KR101341592B1 - Method for coating on the basic material, basic material coated by the same - Google Patents

Method for coating on the basic material, basic material coated by the same Download PDF

Info

Publication number
KR101341592B1
KR101341592B1 KR1020120012256A KR20120012256A KR101341592B1 KR 101341592 B1 KR101341592 B1 KR 101341592B1 KR 1020120012256 A KR1020120012256 A KR 1020120012256A KR 20120012256 A KR20120012256 A KR 20120012256A KR 101341592 B1 KR101341592 B1 KR 101341592B1
Authority
KR
South Korea
Prior art keywords
coating
vapor deposition
source material
base material
coating source
Prior art date
Application number
KR1020120012256A
Other languages
Korean (ko)
Other versions
KR20130091041A (en
Inventor
박재원
김형진
홍성덕
김용완
Original Assignee
한국수력원자력 주식회사
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사, 한국원자력연구원 filed Critical 한국수력원자력 주식회사
Priority to KR1020120012256A priority Critical patent/KR101341592B1/en
Publication of KR20130091041A publication Critical patent/KR20130091041A/en
Application granted granted Critical
Publication of KR101341592B1 publication Critical patent/KR101341592B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명의 목적은 모재의 내부 표면 코팅방법 및 이에 따른 내부가 코팅된 모재를 제공하는데 있다.
이를 위하여 본 발명은 코팅소스소재로부터 밀도가 감소된 코팅소스소재를 얻는 단계(단계 1); 및
상기 단계 1에서 얻어진 밀도가 감소된 코팅소스소재가 승화되어, 모재에 도달함으로써 모재가 코팅되는 단계(단계 2);
를 포함하는 모재의 내부 표면 코팅방법을 제공한다.
본 발명에 따르면, 종래의 코팅 방법으로는 불가능하였던 원통형 또는 구형 소재의 내벽을 포함한 육안으로 볼 수 없는 가려진 부분의 코팅이 가능하게 되어, 원자력 수소생산을 위한 열화학 플랜트의 부품 중 원통형 부품의 내벽 및 대포나 소총을 포함하는 무기류의 원통형 내벽 및 조인트(joint) 부분 등에 적용하여 내마모성, 내부식성을 크게 향상시킬 수 있고 윤활성을 부여하여 궁극적으로는 사용 수명을 획기적으로 늘릴 수 있는 효과가 있다.
An object of the present invention is to provide a method for coating the inner surface of the base material and thus the base material coated therein.
To this end, the present invention is to obtain a coating source material of reduced density from the coating source material (step 1); And
A step of subliming the coating source material having a reduced density obtained in step 1 and coating the base material by reaching the base material (step 2);
It provides an internal surface coating method of the base material comprising a.
According to the present invention, it is possible to coat the invisible part including the inner wall of the cylindrical or spherical material, which was not possible with the conventional coating method, and the inner wall of the cylindrical part among the components of the thermochemical plant for nuclear hydrogen production and It can be applied to cylindrical inner walls and joint parts of weapons including cannons or rifles, which can greatly improve wear resistance and corrosion resistance, and give lubricity and ultimately increase the service life.

Description

모재의 내부 표면 코팅방법 및 이에 따른 내부가 코팅된 모재{Method for coating on the basic material, basic material coated by the same}Method for coating the inner surface of the base material and the base material coated thereon {Method for coating on the basic material, basic material coated by the same}

본 발명은 모재의 내부 표면 코팅방법 및 이에 따른 내부가 코팅된 모재에 관한 것이다.
The present invention relates to a method for coating the inner surface of the base material and thus the base material coated therein.

소재의 표면을 코팅하는 방법은 물리적 기상 증착법(Physical Vapor Deposition: PVD), 화학적 기상 증착법(Chemical Vapor Deposition: CVD), 전해 및 무전해 증착법(Electro - and Electoless - Deposition) 등으로 구분될 수 있다.
The method of coating the surface of the material may be classified into physical vapor deposition (PVD), chemical vapor deposition (CVD), electrolytic and electroless deposition (Electro- and Electoless-Deposition).

이 중 물리적 기상 증착법은 스퍼터링법(Sputtering), 전자빔 증착법(Electron-beam Evaporation), 열증착법 (Thermal Evaporation), 레이저분자빔 증착법(Laser Molecular Beam Epitaxy), 펄스레이저 증착법 (Pulsed Laser Deposition)등이 있으며, 이 방법들은 진공 환경에서 코팅소스소재를 기화시켜 소재표면에 코팅한다. 구체적으로는 코팅소스소재를 기화시키는 단계, 기화된 물질을 소재표면에 도달하게 하는 단계 및 코팅 층을 성장시키는 단계로 구성된다. 물리적 기상 증착에 의한 증착 공정시, 기화된 코팅소스소재가 소재표면에 도달하게 하기 위해서는 상기 기화된 코팅소스소재들은 운동에너지를 가져야 하고 반응 챔버는 항상 고진공 상태를 유지해야 한다. 만일 진공도가 좋지 않아 다른 기체들이 진공 챔버내에 많이 존재하게 되면, 기화된 코팅소스소재들이 상기 다른 기체들과 충돌하여 소재표면에 도달하는 것을 방해할 수 있다. 또한 코팅 속도의 증가를 위하여 코팅소스소재들의 운동에너지를 높일 경우, 코팅소스소재들이 소재표면에 도달하기 쉬워 코팅율은 상승하게 되나 운동에너지가 증가할수록 코팅소스소재들의 직선운동 또한 증가하여 굴곡진 부분이나 육안으로 볼 수 없는 부분의 코팅은 어려워진다.
Among them, physical vapor deposition includes sputtering, electron-beam evaporation, thermal evaporation, laser molecular beam epitaxy, and pulsed laser deposition. These methods vaporize the coating source material in a vacuum environment and coat the material surface. Specifically, the method comprises vaporizing the coating source material, bringing the vaporized material to the material surface, and growing the coating layer. In the deposition process by physical vapor deposition, in order for the vaporized coating source material to reach the material surface, the vaporized coating source materials must have kinetic energy and the reaction chamber must always be kept in a high vacuum state. If the degree of vacuum is poor and many other gases are present in the vacuum chamber, vaporized coating source materials may interfere with the other gases and prevent them from reaching the material surface. In addition, if the kinetic energy of the coating source materials is increased to increase the coating speed, the coating source materials tend to reach the surface of the material and the coating rate increases, but as the kinetic energy increases, the linear motion of the coating source materials also increases, resulting in a curved portion. Coating of parts not visible to the naked eye becomes difficult.

