KR101334397B1 - Preparation method of dimer acid with high purity - Google Patents

Preparation method of dimer acid with high purity Download PDF

Info

Publication number
KR101334397B1
KR101334397B1 KR1020130043117A KR20130043117A KR101334397B1 KR 101334397 B1 KR101334397 B1 KR 101334397B1 KR 1020130043117 A KR1020130043117 A KR 1020130043117A KR 20130043117 A KR20130043117 A KR 20130043117A KR 101334397 B1 KR101334397 B1 KR 101334397B1
Authority
KR
South Korea
Prior art keywords
dimer acid
reactant
acid
catalyst
filtration
Prior art date
Application number
KR1020130043117A
Other languages
Korean (ko)
Inventor
서광일
Original Assignee
대원산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대원산업 주식회사 filed Critical 대원산업 주식회사
Priority to KR1020130043117A priority Critical patent/KR101334397B1/en
Application granted granted Critical
Publication of KR101334397B1 publication Critical patent/KR101334397B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a preparation method of dimer acid with high purity which comprises the following steps: (a) inserting a catalyst into animal and vegetable fat to synthesize the dimer acid; (b) filtering the reaction result of (a) to remove the catalyst, and dehydrating the reaction result in the vacuum condition to remove water; and (c) separating the dimer acid from the dehydrated reaction result by thin film distillation. [Reference numerals] (AA) Inserting a catalyst into fatty acid material (activated clay +lithium hydroxide)��gt; polymerize dimer acid;(BB) First filtration of reactant (remove sludge);(CC) Bleaching process of reactant (inject diatomite +hypophosphoric acid);(DD) Second filtration of reactant (remove catalyst);(EE) Vacuum dehydration process of reactant;(FF) Thin-film distillation of reactant ��gt; separate dimer acid

Description

고순도 다이머산의 생산방법{Preparation Method of Dimer Acid with High Purity}Preparation method of high purity dimer acid {Preparation Method of Dimer Acid with High Purity}

본 발명은 다이머산의 생산방법에 관한 것으로, 보다 상세하게는 폐자원인 동식물성 유지를 원료로 할 수 있고 이를 이용하여 고순도의 다이머산을 고수율로 대량생산할 수 있게 됨으로써, 보다 안정적으로 저렴한 가격으로 다이머산을 제공할 수 있도록 하여 수입대체효과는 물론 폐자원 재활용에 의한 관련 산업전반의 막대한 수익을 창출하는 다이머산의 생산방법에 관한 것이다.
The present invention relates to a method for producing dimer acid, and more particularly, it is possible to produce raw materials of animal and vegetable waste, which are waste resources, and to mass produce high-purity dimer acid in high yield by using the same. The present invention relates to a production method of dimer acid which can provide dimer acid, thereby generating huge profits in the related industries as well as import substitution effect.

다이머산은 불포화지방산의 라디칼 중합을 통하여 제조되며 페인트, 잉크 및 폴리아미드의 원료로 사용되는 등 다양한 용도에 사용되며 그 이용분야도 점차적으로 증가하고 있다.Dimer acids are prepared through radical polymerization of unsaturated fatty acids and are used in a variety of applications, including as raw materials for paints, inks, and polyamides.

현재 국내에서의 다이머산의 생산량은 월평균 1200톤 가량으로 점차 증가하고 있는 추세에 있다. 그럼에도 불구하고 아직 국내에서 대량으로 생산할 수 있는 기술미비로 인하여 현재까지는 전량 해외로부터 다이머산을 수입해야만 하는 실정이어서 보다 안정적으로 저렴한 가격으로 다이머산을 공급할 수 있는 대책이 요구되고 있다.Currently, domestic production of dimer acid is gradually increasing to an average of 1200 tons per month. Nevertheless, due to the lack of technology that can be produced in large quantities in Korea, it is currently required to import dimer acid from all over the world, and thus measures are required to supply dimer acid at a more stable and lower price.

다이머산의 생산방법에 관한 것으로 국내특허 10-0356436 내지 국내공개특허공보 제2000-00060896호에 구체적으로 개시되어 있지만, 이들 방법은 반응로의 압력을 높여주기 위하여 인위적으로 물을 첨가하여 주는 것을 필수로 하지만, 오히려 물은 반응원료와 촉매의 접촉을 방해하여 중합을 방해하는 것으로 다이머산의 수율을 떨어트리는 문제가 있음을 확인하고서 본 발명에 이르게 되었다.The method for producing dimer acid is specifically disclosed in Korean Patent Nos. 10-0356436 to 2000-00060896, but these methods are necessary to artificially add water to increase the pressure of the reactor. On the contrary, it was confirmed that there is a problem of lowering the yield of dimer acid by preventing water from interfering with the reaction between the reaction raw material and the catalyst.

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 폐자원인 동식물성 유지를 원료로 할 수 있고 이를 이용하여 고순도의 다이머산을 고수율로 대량생산할 수 있게 됨으로써, 보다 안정적으로 저렴한 가격으로 다이머산을 제공할 수 있도록 하여 수입대체효과는 물론 폐자원 재활용에 의한 관련 산업전반의 막대한 수익을 창출하는 효과를 제공함에 있다.
The present invention has been made to solve the problems of the prior art as described above, the purpose of which can be a raw material of animal and vegetable fats and wastes as a raw material and to use it to mass-produce high purity dimer acid in high yield As a result, it is possible to provide dimer acid at a more stable and lower price, thereby providing import substitution effects and generating huge profits for related industries by waste resource recycling.

