KR101336232B1 - Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same - Google Patents

Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same Download PDF

Info

Publication number
KR101336232B1
KR101336232B1 KR1020110143297A KR20110143297A KR101336232B1 KR 101336232 B1 KR101336232 B1 KR 101336232B1 KR 1020110143297 A KR1020110143297 A KR 1020110143297A KR 20110143297 A KR20110143297 A KR 20110143297A KR 101336232 B1 KR101336232 B1 KR 101336232B1
Authority
KR
South Korea
Prior art keywords
polyethylene oxide
block copolymer
butyl group
formula
group
Prior art date
Application number
KR1020110143297A
Other languages
Korean (ko)
Other versions
KR20130075093A (en
Inventor
김정안
조영준
남주현
김유진
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020110143297A priority Critical patent/KR101336232B1/en
Publication of KR20130075093A publication Critical patent/KR20130075093A/en
Application granted granted Critical
Publication of KR101336232B1 publication Critical patent/KR101336232B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 pH 및 글루코스에 응답성이 있고 약물 전달용 고분자 소재로 사용될 수 있는 보론산기를 가지는 폴리에틸렌옥사이드계 블록공중합체, 그의 제조방법, 및 암 조영 (tumer cell imaging) 및 열치료 (hyperthermia)에 사용될 수 있는 상기 폴리에틸렌옥사이드계 블록공중합체에 의해 안정화된 산화철 나노입자에 관한 것이다. The present invention is a polyethylene oxide block copolymer having a boronic acid group that is responsive to pH and glucose and can be used as a polymer material for drug delivery, a method for preparing the same, and a tumor cell imaging and a hyperthermia. It relates to iron oxide nanoparticles stabilized by the polyethylene oxide-based block copolymer that can be used.

Description

보론산기를 가지는 폴리에틸렌옥사이드계 블록공중합체 및 그에 의해 안정화된 산화철 나노입자 {Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same} Poly (ethylene oxide) -based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same}

본 발명은 보론산기를 가지는 폴리에틸렌옥사이드계 블록공중합체 및 상기 폴리에틸렌옥사이드계 블록공중합체에 의해 안정화된 산화철 나노입자에 관한 것이다. 보다 구체적으로 본 발명은 pH 및 글루코스에 응답성이 있고 약물 전달용 고분자 소재로 사용될 수 있는 보론산기를 가지는 폴리에틸렌옥사이드계 블록공중합체, 그의 제조방법, 및 암 조영 (tumer cell imaging) 및 열치료 (hyperthermia)에 사용될 수 있는 상기 폴리에틸렌옥사이드계 블록공중합체에 의해 안정화된 산화철 나노입자에 관한 것이다. The present invention relates to a polyethylene oxide block copolymer having boronic acid groups and to iron oxide nanoparticles stabilized by the polyethylene oxide block copolymer. More specifically, the present invention is a polyethylene oxide block copolymer having a boronic acid group that is responsive to pH and glucose and can be used as a polymer material for drug delivery, a method for preparing the same, and cancer cell imaging and heat treatment ( It relates to iron oxide nanoparticles stabilized by the polyethylene oxide-based block copolymer that can be used for hyperthermia.

폴리에틸렌옥사이드계 고분자는 세포 내로의 증진된 투과력 및 유지 효과 (enhanced permeability and retention effect)로 인해 많은 연구가 이루어져 왔다.Polyethylene oxide-based polymers have been studied a lot because of the enhanced permeability and retention effect into cells.

기존의 다양한 방법에 의한 폴리에틸렌옥사이드 말단 기능성화를 통하여 제조되는 고분자 공액 물질의 제조방법 및 이들의 응용 분야에 대해서는 문헌에 잘 설명되어 있다 [J. M. Harris, R. B. Chess, Nature Reviews Drug Discovery, 2003년, 제2권, 페이지 214-221 및 S. Zalipsky, Bioconjugate Chemistry, 1995년, 제6권, 페이지 150-165]. 이와 관련하여, 리빙 음이온 중합으로 제조되는 폴리에틸렌옥사이드의 합성법은 여러 문헌에 잘 설명되어 있다 [S. Slomkowski, A. Duda, "Anionic ring-opening polymerization", in Ring-Opening Polymerization: Mechanism, Catalysis, Structure, Utility; Edited by D. J. Brunelle, 1993년, 제3장, 페이지 87-128 및 R. P. Quirk, J. Kim, "Macromonomers and Macromonomers", in Ring-Opening Polymerization: Mechanism, Catalysis, Structure, Utility; Edited by D. J. Brunelle, 1993년, 제9장, 페이지 263-293].Methods of preparing polymeric conjugated materials prepared through polyethylene oxide terminal functionalization by various conventional methods and their applications are well described in the literature [JM Harris, RB Chess, Nature Reviews Drug Discovery, 2003, 2, pages 214-221 and S. Zalipsky, Bioconjugate Chemistry, 1995, Volume 6, pages 150-165]. In this regard, the synthesis of polyethylene oxides prepared by living anionic polymerization is well described in the literature. Slomkowski, A. Duda, "Anionic ring-opening polymerization", in Ring-Opening Polymerization: Mechanism, Catalysis, Structure, Utility; Edited by DJ Brunelle, 1993, Chapter 3, pages 87-128 and RP Quirk, J. Kim, "Macromonomers and Macromonomers", in Ring-Opening Polymerization: Mechanism, Catalysis, Structure, Utility; Edited by DJ Brunelle, 1993, Chapter 9, pages 263-293].

특히, 리빙 중합에 의한 폴리에틸렌옥사이드의 제조에 사용되는 알콕사이드계 개시제의 알칼리금속의 종류에 따라 분자량 분포 및 분자량 조절을 위하여 반응 조건의 조절이 매우 복잡하고 어렵다. 이러한 관점에서, 리튬 및 칼륨계 알콕사이드를 개시제로 이용한 에틸렌 옥사이드의 리빙 중합법은 특허 문헌에 잘 설명되어 있다 [대한민국 특허 제122,055호]. In particular, the control of the reaction conditions is very complicated and difficult for molecular weight distribution and molecular weight control depending on the type of alkali metal of the alkoxide initiator used in the production of polyethylene oxide by living polymerization. In view of this, the living polymerization method of ethylene oxide using lithium and potassium-based alkoxides as initiators is well described in the patent literature [Korean Patent No. 122,055].

폴리에틸렌글리콜 (poly(ethylene glycol))과 여러 고분자 물질과의 블록공중합체의 제조방법은 문헌에 잘 설명되어 있다 [Jankova, K.; Chen, X.; Kops, J.; Batsberg, W. Macromolecules, 1998년, 제31권, 페이지 538-541 및 Topp, M. D. C.; Dijkstra, P. J.; Talsma, H.; Feijen, J. Macromolecules, 1997년, 제30권, 페이지 8518-8520]. Methods for preparing block copolymers of poly (ethylene glycol) with various polymeric materials are well described in the literature [Jankova, K .; Chen, X .; Kops, J .; Batsberg, W. Macromolecules, 1998, Vol. 31, pages 538-541 and Topp, MDC; Dijkstra, PJ; Talsma, H .; Feijen, J. Macromolecules, 1997, Vol. 30, pages 8518-8520.