화학적 기상 증착법은 기체 상태의 전구체가 기판 표면에서 화학적으로 반응하며 고체 상태의 코팅층을 형성하는 방법이다. 상기 화학적 기상 증착법은 코팅소스소재의 가열을 통해 표면에 도달하는 코팅소스소재에 운동성을 부여하여 코팅하는 원리를 이용하기 때문에 물리적 기상 증착법에 비해서 다소 굴곡진 부분이나 육안으로 볼 수 없는 부분의 균일한 코팅에 유리한 방법으로 알려져 있다. 그러나 화학적 기상 증착법 역시 굴곡진 부위를 충분히 균일하게 코팅하지는 못한다는 문제점이 있다.
Chemical vapor deposition is a method in which a gaseous precursor reacts chemically on a surface of a substrate to form a solid coating layer. Since the chemical vapor deposition method uses the principle of coating the coating source material that reaches the surface through the heating of the coating source material by applying the motility to the coating source material uniformity of somewhat curved or invisible parts compared to the physical vapor deposition method Known as an advantageous method for coating. However, chemical vapor deposition also has a problem that it does not uniformly coat the curved portion evenly.

종래의 기술로서 [일본 공개특허 10-2008-063618]에서는 진공 증착 장치 및 진공 증착 방법을 제공한다. 구체적으로 감압 분위기 하에서, 내주면이 요곡면을 가지는 기재의 내주측에 증착원을 배치시킨 지지 부재를 장입하고, 상기 증착원을 축방향으로 왕복 이동 할 수 있도록 하고, 상기 기재를 축을 중심으로 회전할 수 있도록 회전 수단을 포함하고, 상기 회전하는 기재의 내주면에 상기 증착원을 가열하고, 증착시킨 가열 수단이 구비된 진공 증착 장치를 이용하여 내주면이 요곡면을 가지는 기재의 내주면을 코팅하는 방법을 포함한다. 상기의 제조방법에 따라 기재의 내주면을 코팅할 경우 내주면의 코팅에 유용하나 상기 종래의 기술은 코팅 공정 수행시 벌크한 증착원을 그대로 사용하기 때문에 증착을 위하여 고온을 유지해야 하는 문제점이 있다. 그러나 본 발명은 증착원의 밀도를 낮춤으로써 1000 ℃이하의 저온에서도 코팅이 가능한 차이점이 있다.
As a conventional technique, Japanese Patent Laid-Open No. 10-2008-063618 provides a vacuum deposition apparatus and a vacuum deposition method. Specifically, under a reduced pressure atmosphere, a support member having a deposition source disposed on an inner circumferential side of a substrate having an inner circumferential surface of the curved surface is charged, the reciprocating movement of the deposition source in an axial direction, and the substrate is rotated about an axis. It includes a rotating means, and the method of heating the deposition source on the inner peripheral surface of the rotating substrate, and coating the inner peripheral surface of the substrate having an inner peripheral surface with a curved surface by using a vacuum deposition apparatus equipped with the heating means deposited do. When coating the inner circumferential surface of the substrate according to the above manufacturing method is useful for coating the inner circumferential surface, but the conventional technique has a problem in that the high temperature is maintained for deposition because the bulk deposition source is used as it is during the coating process. However, the present invention has a difference in that coating can be performed even at a low temperature of less than 1000 ℃ by lowering the density of the deposition source.

또한 [대한민국 공개특허 10-2007-0111078]에서는 전자빔 조사를 이용한 나노 물질의 코팅방법을 제공한다. 구체적으로 (a) 무기염을 함유하는 제1층을 기판 상에 형성하는 단계; 및 (b) 상기 (a) 단계에서 얻은 코팅된 기판 상에 전자빔을 조사하는 단계를 포함한다. 상기의 코팅방법에 따라 코팅을 수행할 경우 다양한 크기와 모양의 나노 물질을 제조함과 동시에 박막이나 아일랜드 형태로 코팅이 가능하나 전자빔 조사를 이용하여 코팅하는 방법과 굴곡진 부분이나 가려진 부분의 경우 균일하게 코팅되지 않는 문제점이 있다.
In addition, the Republic of Korea Patent Publication 10-2007-0111078 provides a method for coating a nano-material using electron beam irradiation. Specifically, (a) forming a first layer containing an inorganic salt on the substrate; And (b) irradiating an electron beam on the coated substrate obtained in step (a). In the case of coating according to the above coating method, it is possible to produce nano-materials of various sizes and shapes and to coat them in thin film or island form.However, coating method using electron beam irradiation and uniformity in the case of curved or hidden parts There is a problem that is not coated.

이에 본 발명의 발명자들은 증착원을 승화시키는 방법에서 고온 환경을 유지해야하는 문제점과, 이온빔 조사 방법에서 굴곡진 부분등에 균일하게 코팅되지 않는 문제점을 해결하기 위하여 연구를 수행하던 중, 증착원의 밀도를 낮춘 상태에서 승화를 통하여 코팅을 수행할 경우 저온 조건에서 균일한 코팅이 가능하다는 것을 확인하고 본 발명을 완성하였다.
Accordingly, the inventors of the present invention, while conducting research to solve the problem of maintaining a high temperature environment in the method of subliming the deposition source and the problem of not uniformly coating the curved portion in the ion beam irradiation method, the density of the deposition source When the coating is performed by sublimation in a lowered state, it was confirmed that uniform coating is possible at low temperature, and the present invention was completed.

본 발명의 목적은 모재의 내부 표면 코팅방법을 제공하는데 있다.An object of the present invention is to provide a method for coating the inner surface of the base material.

또한 본 발명의 다른 목적은 상기 방법에 따른 내부가 코팅된 모재를 제공하는데 있다.
Another object of the present invention to provide a base material coated with the interior according to the method.

상기 목적을 달성하기 위하여 본 발명은, The present invention to achieve the above object,

코팅소스소재로부터 밀도가 감소된 코팅소스소재를 얻는 단계(단계 1); 및Obtaining a coating source material having a reduced density from the coating source material (step 1); And

상기 단계 1에서 얻어진 밀도가 감소된 코팅소스소재가 승화되어, 모재에 도달함으로써 모재가 코팅되는 단계(단계 2); A step of subliming the coating source material having a reduced density obtained in step 1 and coating the base material by reaching the base material (step 2);

를 포함하는 모재의 내부 표면 코팅방법을 제공한다.
It provides an internal surface coating method of the base material comprising a.

또한 본 발명은, 상기 방법에 따라 코팅되는 내부 표면이 코팅된 모재를 제공한다.
The present invention also provides a base material coated with an inner surface coated according to the above method.