상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.The technical problem of the present invention as described above is achieved by the following means.

(1) (a) 동식물성 유지에 촉매를 투입하여 다이머산을 합성하는 단계; (b) 단계 (a)의 반응물을 여과하여 촉매를 제거한 후, 진공탈수하여 반응물로부터 물을 제거하는 단계; (c) 탈수처리된 반응물을 박막증류하여 다이머산을 분리하는 단계를 포함하는 고순도 다이머산의 생산방법.
(1) (a) adding a catalyst to animal and vegetable fats and oils to synthesize dimer acid; (b) filtering the reactants of step (a) to remove the catalyst and then vacuum dehydrating to remove water from the reactants; (c) thin film distillation of the dehydrated reactant to separate the dimer acid.

(2) 제 1항에 있어서, (2) The method according to claim 1,

단계 (a)에 투입되는 촉매는 활성백토 및 수산화리튬인 것을 특징으로 하는 고순도 다이머산의 생산방법.
The catalyst introduced in step (a) is a production method of high purity dimer acid, characterized in that the activated clay and lithium hydroxide.

(3) 제 1항에 있어서,(3) The method according to claim 1,

단계 (b)에서 반응물의 여과단계에서 반응물에 규조토 및 차인산이 첨가되는 것을 특징으로 하는 고순도 다이머산의 생산방법.
Process for producing high purity dimer acid, characterized in that the diatomaceous earth and hypophosphorous acid is added to the reaction in the filtration step of the reaction in step (b).

(4) 제 1항에 있어서,(4) The method according to claim 1,

단계 (a)에서 촉매투입 이전에 반응물을 진공탈수처리하는 단계가 더 포함되는 것을 특징으로 하는 고순도 다이머산의 생산방법.
Process for producing a high-purity dimer acid, characterized in that further comprising the step of vacuum dewatering the reactant prior to the catalyst in step (a).

(5) 제 1항에 있어서,(5) The method according to claim 1,

단계 (b)에서 진공탈수처리한 후에 반응물을 여과하는 단계가 더 포함되는 것을 특징으로 하는 고순도 다이머산의 생산방법.
The method of producing a high purity dimer acid, characterized in that further comprising the step of filtering the reactant after the vacuum dehydration in step (b).

상기와 같은 본 발명에 따르면, 폐자원인 동식물성 유지를 원료로 할 수 있고 이를 이용하여 고순도의 다이머산을 고수율로 대량생산할 수 있게 됨으로써, 보다 안정적으로 저렴한 가격으로 다이머산을 제공할 수 있도록 하여 수입대체효과는 물론 폐자원 재활용에 의한 관련 산업전반의 막대한 수익을 창출하는 효과를 제공한다.
According to the present invention as described above, the animal and vegetable fats and wastes as waste resources can be used as a raw material, and by using this, it is possible to mass-produce high purity dimer acid in high yield, so that the dimer acid can be more stably provided at a low price. Therefore, it provides not only the effect of import substitution but also the generation of enormous profits from related industries by recycling waste resources.

도 1은 본 발명에 따른 다이머산의 생산장치의 전체 구성도이다.
도 2는 본 발명에 따른 다이머산의 생산공정도이다.
1 is an overall configuration diagram of an apparatus for producing dimer acid according to the present invention.
2 is a production process diagram of the dimer acid according to the present invention.

본 발명은 (a) 동식물성 유지에 촉매를 투입하여 다이머산을 합성하는 단계; (b) 단계 (a)의 반응물을 여과하여 촉매를 제거한 후, 진공탈수하여 반응물로부터 물을 제거하는 단계; (c) 탈수처리된 반응물을 박막증류하여 다이머산을 분리하는 단계를 포함하는 고순도 다이머산의 생산방법을 제공한다.
The present invention comprises the steps of (a) adding a catalyst to the animal and vegetable fats and oils to synthesize a dimer acid; (b) filtering the reactants of step (a) to remove the catalyst and then vacuum dehydrating to remove water from the reactants; (C) a method for producing a high-purity dimer acid comprising the step of separating the dimer acid by thin film distillation of the dehydrated reactant.

도 1은 본 발명에 따른 다이머산의 생산장치의 전체 구성도이다. 다만, 하기 각 구성 중 연결배관에 설치되는 각종 펌프(진공펌프를 포함)는 이해의 편의를 위해 생략하였다.
1 is an overall configuration diagram of an apparatus for producing dimer acid according to the present invention. However, the various pumps (including the vacuum pump) installed in the connection piping among the following configurations are omitted for the sake of understanding.

본 발명에 따른 다이머산 생산장치는 원료공급부(1), 바응관(2), 제1냉각수단(3), 제1여과수단(4), 탈색관(5), 제2여과수단(6), 저장탱크(7), 탈수관(8), 제2냉각수단(9), 제3여과수단(10), 박막증류관(11), 보일러(12), 제3냉각수단(13), 냉각탑(14), 제1수집수단(15), 제2수집수단(16), 제4여과수단(17), 제4냉각수단(18)을 포함한다. Dimer acid production apparatus according to the present invention is a raw material supply unit (1), bar response tube (2), the first cooling means (3), the first filtration means (4), the bleaching tube (5), the second filtration means (6) , Storage tank (7), dehydration pipe (8), second cooling means (9), third filtration means (10), thin film distillation pipe (11), boiler (12), third cooling means (13), cooling tower 14, the first collecting means 15, the second collecting means 16, the fourth filtering means 17, and the fourth cooling means 18.