그러나 약물 전달용 고분자 소재로 사용될 수 있고, pH, 글루코스 및 온도와 같은 외부 자극에 응답성이 있으며, 항암 및 조영 효과를 나타낼 수 있는 새로운 폴리에틸렌옥사이드계 블록공중합체의 개발이 여전히 요구되어 왔다.However, there is still a need to develop a new polyethylene oxide block copolymer that can be used as a drug delivery polymer material, is responsive to external stimuli such as pH, glucose and temperature, and can exhibit anticancer and contrast effects.

본 발명의 목적은 pH 및 글루코스에 응답성이 있고 약물 전달용 고분자 소재로 사용될 수 있는 폴리에틸렌옥사이드계 블록공중합체를 제공하는 것이다.It is an object of the present invention to provide a polyethylene oxide block copolymer which is responsive to pH and glucose and can be used as a polymer material for drug delivery.

본 발명의 다른 목적은 상기 폴리에틸렌옥사이드계 블록공중합체의 효율적인 제조방법을 제공하는 것이다. Another object of the present invention is to provide an efficient method for producing the polyethylene oxide block copolymer.

본 발명의 또 다른 목적은 암 조영 (tumer cell imaging) 및 열치료 (hyperthermia)에 사용될 수 있는 상기 폴리에틸렌옥사이드계 블록공중합체에 의해 안정화된 산화철 나노입자를 제공하는 것이다.Another object of the present invention is to provide iron oxide nanoparticles stabilized by the polyethylene oxide-based block copolymers which can be used for cancer cell imaging and hyperthermia.

본 발명의 또 다른 목적은 상기 폴리에틸렌옥사이드계 블록공중합체에 의해 안정화된 산화철 나노입자의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing iron oxide nanoparticles stabilized by the polyethylene oxide block copolymer.

본 발명은 하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 폴리에틸렌옥사이드계 블록공중합체에 관한 것이다. The present invention relates to a polyethylene oxide block copolymer represented by the following formula (1), (2) or (3).

[화학식 1][Formula 1]

Figure 112011103877585-pat00001
Figure 112011103877585-pat00001

[화학식 2](2)

Figure 112011103877585-pat00002
Figure 112011103877585-pat00002

[화학식 3](3)

Figure 112011103877585-pat00003
Figure 112011103877585-pat00003

상기 식에서, Where

R은 n-부틸기, sec-부틸기, tert-부틸기 또는 tert-부톡시기이고,R is n -butyl group, sec -butyl group, tert -butyl group or tert -butoxy group,

R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며, R 1 and R 2 are each independently hydrogen or a methyl group,

m은 5 내지 50의 정수이고,m is an integer from 5 to 50,

n은 10 내지 500의 정수이며,n is an integer from 10 to 500,

k는 1 내지 5의 정수이다.
k is an integer of 1-5.

본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체는 Polyethylene oxide-based block copolymers according to the present invention

(a) 리빙 음이온 중합에 의해 폴리에틸렌옥사이드를 수득하는 단계;(a) obtaining polyethylene oxide by living anionic polymerization;

(b) 상기 폴리에틸렌옥사이드로부터 사슬말단 기능성화된 폴리에틸렌옥사이드 (X가 염소, 브롬 또는 요오드인 하기 화학식 4의 화합물)를 수득하는 단계;(b) obtaining a chain-end functionalized polyethylene oxide (compound of formula (4) wherein X is chlorine, bromine or iodine) from the polyethylene oxide;

(c) 상기 사슬말단 기능성화된 폴리에틸렌옥사이드를 이용하여 가역부가분절전이 (reversible addition fragmentation transfer: RAFT) 물질 (X가 크산테이트인 하기 화학식 4의 화합물)을 수득하는 단계;(c) obtaining a reversible addition fragmentation transfer (RAFT) material (compound of formula 4 wherein X is xanthate) using the chain-end functionalized polyethylene oxide;

(d) 상기 RAFT 물질을 사용하여 3-(아크릴아미도)페닐보론산 또는 3-(메타아크릴아미도)페닐보론산과 라디칼 공중합하거나, N-비닐이미다졸 또는 N-비닐피롤리돈과 라디칼 공중합한 다음 3-(아크릴아미도)페닐보론산 또는 3-(메타아크릴아미도)페닐보론산과 라디칼 공중합하여 블록공중합체를 수득하는 단계; 및(d) 3- (acrylamido) phenylboronic acid, or 3- (meth acrylamido) phenylboronic acid or radical copolymerization, N, using the RAFT material-vinylimidazole or N-vinyl pyrrolidone and the radical Copolymerizing followed by radical copolymerization with 3- (acrylamido) phenylboronic acid or 3- (methacrylamido) phenylboronic acid to obtain a block copolymer; And

(e) 상기 블록공중합체의 사슬 말단을 아조비스이소부티로니트릴 (azobisisobutyronitrile: AIBN)으로 변성시키는 단계를 포함하여 제조될 수 있다. (e) denaturing the chain end of the block copolymer with azobisisobutyronitrile (AIBN).

[화학식 4][Chemical Formula 4]

Figure 112011103877585-pat00004
Figure 112011103877585-pat00004

상기 식에서, Where

R은 n-부틸기, sec-부틸기, tert-부틸기 또는 tert-부톡시기이고,R is n -butyl group, sec -butyl group, tert -butyl group or tert -butoxy group,

R1은 수소 또는 메틸기이며, R 1 is hydrogen or a methyl group,

X는 염소, 브롬, 요오드 또는 크산테이트 (xanthate)기이고, X is a chlorine, bromine, iodine or xanthate group,

n은 10 내지 500의 정수이다.
n is an integer from 10 to 500.

상기 단계 (a)에서 리빙 음이온 중합에 의해 폴리에틸렌옥사이드를 제조하면 폴리에틸렌옥사이드의 분자량을 조절할 수 있으며, 리빙 음이온 중합에 의한 폴리에틸렌옥사이드의 제조방법 및 분자량의 조절 방법은 문헌에 상세히 설명되어 있다 [Kim, J.; Choi, S.; Kim, K. M.; Go, D. H.; Jeon, H. J.; Lee, J. Y.; Park, H. S.; Lee, C. H.; Park, H. M. Macromolecular Research, 2007년, 제15권, 페이지 337-342]. When the polyethylene oxide is prepared by living anionic polymerization in the step (a), the molecular weight of the polyethylene oxide can be controlled. J .; Choi, S .; Kim, KM; Go, DH; Jeon, HJ; Lee, JY; Park, HS; Lee, CH; Park, HM Macromolecular Research, 2007, Vol. 15, pages 337-342].

상기 폴리에틸렌옥사이드의 수평균분자량은 500 내지 100,000이 바람직하며, 1,000 내지 10,000이 보다 바람직하다. The number average molecular weight of the polyethylene oxide is preferably from 500 to 100,000, more preferably from 1,000 to 10,000.