본 발명에 따른, 모재의 내부 표면 코팅방법은 종래의 코팅 방법으로는 불가능하였던 원통형 또는 구형 소재의 내벽을 포함한 육안으로 볼 수 없는 가려진 부분의 코팅이 가능하게 되어, 원자력 수소생산을 위한 열화학 플랜트의 부품 중 원통형 부품의 내벽 및 대포나 소총을 포함하는 무기류의 원통형 내벽 및 조인트(joint) 부분 등에 적용하여 내마모성, 내부식성을 크게 향상시킬 수 있고 윤활성을 부여하여 궁극적으로는 사용 수명을 획기적으로 늘릴 수 있다.
According to the present invention, the method of coating the inner surface of the base material enables the coating of the invisible part including the inner wall of the cylindrical or spherical material, which was not possible with the conventional coating method, and thus the coating of the thermochemical plant for nuclear hydrogen production. It can be applied to the inner wall of cylindrical parts and cylindrical inner walls and joint parts of weapons including cannons or rifles, which greatly improves the wear resistance and corrosion resistance, and gives lubricity to ultimately increase the service life. have.

도 1은 본 발명의 실시형태에 따른 모재의 내부 표면 코팅방법을 나타낸 모식도이다.
도 2는 본 발명의 실시예 1에 따른 모재의 내부 표면 코팅방법을 나타낸 모식도이다.
도 3은 실시예 1의 코팅소스소재를 주사전자현미경(Scanning Electron Microscope, SEM)으로 촬영한 사진이다. (a)는 물리적 기상 증착법을 이용하여 Hastelloy X기판에 증착시킨 저밀도 탄화규소 코팅소스소재를 주사전자현미경으로 촬영한 사진이고 (b)는 5 × 10-5Torr 및 925 ℃에서의 코팅소스소재를 주사전자 현미경으로 촬영한 사진이고 (c)는 코팅하기 전의 알루미나 보트의 표면을 주사전자현미경으로 촬영한 사진이고 (d)는 코팅이 완료된 뒤, 알루미나 보트에 코팅된 코팅소스소재의 입자를 촬영한 사진이다.
도 4는 진공 챔버 온도에 따른 기판 위의 저밀도 탄화규소 코팅소스소재(실시예1)의 무게 감소율을 나타낸 그래프이다.
도 5는 실시예 1에서 Hastelloy X 기판의 코팅소스소재와 알루미나 보트의 코팅소스소재를 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)으로 분석하여 얻은 그래프이다.
1 is a schematic diagram showing a method for coating the inner surface of the base material according to an embodiment of the present invention.
Figure 2 is a schematic diagram showing the inner surface coating method of the base material according to Example 1 of the present invention.
3 is a photograph taken of the coating source material of Example 1 with a scanning electron microscope (SEM). (a) is a photograph taken with a scanning electron microscope of a low density silicon carbide coating source material deposited on a Hastelloy X substrate by physical vapor deposition method, and (b) is a coating source material at 5 × 10 -5 Torr and 925 ℃ Scanning electron microscope (c) is a photograph taken with a scanning electron microscope of the surface of the alumina boat before coating, (d) is a particle of the coating source material coated on the alumina boat after the coating is completed It is a photograph.
Figure 4 is a graph showing the weight loss rate of the low density silicon carbide coating source material (Example 1) on the substrate according to the vacuum chamber temperature.
FIG. 5 is a graph obtained by analyzing the coating source material of Hastelloy X substrate and the coating source material of alumina boat in Example 1 by X-ray photoelectron spectroscopy (XPS).

본 발명은 모재의 내부 표면을 코팅하는 방법을 제공한다.
The present invention provides a method of coating the inner surface of a base material.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은, 코팅소스소재로부터 밀도가 감소된 코팅소스소재를 얻는 단계(단계 1); 및The present invention comprises the steps of obtaining a coating source material of reduced density from the coating source material (step 1); And

상기 단계 1에서 얻어진 밀도가 감소된 코팅소스소재가 승화되어, 모재에 도달함으로써 모재가 코팅되는 단계(단계 2); A step of subliming the coating source material having a reduced density obtained in step 1 and coating the base material by reaching the base material (step 2);

를 포함하는 모재의 내부 표면 코팅방법을 제공한다.
It provides an internal surface coating method of the base material comprising a.

이하, 본 발명에 따른 모재의 내부 표면을 코팅하는 방법을 단계별로 더욱 상세하게 설명한다.
Hereinafter, the method for coating the inner surface of the base material according to the present invention will be described in more detail step by step.

먼저, 본 발명에 있어서, 상기 단계 1은 코팅소스소재로부터 밀도가 감소된 코팅소스소재를 얻는 단계로, 기상 증착법을 이용하여 코팅소스소재를 기판 상에 증착시킴으로써 저밀도 코팅소스소재 막을 제조할 수 있다.First, in the present invention, the step 1 is to obtain a coating source material having a reduced density from the coating source material, it is possible to prepare a low density coating source material film by depositing the coating source material on the substrate using a vapor deposition method. .

상기 단계 1을 수행함으로써, 저밀도 코팅소스소재 막이 제조되어 종래의 증착 온도보다 저온에서도 증착 공정을 수행하는 것이 가능하게 된다.By performing step 1, a low density coating source material film is prepared, and thus it is possible to perform a deposition process even at a lower temperature than a conventional deposition temperature.

밀도가 감소된 코팅소스소재를 제조하는 방법은 기상증착방법을 사용하여 수행되고, 상기 기상증착방법으로서 물리적 기상 증착방법(PVD) 또는 화학적 기상 증착방법(CVD)을 사용할 수 있다. 구체적으로, 상기 물리적 기상 증착방법으로서 스퍼터링(sputtering), 전자빔 증착법, 열증착법, 레이저분자빔증착법 및 펄스레이저증착법 등을 사용할 수 있고, 화학적 기상 증착방법으로서 유기금속화학증착법(Metal-Organic Chemical Vapor Deposition, MOCVD), 수소기상증착법(Hydride Vapor Phase Epitaxy, HVPE) 및 플라즈마향상화학기상증착법(Plasma Enhanced Chemical Vapor Deposition, PECVD)을 사용할 수 있으나, 전자빔 증착법을 사용하는 것이 바람직하다. The method of manufacturing a coating source material having a reduced density may be performed using a vapor deposition method, and as the vapor deposition method, a physical vapor deposition method (PVD) or a chemical vapor deposition method (CVD) may be used. Specifically, sputtering, electron beam evaporation, thermal evaporation, laser molecular beam evaporation and pulse laser evaporation may be used as the physical vapor deposition method, and as a chemical vapor deposition method, an organic metal chemical vapor deposition method (Metal-Organic Chemical Vapor Deposition) may be used. , MOCVD), Hydrogen Vapor Phase Epitaxy (HVPE) and Plasma Enhanced Chemical Vapor Deposition (PECVD) may be used, but electron beam deposition is preferred.