본 발명에 사용되는 지방산 원료는 동물성 혹은 식물성 지방산으로 원료공급부(1)에 투입된다.The fatty acid raw material used in the present invention is introduced into the raw material supply unit 1 as animal or vegetable fatty acid.

반응관(2)에서는 지방산 원료와 촉매인 활성백토 및 수산화리튬을 투입하여 다이머산 중합공정을 수행한다.In the reaction tube (2), a dimer acid polymerization process is performed by adding a fatty acid raw material, activated clay, and lithium hydroxide as catalysts.

본 발명에서는 상기 반응관(2)은 촉매의 투입 이전 단계에서 반응물내 함유된 수분을 제거하기 위해 진공탈수가 가능한 수단이 구비되도록 하는 것이 바람직하다. 먼저, 반응물내에 함유된 수분은 진공상태의 반응관(2)에서 증발되어 진공펌프 등을 이용하여 외부로 배출시키되, 제1냉각수단(3)을 거치면서 액상화시킨다. In the present invention, it is preferable that the reaction tube 2 is provided with a means capable of vacuum dehydration in order to remove water contained in the reactants in the step before the catalyst is added. First, the water contained in the reactant is evaporated in the reaction tube (2) in a vacuum state and discharged to the outside by using a vacuum pump, etc., while liquefying through the first cooling means (3).

제1여과수단(4)은 반응관(2)의 후단에 연결되어 다이머 합성반응결과 생성된 반응물에 함유된 활성백토와 불순물인 유지가 혼합된 슬러지를 1차 여과한다. 바람직하게는 상기 제1차 여과수단(4)은 디켄터(decanter)를 들 수 있다. The first filtration means 4 is connected to the rear end of the reaction tube 2 to primaryly filter the sludge mixed with activated clay contained in the reactant produced as a result of the dimer synthesis reaction and fats and oils as impurities. Preferably, the primary filtration means 4 may include a decanter.

탈색관(5)은 반응물을 탈색처리하는 곳으로 이를 위해 규조토 및 차인산이 투입된다. 탈색관(5)는 제1여과수단(4)의 후단에 연결되어 반응물을 교반하면서 탈색처리하고, 이 과정에서 차인산의 작용에 의해 다이머산의 산화는 방지된다.The bleaching tube 5 is a place to decolorize the reactants, for which diatomaceous earth and phosphoric acid are introduced. The decolorizing tube 5 is connected to the rear end of the first filtration means 4 to decolorize the reactant while stirring, and oxidation of the dimer acid is prevented by the action of the phosphoric acid in this process.

반응물 내 함유된 촉매를 제거하기 위하여, 제2여과수단(6)이 탈색관(5)의 후단에 연결된다. 바람직하게는 상기 제2여과수단(6)은 유압식 여과판으로 이루어진 여과기로 상기 탈색처리된 반응물을 받아 80~90℃에서 2차 여과처리를 수행한다. 2차 여과처리를 거친 깨끗한 반응물은 저장탱크(7)에 저장된다. In order to remove the catalyst contained in the reactant, a second filtration means 6 is connected to the rear end of the bleaching tube 5. Preferably, the second filtration means 6 receives the decolorized reactant with a filter made of a hydraulic filter plate and performs secondary filtration at 80 to 90 ° C. The clean reactant, which has undergone secondary filtration, is stored in the storage tank (7).

저장탱크(7)는 후단에 탈수관(8)으로 연결되며, 탈수관(8)은 반응물내 잔류하는 수분을 진공증발시켜 완벽하게 제거한다. 이를 위해 바람직하게는 상기 탈수관(6)은 적어도 2개 이상 일련하여 연결되어 순차적으로 진공 탈수를 수행할 수 있도록 한다. 이를 위해 탈수관의 조작조건으로 바람직하게는 진공도 750~760mmhg, 온도 150~160℃로 유지한다. 이때, 탈수관(8)을 빠져나온 수분은 제2냉각수단(9)을 거쳐 응축되어 액화시켜 제거한다.The storage tank 7 is connected to the dehydration tube 8 at the rear end, and the dehydration tube 8 completely removes the remaining water in the reactant by vacuum evaporation. To this end, preferably, the dehydration pipe 6 is connected to at least two or more in series so as to sequentially perform vacuum dehydration. To this end, the operating conditions of the dehydration pipe is preferably maintained at a vacuum degree of 750 ~ 760mmhg, temperature 150 ~ 160 ℃. At this time, the water exiting the dehydration pipe 8 is condensed through the second cooling means 9 to be liquefied and removed.

탈수관(8)의 후단에는 반응물내 함유된 그을음(탄화물) 등의 이물질을 제거하기 위한 제3여과수단(10)이 연결되어진다. 바람직하게는 상기 제3여과수단(10)은 합성 부직포, 혹은 스테인레스망 등으로 이루어진 여과망이며, 상기 탈수처리된 반응물을 받아 여과처리를 수행한다. 3차 여과처리를 거친 반응물은 이후 박막증류관(11)에 투입된다.The rear end of the dehydrating pipe 8 is connected with a third filtration means 10 for removing foreign matter such as soot (carbide) contained in the reactants. Preferably, the third filtration means 10 is a filter net made of a synthetic nonwoven fabric or a stainless net, and receives the dehydrated reactant to perform filtration. After the third filtration process, the reactant is introduced into the thin film distillation tube (11).