상기 단계 (b)의 사슬말단 기능성화된 폴리에틸렌옥사이드의 제조방법, 상기 단계 (c)의 RAFT 물질의 제조방법, 상기 단계 (d)의 라디칼 공중합 방법 및 단계 (e)의 사슬 말단 변성방법은 문헌에 상세히 설명되어 있다 [Kim, J.; Choi, S.; Kim, K. M.; Go, D. H.; Jeon, H. J.; Lee, J. Y.; Park, H. S.; Lee, C. H.; Park, H. M. Macromolecular Research, 2007년, 제15권, 페이지 337-342]. The method for preparing the chain-end functionalized polyethylene oxide of step (b), the method for preparing the RAFT material of step (c), the radical copolymerization method of step (d) and the chain terminal modification method of step (e) are described in the literature. It is described in detail in Kim, J .; Choi, S .; Kim, KM; Go, DH; Jeon, HJ; Lee, JY; Park, HS; Lee, CH; Park, HM Macromolecular Research, 2007, Vol. 15, pages 337-342].

도 1에는 폴리에틸렌옥사이드계 RAFT 물질을 사용하여 N-비닐이미다졸 및 3-(메타아크릴아미도)페닐보론산과 연속적 단량체 부가법 (sequential monomer addition)에 의해 라디칼 공중합하고, 사슬 말단을 AIBN으로 변성시켜 본 발명에 따른 상기 화학식 2로 표시되는 폴리에틸렌옥사이드계 블록공중합체를 제조하는 공정도가 도시되어 있다.
1 is a radical copolymerization with N -vinylimidazole and 3- (methacrylamido) phenylboronic acid by sequential monomer addition using a polyethylene oxide-based RAFT material, and the chain ends are modified with AIBN. A process diagram for preparing the polyethylene oxide block copolymer represented by the formula (2) according to the present invention is shown.

본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체는 산화철 나노입자의 안정화제로서 유용하게 사용될 수 있다.Polyethylene oxide-based block copolymers according to the present invention can be usefully used as a stabilizer of iron oxide nanoparticles.

따라서 본 발명은 다른 한편으로 본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체로 안정화된 산화철 나노입자에 관한 것이다. Accordingly, the present invention relates to iron oxide nanoparticles stabilized with the polyethylene oxide block copolymer according to the present invention.

상기 폴리에틸렌옥사이드계 블록공중합체로 안정화된 산화철 나노입자는 수용성이며 크기는 1 내지 80 nm일 수 있다.
Iron oxide nanoparticles stabilized with the polyethylene oxide-based block copolymer may be water-soluble and have a size of 1 to 80 nm.

본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체로 안정화된 산화철 나노입자는 본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체에 염화철을 부가하고 환원시키는 단계를 포함하여 제조될 수 있다.Iron oxide nanoparticles stabilized with a polyethylene oxide block copolymer according to the present invention may be prepared by adding and reducing iron chloride to the polyethylene oxide block copolymer according to the present invention.

상기 반응은 유기용매 뿐만 아니라 수용액 상에서 수행될 수 있으며, 반응온도는 5oC 내지 70oC가 바람직하고, 10oC 내지 50oC가 보다 바람직하다.The reaction may be carried out in an aqueous solution as well as an organic solvent, the reaction temperature is preferably 5 o C to 70 o C, more preferably 10 o C to 50 o C.

상기 염화철의 농도는 0.01 내지 10 g/10 mL이 바람직하고, 환원제로는 NH4OH, N2H2, NaBH4, H2S, Na2S 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. The concentration of the iron chloride is preferably 0.01 to 10 g / 10 mL, NH 4 OH, N 2 H 2 , NaBH 4 , H 2 S, Na 2 S and the like may be used as a reducing agent, but is not limited thereto.

본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체는 pH 및 글루코스에 이중 응답성이 있는 스마트 고분자 물질로서, 산화철 나노입자를 안정화시켜 암 조영 (tumer cell imaging) 및 열치료 (hyperthermia)에 사용할 수 있다. The polyethylene oxide-based block copolymer according to the present invention is a smart polymer material having dual response to pH and glucose, and can be used for cancer cell imaging and thermotherapy by stabilizing iron oxide nanoparticles.

아울러, 본 발명에 따른 폴리에틸렌옥사이드계 블록공중합체는 수용성이기 때문에 산화철 나노입자를 수용액 상에서 제조할 수 있으며, 정제가 용이하여 취급하기가 편리하다. In addition, since the polyethylene oxide-based block copolymer according to the present invention is water-soluble, iron oxide nanoparticles can be prepared in an aqueous solution, and easy to purify and easy to handle.

도 1은 화학식 2로 표시되는 폴리에틸렌옥사이드계 블록공중합체의 일 실시예에 따른 제조 공정도이다.1 is a manufacturing process chart according to an embodiment of a polyethylene oxide-based block copolymer represented by the formula (2).

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are for illustrative purpose only and that the scope of the present invention is not limited to these embodiments.

<실시예 1>&Lt; Example 1 >

고진공 하에서 용량 1 L의 둥근 파이랙스 플라스크 내에 각종 반응물의 앰플 (ampoule)들을 핸드 토치 (hand torch)로 부착시킨 후, 진공 라인에 부착시켜 공기를 완전히 제거하였다. 아르곤 기류 하에서 n-부틸리튬 (2.4 mmol)을 주사기를 이용하여 주입하고, 수조 (water bath) 대신 드라이아이스/이소프로판올조를 사용하여 반응기 온도를 -78oC로 낮춘 후, 반응기 내의 아르곤 가스를 진공 펌프로 완전히 제거하였다. 다시, 정제된 벤젠 300 mL를 증류시켜 반응기 내로 주입하였다. 반응기의 온도를 서서히 상온으로 승온시켜 반응기 내의 벤젠을 완전히 용해시키고 개시제를 포함한 용액으로 변화시켰다. 빙수조를 사용하여 0oC에서 주의를 기울이면서 정제된 30 mL (26.5 g)의 에틸렌옥사이드 (ethylene oxide: EO) (30 vol%, 희석 용액)를 브레이크실 (breakseal)을 깨어 반응기 내로 주입하였다. 약 1시간 후, t-BuOK (2.4 mmol in THF 20 mL) 및 50 mL의 정제된 DMSO를 브레이크실 및 스톱콕 (stopcock)을 통하여 반응기 내로 투입하였다. 수조를 사용하여 반응기의 온도를 35oC까지 올리고 5시간 동안 저어주면서 반응시켰다. 다시 빙수조를 사용하여 5oC까지 낮추어 중합을 10분간 진행시키고, 이러한 과정을 수차례 반복하여 실시하였다. 다시 상온에서 48시간 동안 반응시키고, 분취액 (aliquot)를 취하여 RotavapTM을 사용하여 용매를 제거하였다. 잔사를 다시 THF에 녹이고 디에틸에테르 (diethyl ether) 속에 침전시켜 폴리에틸렌옥사이드 (poly(ethylene oxide): PEO)를 얻었다. 얻어진 고분자의 수평균분자량은 5,500 g/mol이었다. EO의 고분자로의 전환율은 100 몰%이었다.
Under high vacuum, ampoules of the various reactants were attached with a hand torch in a 1 L round flask flask and then attached to a vacuum line to remove air completely. Injecting n -butyllithium (2.4 mmol) under a argon stream with a syringe and using a dry ice / isopropanol bath instead of a water bath to reduce the reactor temperature to -78 o C and then evacuating the argon gas in the reactor Completely removed by pump. Again, 300 mL of purified benzene was distilled off and injected into the reactor. The temperature of the reactor was slowly raised to room temperature to completely dissolve the benzene in the reactor and change to a solution containing an initiator. Purified 30 mL (26.5 g) of ethylene oxide (EO) (30 vol%, dilute solution) was injected into the reactor by breaking the breakseal with careful attention at 0 o C using an ice bath. . After about 1 hour, t- BuOK (2.4 mmol in THF 20 mL) and 50 mL of purified DMSO were introduced into the reactor through a brake chamber and a stopcock. The temperature of the reactor was raised to 35 ° C. using a water bath and stirred for 5 hours. Again using the ice water bath to 5 o C to proceed with the polymerization for 10 minutes, this process was repeated several times. The reaction was again performed at room temperature for 48 hours, aliquots were taken, and the solvent was removed using Rotavap . The residue was dissolved in THF again and precipitated in diethyl ether to obtain polyethylene oxide (poly (ethylene oxide): PEO). The number average molecular weight of the obtained polymer was 5,500 g / mol. The conversion of EO to a polymer was 100 mol%.