상기 단계 1에서 전자빔 증착법을 사용하는 경우, 전자빔 조사 에너지는 1 ~ 30 keV이고, 전자빔 전류는 100 mA ~ 500 mA로 조절되는 것이 바람직하다. 만약 상기 전자빔 조사 에너지가 1 keV 미만인 경우, 코팅소스소재 막이 형성되지 않는 문제가 발생할 수 있고, 30 keV 초과인 경우 코팅소스소재의 물성이 변성되는 문제가 발생할 수 있다. 또한 상기 전자빔 조사시 전자빔 전류가 100 mA 미만일 경우 코팅소스소재가 용융되지 않아 증착이 수행되지 않는 문제가 발생할 수 있으며, 전자빔 전류를 500 mA 초과하여 조사할 경우 코팅소스소재 뿐만 아니라 코팅소스소재를 담는 도가니까지도 용융되는 현상이 발생할 수 있다. When the electron beam deposition method is used in the step 1, the electron beam irradiation energy is 1 to 30 keV, and the electron beam current is preferably adjusted to 100 mA to 500 mA. If the electron beam irradiation energy is less than 1 keV, a problem may occur that the coating source material film is not formed, and when the electron beam irradiation energy is more than 30 keV, a problem may occur that the physical properties of the coating source material are modified. In addition, if the electron beam current is less than 100 mA, the coating source material may not be melted and the deposition may not be performed. When the electron beam current is irradiated over 500 mA, the coating source material may contain the coating source material. Melting may occur due to the crucible.

본 발명에서 상기 코팅소스소재는 탄화규소(SiC), 탄화텅스텐(WC), 이산화규소(SiO2), 이산화티타늄(TiO2) 및 산화알루미늄(Al2O3) 등을 사용하는 것이 바람직하다. 상기 코팅소스소재는 일반적으로 증착시 밀도가 감소하는 성질을 가지며, 상기 밀도의 감소 정도는 증착 방법에 따라 변화할 수 있다. 예를 들어, 코팅소스소재는 스퍼터링 방법에 비해서 전자빔 증착 방법을 사용할 경우 밀도가 작아지는데, 이는 스퍼터링 방법을 사용할 경우, 증착 입자들의 운동에너지가 전자빔 증착 방법보다 크기 때문이다. In the present invention, the coating source material is preferably used silicon carbide (SiC), tungsten carbide (WC), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ) and aluminum oxide (Al 2 O 3 ). The coating source material generally has a property of decreasing density during deposition, and the degree of decrease in density may vary according to a deposition method. For example, the coating source material has a lower density when the electron beam deposition method is used than the sputtering method because the kinetic energy of the deposited particles is larger than the electron beam deposition method when the sputtering method is used.

또한 본 발명에서 기상증착방법에 사용되는 기판은 모재 내부 표면을 코팅할 때 코팅소스소재가 기판으로부터 승화가 잘 일어날 수 있고, 700 ℃ ~ 1000 ℃에서도 내열성이 우수한 금속소재인 것을 사용하는 것이 바람직하다. 구체적으로는 Alloy 800H, Alloy 690, Hastelloy X, Hayness230, Hayness556, CX2002U 복합재료, Alloy X750, Alloy 718, Sanicro28, 스테인레스 스틸 등을 사용하는 것이 바람직하며, Hastelloy X를 사용하는 것이 더욱 바람직하다.In addition, in the present invention, the substrate used in the vapor deposition method is a coating source material can be sublimed well from the substrate when coating the inner surface of the base material, it is preferable to use a metal material having excellent heat resistance even at 700 ℃ ~ 1000 ℃. . Specifically, it is preferable to use Alloy 800H, Alloy 690, Hastelloy X, Hayness230, Hayness556, CX2002U composite, Alloy X750, Alloy 718, Sanicro28, stainless steel, and the like, and more preferably Hastelloy X.

상기 단계 1을 수행함에 따라, 기판에 증착되는 코팅소스소재의 밀도는 물리적 기상증착에 의하여 원밀도보다 20 ~ 40 % 감소하여 저밀도 코팅소스소재가 형성된다. 상기와 같은 저밀도 코팅소스소재는 기존의 벌크한 코팅소스소재를 이용하여 코팅할 때보다, 1000 ℃ 이하의 비교적 저온에서 물질을 기화시켜 코팅하는 것이 가능하고 원통형 또는 구형 소재의 내벽을 포함한 육안으로 볼 수 없는 가려진 부분을 효과적으로 코팅할 수 있다.
As the step 1 is performed, the density of the coating source material deposited on the substrate is reduced by 20 to 40% from the original density by physical vapor deposition to form a low density coating source material. The low-density coating source material as described above can be coated by vaporizing the material at a relatively low temperature of 1000 ° C. or less than when using a conventional bulk coating source material and is visible to the naked eye including the inner wall of a cylindrical or spherical material. It is possible to effectively coat hidden parts that cannot be counted.

다음으로 상기 단계 2는 상기 단계 1에서 얻어진 밀도가 감소된 코팅소스소재가 승화하여, 모재에 도달함으로써 모재가 코팅되는 단계이다. 도 1에는 본 발명에서 사용한 모재 내벽을 코팅하는 장치가 예시되어 있다. 도 1에 도시된 바와 같이, 상기 단계 2는 저밀도 코팅소스소재가 증착된 기판을 진공 챔버 내에 장착된 모재 내부에 장입시켜 수행할 수 있다.Next, the step 2 is a step of coating the base material by sublimation of the coating source material having a reduced density obtained in the step 1 to reach the base material. Figure 1 illustrates an apparatus for coating the base material inner wall used in the present invention. As shown in FIG. 1, step 2 may be performed by loading a substrate on which a low density coating source material is deposited into a base material mounted in a vacuum chamber.

상기 단계 2를 수행함으로써, 모재의 굴곡진 부분등의 원통형 또는 구형 소재의 내벽을 포함한 육안으로 볼 수 없는 가려진 부분의 코팅이 가능하게 된다.By carrying out the step 2, it is possible to coat the invisible part including the inner wall of the cylindrical or spherical material such as the bent part of the base material.