박막증류관(11)은 반응물 내 함유된 반응 미중합체인 모노머(monomer) 혹은 트리머(trimer)를 기화시켜 제거하면서, 다이머산을 증류시켜 분리한다. 상기 박막증류관(11)은 진공도가 높을수록 보다 낮은 온도에서 기화가 가능하고 색상안정도가 높게 되어 바람직하게는 진공도 750~760mmhg, 다이머의 증류기화점인 240℃가 되도록 유지된다.The thin film distillation tube 11 is distilled off from dimer acid while vaporizing and removing a monomer or trimer which is a reaction micropolymer contained in the reactant. The thin film distillation tube (11) can be vaporized at a lower temperature as the vacuum degree is higher and the color stability is higher, preferably maintained at a vacuum degree of 750 ~ 760mmhg, the distillation point of the dimer of 240 ℃.

박막증류관(11)의 내부에 냉각탑(14)으로부터 냉각수가 흐르는 냉각관(11b)이 내설되며, 외부에는 다이머의 증류를 위해 열공급원으로 보일러(12)로부터 공급되는 열매체오일이 공급되는 가열부(11a)가 장착되어 있다.Inside the thin film distillation pipe 11, a cooling pipe 11b through which cooling water flows from the cooling tower 14 is installed, and a heating part to which the heat medium oil supplied from the boiler 12 is supplied as a heat supply source for distillation of the dimer. 11a is mounted.

불순물인 미중합체는 상기 박막증류관(11) 내에서 기화되어 제3냉각수단(13)으로 보내진다. 제3냉각수단(13)은 바람직하게는 복수개가 다단으로 일련하게 배치되며(13a,13b,13c), 각 단마다 액화된 미중합체 및 기타 불순물들은 순차적으로 분리제거된다. 아직 잔류하는 가스의 처리를 위해 냉각기(13)의 말단에는 진공부스터(미도시) 등을 장착하여 포집한 후 냉각시켜 배출시킨다.The micropolymer as an impurity is vaporized in the thin film distillation tube 11 and sent to the third cooling means 13. The third cooling means 13 is preferably arranged in series in a plurality of stages (13a, 13b, 13c), and liquefied micropolymers and other impurities in each stage are sequentially separated and removed. In order to process the remaining gas, a vacuum booster (not shown) or the like is mounted at the end of the cooler 13, collected, cooled, and discharged.

상기와 같이 미중합체는 각각의 제3냉각수단(13a,13b,13c)을 거치면서 제2수집기(16a,16b,16c)에 각각 수집된다. 이때 각 제2수집기에는 미반응 모노머 등이 응집되는 것을 방지하기 위해 가온을 위한 온열자켓이 장착될 수 있다.As described above, the micropolymer is collected in the second collectors 16a, 16b, and 16c while passing through the third cooling means 13a, 13b, and 13c, respectively. At this time, each second collector may be equipped with a warm jacket for warming to prevent aggregation of unreacted monomers and the like.

반면, 다이머산은 박막증류관(11) 내에서 증류기화점보다 높은 온도에서 증류되어 내설된 냉각관(11a)과 접촉하여 액화된 상태에서 배출되어 제1수집기(15)에 수집된다.On the other hand, the dimer acid is distilled at a temperature higher than the distillation point in the thin film distillation pipe 11 and discharged in contact with the internally-cooled cooling pipe 11a to be collected in the first collector 15.

제1수집기(15)에 수집된 다이머산은 제4여과수단(17)을 거쳐 재차 불순물을 여과처리하고 제4냉각수단(18)에서 제품검사에 적합한 온도까지 냉각시켜 분리되어진다.
The dimer acid collected in the first collector 15 is separated by filtration of impurities again through the fourth filtration means 17 and cooling to a temperature suitable for product inspection in the fourth cooling means 18.

이하 본 발명의 내용을 단계별로 도 2의 본 발명에 따른 다이머산의 제조공정도를 참조하여 구체적으로 설명한다.
Hereinafter, with reference to the production process diagram of the dimer acid according to the present invention of Figure 2 step by step the content of the present invention in detail.

원료지방산의 제조Preparation of Raw Fatty Acids

먼저, 동식물유에서 이중결합체인 글리세린을 색출하여 조지방산화시킨다. 이와 같이 얻은 조지방산을 온도 150~160℃, 진공 750~760mmhg의 상태에서 진공탈수처리한다. First, crude fatty acid is extracted by distilling glycerin as a double conjugate from animal and vegetable oils. The crude fatty acid thus obtained is subjected to vacuum dehydration treatment at a temperature of 150 to 160 캜 and a vacuum of 750 to 760 mmhg.

탈수된 조지방산을 다시 진공 755~760mmhg에서 240~260℃로 간접예열하여 증류기화처리한다. 이때 미분리된 산값 185(AV) 이하의 조지방산은 기화되지 않고 밑으로 가라앉아 재처리되어진다. 산값이 185(AV) 이상인 조지방산은 증류관에서 기화되어 냉각 콘덴서에서 33℃ 물로 간접냉각하여 액상화시켜서 나오는 것을 본 발명에서의 원료 지방산으로 한다.The dehydrated crude fatty acid is again indirectly preheated to 240-260 ° C. in a vacuum of 755-760 mmhg for distillation. At this time, crude fatty acid having an unseparated acid value of 185 (AV) or less is re-processed by sinking to the bottom without vaporization. The crude fatty acid having an acid value of 185 (AV) or more is vaporized in a distillation tube and indirectly cooled with 33 ° C. water in a cooling condenser to be liquefied.

이와 같은 절차에 의해 얻어지는 지방산은 산값(AV) 200~205, 검화값(SV) 203~207, 온도비중은 25℃에서 0.88kg/L이다.
Fatty acid obtained by such a procedure is acid value (AV) 200-205, saponification value (SV) 203-207, and temperature specific gravity is 0.88 kg / L at 25 degreeC.

