanil), and then dried at 250 ° C to 300 ° C for 12 hours to prepare LaCrO 3 nanopowder. As shown in Figure 3 (a) and Figure 3 (b), the needle-shaped nanoparticles exhibit a particle size of 50 ~ 400nm.

[실시예 4]
[Example 4]

출발물질로 Lanthanium(III) acetate hydrate( La(CH3CO2)3 · 1.5H2O, 99.9%,Sigma-Aldrich Co., USA)), Chromium(III) acetate hydroxide ((CH3CO2)7Cr3(OH)2, Sigma-Aldrich Co., USA))) 시료를  La/Cr의 조성비 범위가 0.7~1.7이 되도록 정량하고 두 시약을 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합용액을 30mim정도 교반 시킨 다음 precipitant로 0.35M~0.4M 농도의 KOH 수용액을 천천히 혼합한다. 상기 용액을 130℃에서 4시간 교반시킨 후, 200~250℃에서 24시간 수열 처리하여, 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 7회 세척하고, 250℃~300℃ 12~24시간 건조하여 LaCrO3나노분말을 제조한다.  도 4(a)와 도 4(b)에 나타낸 바와 같이, 구형 및 타원형의 나노 입자는 40~150nm의 입자크기를 나타낸다.
Lanthanium (III) acetate hydrate (La (CH 3 CO 2 ) 3 · 1.5H 2 O, 99.9%, Sigma-Aldrich Co., USA)), Chromium (III) acetate hydroxide ((CH 3 CO 2 ) 7 Cr 3 (OH) 2 , Sigma-Aldrich Co., USA))) The sample was quantified so that the La / Cr composition ratio ranged from 0.7 to 1.7, and the two reagents were dissolved in deionized water to prepare a mixture of 0.05 M concentration. Manufacture. After stirring the mixed solution for about 30mim, slowly mix KOH aqueous solution of 0.35M ~ 0.4M concentration with precipitant. The solution was stirred at 130 ° C. for 4 hours and then hydrothermally treated at 200˜250 ° C. for 24 hours. The slurry thus prepared was washed 7 times with deionized water using Centrifuge (FLETA5, Hanil), and 250 ° C. LaCrO 3 nanopowder is prepared by drying at 300 ° C. for 12 to 24 hours. As shown in Figure 4 (a) and 4 (b), the spherical and elliptical nanoparticles exhibit a particle size of 40 ~ 150nm.

[실시예 5]
[Example 5]

출발물질로 Lanthanium(III) acetate hydrate( La(CH3CO2)3 · 1.5H2O, 99.9%,Sigma-Aldrich Co., USA)), Chromium(III) acetate hydroxide ((CH3CO2)7Cr3(OH)2, Sigma-Aldrich Co., USA))) 시료를  La/Cr의 조성비가 0.7~1.7이 되도록 정량하고 두 시약을 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합액에 precipitant로 6M 농도의 Ammonia 수용액을 천천히 혼합한 다음 130℃에서 4시간 교반시킨 후 200~250℃에서에서 24시간 수열 처리하여 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)와 Ethanol을 이용하여 5회 교차 세척하고, 300~350℃ 12~24시간 건조하여 나노 LaCrO3 분말을 제조하였다. 도 5(a)와 도 5(b)에 나타낸 바와 같이, 구형 및 타원형의 나노 입자는 80~250nm의 입자크기를 나타낸다.
Lanthanium (III) acetate hydrate (La (CH 3 CO 2 ) 3 · 1.5H 2 O, 99.9%, Sigma-Aldrich Co., USA)), Chromium (III) acetate hydroxide ((CH 3 CO 2 ) 7 Cr 3 (OH) 2 , Sigma-Aldrich Co., USA))) The sample was quantified so that the composition ratio of La / Cr was 0.7-1.7, and the two reagents were dissolved in deionized water to prepare a mixture of 0.05 M concentration. do. The mixture was slowly mixed with a 6M Ammonia aqueous solution as a precipitant, and then stirred at 130 ° C for 4 hours and hydrothermally treated at 200 to 250 ° C for 24 hours using ultra centrifuge (FLETA5, Hanil) to prepare a slurry. water) and Ethanol was cross-washed five times, and dried at 300 ~ 350 ℃ 12 ~ 24 hours to prepare a nano LaCrO 3 powder. As shown in Figure 5 (a) and Figure 5 (b), the spherical and elliptical nanoparticles exhibit a particle size of 80 ~ 250nm.