본 발명에 있어서 상기 단계 2의 승화는 단계 1에서 얻어진 코팅소스소재를 진공 챔버의 내부에 장입하고 가열하여 승화가 진행되고, 구체적으로 진공 챔버내부의 온도를 상승시키고 진공을 걸어주어 상기 기판상에 얻어진 코팅소스소재를 코팅하고자 하는 모재의 내부 표면으로 도달하게 하여 코팅과정을 수행한다.In the present invention, the sublimation of step 2 is carried out by sublimation by charging the coating source material obtained in step 1 into the vacuum chamber and heating it, specifically increasing the temperature inside the vacuum chamber and applying a vacuum to the substrate. The coating process is performed by reaching the inner surface of the base material to be coated.

상기 단계 2에서, 진공처리는 1 × 10-7 Torr ~ 1 × 10-4 Torr의 압력으로 조절되는 것이 바람직하다. 만약 상기 진공처리가 1 × 10-4 Torr를 초과할 경우, 승화시키기 위해 온도를 더 높여야 하는 문제가 발생할 수 있으며, 상기의 온도 상승으로 인해 코팅할 금속 소재의 물성이 바뀌는 문제가 발생할 수 있다.
In step 2, the vacuum treatment is preferably controlled to a pressure of 1 × 10 -7 Torr ~ 1 × 10 -4 Torr. If the vacuum is 1 × 10 -4 If Torr is exceeded, a problem may arise that the temperature must be further increased to sublime, and the physical property of the metal material to be coated may change due to the temperature rise.

또한 상기 단계 2의 승화는 700 ℃ ~ 1000 ℃의 온도에서 수행되는 것이 바람직하다. 만약 상기 챔버의 온도가 700 ℃ 미만일 경우, 승화가 충분히 발생하지 않아 모재 내부를 유효하게 코팅하는 것이 어려워지는 문제가 발생할 수 있으며, 1000 ℃를 초과할 경우, 저밀도 코팅소스소재의 용융, 분해등의 물성이 변화되는 현상이 발생할 수 있다. 따라서 700 ℃ ~ 1000 ℃ 범위의 온도에서 승화가 일어 날 수 있도록 진공도를 조절하여 수행하는 것이 바람직하다.In addition, the sublimation of step 2 is preferably carried out at a temperature of 700 ℃ to 1000 ℃. If the temperature of the chamber is less than 700 ℃, the sublimation does not occur sufficiently, it is difficult to effectively coat the inside of the base material, if it exceeds 1000 ℃, such as melting, decomposition of low-density coating source material Changes in physical properties may occur. Therefore, it is preferable to perform by adjusting the degree of vacuum so that sublimation may occur at a temperature in the range of 700 ℃ to 1000 ℃.

상기 단계 2의 승화는 온도 및 진공도에 의하여 조절되고, 진공 챔버의 온도와 진공처리 조건은 코팅소스소재의 종류 및 밀도에 따라, 최적의 코팅 조건을 형성하기 위하여 상기 주어진 범위내에서 변경 가능하다. 구체적으로, 챔버 내에서의 가열은 고진공에서는 낮게, 저진공에서는 높게 조절하여 코팅소스소재의 승화 속도를 조절할 수 있다.
The sublimation of step 2 is controlled by the temperature and the degree of vacuum, the temperature and the vacuum treatment conditions of the vacuum chamber can be changed within the given range to form the optimum coating conditions, depending on the type and density of the coating source material. Specifically, the heating in the chamber can be controlled low in high vacuum and high in low vacuum to control the sublimation rate of the coating source material.

또한 본 발명은 상기 방법으로 제조되는 내부가 코팅된 모재를 제공한다. In another aspect, the present invention provides a base material coated with the interior produced by the above method.

본 발명에 따라 코팅된 내부표면이 코팅된 모재는, 종래의 코팅 방법으로는 불가능하였던 원통형 또는 구형 소재 등의 내벽을 포함한 육안으로 볼 수 없는 가려진 부분의 코팅이 가능하게 되어, 내마모성, 내부식성을 크게 향상시킬 수 있고 윤활성을 부여하여 궁극적으로는 사용 수명을 획기적으로 늘릴 수 있는 장점이 있다.
The base material coated with the inner surface coated according to the present invention enables coating of the invisible part including the inner wall of cylindrical or spherical material, which was not possible with the conventional coating method, and thus, wear resistance and corrosion resistance. It can be greatly improved and gives lubricity, which can ultimately increase the service life.

이하, 실시예를 통하여 본 발명을 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<실시예 1> 탄화규소를 이용한 알루미나 보트의 코팅Example 1 Coating of Alumina Boat with Silicon Carbide

코팅소스소재로서 분말형태의 탄화규소(SiC) 12g을 전자빔을 이용하여 저밀도 코팅소스소재로 제조하였다. 구체적으로, 전자빔 조사 에너지 6.5 keV및 전자빔 전류 200 mA를 상기 코팅소스소재에 조사하여 Hastelloy X 기판 상에 증착한 결과, 기판 상에 상기 분말형태의 탄화규소보다 약 30 %정도 밀도가 감소한 저밀도 탄화규소 막이 형성되었다. As a coating source material, 12g of silicon carbide (SiC) in powder form was prepared as a low density coating source material using an electron beam. Specifically, the low density silicon carbide having an electron beam irradiation energy of 6.5 keV and an electron beam current of 200 mA was deposited on the Hastelloy X substrate by irradiating the coating source material on the substrate, and the density was reduced by about 30% than the powdered silicon carbide on the substrate. A film was formed.

상기의 기판을 알루미나 보트로 옮기고, 상기 알루미나 보트를 진공 챔버 내부에 장착하였다. 그 후, 진공 챔버 내부를 밀폐시킨 뒤, 로터리 펌프로 5 × 10-5Torr로 감압하고 10 kW의 전기력을 사용하여 650 ℃, 750 ℃, 850 ℃ 및 925 ℃까지 점차적으로 승온시킨 후, 925 ℃에서 5시간 동안 온도를 유지하였고, 알루미나 보트의 내벽의 변화를 관찰하면서 코팅을 수행하였다. The substrate was transferred to an alumina boat and the alumina boat was mounted inside a vacuum chamber. Thereafter, the inside of the vacuum chamber was sealed, and the pressure was reduced to 5 × 10 −5 Torr with a rotary pump and gradually heated up to 650 ° C., 750 ° C., 850 ° C. and 925 ° C. using an electric force of 10 kW, and then 925 ° C. The temperature was maintained for 5 hours at, and the coating was performed while observing the change of the inner wall of the alumina boat.