다이머산의 제조Preparation of Dimer Acid

반응관(2)에 상기 원료지방산 100중량부에 대하여 활성백토와 리튬을 각각 0.2~3중량부 투입하고, 반응온도 220~230℃, 반응압력 3~4k 하에 2~4 시간 동안 중합반응한다. 0.2 to 3 parts by weight of activated clay and lithium are respectively added to 100 parts by weight of the raw fatty acid in the reaction tube (2), and the polymerization reaction is carried out at a reaction temperature of 220 to 230 ° C. and a reaction pressure of 3 to 4 k for 2 to 4 hours.

본 발명에서는 원료지방산에 촉매를 투입하기 이전 단계에서 진공탈수처리를 통해 원료지방산에 함유된 수분을 제거한다. 수분은 촉매와 지방산의 접촉을 방해하여 중합반응의 수율을 현저히 감소시키는 원인이 되므로 반응이전 단계에서 반드시 제거하여야 한다.In the present invention, the moisture contained in the raw fatty acid is removed by vacuum dehydration in a step before the catalyst is added to the raw fatty acid. Water must be removed at the pre-reaction stage because water can interfere with the contact between the catalyst and fatty acids, which can significantly reduce the yield of the polymerization reaction.

상기 과정에 의해 얻어진 반응물을 80~90℃ 하에 디켄터(decantor), 혹은 원심여과기를 이용하여 1차 여과처리한다. 이 과정에 의하여 활성백토와 유지로 이루어진 슬러지가 침전되어 제거된다.The reaction product obtained by the above process is subjected to primary filtration using a decantor or a centrifugal filter at 80 ° C to 90 ° C. By this process, sludge consisting of activated clay and oil is precipitated and removed.

1차 여과처리된 반응물은 규조토와 차인산이 지방산 100 중량부에 대하여 0.2~3 중량부 투입된 탈색관(5)을 거쳐 소정의 색상을 부여함과 동시에 다이머산의 산화를 방지하게 된다.The primary filtered reaction product is provided with a predetermined color through the decolorization tube 5 in which 0.2 to 3 parts by weight of diatomaceous earth and hypophosphoric acid are added to 100 parts by weight of fatty acid, and prevents oxidation of the dimer acid.

탈색관(5)을 거친 반응물은 80~90℃ 하에 여과기(예를 들어, 유압식 여과판)(6)에서 2차 여과처리되어 반응물 내에 함유된 촉매 등을 제거한다.The reactant, which has passed through the bleaching tube 5, is subjected to secondary filtration at a filter (for example, a hydraulic filter plate) 6 at 80 to 90 ° C to remove the catalyst and the like contained in the reactant.

이후 2차 여과처리된 반응물은 진공도 750~760mmhg, 온도 150~160℃ 하에 탈수관(8)에 유입되어 진공탈수처리된다. 이 과정에 의해 최종 산물인 다이머산의 수율을 감소시키는 반응물 내 함유된 수분을 제거하게 된다. 보다 완전하게 수분을 제거하기 위해 상기 진공탈수 처리과정은 2회에 걸쳐 이루어져도 좋다. 이 경우 반응물이 제1탈수관을 거쳐 1차 탈수처리되고, 이 후 제2탈수관을 거쳐 2차 탈수처리되도록 한다. 상기 과정에 의해 증발된 수분은 소정의 냉각처리를 거쳐 제거된다.Thereafter, the second filtered product is introduced into the dehydration tube 8 under a vacuum degree of 750 to 760 mmhg and a temperature of 150 to 160 ° C., and subjected to vacuum dehydration. This process removes the water contained in the reactants, which reduces the yield of dimer acid, the final product. In order to remove water more completely, the vacuum dehydration process may be performed twice. In this case, the reactant is firstly dehydrated via the first dehydration pipe, and then the second dehydration is performed via the second dehydration pipe. Water evaporated by the above process is removed through a predetermined cooling treatment.

탈수처리를 거친 반응물은 170~180℃ 하에서 여과망(예를 들어, 합성부직포 혹은 20mesh 스테인레스 망)을 이용하여 반응물내 함유되어 있을 수 있는 탄화물(혹은 그을음)을 제거한다(3차 여과). The dehydrated reactant removes carbides (or soots) that may be contained in the reactants using a filter net (eg, synthetic nonwoven or 20 mesh stainless steel) at 170-180 ° C. (tertiary filtration).

여과처리를 거친 반응물은 진공도 750~760mmhg, 다이머산의 증류기화점인 240℃로 유지되는 박막증류관(11)에 투입되어 박막증류처리되며, 이 과정에서 반응물 중 중합하지 않은 미중합체인 모노머산 내지 트리머산은 바로 기화된 후 냉각기를 거쳐 응축시켜 분리제거되고, 다이머산은 증류기화점에서 증류된 후 냉각되어 액화 상태로 배출되어 별도로 수집된다.The reactant after filtration is put into a thin film distillation tube (11) maintained at a vacuum degree of 750 to 760 mmhg and a distillation point of dimer acid at 240 ° C., and is subjected to thin film distillation. The trimer acid is immediately vaporized and then separated by condensation through a cooler, and the dimer acid is distilled at a distillation point, cooled, discharged into a liquefied state, and collected separately.