[실시예 6]
Example 6

출발 물질로 사용된 La(NO3)3·6H2O (Sigma-Aldrich Co., USA)와 Cr(NO3)3·9H2O (Sigma-Aldrich Co., USA) 시료에 dopant로 Ca(NO3)2·4H2O(98+%, Sigma-Aldrich Co., USA)를 이용하여 La1 - xCax/Cr(여기에서, x는 0보다 크고 1보다 작다.) 몰 조성비가 0.8~1.3이 되도록 정량한 다음 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합액에 0.35~0.4M수산화칼륨 (GR, Dae Jung Chemical, Korea) 수용액을 서서히 혼합하여 교반 시킨다. 상기 용액을 30분간 초음파 처리한 후, teflon liner가 내장된 수열 합성 용기에 넣고 밀봉하여 100~230℃에서 8~30시간 동안 반응시킨다. 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 7회 세척한 다음 250℃~300℃에서 12시간 건조하여 3성분계 페로브스카이트형 La1 - xCaxCrO3 (여기에서, x는 0보다 크고 0.4이하이다.) 나노분말을 제조하였다. 도 6(a)와 도 6(b)에 나타낸 바와 같이, 구형 및 타원형의 나노 입자는 30~120nm의 입자크기를 나타낸다. 도 8에 나타낸 바와 같이, Ca를 dopant로 이용하였을 때의 전기전도도는 5~17Scm-1을 나타낸다.
La (NO 3 ) 3 · 6H 2 O (Sigma-Aldrich Co., USA) and Cr (NO 3 ) 3 · 9H 2 O (Sigma-Aldrich Co., USA) samples used as starting materials were used as dopants. NO 3) 2 · 4H 2 O (98 +%, Sigma-Aldrich Co., USA) using the La 1 -. x Ca x / Cr ( here, x is greater than 0 and smaller than 1) molar ratio is 0.8. It is quantified to ˜1.3, and then dissolved in ultrapure water to prepare a mixture of 0.05 M concentration. 0.35 ~ 0.4M potassium hydroxide (GR, Dae Jung Chemical, Korea) aqueous solution is slowly mixed and stirred to this mixed solution. After sonicating the solution for 30 minutes, the solution was placed in a hydrothermal synthesis vessel with a teflon liner and sealed, and reacted at 100 to 230 ° C. for 8 to 30 hours. The prepared slurry was washed 7 times with deionized water using Centrifuge (FLETA5, Hanil), and then dried at 250 ° C. to 300 ° C. for 12 hours to form a three-component perovskite type La 1 - x Ca x CrO 3 (here X is greater than 0 and less than or equal to 0.4.) Nanopowders were prepared. As shown in Figure 6 (a) and 6 (b), the spherical and elliptical nanoparticles have a particle size of 30 ~ 120nm. As shown in FIG. 8, the electrical conductivity when Ca is used as a dopant is 5-17 Scm <-1> .