<실시예 2><Example 2>

실시예 1에서 수득한 알칼리금속 (Mt) 중합체 알콕시드 (polymeric alkoxide) 용액 200 mL ([POMt] = 6.3 mmol)에 2-브로모프로피오닐 브로마이드 (20 mmol in 20 mL THF)를 투입하고 상온에서 저어주면서 24시간 동안 반응시켰다. 반응이 끝난 후, 용매를 RotavapTM을 이용하여 제거한 후, 다시 THF에 용해시키고 디에틸에테르에 침전시켜 연한 노란색의 파우더를 얻었다. 이렇게 제조된 고분자는 겔투과크로마토그래피 (GPC)에 의한 수평균분자량이 5,600 g/mol이었으며, 1H NMR 스펙트럼 분석에 의한 사슬 말단 브롬화 수율은 98 mol% 이상이었다.
To 200 mL ([POMt] = 6.3 mmol) of the alkali metal (Mt) polymer alkoxide solution obtained in Example 1, 2-bromopropionyl bromide (20 mmol in 20 mL THF) was added thereto at room temperature. The reaction was stirred for 24 hours while stirring. After the reaction was completed, the solvent was removed using Rotavap , and then dissolved in THF and precipitated in diethyl ether to obtain a pale yellow powder. The polymer thus prepared had a number average molecular weight of 5,600 g / mol by gel permeation chromatography (GPC), and a chain terminal bromination yield by 1 H NMR spectrum analysis was 98 mol% or more.

<실시예 3><Example 3>

실시예 1에서 수득한 알칼리금속 (Mt) 중합체 알콕시드 용액 200 mL ([POMt] = 6.3 mmol)에 2-브로모이소부티릴 브로마이드 (20 mmol in 20 mL THF)를 투입하고 상온에서 저어주면서 24시간 동안 반응시켰다. 반응이 끝난 후, 용매를 RotavapTM을 이용하여 제거한 후, 다시 THF에 용해시키고 디에틸에테르에 침전시켜 연한 노란색의 파우더를 얻었다. 이렇게 제조된 고분자는 GPC에 의한 수평균분자량이 5,600 g/mol이었으며, 1H NMR 스펙트럼 분석에 의한 사슬 말단 브롬화 수율은 98 mol% 이상이었다.
To 200 mL ([POMt] = 6.3 mmol) of the alkali metal (Mt) polymer alkoxide solution obtained in Example 1, 2-bromoisobutyryl bromide (20 mmol in 20 mL THF) was added and stirred at room temperature. The reaction was carried out for a time. After the reaction was completed, the solvent was removed using Rotavap , and then dissolved in THF and precipitated in diethyl ether to obtain a pale yellow powder. The polymer thus prepared had a number average molecular weight of 5,600 g / mol by GPC, and a chain terminal bromination yield by 1 H NMR spectrum analysis was 98 mol% or more.

<실시예 4><Example 4>

실시예 2에서 수득한 고분자 물질 5 g (0.09 mmol)을 고진공 하에서 500 mL의 둥근 플라스크 속에서 정제된 100 mL의 THF에 용해시키고, 칼륨 에틸 크산토제네이트 (potassium ethyl xathantogenate; 96%) 0.3 그램을 30 mL THF에 용해시켜 반응기로 주입하고, 45oC 질소 기류 하에서 24시간 동안 반응시켰다. 반응 후 용액을 과량의 디메틸에테르 (dimethyl ether)에 침전시켜 파우더를 얻었다. PEO에 기준하여 1H NMR로 분석한 결과 가역부가분절전이 (reversible addition fragmentation transfer: RAFT) 물질의 수평균분자량은 5,700 g/mol이었으며, GPC 결과 역시 5,700 g/moL이었다.
5 g (0.09 mmol) of the polymer obtained in Example 2 were dissolved in 100 mL of THF purified in a 500 mL round flask under high vacuum, and 0.3 g of potassium ethyl xathantogenate (96%). Was dissolved in 30 mL THF and injected into the reactor and reacted for 24 hours under a 45 ° C. nitrogen stream. After the reaction, the solution was precipitated in an excess of dimethyl ether to obtain a powder. Results based on PEO was analyzed by 1 H NMR reversible addition-minute power save the (reversible addition fragmentation transfer: RAFT) number average molecular weight of the material was 5,700 g / mol, GPC results were also 5,700 g / moL.

<실시예 5><Example 5>

실시예 3에서 수득한 고분자 물질 5 g (0.09 mmol)을 고진공 하에서 500 mL의 둥근 플라스크 속에서 정제된 100 mL의 THF에 용해시키고, 칼륨 에틸 크산토제네이트 (potassium ethyl xathantogenate; 96%) 0.3 그램을 30 mL THF에 용해시켜 반응기로 주입하고, 45oC 질소 기류 하에서 24시간 동안 반응시켰다. 반응 후 용액을 과량의 디에틸에테르 (diethyl ether)에 침전시켜 파우더를 얻었다. PEO에 기준하여 1H NMR로 분석한 결과 가역부가분절전이 (reversible addition fragmentation transfer: RAFT) 물질의 수평균분자량은 5,700 g/mol이었으며, GPC 결과 역시 5,700 g/moL이었다.
5 g (0.09 mmol) of the polymer obtained in Example 3 were dissolved in 100 mL of THF purified in a 500 mL round flask under high vacuum, and 0.3 g of potassium ethyl xathantogenate (96%). Was dissolved in 30 mL THF and injected into the reactor and reacted for 24 hours under a 45 ° C. nitrogen stream. After the reaction, the solution was precipitated in an excess of diethyl ether to obtain a powder. Results based on PEO was analyzed by 1 H NMR reversible addition-minute power save the (reversible addition fragmentation transfer: RAFT) number average molecular weight of the material was 5,700 g / mol, GPC results were also 5,700 g / moL.