다이머산의 회수를 위해 28℃ 정도의 냉각수가 냉각탑에서 공급되어 박막증류관내에서 순환되며, 이에 의해 증류된 다이머산은 열교환을 통해 180~190℃로 냉각이 되어 액화하여 배출되고, 이후 필터를 거친 후 70℃ 정도로 냉각되어진다. 반면 기화되어 배출된 후 냉각된 모노머산 내지 트리머산의 경우에는 저온상태에서 응고되는 것을 방지하기 위해 44℃ 정도로 승온처리한다.
In order to recover the dimer acid, cooling water of about 28 ° C. is supplied from the cooling tower and circulated in the thin film distillation tube. The dimer acid thus distilled is cooled to 180-190 ° C. through heat exchange, and is liquefied and discharged. It cools down to about 70 degreeC. On the other hand, in the case of monomer acid to trimer acid which is cooled after being vaporized and discharged, the temperature is increased to about 44 ° C. in order to prevent solidification at a low temperature.

상기 과정에 의하면, 동식물성 유지로부터 지방산을 제조하고, 얻어진 지방산을 원료로 하여 저렴하면서 고순도의 다이머산을 대량으로 공급하는 것이 가능해진다.
According to the above process, it is possible to produce fatty acids from animal or vegetable fats and oils, and to supply a large amount of inexpensive and high-purity dimer acid using the obtained fatty acids as raw materials.

이하 본 발명의 내용을 실시예를 참조하여 보다 상세하게 설명하고자 한다. 다만 하기 예시된 실시예는 본 발명의 이해를 돕기 위해 제시되는 것일 뿐 이에 의해 본 발명의 권리범위가 한정되는 것으로 해석되어서는 아니된다.
Hereinafter, the present invention will be described in more detail with reference to examples. It should be understood, however, that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

[실시예 1]Example 1

산값(AV) 201, 요오드값(IV) 74인 동물성 지방산을 반응관(1)에 투입하여 740mmhg하에서 진공탈수처리한 후, 220℃로 2시간 도안 상기 지방산을 가열한 후 여기에 동물성 지방산 100 중량부에 대하여 활성백토 0.2 중량부, 수산화리튬 0.2중량부를 반응관(1)에 투입하여 반응온도 230℃, 반응압력 4k로 2시간 가열하여 반응시킨 후, 80℃로 1시간 동안 냉각하였다.An animal fatty acid having an acid value (AV) 201 and an iodine value (IV) 74 was added to the reaction tube (1), followed by vacuum dehydration treatment at 740 mmhg, followed by heating the fatty acid at 220 ° C. for 2 hours, followed by 100 weights of animal fatty acid. 0.2 parts by weight of activated clay and 0.2 parts by weight of lithium hydroxide were added to the reaction tube 1, and the mixture was heated and reacted at a reaction temperature of 230 ° C. and a reaction pressure of 4k for 2 hours, and then cooled to 80 ° C. for 1 hour.

반응물을 디켄터(2)로 보내어 90℃하에서 백토와 유지가 혼합된 슬러지를 1차 여과하여 제거하였다. 슬러지가 제거된 반응물을 동물성 지방산 100 중량부에 대하여 규조토 0.2 중량부 및 차인산 0.2 중량부가 투입된 탈색관(3)으로 보내 교반하면서 탈색처리하였다.The reaction was sent to a decanter (2) to remove the sludge mixed with clay and oil at 90 ° C by primary filtration. The sludge-reacted reactant was decolorized with stirring by sending it to a decolorization tube (3) containing 0.2 parts by weight of diatomaceous earth and 0.2 parts by weight of phosphoric acid based on 100 parts by weight of animal fatty acid.

반응물 내 함유된 촉매를 제거하기 위하여 유압식 여과판으로 이루어진 여과기(4)로 상기 탈색처리된 반응물을 보내어 80℃에서 2차 여과처리를 하였다.In order to remove the catalyst contained in the reactant, the decolorized reactant was sent to a filter (4) made of a hydraulic filter plate and subjected to secondary filtration at 80 ° C.

2차 여과처리를 거친 깨끗한 반응물을 저장탱크(5)에 저장한 후, 진공탈수관(6)으로 보냈다. 진공탈수관(6) 2대가 직렬로 연결된 것으로 각 진공탈수관은 진공도 750mmhg, 온도 160℃로 유지되고 이 과정에서 반응물내 잔류하는 수분을 완벽하게 제거하였다.The clean reactant, which had undergone secondary filtration, was stored in a storage tank (5) and then sent to a vacuum dewatering tube (6). Two vacuum dehydration tubes (6) were connected in series. Each vacuum dehydration tube was maintained at a vacuum degree of 750 mmhg and a temperature of 160 ° C. and completely removed moisture remaining in the reactants.

진공탈수처리된 반응물은 온도 140℃로 유지되는 예열기(70)에서 예열처리되고, 잔류하는 그을음(탄화물)을 제거하기 위해 170℃로 유지되는 필터(80)에서 3차 여과처리되었다.The vacuum dehydrated reactant was preheated in a preheater 70 maintained at a temperature of 140 ° C. and subjected to tertiary filtration in a filter 80 maintained at 170 ° C. to remove residual soot (carbide).