Hastelloy X 기판 상에 증착된 저밀도 탄화규소 코팅소스소재는 승화의 원리에 의해 알루미나 보트의 내벽으로 이동하면서 코팅이 수행되었고, 저밀도를 가지는 코팅소스소재의 특성으로 인하여 알루미나 보트의 굴곡진면 및 모서리 부분 또한 균일하게 코팅막이 형성되었음을 관찰할 수 있었다.
The low density silicon carbide coated source material deposited on the Hastelloy X substrate was transferred to the inner wall of the alumina boat according to the sublimation principle, and due to the characteristics of the low density coated source material, the curved surface and the corner portion of the alumina boat were also It was observed that the coating film was formed uniformly.

<실험예 1> 알루미나 보트에 코팅된 탄화규소 코팅소스소재의 형상 분석Experimental Example 1 Shape Analysis of the Silicon Carbide Coating Source Material Coated on the Alumina Boat

상기 실시예 1에서 알루미나 보트에 코팅된 탄화규소 코팅소스소재를 주사전자현미경으로 촬영하여 도 3과 같은 사진을 얻었다.In Example 1, the silicon carbide coated source material coated on the alumina boat was photographed with a scanning electron microscope to obtain a photo as shown in FIG. 3.

도 3은 상기 실시예 1에 따른 탄화규소 코팅소스소재를 주사전자현미경으로 촬영한 사진이다. 도 3의 (a)는 물리적 기상 증착법을 이용하여 Hastelloy X기판에 증착시킨 저밀도 탄화규소 코팅소스소재를 주사전자현미경으로 촬영한 사진이다. 3 is a photograph taken with a scanning electron microscope of the silicon carbide coating source material according to Example 1. Figure 3 (a) is a photograph taken with a scanning electron microscope of a low density silicon carbide coating source material deposited on a Hastelloy X substrate using a physical vapor deposition method.

도 3의 (a)로부터, 기판상에 증착된 저밀도 코팅소스소재는 기존의 벌크한 코팅소스소재와 비교하여 5 ㎛이하의 작은 비정질입자들이 기판 상에 고르게 분산되어 있음을 확인할 수 있었다. From (a) of FIG. 3, it can be seen that the low density coating source material deposited on the substrate has small amorphous particles of 5 μm or less uniformly dispersed on the substrate as compared with the existing bulk coating source material.

도 3의 (b)는 5 × 10-5Torr 및 925 ℃에서의 코팅소스소재를 주사전자 현미경으로 촬영한 사진이다. 도 3의 (b)에서 보는 바와 같이, 가열 및 진공 처리된 코팅소스소재는 (a)의 형상과 비교할 때, 열에 의하여 결정성 입자로 변화되었음을 확인할 수 있었고, 코팅소스소재가 전체적으로 균일한 크기를 유지하고 있음을 관찰할 수 있었다. Figure 3 (b) is a photograph taken with a scanning electron microscope of the coating source material at 5 × 10 -5 Torr and 925 ℃. As shown in (b) of Figure 3, the heating and vacuum treatment of the coating source material was compared with the shape of (a), it was confirmed that the change to the crystalline particles by the heat, the coating source material as a whole uniform size It was observed that it was maintained.

도 3의 (c)는 코팅하기 전의 알루미나 보트의 표면을 주사전자현미경으로 촬영한 사진이다. 코팅하기 전의 알루미나 보트의 표면은 불균일한 입자 분포도를 보이고 있었다.Figure 3 (c) is a photograph taken with a scanning electron microscope of the surface of the alumina boat before coating. The surface of the alumina boat before coating showed a nonuniform particle distribution.

도 3의 (d)는 상기의 방법에 따라 코팅이 완료된 뒤, 알루미나 보트에 코팅된 코팅소스소재의 입자를 촬영한 사진이다. 도 3의 (d)에서 보는 바와 같이, 코팅이 완료된 후, 알루미나 보트의 표면은 코팅소스소재에 의해 고르게 코팅이 되었음을 확인할 수 있었고, 코팅소스소재는 평균적으로 1 ~ 2 ㎛의 크기의 비교적 균일한 입자가 분포되어 있음을 관찰할 수 있었다.3 (d) is a photograph of the particles of the coating source material coated on the alumina boat after the coating is completed according to the above method. As shown in (d) of FIG. 3, after the coating was completed, the surface of the alumina boat was confirmed to be evenly coated by the coating source material, and the coating source material was relatively uniform with a size of 1 to 2 μm on average. It was observed that the particles were distributed.

또한 상기 실시예 1에서 상기의 탄화규소 코팅소스소재는 실험 단계에 따라 다른 색상으로 변화하는 것이 관찰되었다. 구체적으로 Hastelloy X 기판 상의 저밀도 탄화규소 코팅소스소재는 노란색에서 5 × 10-5Torr 및 925 ℃의 조건으로 반응시킴에 따라 회색으로 변화하였다. 상기의 원인은, 비정질 구조를 가지던 탄화규소가 진공 및 가열 공정이 수행됨에 따라 결정성 구조로 변화하였기 때문이라고 설명할 수 있다. 또한 상기 알루미나 보트에 코팅이 완료된 후에 코팅소스소재는 녹색을 나타냄이 확인되었는데, 그 이유는 승화된 탄화규소 코팅소스소재가 다시 응착되었기 때문이라고 설명할 수 있다.
In addition, in Example 1, the silicon carbide coating source material was observed to change to a different color according to the experimental step. Specifically, the low density silicon carbide coating source material on the Hastelloy X substrate changed from yellow to gray as reacted under conditions of 5 × 10 −5 Torr and 925 ° C. The reason for the above can be explained by the fact that the silicon carbide, which had an amorphous structure, changed to a crystalline structure as the vacuum and heating processes were performed. In addition, it was confirmed that the coating source material appeared green after the coating was completed on the alumina boat, because the sublimed silicon carbide coating source material was again adhered.

<실험예 2> 온도 변화에 따른 탄화규소 코팅소스소재의 코팅 변화Experimental Example 2 Coating Change of Silicon Carbide Coating Source Material with Temperature Change

상기 실시예 1에서 진공 챔버의 온도를 1.5 × 10-5 Torr에서 650 ℃, 750 ℃, 850 ℃ 및 925 ℃까지 점차적으로 승온시켜 5시간 동안 가열시킬 때, Hastelloy X 기판 상의 저밀도 탄화규소 코팅소스소재의 승화정도를 무게 감소를 측정하여 분석하였다.In Example 1, when the temperature of the vacuum chamber is gradually heated to 1.5 ° C., 750 ° C., 850 ° C. and 925 ° C. at 1.5 × 10 −5 Torr, and heated for 5 hours, the low density silicon carbide coated source material on the Hastelloy X substrate The degree of sublimation of was analyzed by measuring the weight loss.

도 4는 진공 챔버 온도에 따른 기판 위의 저밀도 탄화규소 코팅소스소재의 무게 감소율을 나타낸 그래프이다. 도 4에 따르면, 650 ℃에서 상기 저밀도 탄화규소 코팅소스소재의 무게 감소율은 0 %로, 코팅소스소재의 승화가 일어나지 않아 코팅이 수행되기에는 적절치 못한 온도임이 확인되었다. 그 후 약 700 ℃부터는 승화가 발생하여 코팅이 시작되었는데 750 ℃에서는 약 5 %의 무게 감소가, 850 ℃에서는 약 7 %의 정도 코팅소스소재의 무게가 감소하였다. 상기 결과로부터, 750 ℃ 및 850 ℃에서의 코팅이 이루어지려면 진공도를 높이거나 반응 시간을 늘려야 함을 유추할 수 있었다. 또한 실질적으로 코팅반응이 진행된 925 ℃에서 코팅소스소재는 30 %의 무게 감소를 나타냈는데, 상기 결과를 바탕으로 925 ℃가 균일한 코팅을 수행하기 위한 적절한 승화속도를 가지고 있음이 확인되었다.4 is a graph showing the weight reduction rate of the low density silicon carbide coating source material on the substrate according to the vacuum chamber temperature. According to Figure 4, the weight loss rate of the low-density silicon carbide coating source material at 650 ° C was 0%, it was confirmed that the coating source material is not appropriate to perform the coating because the sublimation of the coating source material does not occur. Subsequently, sublimation occurred from about 700 ° C, and coating started. At 750 ° C, the weight loss was reduced by about 5%, and at 850 ° C, the weight of the coating source material was decreased by about 7%. From the above results, it can be inferred that the coating at 750 ° C. and 850 ° C. should increase the degree of vacuum or the reaction time. In addition, the coating source material showed a weight loss of 30% at 925 ° C. in which the coating reaction proceeded substantially. Based on the results, it was confirmed that 925 ° C. had an appropriate sublimation rate for performing a uniform coating.

따라서, 상기의 분석 결과를 바탕으로 진공 챔버 내에서 코팅을 수행하기에 적절한 온도를 확인할 수 있었다.
Therefore, based on the above analysis results, it was possible to confirm the appropriate temperature to perform the coating in the vacuum chamber.

<실험예 3> 알루미나 보트에 코팅된 탄화규소 코팅소스소재의 조성 분석Experimental Example 3 Composition Analysis of Silicon Carbide Coating Source Material Coated on Alumina Boat

상기 실시예 1에서 제조된 Hastelloy X 기판 상의 저밀도 탄화규소 코팅소스소재와 알루미나 보트에 코팅된 탄화규소 코팅소스소재를 X선 광전자 분광법으로 분석하여 도 5와 같은 그래프를 얻었다.The low-density silicon carbide coating source material on the Hastelloy X substrate prepared in Example 1 and the silicon carbide coating source material coated on the alumina boat were analyzed by X-ray photoelectron spectroscopy to obtain a graph as shown in FIG. 5.

도 5는 실시예 1에서 Hastelloy X 기판과 알루미나 보트의 코팅소스소재를 X선 광전자 분광법으로 분석하여 얻은 그래프이다. 도 5의 (a)는 알루미나 보트에 코팅된 코팅소스소재의 스펙트럼을 나타내고, 도 5의 (b)는 Hastelloy X 기판상의 저밀도 탄화규소 코팅소스소재의 스펙트럼을 나타낸다. 도 5로부터, 알루미나 보트의 코팅소스소재의 조성은 탄화규소 성분을 가지고 있음이 확인되었고, 상기 결과로부터 Hastelloy X 기판 상의 코팅소스소재와 알루미나 보트의 코팅소스소재는 같은 조성을 가지고 있음을 확인할 수 있었다. 5 is a graph obtained by analyzing the coating source material of the Hastelloy X substrate and the alumina boat in Example 1 by X-ray photoelectron spectroscopy. Figure 5 (a) shows the spectrum of the coating source material coated on the alumina boat, Figure 5 (b) shows the spectrum of the low density silicon carbide coating source material on the Hastelloy X substrate. From FIG. 5, it was confirmed that the composition of the coating source material of the alumina boat had a silicon carbide component. From the results, it was confirmed that the coating source material on the Hastelloy X substrate and the coating source material of the alumina boat had the same composition.

따라서, 상기의 분석 결과를 바탕으로 알루미나 표면에 코팅된 코팅소스소재는 Hastelloy X 기판 상의 코팅소스소재가 승화되어 형성된 것임을 확인할 수 있었다.
Therefore, the coating source material coated on the surface of the alumina based on the above analysis results was confirmed that the coating source material on the Hastelloy X substrate is formed by sublimation.

Claims (14)