[실시예 7]
Example 7

출발 물질로 사용된 La(NO3)3·6H2O (Sigma-Aldrich Co., USA)와 Cr(NO3)3·9H2O (Sigma-Aldrich Co., USA) 시료에 dopant로 Ca(NO3)2·4H2O(98+%, Sigma-Aldrich Co., USA)와 Co(NO3)2·6H2O(,98+%, Sigma-Aldrich Co.)를 이용하여 La1 -xCax/CoyCr1-yO3 (여기에서, x 및 y는 각각 0보다 크고 0.4이하이다.) 몰 조성비가 0.8~1.3이 되도록 정량한 다음 초순수(Deionized water)에 녹여 0.05M농도의 혼합물을 제조한다. 이 혼합액에 0.35~0.4M수산화칼륨 (GR, Dae Jung Chemical, Korea) 수용액을  서서히 혼합시킨다. 상기 용액을 30분간 초음파 처리한 후, teflon liner가 내장된 수열 합성 용기에 넣고 밀봉하여 100~230℃에서 8~30시간동안 반응시킨다. 제조된 슬러리를 Centrifuge(FLETA5, Hanil)를 이용하여 초순수(Deionized water)로 7회 세척한 다음 250℃~300℃에서 12시간 건조하여 4성분계 페로브스카이트형 La1 - xCaxCoyCr1 - yO3 (여기에서, x 및 y는 각각 0보다 크고 0.4이하이다.) 나노분말을 제조하였다. 도 7(a)와 도 7(b)에 나타낸 바와 같이,  구형 및 타원형의 나노 입자는 30~120nm의 입자크기를 나타낸다. 도 8에 나타낸 바와 같이, Ca과 Co를 co-dopant로 이용하였을 때의 전기전도도는 5~25Scm-1을 나타낸다. La (NO 3 ) 3 · 6H 2 O (Sigma-Aldrich Co., USA) and Cr (NO 3 ) 3 · 9H 2 O (Sigma-Aldrich Co., USA) samples used as starting materials were used as dopants. NO 3) 2 · 4H 2 O (98 +%, Sigma-Aldrich Co., USA) and Co (NO 3) 2 · 6H 2 O (, 98 +%, La 1 using the Sigma-Aldrich Co.) - x Ca x / Co y Cr 1-y O 3 (where x and y are each greater than 0 and less than 0.4), quantitated to a molar composition ratio of 0.8 to 1.3, and dissolved in ultrapure water to 0.05 M concentration. Prepare a mixture of 0.35 ~ 0.4M potassium hydroxide (GR, Dae Jung Chemical, Korea) aqueous solution is slowly mixed with this mixed solution. After sonicating the solution for 30 minutes, the solution was placed in a hydrothermal synthesis vessel with a teflon liner and sealed, and reacted at 100 to 230 ° C. for 8 to 30 hours. The prepared slurry was washed 7 times with deionized water using Centrifuge (FLETA5, Hanil), and then dried at 250 ° C. to 300 ° C. for 12 hours to form a 4-component perovskite type La 1 - x Ca x Co y Cr 1 - y O 3 (Where x and y are each greater than 0 and less than or equal to 0.4). Nanopowders were prepared. As shown in Figure 7 (a) and 7 (b), the spherical and elliptical nanoparticles have a particle size of 30 ~ 120nm. As shown in FIG. 8, the electrical conductivity when Ca and Co are used as co-dopants is 5 to 25 Scm −1 .

Claims (2)

출발물질로 La(NO3)2·6H2O, Cr(NO3)2·9H2O, Ca(NO3)2·4H2O를 이용하였으며 La1-xCax/Cr(여기에서, x는 0보다 크고 1보다 작다.)의 몰 비가 0.8~1.3이며 precipitant로 KOH를 이용하여 100~230℃에서 8~30시간 수열 합성하여, Ca을 도핑 함으로써 전도성을 나타내는 것을 특징으로 하는 30~120nm의 타원형 형태를 갖는 La1-xCaxCrO3 (여기에서, x는 0보다 크고 0.4이하이다.) 나노 분말을 제조하는 방법. La (NO 3 ) 2 · 6H 2 O, Cr (NO 3 ) 2 · 9H 2 O, Ca (NO 3 ) 2 · 4H 2 O were used as starting materials, and La 1-x Ca x / Cr (here, x is greater than 0 and less than 1). The molar ratio is 0.8 to 1.3 and 30 to 120 nm, which shows conductivity by doping Ca with hydrothermal synthesis at 100 to 230 ° C. for 8 to 30 hours using KOH as a precipitant. La 1-x Ca x CrO 3 having an elliptic form of (where x is greater than 0 and less than 0.4). 수열합성법을 이용하여 페로브스카이트형 나노분말을 제조하는 방법에 있어 출발물질 La(NO3)2·6H2O, Cr(NO3)2·9H2O, Ca(NO3)2·4H2O, Co(NO3)2·6H2O와 precipitant로 KOH를 이용하였으며 100~230℃에서 8~30시간 수열 합성하여, Ca과 Co를 도핑 함으로써 전도성을 나타내는 것을 특징으로 하는 30~120nm의 타원형 형태를 갖는 La1 - xCaxCoyCr1 - yO3 (여기에서, x 및 y는 각각 0보다 크고 0.4이하이다.) 나노분말을 제조하는 방법. Starting material La (NO 3 ) 2 · 6H 2 O, Cr (NO 3 ) 2 · 9H 2 O, Ca (NO 3 ) 2 · 4H 2 in the method for producing perovskite-type nanopowder using hydrothermal synthesis O, Co (NO 3 ) 2 · 6H 2 O and KOH as a precipitant, 30 ~ 120nm oval characterized in that the conductivity is shown by doping Ca and Co by hydrothermal synthesis at 100 ~ 230 ℃ 8 ~ 30 hours La 1 - x Ca x Co y Cr 1 - y O 3 having the form (where x and y are each greater than 0 and less than 0.4).
KR1020130096173A 2013-08-13 2013-08-13 Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer KR101342923B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130096173A KR101342923B1 (en) 2013-08-13 2013-08-13 Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130096173A KR101342923B1 (en) 2013-08-13 2013-08-13 Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110117125A Division KR101342921B1 (en) 2011-11-10 2011-11-10 Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer

Publications (2)

Publication Number Publication Date
KR20130095716A KR20130095716A (en) 2013-08-28
KR101342923B1 true KR101342923B1 (en) 2013-12-18

Family

ID=49218952

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130096173A KR101342923B1 (en) 2013-08-13 2013-08-13 Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer

Country Status (1)

Country Link
KR (1) KR101342923B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240135434A (en) 2023-03-02 2024-09-11 한국에너지기술연구원 Manufacturing method of soild oxide electrode and soild oxide electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964506B (en) * 2014-04-30 2016-04-20 南昌大学 A kind of preparation method of metal chromite series compound nanostructure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem., Vol. 9, 1999, pages 2833-2836.
Journal of the European Ceramic Society, Volume 26, Issues 1-2, 2006, Pages 81-88.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240135434A (en) 2023-03-02 2024-09-11 한국에너지기술연구원 Manufacturing method of soild oxide electrode and soild oxide electrode

Also Published As

Publication number Publication date
KR20130095716A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Zhu et al. Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
Bansal et al. Combustion synthesis of Sm0. 5Sr0. 5CoO3− x and La0. 6Sr0. 4CoO3− x nanopowders for solid oxide fuel cell cathodes
Tarancón et al. Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation
Chung et al. Microwave-induced combustion synthesis of Ce1− xSmxO2− x/2 powder and its characterization
Mostafavi et al. Synthesis of nano-structured La0. 6Sr0. 4Co0. 2Fe0. 8O3 perovskite by co-precipitation method
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
Changan et al. Preparation and characterization of Ce0. 8La0. 2–xYxO1. 9 as electrolyte for solid oxide fuel cells
Momin et al. Synthesis and ionic conductivity of calcium-doped ceria relevant to solid oxide fuel cell applications
Biswal et al. Synthesis and characterization of Sr2+ and Mg2+ doped LaGaO3 by co-precipitation method followed by hydrothermal treatment for solid oxide fuel cell applications
KR101342923B1 (en) Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer
Aarthi et al. Strontium mediated modification of structure and ionic conductivity in samarium doped ceria/sodium carbonate nanocomposites as electrolytes for LTSOFC
Ghaemi et al. A benzoate coprecipitation route for synthesizing nanocrystalline GDC powder with lowered sintering temperature
KR101342922B1 (en) Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer
KR101342921B1 (en) Syntheses of LaCrO₃nanopowder by hydrothermal method for Solid fuel cell interlayer
Spiridigliozzi et al. Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications.
KR100955514B1 (en) Cubic ytterbia stabilized zirconia and solid oxide fuel cell using them
Arias-Serrano et al. Oxygen-Deficient Nd0. 8Sr1. 2Ni0. 8M0. 2O4-δ (M= Ni, Co, Fe) Nickelates as Oxygen Electrode Materials for SOFC/SOEC
KR100800289B1 (en) The processing method of co-synthesis nanosized LSM-YSZ composites with enhanced electrochanmical property for solid oxide fuel cell, and the nanosized LSM-YSZ composites synthesized by the above processing method
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
Yousefi et al. Ultrasound and microwave-assisted co-precipitation synthesis of La 0.75 Sr 0.25 MnO 3 perovskite nanoparticles from a new lanthanum (III) coordination polymer precursor
Matović et al. Crystal structure analysis of Nd-doped ceria solid solutions
Shi et al. Synthesis and characterization of La0. 85Sr0. 15Ga0. 80Mg0. 20O2. 825 by glycine combustion method and EDTA combustion method
Mahmud et al. Processing of Y3+-doped Ba (Ce, Zr) O3 by using the sol–gel method assisted with functionalized activated carbon as a composite anode for proton ceramic fuel cells
KR101596300B1 (en) Syntheses of transition metal-doped LaSrMnO nanopowders by hydrothermal method for interconnect of solid oxide fuel cell

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161122

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee