KR101336595B1 - A catalyst for purifying exhaust gas with bimodal size distribution of supports - Google Patents

A catalyst for purifying exhaust gas with bimodal size distribution of supports Download PDF

Info

Publication number
KR101336595B1
KR101336595B1 KR1020110097236A KR20110097236A KR101336595B1 KR 101336595 B1 KR101336595 B1 KR 101336595B1 KR 1020110097236 A KR1020110097236 A KR 1020110097236A KR 20110097236 A KR20110097236 A KR 20110097236A KR 101336595 B1 KR101336595 B1 KR 101336595B1
Authority
KR
South Korea
Prior art keywords
support
exhaust gas
catalyst composition
catalyst
purification
Prior art date
Application number
KR1020110097236A
Other languages
Korean (ko)
Other versions
KR20130033534A (en
Inventor
한현식
송진우
이귀연
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to KR1020110097236A priority Critical patent/KR101336595B1/en
Publication of KR20130033534A publication Critical patent/KR20130033534A/en
Application granted granted Critical
Publication of KR101336595B1 publication Critical patent/KR101336595B1/en

Links

Images

Classifications

    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9427Processes characterised by a specific catalyst for removing nitrous oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

본 발명은 상대적으로 직경이 큰 입자들의 제1 지지체 및 상대적으로 직경이 작은 입자들의 제2 지지체들로 혼합 구성되는, 귀금속 성분을 지지하는 지지체 입자들 분포가 이봉 (bimodal) 형태로 이루어지는 배기가스 정화용 촉매조성물에 관한 것이고, 저온활성이 뛰어나고 종래 배기가스 정화용 촉매 대비 고속 주행 구간에서 deNOx 개선 효과를 얻을 수 있다.The present invention is for purifying exhaust gas in which the distribution of support particles for supporting a noble metal component, which is composed of a first support of relatively large particles and a second support of relatively small particles, is in a bimodal form. The present invention relates to a catalyst composition, which has excellent low temperature activity and can achieve deNOx improvement in a high-speed running section compared to a catalyst for purifying exhaust gas.

Description

이봉 분포 입자크기 지지체들을 가지는 배기가스 정화용 촉매{A catalyst for purifying exhaust gas with bimodal size distribution of supports}A catalyst for purifying exhaust gas with bimodal size distribution of supports}

본 발명은 내연기관 배기가스 정화용 촉매, 더욱 구체적으로, 통상적으로 '삼원전환' 촉매라고 지칭되는 유형의 촉매에 있어서, 이봉 분포 입자크기 지지체들을 가지는 배기가스 정화용 촉매에 관한 것이다.The present invention relates to a catalyst for purifying exhaust gas of an internal combustion engine, more particularly, a catalyst for purifying exhaust gas having bimodal distribution particle size supports, in a catalyst of the type commonly referred to as 'three-way conversion' catalyst.

삼원 전환 촉매 ('TWC')는 자동차 및 다른 가솔린 연료 엔진과 같은 내연 엔진으로부터 나오는 질소 산화물 (NOx), 일산화탄소 (CO) 및 탄화수소 (HC) 오염물질을 저하시키는 것을 비롯하여 수많은 분야에 유용성이 있다. 삼원 전환 촉매는 HC 및 CO의 산화 ; NOx 환원을 실질적으로 동시에 촉매할 수 있다는 점에서 다기능성(ployfunctional)이다. 대부분 국가에서, NOx, CO 및 미연소 HC 오염물질에 대한 배출량 기준이 정해져 있고, 신형 자동차는 이 기준을 충족시켜야 한다. 이러한 기준을 충족시키기 위해서, TWC 촉매를 포함하는 촉매 전환 장치를 내연 엔진의 배기가스 라인에 위치시킨다. 상기 촉매는 산소에 의한 미연소 HC 및 CO 산화, 및 NOx 환원을 촉진한다. 예를 들어 희박(상대적으로 연료가 부족한, lean) 운전 기간 중에는 산소를 저장하여 NOx 환원이 상대적으로 유리하며, 풍부(상대적으로 연료가 풍부한, rich) 운전 기간 중에는 저장된 산소를 방출하여 HC 및 CO 산화를 촉진함으로써 엔진 배기가스를 처리하는 자동차 배기가스 정화기술은 공지되어 있다.Three-way conversion catalysts ('TWC') have utility in many fields, including reducing nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) pollutants from internal combustion engines such as automobiles and other gasoline fuel engines. Three-way conversion catalysts include oxidation of HC and CO; It is ployfunctional in that it can catalyze NOx reduction substantially simultaneously. In most countries, emission standards for NOx, CO and unburned HC pollutants are established, and new vehicles must meet these standards. To meet this criterion, a catalytic converter comprising a TWC catalyst is placed in the exhaust line of the internal combustion engine. The catalyst promotes unburned HC and CO oxidation, and NOx reduction by oxygen. For example, NOx reduction is relatively advantageous by storing oxygen during lean (relatively low fuel, lean) operating periods and oxidizing HC and CO by releasing stored oxygen during rich (relatively fuel-rich) operating periods. BACKGROUND ART Vehicle exhaust gas purification techniques for treating engine exhaust gases by promoting the gas are known.

활성이 좋고 수명이 긴 TWC 촉매는 예를 들어 백금, 팔라듐, 로듐 및 루테늄 같은 1종 이상의 백금족 금속을 포함한다. 이들 촉매는 고표면적 알루미나와 같은 고표면적 내화성 산화물 지지체에 지지된다. 상기 지지체는 내화성 세라믹 또는 금속 벌집형 구조물 등의 모노리스 (monolithic) 캐리어, 또는 적합한 내화성 물질로 된 구체 또는 짧은 압출 단편 등의 내화성 입자 등과 같은 적합한 캐리어 또는 기재 상에 담지된다. 내화성 산화물 지지체에는 일반적으로 Ca, Sr 및 Ba의 산화물 등과 같은 알칼리 토금속 산화물, K, Na, Li 및 Cs의 산화물 등과 같은 알칼리 금속 산화물 및 Ce, La, Pr 및 Nd의 산화물 등과 같은 희토류 금속 산화물을 비롯한 산소 저장 성분이 수반될 수 있다.Long-lived and long-lived TWC catalysts include one or more platinum group metals such as, for example, platinum, palladium, rhodium and ruthenium. These catalysts are supported on high surface area refractory oxide supports such as high surface area alumina. The support is supported on a suitable carrier or substrate, such as monolithic carriers such as refractory ceramic or metal honeycomb structures, or refractory particles such as spheres or short extruded pieces of suitable refractory material. Refractory oxide supports generally include alkaline earth metal oxides such as oxides of Ca, Sr and Ba, alkali metal oxides such as oxides of K, Na, Li, and Cs, and rare earth metal oxides such as oxides of Ce, La, Pr, and Nd. Oxygen storage components may be involved.

고표면적 내화성 산화물 지지체로는 '감마 알루미나' 또는 '활성화 알루미나'라고도 지칭되는 고표면적 알루미나 물질이 언급될 수 있으며, BET (Brunauer, Emmett and Teller) 표면적은 통상적으로 60 그램 당 제곱미터 (m2/g) 이상이며, 이러한 활성화 알루미나는 통상적으로 알루미나의 감마 및 델타 상(phase) 혼합물이지만 상당량의 에타, 카파 및 세타 알루미나 상을 함유할 수도 있다. 이러한 지지체에 백금 및/또는 팔라듐 등의 귀금속이 지지 또는 침착된다.As high surface area refractory oxide supports, mention may be made of high surface area alumina materials, also referred to as 'gamma alumina' or 'activated alumina', and the BET (Brunauer, Emmett and Teller) surface area is typically 60 square meters per gram (m2 / g) As such, such activated alumina is typically a gamma and delta phase mixture of alumina but may contain significant amounts of eta, kappa and theta alumina phases. Precious metals such as platinum and / or palladium are supported or deposited on such a support.

미국 특허 제4,294,726호에는 감마 알루미나 캐리어 물질을 세륨, 지르코늄 및 철염의 수용액으로 함침, 또는 알루미나를 세륨, 지르코늄 및 철 각각의 산화물과 혼합한 후에 상기 물질을 공기 중 500 내지 700℃에서 소성시킨 다음, 건조되고 후속적으로 250 내지 650℃의 온도에서 수소 함유 가스 중에서 처리한 백금염 및 로듐염의 수용액으로 상기 물질을 함침 수득한 백금 및 로듐 함유 TWC 촉매 조성물이 개시되어 있다. 일본 특허 공개 제19036/1985호에는 저온에서의 일산화탄소 제거능이 증대된 배기가스 정화용 촉매가 개시되어 있다. 상기 촉매는 코디어라이트 기판 및 상기 기판의 표면에 적층된 2층의 활성화 알루미나를 포함한다. 하부 알루미나 층은 이에 침착되어 있는 백금 또는 바나듐을 함유하고, 상부 알루미나 층은 이에 침착되어 있는 로듐과 백금 또는 로듐과 팔라듐을 함유한다. 일본 특허 J-63-205141-A에는 최하층이 희토류 산화물을 함유하는 알루미나 지지체상에 분산되어 있는 백금 또는 백금과 로듐을 포함하고, 최상부 코팅물이 알루미나, 지르코니아 및 희토류 산화물을 포함하는 지지체상에 분산되어 있는 팔라듐 및 로듐을 포함하는 적층 자동차 촉매가 개시되어 있다. 한편, 미국 특허 제4,587,231호에는 배기가스 정화용 삼원 촉매의 제조 방법이 개시되어 있다.U.S. Patent No. 4,294,726 discloses that a gamma alumina carrier material is impregnated with an aqueous solution of cerium, zirconium and iron salts, or the alumina is mixed with oxides of cerium, zirconium and iron, and then the material is calcined at 500 to 700 ° C in air, A platinum and rhodium containing TWC catalyst composition is disclosed which is obtained by impregnating the material with an aqueous solution of platinum and rhodium salts which have been dried and subsequently treated in a hydrogen containing gas at a temperature of 250 to 650 ° C. Japanese Patent Laid-Open Publication No. 19036/1985 discloses a catalyst for purifying exhaust gases having an increased ability to remove carbon monoxide at low temperatures. The catalyst comprises a cordierite substrate and two layers of activated alumina stacked on the surface of the substrate. The lower alumina layer contains platinum or vanadium deposited thereon and the upper alumina layer contains rhodium and platinum or rhodium and palladium deposited thereon. Japanese Patent J-63-205141-A contains platinum or platinum and rhodium in which the lowermost layer is dispersed on an alumina support containing rare earth oxides, and the top coating is dispersed on a support comprising alumina, zirconia and rare earth oxides. Laminated automotive catalysts comprising palladium and rhodium are disclosed. On the other hand, US Patent No. 4,587,231 discloses a method for producing a three-way catalyst for purification of exhaust gas.

내연기관 배기가스 정화용 촉매 기술은 이외 다수 특허들에서 검색될 수 있으나, 선행 기술들은 유사한 입자 크기를 가지는 지지체를 개시하고 있다.Catalyst technology for internal combustion engine exhaust gas purification may be found in many other patents, but the prior art discloses supports having similar particle sizes.

다양한 조성의 촉매가 제안되었지만, 저온활성이 우수하고 고속 주행 구간에서 NOx 성능을 만족할 만한 촉매에 대한 필요성은 여전하다. 즉 탄화수소 (HC) 대부분은 냉 시동 과정에서 발생되므로 우수한 저온활성이 능력이 요구되며, 특히 자동차 고속 구간에서 다량 발생하는 NOx에 대처할 수 있는 촉매가 요망된다. Although catalysts of various compositions have been proposed, there is still a need for a catalyst having excellent low temperature activity and satisfying NOx performance in a high-speed driving section. That is, since most of the hydrocarbons (HC) are generated during the cold start process, excellent low temperature activity is required, and a catalyst capable of coping with the large amount of NOx generated in the high speed section of the automobile is desired.

본 발명자들은 새로운 시각에서 최적의 성능을 보일 수 있는 촉매를 연구하였다. 지금까지의 촉매는 조성의 변화에 주안점이 있었다면 본 연구에서는 지지체들 자체, 특히 지지체들의 기하학적 분포, 더욱 상세하게는 입자분포들을 달리하여 새로운 개념의 촉매들을 제조하고 실험한 결과 놀라운 성능 향상을 달성할 수 있음을 확인하고 본 발명을 완성하게 되었다.The inventors have studied catalysts that can exhibit optimal performance from a new perspective. While the catalysts of the past have been focused on the change of composition, in this study, new concepts of catalysts were prepared and tested by varying the supports themselves, in particular the geometric distribution of the supports, and more specifically, the particle distributions. It was confirmed that the present invention was completed.

이들 실시예는 상대적으로 직경이 큰 입자들의 제1 지지체 및 상대적으로 직경이 작은 입자들의 제2 지지체들로 혼합 구성되거나, 상대적으로 직경이 큰 입자들의 간격체 (spacer) 및 상대적으로 직경이 작은 입자들의 제2 지지체들로 혼합 구성되는 촉매는 저온활성이 뛰어나고 종래 배기가스 정화용 촉매 대비 고속 주행 구간에서 deNOx 개선 효과를 얻을 수 있어, 이에 따른 경제적 및 기술적 효과가 종래 촉매 구조보다 우수함을 예시하는 것이다. 본 발명을 구체적인 실시양태를 들어 상세히 설명하였으나, 이러한 실시양태는 단지 예시를 위한 것이며, 본 발명의 범위는 첨부된 청구의 범위에 한정된다.These embodiments consist of mixing with a first support of relatively large particles and a second support of relatively small particles, or with a spacer and a relatively small diameter of relatively large particles. The catalyst composed of a mixture of the second supports are excellent in low temperature activity and can achieve a deNOx improvement effect in a high-speed running section compared to the catalyst for purifying exhaust gas, thereby exemplifying that the economic and technical effects are superior to the conventional catalyst structure. While the invention has been described in detail with reference to specific embodiments, these embodiments are for illustration only, and the scope of the invention is defined by the appended claims.

도 1은 종래 귀금속이 지지된 단일 입자크기 지지체로 구성되는 촉매조성물이 기재 (substrate)에 코팅된 개략도 (reference) 및 본 발명에 의한 이봉 형태의 지지체들로 구성되는 촉매조성물이 기재에 코팅된 개략도 (Bimodal particle size washcoat texture)이다.
도 2에는 종래 단일 지지체 촉매 제조방법 및 본 발명에 의한 이봉 입자 분포 촉매 제조방법을 요약한 것이다.
도 3은 실시예 1 및 비교예에 의한 촉매 600 배율 전자현미경 사진이다.
도 4는 실시예 1 및 비교예 촉매의 THC, CO 및 NOx 제거 성능을 요약한 도표이다.
도 5는 작은 입자의 지지체 및 큰 입자 지지체 혼합비율 (13: 1 - 2.5: 1)에 따른 촉매 700 배율 전자현미경 사진이다.
도 6은 제2 지지체: 제1 지지체의 비율이 2:5 수준에서 즉 큰 입자인 제1 지지체 비율이 높은 촉매가 낮은 촉매보다 성능이 개선되는 것을 보이는 테스트 결과이다.
도 7은 작은 입자들 크기 변동에 따른 촉매 600 배율 전자현미경 사진이다.
도 8은 제2 지지체 입자들이 클수록 NOx 성능이 개선되는 것을 보이는 테스트 결과이다.
1 is a schematic view of a catalyst composition composed of a single particle size support supported by a conventional noble metal coated on a substrate, and a catalyst composition composed of a bimodal support according to the present invention. (Bimodal particle size washcoat texture).
Figure 2 summarizes the conventional single support catalyst production method and bimodal particle distribution catalyst production method according to the present invention.
FIG. 3 is a photograph of a magnification 600 microscopy catalyst according to Example 1 and Comparative Example. FIG.
4 is a chart summarizing the THC, CO and NOx removal performance of Example 1 and Comparative Example catalysts.
FIG. 5 is a photograph of a catalyst 700 magnification electron micrograph according to a small particle support and a large particle support mixing ratio (13: 1-2.5: 1).
FIG. 6 is a test result showing that a catalyst having a high ratio of a second support to a first support at a 2: 5 level, that is, a catalyst having a high ratio of first support, which is a large particle, has improved performance over a low catalyst.
FIG. 7 is a photograph of a 600 magnification electron micrograph of a catalyst with small particle size variations.
8 is a test result showing that the larger the second support particles, the better the NOx performance.

본 발명에 의한 배기가스 정화용 촉매조성물은, 백금을 포함한 귀금속 성분이 지지되는 지지체 입자들 분포는 이봉 (bimodal) 형태로 구성된다. 즉, 상대적으로 직경이 큰 입자들의 제1 지지체 및 상대적으로 직경이 작은 입자들의 제2 지지체들로 혼합 구성되거나, 상대적으로 직경이 큰 입자들의 간격체 (spacer) 및 상대적으로 직경이 작은 입자들의 제2 지지체들로 혼합 구성될 수 있다. In the catalyst composition for exhaust gas purification according to the present invention, the distribution of the support particles on which the precious metal component including platinum is supported is configured in a bimodal form. That is, a mixture composed of a first support of relatively large diameter particles and a second support of relatively small diameter particles, or a spacer of relatively large diameter particles, and a first of relatively small diameter particles. It can be mixed with two supports.

제1 지지체 또는 간격체는 10-50 um 범위의 단일 또는 복합산화물이며, 제2 지지체는 0.1-20 um 범위의 단일 또는 복합산화물일 수 있다. 상기 단일 또는 복합산화물은 알루미나, 실리카, 지르코니아, 마그네시아, 세리아-지르코니아, 실리카-알루미나, 알루미노-실리케이트, 알루미나-지르코니아, 알루미나-크로미아 및 알루미나-세리아로 구성된 군에서 선택된 활성화 화합물일 수 있고, 바람직하게는 활성화 알루미나이다. 제1 지지체 또는 간격체는 제2 지지체와 동일하거나 상이한 산화물로 구성될 수 있다. 제1 지지체 또는 간격체 및 제2 지지체와의 중량 혼합비는 1.0 내지 15.0일 수 있다. 지지체들에 침착 또는 로딩되는 귀금속은 Pd, Rh 및 Pt으로 이루어진 군에서 선택될 수 있다.The first support or spacer may be a single or complex oxide in the range of 10-50 um and the second support may be a single or complex oxide in the range of 0.1-20 um. The single or composite oxide may be an activating compound selected from the group consisting of alumina, silica, zirconia, magnesia, ceria-zirconia, silica-alumina, alumino-silicate, alumina-zirconia, alumina-chromia and alumina-ceria, Preferably activated alumina. The first support or spacer may be composed of the same or different oxides as the second support. The weight mixing ratio of the first support or spacer and the second support may be 1.0 to 15.0. The precious metal deposited or loaded on the supports may be selected from the group consisting of Pd, Rh and Pt.

본 발명에 의한 배기가스 정화용 촉매조성물은 Ca, Sr 및 Ba의 산화물 등과 같은 알칼리 토금속 산화물, K, Na, Li 및 Cs의 산화물 등과 같은 알칼리 금속 산화물 및 Ce, La, Pr 및 Nd의 산화물 등과 같은 희토류 금속 산화물 (BMO)을 비롯한 산소 저장 성분 (OSC)이 포함될 수 있다.The catalyst composition for exhaust gas purification according to the present invention is alkaline earth metal oxides such as oxides of Ca, Sr and Ba, alkali metal oxides such as oxides of K, Na, Li and Cs, and rare earths such as oxides of Ce, La, Pr and Nd. Oxygen storage components (OSCs) can be included, including metal oxides (BMOs).

본 발명에 의한 배기가스 정화용 촉매조성물은 내화성 세라믹 또는 금속 벌집형 구조물 등의 모노리스 (monolithic) 캐리어 또는 기재, 또는 적합한 내화성 물질로 된 구체 또는 짧은 압출 단편 등의 내화성 입자 등과 같은 적합한 캐리어 또는 기재상에 담지될 수 있다.The catalyst composition for exhaust gas purification according to the present invention may be prepared on a monolithic carrier or substrate such as a refractory ceramic or metal honeycomb structure, or on a suitable carrier or substrate such as refractory particles such as spheres or short extruded pieces of a suitable refractory material. Can be supported.

촉매조성물이 모노리스 캐리어 기재에 얇은 코팅물로서 도포되는 경우, 성분들의 비율은 통상적으로 촉매 및 기재의 단위부피(리터) 당 물질의 그램 (g/L )으로 표현된다. 이값은 여러 모노리스 캐리어 기재 중의 가스 유동 통로의 셀 크기를 포함한다. 본원에 사용된 용어 '지지체'는 귀금속 성분을 지지하는 산화물 구조체를 의미하며, ‘간격체’는 지지체 사이에서 다공성 확보를 위하여 매개되며 귀금속 성분을 포함하지 않는 산화물 구조체를 의미한다. 본원에서 지지체 또는 간격체는 다양한 기하학적 구조를 가질 수 있으나, 바람직하게는 구체로 구성된다.When the catalyst composition is applied as a thin coating on a monolith carrier substrate, the proportion of components is typically expressed in grams (g / L) of material per unit volume (liters) of catalyst and substrate. This value includes the cell size of the gas flow passages in the various monolithic carrier substrates. As used herein, the term 'support' refers to an oxide structure that supports a noble metal component, and the term “spacing body” refers to an oxide structure that is mediated to ensure porosity between supports and does not include a noble metal component. The support or spacer herein may have various geometries, but preferably consists of spheres.

이하 실시예들을 참조하여 본 발명을 기술하지만, 지지체 또는 간격체 구조에 주안을 두어 설명하며, 배기정화 효과 측정을 위한 실시예에 있어서, 귀금속 중 일부 예를들면 Pt를 제외한 것은, 실험의 수월함을 위한 것이고, Pt 성분이 촉매조성물에 포함될 수 있는 것은 기타 문언에서 명백한 것이다. 따라서 Pt 성분을 제외하여 실시예를 기재한 것은 간단한 비교실험을 위한 것이며, 이로 인하여 본 발명의 청구범위에서 이러한 귀금속 성분 Pt가 제외되는 것은 아님은 당업자에게 명백한 것이다.Although the present invention is described with reference to the following examples, the present invention is mainly described in terms of a support or spacer structure, and in the examples for measuring the exhaust purification effect, some of the precious metals except for Pt, for example, are easy to experiment. It is evident in other words that the Pt component can be included in the catalyst composition. Therefore, the description of the examples excluding the Pt component is for a simple comparative experiment, and it is apparent to those skilled in the art that this precious metal component Pt is not excluded from the claims of the present invention.

본 발명에 의한 이봉 형태의 지지체들은 국부적 가열이 촉진되어 저온활성이 증진되며, 이봉 형태로 인한 다공성 증대에 따른 반응물의 확산 향상으로 고속 주행 구간에서 NOx 개선 효과를 보이는 것으로 판단된다.The bimodal support according to the present invention is promoted local heating is promoted low temperature activity, it is determined that the NOx improvement effect in the high-speed running section by improving the diffusion of reactants due to the increase in porosity due to the bimodal form.

도 1은 종래 귀금속이 지지된 지지체로 구성되는 촉매가 기재 (substrate)에 코팅된 개략도 (reference) 및 본 발명에 의한 이봉 형태의 지지체들로 구성되는 촉매가 기재에 코팅된 개략도 (Bimodal particle size washcoat texture)이다. 본 발명에 의한 이봉 형태의 지지체들은 제1 지지체 (또는 간격체) 및 제2 지지체로 구성되며, 도 1에서는 간격체 및 귀금속이 로딩된 제2 지지체로 구성된 예를 도시한다. 간격체는 귀금속이 로딩되지 않은 산화물 구조체이다. 제1 지지체 또는 간격체는 10-50 um 범위의 단일 또는 복합산화물이며, 제2 지지체는 0.1-20 um 범위의 단일 또는 복합산화물일 수 있으며, 제2 지지체에는 백금, 팔라듐 및/또는 로듐 성분이 로딩된다. 1 is a schematic diagram of a catalyst coated with a substrate composed of a support supported by a conventional noble metal and a catalyst coated with a bimodal particle size washcoat formed from a bimodal support according to the present invention. texture). The bimodal supports according to the present invention consist of a first support (or spacer) and a second support, and FIG. 1 shows an example composed of a second support loaded with a spacer and a noble metal. The spacer is an oxide structure not loaded with precious metal. The first support or spacer may be a single or complex oxide in the range of 10-50 um, the second support may be a single or complex oxide in the range of 0.1-20 um, and the second support may contain platinum, palladium and / or rhodium components. Loaded.

도 2에는 종래 단일 지지체를 가지는 촉매 제조방법 및 본 발명에 의한 이봉 입자 분포 촉매 제조방법이 도시된다. 당업자 기술 수준에서 이해되는 바와 같이, 종래 촉매제조방법은 예시적으로 팔라듐 용액 (팔라듐-나이트레이트)에 지지체인 알루미나 분말을 침지시키고, 산소 저장 물질(OSC) 입자들을 추가 투입하여 분산한 후, 입자크기가 15um되도록 (D90=15um) 밀링한 후 기재에 코팅한다. 이에 반하여, 본 발명에 의한 촉매는 팔라듐 용액 (팔라듐-나이트레이트)에 제2 지지체인 알루미나 분말을 침지시키고, 산소 저장 물질(OSC) 추가 투입하여 분산한 후, 입자크기가 < 6um 되도록 (D90<6um) 습식 밀링한 후, 입자크기 상대적으로 큰 (D90=30um) 제1 지지체를 상기 습식 밀링 용기에 더욱 투입하여 분산시키고, 이를 기재에 코팅한다. 이러한 과정을 통하여 제1 지지체에는 습식 밀링용액에서 용출된 팔라듐 성분이 제1 지지체 표면에 로딩 될 수 있고, 이를 ‘제1 지지체’라고 칭한다. 그러나 상기 습식 밀링 후, 섭씨 550 이상에서 소성한 후 이를 팔라듐이 함유되지 않은 매질 (예를들면 물 및 초산)에 분산시킨 후 입자크기 상대적으로 큰 (D90=30um) 간격체를 더욱 투입하면, 간격체 표면에는 팔라듐 성분이 침착되지 않아, 이를 제1 지지체와 구별하여 ‘간격체’라고 칭한다. 따라서 본 발명에 의한 촉매는 입자크기가 큰 제1 지지체 또는 간격체 및 귀금속이 로딩된 제2 지지체가 혼화된 상태로 구성되며, 추가로 증점 기능의 산소 저장 물질(OSC) 입자가 더욱 포함될 수 있다.2 shows a conventional catalyst production method having a single support and a bimodal particle distribution catalyst production method according to the present invention. As will be appreciated by those skilled in the art, conventional catalyst preparation methods exemplarily immerse alumina powder as a support in a palladium solution (palladium-nitrate), disperse by adding additional oxygen storage material (OSC) particles, and then The substrate is milled to a size of 15 μm (D90 = 15 μm). In contrast, in the catalyst according to the present invention, the alumina powder as the second support is immersed in a palladium solution (palladium-nitrate), an oxygen storage material (OSC) is added and dispersed, and then the particle size is <6 μm (D90 < 6 um) after wet milling, the first support having a relatively large particle size (D90 = 30 um) is further introduced into the wet mill vessel and dispersed, and coated on the substrate. Through this process, the first support may be loaded with a palladium component eluted from the wet milling solution on the surface of the first support, which is referred to as a 'first support'. However, after the wet milling, it is calcined at 550 degrees Celsius or more, and then dispersed in a medium free of palladium (for example, water and acetic acid), followed by further addition of a spacer having a relatively large particle size (D90 = 30um). No palladium component is deposited on the sieve surface, so it is referred to as the 'spacer' in distinction from the first support. Therefore, the catalyst according to the present invention is composed of a mixture of a first support or spacer having a large particle size and a second support loaded with a noble metal, and may further include thickening oxygen storage material (OSC) particles. .

감마-알루미나 파우더 20.0 g/l에 4.00 g/l 팔라듐-나이트레이트를 함침 Pd 로딩 활성 알루미나 제조 후 90.0g/L의 산소 저장 물질(OSC)를 분산 시킨 후 이어 습식 밀링 공정으로 활성 알루미나와 산소 저장 물질을 직경을 6um 이하로 조절하였다. 이어 직경 30um 감마-알루미나 파우더 30.0 g/l을 밀링용액에 더욱 분산시켜 지지체 크기가 이봉 형태인 슬러리를 제조하였다. 상기 슬러리를 제곱 인치 당 셀의 수 (CPSI)가 600개이고, 벽 두께가 3.0 밀리인치 세라믹 벌집형 구조물상에 코팅하였다. 코팅은 기재(105.7*69)를 슬러리 내로 침지시키고 슬러리를 배수시킨 후에 과량의 슬러리를 압축 공기 분사로 제거함으로써 수행하였다. 코팅된 벌집형 구조물을 120℃에서 4시간 동안 건조시키고, 550℃에서 2시간 동안 소성시켜 촉매를 완성하였다. 600 배율의 전자현미경 사진은 도 3에 도시되며, MIP (Mercury Intrusion Porosimetry)로 측정된 다공도는 약 54%이었다.Gamma-alumina powder impregnated with 4.00 g / l palladium-nitrate in 20.0 g / l Pd-loaded activated alumina After dispersing 90.0 g / L oxygen storage material (OSC), followed by wet milling process to store active alumina and oxygen The material was adjusted to a diameter of 6um or less. Subsequently, 30.0 g / l diameter 30um gamma-alumina powder was further dispersed in the milling solution to prepare a slurry having a bimodal support size. The slurry was coated onto a ceramic honeycomb structure with a number of cells per square inch (CPSI) of 600 and a wall thickness of 3.0 millimeters. Coating was performed by dipping the substrate (105.7 * 69) into the slurry and draining the slurry, then removing the excess slurry by compressed air injection. The coated honeycomb structure was dried at 120 ° C. for 4 hours and calcined at 550 ° C. for 2 hours to complete the catalyst. An electron micrograph of 600 magnification is shown in FIG. 3, and the porosity measured by Mercury Intrusion Porosimetry (MIP) was about 54%.

[비교예 1]Comparative Example 1

감마-알루미나 파우더 50.0 g/l에 4.00 g/l 팔라듐나이트레이트를 함침 Pd 로딩 활성 알루미나를 제조 후 90.0g/L의 산소 저장 물질(OSC)를 분산 시킨 후 습식 밀링 공정을 통하여 활성 알루미나와 산소 저장 물질을 직경을 15um로 조절한 후 상기 실시예 1과 같이 처리하여 비교 촉매 1을 완성하였다. 600 배율의 전자현미경 사진은 도 3에 도시된다. MIP (Mercury Intrusion Porosimetry)로 측정된 다공도는 약 35%이었다.Gamma-Alumina Powder Impregnated with 4.00 g / l Palladium Nitrate in 50.0 g / l Pd Loading Activated Alumina After dispersing 90.0 g / L of Oxygen Storage Material (OSC) and Wet Milling Process to Activate Active Alumina and Oxygen Storage The material was adjusted to a diameter of 15 μm and then treated in the same manner as in Example 1 to complete Comparative Catalyst 1. An electron micrograph at 600 magnification is shown in FIG. 3. The porosity measured by Mercury Intrusion Porosimetry (MIP) was about 35%.

[시험방법][Test Methods]

신선한 촉매들을 실차 8만 km 주행에 해당하는 엔진벤치 열화모드에서 열화시킨 후, NEDC 방식으로 촉매성능을 테스트하였다. THC, CO 및 NOx 제거 성능은 도 4에 요약된다. 즉 NEDC 모드에서 실시예에 의한 촉매 성능은 비교예 1 대비하여 개선되었다. The fresh catalysts were degraded in the engine bench deterioration mode corresponding to 80,000 km running of the vehicle, and then the catalyst performance was tested by the NEDC method. THC, CO and NOx removal performance is summarized in FIG. 4. That is, the catalyst performance according to the example in the NEDC mode was improved compared to Comparative Example 1.

제1 지지체 및 제2 지지체 혼합비율에 따른 촉매 성능 비교Comparison of Catalyst Performance According to Mixing Ratio of First and Second Supports

실시예 1과 동일한 방식으로 이봉 형태 촉매를 제조하되, 상대적으로 작은 입자들 및 상대적으로 큰 입자들 간 혼합비율을 조절하여 촉매들을 제조하였다. 표 1에는 이들 입자 혼합비율이 정리되며, 이들 촉매에 대한 700 배율에서의 전자현미경 사진은 도 5에 도시된다.A bimodal catalyst was prepared in the same manner as in Example 1, but the catalysts were prepared by adjusting the mixing ratio between relatively small particles and relatively large particles. Table 1 summarizes these particle mixing ratios, and electron micrographs at 700 magnifications for these catalysts are shown in FIG. 5.

Small Particle(g/L)Small Particle (g / L) Large Particle(g/L) Large Particle (g / L) Small Particle/Large Particle RatioSmall Particle / Large Particle Ratio Sample ASample A 130130 1010 13.013.0 Sample BSample B 9090 5050 2.52.5

실시예 2에 따른 촉매들을 상기 시험방법에 따라 촉매성능을 테스트한 결과, 도 6에 도시된 바와 같이, 제2 지지체 : 제1 지지체의 비율이 2.5에서 즉 큰 입자인 제1 지지체 비율이 높은 촉매 성능이 낮은 촉매 대비 개선되었다.As a result of testing the catalyst performance according to the test method according to the test method according to Example 2, as shown in Figure 6, the ratio of the second support: the first support is a high particle ratio of the first support is 2.5, that is, a large particle catalyst Improved performance compared to lower catalysts.

제2 지지체 입자 크기에 따른 촉매 성능 비교Comparison of Catalyst Performance According to Secondary Support Particle Size

실시예 1과 동일한 방식으로 이봉 형태 촉매를 제조하되, 상대적으로 작은 입자들 크기를 조절하여 다양한 촉매들을 제조하였다. 표 2에는 적용된 작은 입자들 크기가 정리되며, 이들 촉매에 대한 600 배율에서의 전자현미경 사진은 도 7에 도시된다. 실시예 3에 따른 촉매들을 상기 시험방법에 따라 촉매성능을 테스트한 결과, 도 8에 도시된 바와 같이, 제2 지지체 입자들이 클수록 NOx 성능이 개선되었다.A bimodal catalyst was prepared in the same manner as in Example 1, but various catalysts were prepared by adjusting the size of relatively small particles. Table 2 summarizes the small particle sizes applied, and electron micrographs at 600 magnifications for these catalysts are shown in FIG. 7. As a result of testing the catalytic performance of the catalysts according to Example 3 according to the test method, as shown in FIG. 8, the larger the second support particles, the better the NOx performance.

Small Particle Size(micron)Small Particle Size (micron) Large Particle Size(micron) Large Particle Size (micron) Sample ASample A 33 3030 Sample BSample B 66 3030 Sample CSample C 99 3030

Claims (11)

제1 지지체 및 제2 지지체들로 혼합 구성되고, 상기 제 1 지지체의 입자 직경은 상기 제2 지지체의 입자 직경보다 크고, 귀금속 성분을 지지하는 지지체 입자들 분포가 이봉 (bimodal) 형태로 이루어지는 배기가스 정화용 촉매조성물.Exhaust gas composed of a mixture of a first support and a second support, the particle diameter of the first support is larger than the particle diameter of the second support, the distribution of the support particles supporting the noble metal component in a bimodal form Purification catalyst composition. 간격체 (spacer) 및 제2 지지체들로 혼합 구성되고, 상기 간격체의 입자 직경은 상기 제2 지지체의 입자 직경보다 크고, 상기 간격체 및 귀금속 성분 지지 지지체 입자들 분포가 이봉 형태로 이루어지는 배기가스 정화용 촉매조성물.An exhaust gas composed of a spacer and a second support, the particle diameter of the spacer being larger than the particle diameter of the second support, and the distribution of the spacer and the precious metal component support support particles in a bimodal form. Purification catalyst composition. 제1항에 있어서, 제1 지지체는 입자 직경이 10-50 um 범위인 단일 또는 복합산화물이며, 제2 지지체는 입자 직경이 0.1-20 um 범위인 단일 또는 복합산화물인 것을 특징으로 하는, 배기가스 정화용 촉매조성물.The exhaust gas of claim 1, wherein the first support is a single or complex oxide having a particle diameter in the range of 10-50 um, and the second support is a single or complex oxide having a particle diameter in the range of 0.1-20 um. Purification catalyst composition. 제2항에 있어서, 간격체는 입자 직경이 10-50 um 범위인 단일 또는 복합산화물이며, 제2 지지체는 입자 직경이 0.1-20 um 범위인 단일 또는 복합산화물인 것을 특징으로 하는, 배기가스 정화용 촉매조성물.3. The exhaust gas purification method according to claim 2, wherein the spacer is a single or complex oxide having a particle diameter in the range of 10-50 um and the second support is a single or complex oxide having a particle diameter in the range of 0.1-20 um. Catalyst composition. 제3항 또는 제4항에 있어서, 상기 단일 또는 복합산화물은 알루미나, 실리카, 지르코니아, 마그네시아, 세리아-지르코니아, 실리카-알루미나, 알루미노-실리케이트, 알루미나-지르코니아, 알루미나-크로미아 및 알루미나-세리아로 구성된 군에서 선택된 활성화 화합물인 것을 특징으로 하는, 배기가스 정화용 촉매조성물. The method according to claim 3 or 4, wherein the single or composite oxide is alumina, silica, zirconia, magnesia, ceria-zirconia, silica-alumina, alumino-silicate, alumina-zirconia, alumina-chromia and alumina-ceria. Catalyst composition for exhaust gas purification, characterized in that the active compound selected from the group consisting of. 제1항에 있어서, 제1 지지체 및 제2 지지체와의 중량 혼합비는 1.0 내지 15.0인 것을 특징으로 하는, 배기가스 정화용 촉매조성물. The catalyst composition for purification of exhaust gas according to claim 1, wherein the weight mixing ratio of the first support and the second support is 1.0 to 15.0. 제2항에 있어서, 간격체 및 제2 지지체와의 중량 혼합비는 1.0 내지 15.0인 것을 특징으로 하는, 배기가스 정화용 촉매조성물. The catalyst composition for purification of exhaust gas according to claim 2, wherein the weight mixing ratio between the spacer and the second support is 1.0 to 15.0. 제1항에 있어서, 제1 지지체 및 제2 지지체들에 로딩되는 귀금속은 Pd, Rh 및 Pt으로 이루어진 군에서 선택되는 것을 특징으로 하는, 배기가스 정화용 촉매조성물. The catalyst composition for exhaust gas purification according to claim 1, wherein the precious metal loaded on the first and second supports is selected from the group consisting of Pd, Rh and Pt. 제2항에 있어서, 제2 지지체들에 로딩되는 귀금속은 Pd, Rh 및 Pt으로 이루어진 군에서 선택되는 것을 특징으로 하는, 배기가스 정화용 촉매조성물. The catalyst composition for purification of exhaust gas according to claim 2, wherein the precious metal loaded on the second supports is selected from the group consisting of Pd, Rh and Pt. 제1항 또는 제2항에 있어서, 알칼리 토금속 산화물, 알칼리 금속 산화물 및 희토류 금속 산화물 (BMO) 및 산소 저장 성분 (OSC)이 더욱 포함되는, 배기가스 정화용 촉매조성물. The catalyst composition for purification of exhaust gas according to claim 1 or 2, further comprising alkaline earth metal oxide, alkali metal oxide and rare earth metal oxide (BMO) and oxygen storage component (OSC). 제1항 또는 제2항 중 어느 하나의 항에 의한 배기가스 정화용 촉매조성물이 배기가스 정화용 캐리어 또는 기재상에 담지되는, 배기가스 정화용 촉매. An exhaust gas purification catalyst, wherein the catalyst composition for exhaust gas purification according to any one of claims 1 and 2 is supported on an exhaust gas purification carrier or a substrate.
KR1020110097236A 2011-09-27 2011-09-27 A catalyst for purifying exhaust gas with bimodal size distribution of supports KR101336595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110097236A KR101336595B1 (en) 2011-09-27 2011-09-27 A catalyst for purifying exhaust gas with bimodal size distribution of supports

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110097236A KR101336595B1 (en) 2011-09-27 2011-09-27 A catalyst for purifying exhaust gas with bimodal size distribution of supports

Publications (2)

Publication Number Publication Date
KR20130033534A KR20130033534A (en) 2013-04-04
KR101336595B1 true KR101336595B1 (en) 2013-12-05

Family

ID=48435883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110097236A KR101336595B1 (en) 2011-09-27 2011-09-27 A catalyst for purifying exhaust gas with bimodal size distribution of supports

Country Status (1)

Country Link
KR (1) KR101336595B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068229A1 (en) * 2016-10-12 2018-04-19 Basf Corporation Catalytic articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441367B1 (en) * 2020-08-06 2022-09-06 희성촉매 주식회사 Catalyst for purifying exhaust gas with thin layer blocking penetration of catalytic active materials on high porosity substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246216A (en) 2004-03-03 2005-09-15 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006169021A (en) 2004-12-14 2006-06-29 Toyota Central Res & Dev Lab Inc Multiple oxide, its production method and catalyst for exhaust gas purification
US20080081920A1 (en) 2006-09-29 2008-04-03 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Catalyst with bimodal pore size distribution and the use thereof
KR20100065164A (en) * 2007-08-27 2010-06-15 에스데 리젠츠페어베르퉁스게젤샤프트 엠베하 엔 코. 카게 Process for production of an olefin oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246216A (en) 2004-03-03 2005-09-15 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006169021A (en) 2004-12-14 2006-06-29 Toyota Central Res & Dev Lab Inc Multiple oxide, its production method and catalyst for exhaust gas purification
US20080081920A1 (en) 2006-09-29 2008-04-03 Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg Catalyst with bimodal pore size distribution and the use thereof
KR20100065164A (en) * 2007-08-27 2010-06-15 에스데 리젠츠페어베르퉁스게젤샤프트 엠베하 엔 코. 카게 Process for production of an olefin oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068229A1 (en) * 2016-10-12 2018-04-19 Basf Corporation Catalytic articles
CN110022975A (en) * 2016-10-12 2019-07-16 巴斯夫公司 Catalytic article
RU2731562C1 (en) * 2016-10-12 2020-09-04 Басф Корпорейшн Catalytic articles

Also Published As

Publication number Publication date
KR20130033534A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
KR100781670B1 (en) A catalyst without rh or with the minimum rh for purifying exhaust gases from engine
US8038951B2 (en) Catalyst compositions
EP2611535B1 (en) Catalyst for gasoline lean burn engines with improved no oxidation activity
US9242242B2 (en) Catalyst for gasoline lean burn engines with improved NO oxidation activity
US8557204B2 (en) Three-way catalyst having an upstream single-layer catalyst
US7879755B2 (en) Catalyst compositions
JP4911893B2 (en) Layered catalyst composite
KR101712684B1 (en) Improved lean hc conversion of twc for lean burn gasoline engines
KR101797252B1 (en) Small engine layered catalyst article and method of making
WO2009020957A1 (en) Multilayered catalyst compositions
KR20040047966A (en) Layered Catalyst Composite and Use Thereof
WO2008013169A1 (en) Catalyst for exhaust gas purification
JP2012024701A (en) Catalyst for purifying exhaust gas
US20180071679A1 (en) Automotive Catalysts With Palladium Supported In An Alumina-Free Layer
WO2017203863A1 (en) Gasoline engine exhaust gas purification three-way catalyst
JP5873731B2 (en) Exhaust gas treatment catalyst structure
KR101336595B1 (en) A catalyst for purifying exhaust gas with bimodal size distribution of supports
KR100665606B1 (en) Rh solution with Ir impurity of above 400ppm for producing catalystic composition for purification of exhaust gas
US20070123418A1 (en) Catalyst composition containing gallium for purifying exhaust gases of internal combustion engine
US20230330653A1 (en) Three-way conversion catalytic article
KR20070055940A (en) A catalytic composition with ga for purification of exhaust gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191128

Year of fee payment: 7