<실시예 6><Example 6>

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 90oC까지 승온시키고, 3-(아크릴아미도)페닐보론산 (3-(acrylamido)phenylboronic acid) 0.01 몰 (1.91 g; FW = 190.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 6.8 g의 연한 노란색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 50 mL DMF에 용해시키고 과량의 AIBN을 넣은 후 사슬 말단을 변성시켜 흰색 파우더 6.5 g을 얻었다. 결과물의 수평균분자량은 GPC 결과 7,300 g/moL이었다.
0.001 mol (5.7 g) of the PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under nitrogen stream and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. The temperature is raised to 90 ° C., and 0.01 mol (1.91 g; FW = 190.8) of 3- (acrylamido) phenylboronic acid is dissolved in 25 mL DMF and injected under a nitrogen stream with a syringe. After the injection into the reactor it was polymerized for 24 hours. The reaction was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 6.8 g of a light yellow powdery polymer. After drying in a vacuum oven, it was dissolved in 50 mL DMF again, excess AIBN was added, and the end of the chain was denatured to obtain 6.5 g of white powder. The number average molecular weight of the result was 7,300 g / moL by GPC.

<실시예 7>&Lt; Example 7 >

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 90oC까지 승온시키고, 3-(메타아크릴아미도)페닐보론산 (3-(methacrylamido)phenylboronic acid) 0.01 몰 (2.04 g; FW = 204.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 7.6 g의 연한 노란색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 50 mL DMF에 용해시키고 과량의 AIBN을 넣은 후 사슬 말단을 변성시켜 흰색 파우더 7.5 g을 얻었다. 결과물의 수평균분자량은 GPC 결과 7,500 g/moL이었다.0.001 mol (5.7 g) of the PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under nitrogen stream and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. The temperature is raised to 90 ° C., 0.01 mol (2.04 g; FW = 204.8) of 3- (methacrylamido) phenylboronic acid is dissolved in 25 mL DMF, and the nitrogen stream Under polymerization in the reactor for 24 hours. The reaction was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 7.6 g of a light yellow powdery polymer. After drying in a vacuum oven, it was again dissolved in 50 mL DMF, excess AIBN was added, and the end of the chain was denatured to obtain 7.5 g of a white powder. The number average molecular weight of the result was 7,500 g / moL by GPC.

<실시예 8>&Lt; Example 8 >

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 110oC까지 승온시키고, N-비닐이미다졸 (N-vinylimidazole; FW = 94.12, d = 1.039) 6.7 mL를 25 mL DMF와 혼합하여 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 다시 반응기의 온도를 90oC로 낮추고, 3-(메타아크릴아미도)페닐보론산 (3-(methacrylamido)phenylboronic acid) 0.003 몰 (0.61 g; FW = 204.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 13.5 g의 연한 노란색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 100 mL DMF에 용해시키고 과량의 AIBN을 넣고 사슬 말단을 변성시켜 흰색 파우더 13.4 g을 얻었다. 결과물의 수평균분자량은 1H-NMR 및 GPC 결과 12,900 g/moL이었다.
0.001 mol (5.7 g) of the PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under nitrogen stream and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. And its temperature is raised to 110 o C, N - vinylimidazole (N -vinylimidazole; FW = 94.12, d = 1.039) was mixed with 6.7 mL of 25 mL DMF is injected into the reactor under the flow of nitrogen for 24 hours with a syringe Polymerized. Again lower the temperature of the reactor to 90 ° C. and dissolve 0.003 mole (0.61 g; FW = 204.8) of 3- (methacrylamido) phenylboronic acid in 25 mL DMF with a syringe. It was polymerized for 24 hours after being injected into the reactor under a nitrogen stream. The reaction was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 13.5 g of a light yellow powdery polymer. After drying in a vacuum oven it was again dissolved in 100 mL DMF, excess AIBN was added and the chain ends were denatured to obtain 13.4 g of white powder. The number average molecular weight of the result was 12,900 g / moL by 1 H-NMR and GPC.

<실시예 9>&Lt; Example 9 >

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 110oC까지 승온시키고, N-비닐이미다졸 (N-vinylimidazole; FW = 94.12, d = 1.039) 6.7 mL를 25 mL DMF와 혼합하여 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 다시 반응기의 온도를 90oC로 낮추고, 3-(아크릴아미도)페닐보론산 (3-(acrylamido)phenylboronic acid) 0.0032 몰 (0.61 g; FW = 190.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 13.5 g의 연한 노란색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 100 mL DMF에 용해시키고 과량의 AIBN을 넣고 사슬 말단을 변성시켜 흰색의 파우더 13.4 g을 얻었다. 결과물의 수평균분자량은 1H-NMR 스펙트럼 분석 및 GPC 분석 결과 각각 13,000 g/moL이었다.
0.001 mol (5.7 g) of PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under a stream of nitrogen and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. And its temperature is raised to 110 o C, N - vinylimidazole (N -vinylimidazole; FW = 94.12, d = 1.039) was mixed with 6.7 mL of 25 mL DMF is injected into the reactor under the flow of nitrogen for 24 hours with a syringe Polymerized. Again lower the temperature of the reactor to 90 o C, dissolve 0.0032 mole (0.61 g; FW = 190.8) of 3- (acrylamido) phenylboronic acid in 25 mL DMF and inject with nitrogen After the injection into the reactor under air flow it was polymerized for 24 hours. The reaction was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 13.5 g of a light yellow powdery polymer. After drying in a vacuum oven it was again dissolved in 100 mL DMF, excess AIBN was added and the chain ends were denatured to obtain 13.4 g of a white powder. The number average molecular weight of the resultant was 13,000 g / moL, respectively, by 1 H-NMR spectrum analysis and GPC analysis.

<실시예 10>&Lt; Example 10 >

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 110oC까지 승온시키고, N-비닐피롤리돈 (N-vinylpyrrolidone; FW = 111.14, d = 1.040) 4.8 mL를 25 mL DMF와 혼합하여 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 다시 반응기의 온도를 90oC로 낮추고, 3-(아크릴아미도)페닐보론산 (3-(acrylamido)phenylboronic acid) 0.0032 몰 (0.61 g; FW = 190.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 11.3 g의 흰색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 100 mL DMF에 용해시키고 과량의 AIBN을 넣고 사슬 말단을 변성시켜 흰색의 파우더 11.2 g을 얻었다. 결과물의 수평균분자량은 1H-NMR 스펙트럼 분석 및 GPC 분석 결과 각각 11,000 g/moL이었다.
0.001 mol (5.7 g) of the PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under nitrogen stream and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. And its temperature is raised to 110 o C, N - vinylpyrrolidone (N -vinylpyrrolidone; FW = 111.14, d = 1.040) was mixed with 4.8 mL of 25 mL DMF is injected into the reactor under the flow of nitrogen for 24 hours with a syringe Polymerized. Again lower the temperature of the reactor to 90 o C, dissolve 0.0032 mole (0.61 g; FW = 190.8) of 3- (acrylamido) phenylboronic acid in 25 mL DMF and inject with nitrogen After the injection into the reactor under air flow it was polymerized for 24 hours. The reaction temperature was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 11.3 g of a white powdery polymer. After drying in a vacuum oven, it was dissolved in 100 mL DMF again, excess AIBN was added and the chain ends were denatured to obtain 11.2 g of a white powder. The number average molecular weight of the resultant was 11,000 g / moL, respectively, by 1 H-NMR spectrum analysis and GPC analysis.

<실시예 11><Example 11>

실시예 4에서 수득한 PEO-RAFT 물질 0.001 몰 (5.7 g)을 질소 기류 하에서 250 mL의 둥근 플라스크 반응기에 넣고 100 mL 디메틸포름아마이드 (dimethylformamide: DMF)에 용해시킨 후, AIBN 라디칼 개시제 0.0002 몰을 반응기에 주입하였다. 온도를 110 oC까지 승온시키고, N-비닐피롤리돈 (N-vinylpyrrolidone; FW = 111,14, d = 1.040) 4.8 mL를 25 mL DMF와 혼합하여 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 다시 반응기의 온도를 90oC로 낮추고, 3-(메타아크릴아미도)페닐보론산 (3-(methacrylamido)phenylboronic acid) 0.003 mol (0.61 g; FW = 204.8)을 25 mL DMF에 용해시켜 주사기로 질소 기류 하에서 반응기에 주입한 후 24시간 동안 중합시켰다. 반응기 온도를 상온으로 낮추어 반응을 종결시키고, 다시 과량의 디메틸에테르에 침전시켜 약 13.5 g의 연한 노란색 파우더 형태의 고분자를 얻었다. 진공오븐 속에서 건조 후 이를 다시 100 mL DMF에 용해시키고 과량의 AIBN을 넣고 사슬 말단을 변성시켜 흰색 파우더 13.4 g을 얻었다. 결과물의 수평균분자량은 1H-NMR 및 GPC 결과 11,100 g/moL이었다.0.001 mol (5.7 g) of the PEO-RAFT material obtained in Example 4 was placed in a 250 mL round flask reactor under nitrogen stream and dissolved in 100 mL dimethylformamide (DMF), followed by 0.0002 mol of AIBN radical initiator. Injected into. And its temperature is raised to 110 o C, N - vinylpyrrolidone (N -vinylpyrrolidone; FW = 111,14, d = 1.040) was mixed with 4.8 mL of 25 mL DMF is injected into the reactor under the flow of nitrogen into the syringe 24 Polymerized for time. Again lower the temperature of the reactor to 90 o C, dissolve 0.003 mol (0.61 g; FW = 204.8) of 3- (methacrylamido) phenylboronic acid in 25 mL DMF and use a syringe. It was polymerized for 24 hours after being injected into the reactor under a nitrogen stream. The reaction was terminated by lowering the reactor temperature to room temperature, and again precipitated in excess dimethyl ether to obtain about 13.5 g of a light yellow powdery polymer. After drying in a vacuum oven it was again dissolved in 100 mL DMF, excess AIBN was added and the chain ends were denatured to obtain 13.4 g of white powder. The number average molecular weight of the result was 11,100 g / moL by 1 H-NMR and GPC.

<실시예 12>&Lt; Example 12 >

실시예 6에서 수득한 블록공중합체 ((PEO b- PAPBA); MW = 7,300 g/moL) 2.0 g (0.28 mmoL)을 질소기류 하에서 100 mL의 둥근 플라스크 속에서 40 mL의 증류수에 완전히 용해시켰다. 다음으로 FeCl3 (ferric chloride; FW = 162.21) 0.03 g과 FeCl2·4H2O (ferrous chloride; FW = 198.81) 0.07 g을 10 mL 증류수에 용해시킨 후 질소 기류 하에서 주사기를 이용하여 블록공중합체 용액 속으로 주입하고, 천천히 교반하면서 2 내지 3시간 정도 정치시켰다. 이때 반응기 속 용액의 색깔은 갈색이었으며, 다시 환원제로 주사기를 사용하여 1.7 mL의 NH4OH (25% 수용액)를 주입하고 약 6시간 동안 교반한 후, 다시 상온으로 낮추고 교반하면서 반응시켰다. 갈색의 불용성 부분은 여과시켜 제거하고 용액 부분은 용매를 RotavapTM을 사용하여 제거한 후, 다시 THF에 용해시키고 디메틸에테르에 침전시켜 짙은 갈색 파우더를 얻었다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.
2.0 g (0.28 mmol) of the block copolymer ((PEO b -PAPBA); MW = 7,300 g / moL) obtained in Example 6 was completely dissolved in 40 mL of distilled water in a 100 mL round flask under nitrogen stream. Next, 0.03 g of FeCl 3 (ferric chloride; FW = 162.21) and 0.07 g of FeCl 2 · 4H 2 O (ferrous chloride; FW = 198.81) were dissolved in 10 mL of distilled water, and then a block copolymer solution was prepared using a syringe under a nitrogen stream. It was injected into the flask and allowed to stand for about 2 to 3 hours while stirring slowly. At this time, the color of the solution in the reactor was brown, again 1.7 mL of NH 4 OH (25% aqueous solution) was injected using a syringe as a reducing agent and stirred for about 6 hours, and then lowered to room temperature and reacted while stirring. The brown insoluble portion was removed by filtration and the solution portion was removed using Rotavap , and then dissolved in THF and precipitated in dimethyl ether to give a dark brown powder. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

<실시예 13>&Lt; Example 13 >

실시예 12와 동일한 방법으로, 실시예 7에서 수득한 블록공중합체 ((PEO -b- PMAPBA); MW = 7,500 g/moL) 2.0 g (0.28 mmoL)을 사용하여 짙은 갈색의 파우더인 산화철 나노 입자를 제조하였다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.
In the same manner as in Example 12, iron oxide nanoparticles as a dark brown powder using 2.0 g (0.28 mmoL) of the block copolymer ((PEO- b -PMAPBA); MW = 7,500 g / moL) obtained in Example 7 Was prepared. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

<실시예 14>&Lt; Example 14 >

실시예 12와 동일한 방법으로, 실시예 8에서 수득한 3중 블록공중합체 ((PEO -b- PVIm -b- PMAPBA); MW = 12,900 g/moL) 2.0 g (0.16 mmoL)을 사용하여 짙은 갈색의 파우더인 산화철 나노 입자를 제조하였다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.
In the same manner as in Example 12, dark brown using the triple block copolymer ((PEO- b -PVIm- b -PMAPBA) obtained in Example 8; MW = 12,900 g / moL) 2.0 g (0.16 mmoL) Iron oxide nanoparticles were prepared as a powder. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

<실시예 15>&Lt; Example 15 >

실시예 12와 동일한 방법으로, 실시예 9에서 수득한 3중 블록공중합체 (PEO -b- PVIm -b- PAPBA); MW = 13,000 g/moL) 2.0 g (0.15 mmoL)을 사용하여 짙은 갈색의 파우더인 산화철 나노입자를 제조하였다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.
In the same manner as in Example 12, the triple block copolymer (PEO- b -PVIm- b -PAPBA) obtained in Example 9; MW = 13,000 g / moL) 2.0 g (0.15 mmoL) was used to prepare iron oxide nanoparticles, a dark brown powder. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

<실시예 16>&Lt; Example 16 >

실시예 12와 동일한 방법으로, 실시예 10에서 수득한 3중 블록공중합체 (PEO -b- PVP -b- PAPBA); MW = 11,000 g/moL) 2.0 g (0.18 mmoL)을 사용하여 짙은 갈색의 파우더인 산화철 나노입자를 제조하였다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.
In the same manner as in Example 12, the triple block copolymer (PEO- b -PVP- b -PAPBA) obtained in Example 10; MW = 11,000 g / moL) 2.0 g (0.18 mmoL) was used to prepare iron oxide nanoparticles, a dark brown powder. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

<실시예 17>&Lt; Example 17 >

실시예 12와 동일한 방법으로, 실시예 11에서 수득한 3중 블록공중합체 (PEO -b- PVP -b- PMAPBA); MW = 11,100 g/moL) 2.0 g (0.18 mmoL)을 사용하여 짙은 갈색의 파우더인 산화철 나노 입자를 제조하였다. 주사전자현미경에 의한 입도의 크기는 5 내지 20 나노미터 크기를 나타내었다.In the same manner as in Example 12, the triple block copolymer (PEO- b -PVP- b -PMAPBA) obtained in Example 11; MW = 11,100 g / moL) 2.0 g (0.18 mmoL) was used to prepare iron oxide nanoparticles, a dark brown powder. The size of the particle size by scanning electron microscopy ranged from 5 to 20 nanometers.

Claims (10)

하기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 폴리에틸렌옥사이드계 블록공중합체:
[화학식 1]
Figure 112011103877585-pat00005

[화학식 2]
Figure 112011103877585-pat00006

[화학식 3]
Figure 112011103877585-pat00007

상기 식에서,
R은 n-부틸기, sec-부틸기, tert-부틸기 또는 tert-부톡시기이고,
R1 및 R2는 각각 독립적으로 수소 또는 메틸기이며,
m은 5 내지 50의 정수이고,
n은 10 내지 500의 정수이며,
k는 1 내지 5의 정수이다.
The polyethylene oxide block copolymer represented by the following general formula (1), (2) or (3):
[Chemical Formula 1]
Figure 112011103877585-pat00005

(2)
Figure 112011103877585-pat00006

(3)
Figure 112011103877585-pat00007

In this formula,
R is n -butyl group, sec -butyl group, tert -butyl group or tert -butoxy group,
R 1 and R 2 are each independently hydrogen or a methyl group,
m is an integer from 5 to 50,
n is an integer from 10 to 500,
k is an integer of 1-5.
(a) 리빙 음이온 중합에 의해 폴리에틸렌옥사이드를 수득하는 단계;
(b) 상기 폴리에틸렌옥사이드로부터 하기 화학식 4로 표시되는 사슬말단 기능성화된 폴리에틸렌옥사이드를 수득하는 단계;
(c) 상기 사슬말단 기능성화된 폴리에틸렌옥사이드를 이용하여 가역부가분절전이 (reversible addition fragmentation transfer: RAFT) 물질을 수득하는 단계;
(d) 상기 RAFT 물질을 사용하여 3-(아크릴아미도)페닐보론산 또는 3-(메타아크릴아미도)페닐보론산과 라디칼 공중합하거나, N-비닐이미다졸 또는 N-비닐피롤리돈과 라디칼 공중합한 다음 3-(아크릴아미도)페닐보론산 또는 3-(메타아크릴아미도)페닐보론산과 라디칼 공중합하여 블록공중합체를 수득하는 단계; 및
(e) 상기 블록공중합체의 사슬 말단을 아조비스이소부티로니트릴 (azobisisobutyronitrile: AIBN)로 변성시키는 단계를 포함하는 제1항에 따른 폴리에틸렌옥사이드계 블록공중합체의 제조방법:
[화학식 4]
Figure 112013056852228-pat00011

상기 식에서,
R은 n-부틸기, sec-부틸기, tert-부틸기 또는 tert-부톡시기이고,
R1은 수소 또는 메틸기이며,
X는 염소, 브롬 또는 요오드이고,
n은 10 내지 500의 정수이다.
(a) obtaining polyethylene oxide by living anionic polymerization;
(b) obtaining a chain-end functionalized polyethylene oxide represented by Formula 4 from the polyethylene oxide;
(c) obtaining a reversible addition fragmentation transfer (RAFT) material using the chain-end functionalized polyethylene oxide;
(d) 3- (acrylamido) phenylboronic acid, or 3- (meth acrylamido) phenylboronic acid or radical copolymerization, N, using the RAFT material-vinylimidazole or N-vinyl pyrrolidone and the radical Copolymerizing followed by radical copolymerization with 3- (acrylamido) phenylboronic acid or 3- (methacrylamido) phenylboronic acid to obtain a block copolymer; And
(E) a method for producing a polyethylene oxide block copolymer according to claim 1 comprising the step of modifying the chain end of the block copolymer with azobisisobutyronitrile (AIBN):
[Chemical Formula 4]
Figure 112013056852228-pat00011

In this formula,
R is n -butyl group, sec -butyl group, tert -butyl group or tert -butoxy group,
R 1 is hydrogen or a methyl group,
X is chlorine, bromine or iodine,
n is an integer from 10 to 500.
제2항에 있어서, 단계 (a)에서 수득된 폴리에틸렌옥사이드의 수평균분자량이 1000 내지 10,000인 것을 특징으로 하는 제조방법. The method according to claim 2, wherein the number average molecular weight of the polyethylene oxide obtained in step (a) is 1000 to 10,000. 삭제delete 제2항에 있어서, 가역부가분절전이 (reversible addition fragmentation transfer: RAFT) 물질이 하기 화학식 4로 표시되는 화합물인 것을 특징으로 하는 제조방법:
[화학식 4]
Figure 112011103877585-pat00009

상기 식에서,
R은 n-부틸기, sec-부틸기, tert-부틸기 또는 tert-부톡시기이고,
R1은 수소 또는 메틸기이며,
X는 크산테이트 (xanthate)기이고,
n은 10 내지 500의 정수이다.
The method of claim 2, wherein the reversible addition fragmentation transfer (RAFT) material is a compound represented by the following formula (4):
[Chemical Formula 4]
Figure 112011103877585-pat00009