3차 여과처리된 반응물은 박막증류관(9)으로 보내져 반응물중 함유된 미중합체인 모노머(monomer) 혹은 트리머(trimer)를 기화시켜 제거하였다. 상기 박막증류관(9)은 진공도 759.5mmhg, 증류기화점 온도 240℃가 되도록 유지되며, 냉각탑(10)에서 공급된 냉각수와의 열교환을 통해 다이머산은 180℃정도로 냉각되어 배출하였다. 이후, 다이머산은 다시 한 번 여과기(11)에서 여과처리한 후 냉각기(12)에서 70℃로 냉각시켜 제품검사를 수행하였다.The tertiary filtered product was sent to the thin film distillation tube 9 to remove the monomer or trimer, which is a micropolymer contained in the reactant, by vaporization. The thin film distillation tube 9 is maintained at a vacuum degree of 759.5 mmhg and a distillation vaporization point temperature of 240 ° C., and the dimer acid is cooled and discharged to about 180 ° C. through heat exchange with the cooling water supplied from the cooling tower 10. Thereafter, the dimer acid was once again filtered in the filter 11 and then cooled to 70 ° C. in the cooler 12 to perform product inspection.

반면에 미중합체는 증류관내에서 기화된 후 내부 냉각관에 부딪혀 저온의 액상으로 배출되는데, 응고되는 것을 방지하기 위해 온열자켓(13)으로 44℃ 정도로 가열처리한 후 마찬가지로 제품검사를 수행하였다.On the other hand, the micro-polymer is vaporized in the distillation tube and hit the internal cooling tube is discharged into a low-temperature liquid phase, in order to prevent solidification was heated to about 44 ℃ with a thermal jacket (13) was also performed a product inspection.

박막증류관(9)에서 배출되는 가스들은 직렬로 배치된 일련의 냉각기(14)를 거쳐 순차적으로 냉각시켜 액상화하고 응고방지를 위해 마찬가지로 온열자켓으로 가열한 후 별도로 포집하여 분리하였다.
The gases discharged from the thin film distillation tube (9) were sequentially cooled through a series of coolers (14) arranged in series, liquefied, heated in a similar manner to prevent solidification, and then separately collected and separated.

[실시예 2][Example 2]

대두유 지방산 100 중량부에 대하여 활성백토 1 중량부, 수산화리튬 1 중량부, 규조토 3 중량부, 및 차인산 3 중량부를 첨가한 것을 제외하고는 실시예 1과 동일한 조건하에 다이머산을 제조하였다.
Dimer acid was prepared under the same conditions as in Example 1 except that 1 part by weight of activated clay, 1 part by weight of lithium hydroxide, 3 parts by weight of diatomaceous earth, and 3 parts by weight of phosphoric acid were added to 100 parts by weight of soybean oil fatty acid.

[실험예 1][Experimental Example 1]

비교예로는 반응전 탈수처리를 하지 않은 지방산 원료를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법에 의해 실시하였고, 상기 실시예 1, 2 및 비교예로부터 분리된 물질을 성분분석한 결과 하기 표 1에서와 같이 본 발명에 따른 실시예에서 다이머산이 비교예에 비하여 현저히 많이 생성되어진 것을 확인할 수 있었다.
Comparative Example was carried out in the same manner as in Example 1, except that the fatty acid raw material was not subjected to the dehydration treatment before the reaction, and the components separated from the Examples 1, 2 and Comparative Examples as a result of the component analysis As shown in Table 1, it was confirmed that the dimer acid was produced significantly more than the comparative example in the embodiment according to the present invention.

분석결과Analysis 분석항목Analysis item 실시예 1Example 1 실시예 2Example 2 비교예Comparative Example 산값(AV)Acid value (AV) 200200 202202 185185 중화값(SV)Neutralization value (SV) 204204 206206 196196 다이머산Dimer Mountain 65%(점도:8100, 온도:27℃)65% (viscosity: 8100, temperature: 27 degrees Celsius) 73%(점도:8300, 온도:27℃)73% (viscosity: 8300, temperature: 27 degrees Celsius) 46%(점도:6800, 온도:26℃)46% (viscosity: 6800, temperature: 26 degrees Celsius) 모노머산Monomeric acid 20%20% 16%16% 38%38% 트리머산Trimmer acid 10%10% 8%8% 11%11%

상기와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It can be understood that

1: 원료공급부
2: 반응관
3: 제1냉각수단
4: 제1여과수단
5: 탈색관
6: 제2여과수단
7: 저장탱크
8: 탈수관
9: 제2냉각수단
10: 제3여과수단
11: 박막증류관
13: 제3냉각수단
14: 냉각탑
15: 제1수집기
17: 제4여과수단
18: 제4냉각수단
1: Raw material supply department
2: Reaction tube
3: first cooling means
4: first filtration means
5: bleaching tube
6: second filtration means
7: storage tank
8: dewatering pipe
9: second cooling means
10: third filtration means
11: Thin film distillation tube
13: third cooling means
14: cooling tower
15: first collector
17: fourth filtration means
18: fourth cooling means

Claims (5)

(a) 동식물성 유지에 촉매로 활성백토 및 수산화리튬을 투입하여 다이머산을 합성하는 단계; (b) 단계 (a)의 반응물을 여과하여 촉매를 제거한 후, 진공탈수하여 반응물로부터 물을 제거하는 단계; (c) 탈수처리된 반응물을 박막증류하여 다이머산을 분리하는 단계를 포함하는 고순도 다이머산의 생산방법.(a) synthesizing dimer acid by adding activated clay and lithium hydroxide as catalysts to maintain the flora and fauna; (b) filtering the reactants of step (a) to remove the catalyst and then vacuum dehydrating to remove water from the reactants; (c) thin film distillation of the dehydrated reactant to separate the dimer acid. 삭제delete 제 1항에 있어서,
단계 (b)에서 반응물의 여과단계에서 반응물에 규조토 및 차인산이 첨가되는 것을 특징으로 하는 고순도 다이머산의 생산방법.
The method of claim 1,
Process for producing high purity dimer acid, characterized in that the diatomaceous earth and hypophosphorous acid is added to the reaction in the filtration step of the reaction in step (b).
제 1항에 있어서,
단계 (a)에서 촉매투입 이전에 반응물을 진공탈수처리하는 단계가 더 포함되는 것을 특징으로 하는 고순도 다이머산의 생산방법.
The method of claim 1,
Process for producing a high-purity dimer acid, characterized in that further comprising the step of vacuum dewatering the reactant prior to the catalyst in step (a).
제 1항에 있어서,
단계 (b)에서 진공탈수처리한 후에 반응물을 여과하는 단계가 더 포함되는 것을 특징으로 하는 고순도 다이머산의 생산방법.