탄화규소(SiC), 탄화텅스텐(WC), 이산화규소(SiO2), 이산화티타늄(TiO2) 및 산화알루미늄(Al2O3)을 포함하는 군으로부터 선택되는 코팅소스소재를 기상증착방법을 통해 기판 상에 증착시켜 밀도가 감소된 코팅소스소재를 얻는 단계(단계 1); 및
상기 단계 1에서 얻어진 밀도가 감소된 코팅소스소재가, 1 × 10-7 Torr ~ 1 × 10-4 Torr범위의 진공으로 유지되는 700 ℃ ~ 1000 ℃의 온도인 진공 챔버 내부에 장입 및 가열됨으로써 승화되어, 모재에 도달함으로써 모재가 코팅되는 단계(단계 2);를 포함하는 모재의 내부 표면 코팅방법.
Coating source material selected from the group consisting of silicon carbide (SiC), tungsten carbide (WC), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ) and aluminum oxide (Al 2 O 3 ) through the vapor deposition method Depositing onto a substrate to obtain a coating source material having reduced density (step 1); And
Sublimation by charging and heating the density of the coating source material obtained in step 1 in a vacuum chamber at a temperature of 700 ℃ to 1000 ℃ maintained in a vacuum in the range of 1 × 10 -7 Torr ~ 1 × 10 -4 Torr The method of claim 1, wherein the base material is coated by reaching the base material (step 2).
삭제delete 제 1항에 있어서, 상기 기상증착방법은 물리적 기상 증착방법(PVD) 또는 화학적 기상 증착방법(CVD)인 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 1, wherein the vapor deposition method is a physical vapor deposition method (PVD) or a chemical vapor deposition method (CVD).
제 3항에 있어서, 상기 물리적 기상 증착방법은 스퍼터링(sputtering), 전자빔 증착법, 열증착법, 레이저분자빔증착법 및 펄스레이저증착법을 포함하는 군으로부터 선택되는 것을 특징으로 하는 모재의 내부 표면 코팅방법.
4. The method of claim 3, wherein the physical vapor deposition method is selected from the group consisting of sputtering, electron beam deposition, thermal deposition, laser molecular beam deposition, and pulsed laser deposition.
제 3항에 있어서, 상기 화학적 기상 증착방법은 유기금속화학증착법(Metal-Organic Chemical Vapor Deposition, MOCVD), 수소기상증착법(Hydride Vapor Phase Epitaxy, HVPE) 및 플라즈마향상화학기상증착법(Plasma Enhanced Chemical Vapor Deposition, PECVD)을 포함하는 군으로부터 선택되는 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 3, wherein the chemical vapor deposition method is a metal-organic chemical vapor deposition (MOCVD), hydrogen vapor deposition (Hydride Vapor Phase Epitaxy, HVPE) and plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition) PECVD), the inner surface coating method of the base material characterized in that it is selected from the group comprising.
제 4항에 있어서, 상기 물리적 기상 증착은 전자빔 증착법에 의하여 수행되고, 전자빔 조사 에너지는 1 keV ~ 30 keV 이고 전자빔 전류는 10 mA ~ 500 mA로 조절되는 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 4, wherein the physical vapor deposition is performed by an electron beam deposition method, the electron beam irradiation energy is 1 keV ~ 30 keV and the electron beam current is adjusted to 10 mA ~ 500 mA.
삭제delete 제 1항에 있어서, 상기 기상증착방법에 사용되는 기판은 Alloy 800H, Alloy 690, Hastelloy X, Hayness230, Hayness556, CX2002U 복합재료, Alloy X750, Alloy 718, Sanicro28 및 스테인레스 스틸로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 1, wherein the substrate used in the vapor deposition method is selected from the group consisting of Alloy 800H, Alloy 690, Hastelloy X, Hayness230, Hayness556, CX2002U composites, Alloy X750, Alloy 718, Sanicro28, and stainless steel. Internal surface coating method of the base material to be.
제 1항에 있어서, 상기 단계 1에서 밀도가 감소된 코팅소스소재는 원밀도보다 20 ~ 40 % 감소한 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 1, wherein the coating source material having a reduced density in step 1 is 20 to 40% less than the original density.
삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 단계 2의 승화는 온도 및 진공도에 의하여 조절되는 것을 특징으로 하는 모재의 내부 표면 코팅방법.
The method of claim 1, wherein the sublimation of step 2 is controlled by temperature and vacuum degree.
제 1항의 방법으로 코팅되는 것을 특징으로 하는 내부가 코팅된 모재.An interior coated base material, characterized in that the coating by the method of claim 1.
KR1020120012256A 2012-02-07 2012-02-07 Method for coating on the basic material, basic material coated by the same KR101341592B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120012256A KR101341592B1 (en) 2012-02-07 2012-02-07 Method for coating on the basic material, basic material coated by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120012256A KR101341592B1 (en) 2012-02-07 2012-02-07 Method for coating on the basic material, basic material coated by the same

Publications (2)

Publication Number Publication Date
KR20130091041A KR20130091041A (en) 2013-08-16
KR101341592B1 true KR101341592B1 (en) 2013-12-16

Family

ID=49216382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120012256A KR101341592B1 (en) 2012-02-07 2012-02-07 Method for coating on the basic material, basic material coated by the same

Country Status (1)

Country Link
KR (1) KR101341592B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702970B1 (en) 2015-12-08 2017-02-09 한국원자력연구원 Method for coating material of ceramic on the surface of graphite or C/C composite by the combined techniques of PVD with CVD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767026B1 (en) * 2006-05-02 2007-10-17 황창훈 Belt type plane evaporation source for oled deposition
JP2008063618A (en) * 2006-09-07 2008-03-21 Pentax Corp Vacuum deposition apparatus and vacuum deposition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767026B1 (en) * 2006-05-02 2007-10-17 황창훈 Belt type plane evaporation source for oled deposition
JP2008063618A (en) * 2006-09-07 2008-03-21 Pentax Corp Vacuum deposition apparatus and vacuum deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702970B1 (en) 2015-12-08 2017-02-09 한국원자력연구원 Method for coating material of ceramic on the surface of graphite or C/C composite by the combined techniques of PVD with CVD

Also Published As

Publication number Publication date
KR20130091041A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
US20110017659A1 (en) Oxide Compounds as a Coating Composition
JP2017024942A (en) Carbon nanotube coating film member and method for producing the same
KR102633691B1 (en) Superalloy sputtering target
CN107022730B (en) A kind of method of low-voltage plasma spraying TiN coating
Moll et al. Coupling powder bed additive manufacturing and vapor phase deposition methods for elaboration of coated 3D Ti-6Al-4V architectures with enhanced surface properties
KR101341592B1 (en) Method for coating on the basic material, basic material coated by the same
Ali et al. Surface morphology, nano-indentation and TEM analysis of tantalum carbide–graphite composite film synthesized by hot-filament chemical vapor deposition
KR102574124B1 (en) high temperature parts
KR101702970B1 (en) Method for coating material of ceramic on the surface of graphite or C/C composite by the combined techniques of PVD with CVD
JP4234681B2 (en) Resistance heating boat manufacturing method
KR101947485B1 (en) Method for SiC Coating of Graphite Base Substrate
JP6142562B2 (en) Super water-repellent material manufacturing method and super water-repellent material
Kumar et al. Modern coating processes and technologies
Galaganova et al. Prepare of nanocomposite structures through the magnetron deposition of material on the colloidal silica films and investigation of their properties
EP1624087B1 (en) A method for depositing thin layers of titanium dioxide on support surfaces
EP2956566B1 (en) Method for depositing a corrosion-protection coating
CN116096937A (en) Fluoride coating to improve chamber performance
Nasakina et al. The effect of the titanium surface layer thickness on the characteristics of a layered composite material
TW201642299A (en) Ion implanter
Ormanova et al. Phase composition of multilayer system TiN/CrN deposited by DC magnetron sputtering
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
Fathi et al. Plasma spray deposition enhancement of titanium nitride layer using nitrogen-contained plasma irradiation of titanium substrate as a pre-spraying method
Ospina et al. Study of W/WC films produced by plasma assisted vacuum arc discharge
JP5627089B2 (en) Carbon material and manufacturing method thereof
CN113430491B (en) Surface oxidation-resistant coating, preparation method thereof and surface modified titanium alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 7