In this formula,
R is n -butyl group, sec -butyl group, tert -butyl group or tert -butoxy group,
R 1 is hydrogen or a methyl group,
X is a xanthate group,
n is an integer from 10 to 500.
제1항에 따른 폴리에틸렌옥사이드계 블록공중합체로 안정화된 산화철 나노입자.Iron oxide nanoparticles stabilized with a polyethylene oxide-based block copolymer according to claim 1. 제6항에 있어서, 산화철 나노입자의 크기가 1 내지 80 nm인 것을 특징으로 하는 산화철 나노입자.The iron oxide nanoparticles of claim 6, wherein the iron oxide nanoparticles have a size of 1 to 80 nm. 제1항에 따른 폴리에틸렌옥사이드계 블록공중합체에 염화철을 부가하고 환원시키는 단계를 포함하는 폴리에틸렌옥사이드계 블록공중합체로 안정화된 산화철 나노입자의 제조방법.A method for producing iron oxide nanoparticles stabilized with a polyethylene oxide block copolymer comprising the step of adding and reducing iron chloride to the polyethylene oxide block copolymer according to claim 1. 제8항에 있어서, 반응이 수용액 상에서 수행되는 것을 특징으로 하는 제조방법.The process according to claim 8, wherein the reaction is carried out in an aqueous solution. 제8항에 있어서, 환원제가 NH4OH, N2H2, NaBH4, H2S 또는 Na2S인 것을 특징으로 하는 제조방법.The method of claim 8, wherein the reducing agent is NH 4 OH, N 2 H 2 , NaBH 4 , H 2 S or Na 2 S. 10.
KR1020110143297A 2011-12-27 2011-12-27 Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same KR101336232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110143297A KR101336232B1 (en) 2011-12-27 2011-12-27 Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110143297A KR101336232B1 (en) 2011-12-27 2011-12-27 Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same

Publications (2)

Publication Number Publication Date
KR20130075093A KR20130075093A (en) 2013-07-05
KR101336232B1 true KR101336232B1 (en) 2013-12-03

Family

ID=48989043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110143297A KR101336232B1 (en) 2011-12-27 2011-12-27 Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same

Country Status (1)

Country Link
KR (1) KR101336232B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383262A (en) * 2017-07-28 2017-11-24 厦门大学 A kind of preparation method of the porous adsorbent based on multifunctional monomer and crosslinking agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899853B1 (en) * 2017-01-17 2018-09-19 주식회사 엔게인 Hydro gel and glucose sensor including the same
KR102098078B1 (en) * 2018-07-13 2020-04-08 주식회사 엔게인 Hydro gel and glucose sensor including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194850A (en) * 1982-05-03 1983-11-12 バイエル・アクチエンゲゼルシヤフト Manufacture of pivalonitrile
KR100626767B1 (en) * 2005-07-07 2006-09-25 한국과학기술연구원 Chain-end functionalized poly(ethylene oxide) and method for the preparation of nano-sized transition metals and metal salts using the same
KR100990861B1 (en) * 2008-02-26 2010-11-01 주식회사 제닉 pH-SENSITIVE POLYETHYLENE OXIDE CO-POLYMER AND SYNTHETIC METHODE THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194850A (en) * 1982-05-03 1983-11-12 バイエル・アクチエンゲゼルシヤフト Manufacture of pivalonitrile
KR100626767B1 (en) * 2005-07-07 2006-09-25 한국과학기술연구원 Chain-end functionalized poly(ethylene oxide) and method for the preparation of nano-sized transition metals and metal salts using the same
KR100990861B1 (en) * 2008-02-26 2010-11-01 주식회사 제닉 pH-SENSITIVE POLYETHYLENE OXIDE CO-POLYMER AND SYNTHETIC METHODE THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 1: INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383262A (en) * 2017-07-28 2017-11-24 厦门大学 A kind of preparation method of the porous adsorbent based on multifunctional monomer and crosslinking agent

Also Published As

Publication number Publication date
KR20130075093A (en) 2013-07-05

Similar Documents

Publication Publication Date Title
US9005583B2 (en) Chain-end functionalized poly(ethykene oxide) and process for the preparation of a nano-sized transition metal or metal salt using the same
Zhai et al. Successive SET‐LRP and ATRP synthesis of ferrocene‐based PPEGMEA‐g‐PAEFC well‐defined amphiphilic graft copolymer
KR101336232B1 (en) Poly(ethylene oxide)-based block copolymer bearing boronic acid group and iron oxide nanoparticle stabilized by the same
Jiang et al. Triple-stimuli-responsive ferrocene-containing homopolymers by RAFT polymerization
Song et al. t BHBMA: a novel trifunctional acrylic monomer for the convenient synthesis of PAA-g-PCL well-defined amphiphilic graft copolymer
Alkan et al. Vinyl ferrocenyl glycidyl ether: an unprotected orthogonal ferrocene monomer for anionic and radical polymerization
JP2005501141A5 (en)
Cong et al. Poly (N-isopropylacrylamide)-block-poly (vinyl pyrrolidone) block copolymer networks: Synthesis and rapid thermoresponse of hydrogels
CN104140507A (en) Modified acrylamide water-soluble polymer containing super-long hydrophobic long chain and preparation method of modified acrylamide water-soluble polymer
Rahimian-Bajgiran et al. Tuning LCST with thiol-responsiveness of thermoresponsive copolymers containing pendant disulfides
CN103694379B (en) A kind of have di-block copolymer of light and pH response characteristic and preparation method thereof
CN110357992A (en) A kind of fluoropolymer-containing preparation method of super high molecular weight
US8420771B2 (en) PH-sensitive polyethylene oxide co-polymer and synthetic method thereof
CN109045306A (en) Camptothecine prodrug and preparation method thereof of the one kind based on cellulose
KR101336692B1 (en) Poly(ethylene oxide)-based block copolymer bearing hydrazide moiety and iron oxide nanoparticle stabilized by the same
Zou et al. Functional micelles formed from glucose-, thermo-and pH-triple responsive copolymers for controlled release
Wang et al. Synthesis of water-soluble europium-containing nanoprobes via polymerization-induced self-assembly and their cellular imaging applications
CN102140167B (en) Terminal alkenyl alkylene double-tail polyoxyethylene ether, preparation method and application thereof
CN102659978B (en) Segmented copolymer, preparation method thereof and hydrogel
Gu et al. Synthesis of double hydrophilic graft copolymer containing poly (ethylene glycol) and poly (methacrylic acid) side chains via successive ATRP
Gu et al. PPEGMEA‐g‐PDEAEMA: Double hydrophilic double‐grafted copolymer stimuli‐responsive to both pH and salinity
JP2020090644A (en) Polymer metal complex and method for producing the same
Nakabayashi et al. Synthesis of sulfur-rich nanoparticles using self-assembly of amphiphilic block copolymer and a site-selective cross-linking reaction
Dhiraj et al. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio
CN102659991B (en) Segmented copolymer and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 6