The method of claim 1,
The method of producing a high purity dimer acid, characterized in that further comprising the step of filtering the reactant after the vacuum dehydration in step (b).


KR1020130043117A 2013-04-18 2013-04-18 Preparation method of dimer acid with high purity KR101334397B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130043117A KR101334397B1 (en) 2013-04-18 2013-04-18 Preparation method of dimer acid with high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130043117A KR101334397B1 (en) 2013-04-18 2013-04-18 Preparation method of dimer acid with high purity

Publications (1)

Publication Number Publication Date
KR101334397B1 true KR101334397B1 (en) 2013-11-29

Family

ID=49858760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130043117A KR101334397B1 (en) 2013-04-18 2013-04-18 Preparation method of dimer acid with high purity

Country Status (1)

Country Link
KR (1) KR101334397B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751703B1 (en) * 2015-02-10 2017-06-30 이맥바이오 주식회사 Manufacturing method of dimer acid methyl ester
KR102637090B1 (en) 2023-04-18 2024-02-15 (주)아이언쿼드 Method for producing dimer acid using palm oleic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075252A1 (en) 1999-06-04 2000-12-14 Cognis Corporation Process for producing light color dimer acids from the dimerization of unsaturated fatty acids
US6187903B1 (en) 1999-07-29 2001-02-13 Cognis Corporation Method of preparing dimeric fatty acids and/or esters thereof containing low residual interesters and the resulting dimeric fatty acids and/or dimeric fatty esters
US6281373B1 (en) 1998-05-19 2001-08-28 Henkel Corporation Process for the preparation of dimeric fatty acid C1-4 alkyl esters
US6835324B1 (en) 1999-02-25 2004-12-28 Arizona Chemical Company Method for isolating oleic acid and producing lineloic dimer/trimer acids via selective reactivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281373B1 (en) 1998-05-19 2001-08-28 Henkel Corporation Process for the preparation of dimeric fatty acid C1-4 alkyl esters
US6835324B1 (en) 1999-02-25 2004-12-28 Arizona Chemical Company Method for isolating oleic acid and producing lineloic dimer/trimer acids via selective reactivity
WO2000075252A1 (en) 1999-06-04 2000-12-14 Cognis Corporation Process for producing light color dimer acids from the dimerization of unsaturated fatty acids
US6187903B1 (en) 1999-07-29 2001-02-13 Cognis Corporation Method of preparing dimeric fatty acids and/or esters thereof containing low residual interesters and the resulting dimeric fatty acids and/or dimeric fatty esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751703B1 (en) * 2015-02-10 2017-06-30 이맥바이오 주식회사 Manufacturing method of dimer acid methyl ester
KR102637090B1 (en) 2023-04-18 2024-02-15 (주)아이언쿼드 Method for producing dimer acid using palm oleic acid

Similar Documents

Publication Publication Date Title
CN108686397B (en) Method for distilling dimethyl sulfoxide and multi-section distillation tower
KR101506309B1 (en) Refining apparatus of glycerin
CN103387481A (en) Method for producing ethanol through acetic acid esterification-hydrogenation
CN102165033A (en) Methods and systems for preparing materials for sucralose production
CN103265967A (en) Method for preparing bio-oil by liquefying biomass by high efficiency hydro-thermal method
KR101334397B1 (en) Preparation method of dimer acid with high purity
CN103333206A (en) Preparation method of TPO photoinitiator
CN101337890B (en) Method for preparing methyl acetoacetate by using novel composite catalyst
CN100392045C (en) Method of synthesizing biodiesel oil using fixed bed gaseous phase esterification reaction
CN103342642A (en) Process for continuously producing dimethyl adipate through reaction-rectification method
CN109748791B (en) Energy-saving method for producing dimethyl adipate
CN202155061U (en) High vacuum distillation purification device
AU2015205697B2 (en) Separation processing method for a product stream of a dimethyl ether reactor
CN109748790B (en) Method for producing dimethyl adipate
KR101334395B1 (en) Producing apparatus of dimer acid with high purity
CN102266677A (en) High vacuum distillation purification device
CN115536620B (en) System and method for continuously producing furfural and 5-hydroxymethylfurfural from cellulosic biomass
JP2004182966A (en) Manufacturing plant for fatty acid ester
CN104844420A (en) Continuous treatment process and device of neopentyl glycol condensed washing mother liquor
CN211486557U (en) Organic solvent and water continuous removal recovery system in macromolecular compound production
CN107188814A (en) Diaminodiphenyl ether technique is produced in closing oxygen-free environment note hydrogen reduction
CN213295217U (en) Phosphorus reaction type flame retardant serialization apparatus for producing
WO2019109834A1 (en) System and method for continuously preparing furfural using acid-containing pentose solution
CN108586428B (en) Method for drying lactide in molten state
KR101813207B1 (en) Purification method of crude glycerine by distiiiation

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 7