KR101327294B1 - Membrane comprising metal-organic framework for water treatment and manufacturing method of the same - Google Patents

Membrane comprising metal-organic framework for water treatment and manufacturing method of the same Download PDF

Info

Publication number
KR101327294B1
KR101327294B1 KR1020120015294A KR20120015294A KR101327294B1 KR 101327294 B1 KR101327294 B1 KR 101327294B1 KR 1020120015294 A KR1020120015294 A KR 1020120015294A KR 20120015294 A KR20120015294 A KR 20120015294A KR 101327294 B1 KR101327294 B1 KR 101327294B1
Authority
KR
South Korea
Prior art keywords
water treatment
metal
membrane
acid
organic structure
Prior art date
Application number
KR1020120015294A
Other languages
Korean (ko)
Other versions
KR20130093997A (en
Inventor
백경열
박상희
황승상
홍순만
구종민
박호범
조영훈
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020120015294A priority Critical patent/KR101327294B1/en
Priority to PCT/KR2013/000470 priority patent/WO2013122334A1/en
Publication of KR20130093997A publication Critical patent/KR20130093997A/en
Application granted granted Critical
Publication of KR101327294B1 publication Critical patent/KR101327294B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

본 발명은 금속-유기 구조체(metal-organic framework, MOF) 및 폴리아마이드 고분자를 포함하는 활성층; 및 분리막 지지층;을 포함하는 수처리용 분리막 및 이의 제조방법을 제공한다. 본 발명의 수처리용 분리막은 수투과성 및 염배제율이 우수하여 액체투과성이며 수처리용으로, 다가 이온을 배제할 수 있는 나노여과막에 적합하며, 구체적으로 초순수의 제조, 음용수 처리, 폐수 전처리, 경수 연수화, 해수의 탈염 및 담수화와 같은 용도를 위한 역삼투 여과막 수처리에 적용할 수 있어 공정상의 에너지 효율성을 높여 공정에 소요되는 비용을 감소시킬 수 있다.The present invention includes an active layer comprising a metal-organic framework (MOF) and a polyamide polymer; It provides a separation membrane for water treatment and a method for producing the same, and a membrane support layer. The separation membrane for water treatment of the present invention is excellent in water permeability and salt rejection, and is suitable for nanofiltration membranes capable of excluding polyvalent ions for liquid permeability and water treatment. Specifically, ultrapure water preparation, drinking water treatment, wastewater pretreatment, hard water softening It can be applied to reverse osmosis membrane water treatment for applications such as ignition, desalination and desalination of seawater, which can increase the energy efficiency of the process and reduce the cost of the process.

Description

금속-유기 구조체를 포함하는 수처리용 분리막 및 이의 제조방법{MEMBRANE COMPRISING METAL-ORGANIC FRAMEWORK FOR WATER TREATMENT AND MANUFACTURING METHOD OF THE SAME}Membrane for water treatment including metal-organic structure and method for manufacturing thereof {MEMBRANE COMPRISING METAL-ORGANIC FRAMEWORK FOR WATER TREATMENT AND MANUFACTURING METHOD OF THE SAME}

본 발명은 금속-유기 구조체를 포함하는 수처리용 분리막 및 이의 제조방법에 관한 것으로, 보다 구체적으로 금속-유기 구조체를 포함하여 수투과성 및 염배제성이 우수한 액체투과성 수처리용 분리막 및 이의 제조방법에 관한 것이다.The present invention relates to a membrane for water treatment comprising a metal-organic structure and a method for producing the same, and more particularly to a membrane for liquid permeable water treatment and a method for producing the same, including a metal-organic structure, having excellent water permeability and salt rejection. will be.

수처리용 막은 배제가 가능한 물질의 크기에 따라 정밀여과막 (microfiltration membrane, MF), 한외여과막 (ultrafiltration membrane, UF), 나노여과막 (nanofiltration membrane, NF) 그리고 역삼투막 (reverse osmosis membrane, RO)으로 나눈다. 그 중 역삼투막은 용액에 삼투압을 초과하는 압력을 가하여 특정 분자들에 선택적 투과성을 갖는 반투막이고 액체의 정제, 농축뿐만 아니라 고정제수를 얻기 위해서 유기 물질, 콜로이드 물질, 무기이온, 박테리아 및 바이러스와 같은 오염 물질을 원수로부터 제거하는데 다양하게 사용되고 있다.Membranes for water treatment are divided into microfiltration membranes (MF), ultrafiltration membranes (UF), nanofiltration membranes (NF), and reverse osmosis membranes (RO), depending on the size of materials that can be excluded. Among them, reverse osmosis membranes are semi-permeable membranes which selectively permeate specific molecules by applying pressure exceeding osmotic pressure to the solution, and contaminates such as organic substances, colloidal substances, inorganic ions, bacteria and viruses to obtain the purified water as well as the purification and concentration of liquid. Various uses have been made to remove substances from raw water.

역삼투막은 1960년대 초에 Loeb와 Sourirajan이 비대칭형 셀룰로오스아세테이트 (asymmetric cellulose acetate) 역삼투막을 최초로 개발한 후 활발한 연구가 진행되고 있다. 셀룰로오스아세테이트 막은 가격이 저렴한 장점이 있으나 강염기에서 쉽게 가수분해되고 pH 범위와 온도의 범위가 좁고 미생물에 대해 취약하다는 단점이 있다. 셀룰로오스 (cellulose)의 개질 또는 합금을 통해서 단점을 극복하려고 노력하지만 여전히 극복을 하는데 한계가 있다. 따라서 셀룰로오스 역삼투막을 대체하기 위해서 폴리우레탄 (polyurethane)계, 방향족 폴리술폰 (polysulfone)계 그리고 방향족 폴리아마이드 (aromatic polyamide)계 분리막에 대한 연구가 활발히 진행되고 있다. 그러나 역삼투막의 수투과량 및 염 배제율이 부족하다는 문제점이 있어 왔다.Reverse osmosis membranes have been actively studied since Loeb and Sourirajan first developed asymmetric cellulose acetate reverse osmosis membranes in the early 1960s. Cellulose acetate membrane has the advantage of low cost, but has the disadvantage that it is easily hydrolyzed in strong base, the pH range and temperature range is narrow and vulnerable to microorganisms. While trying to overcome the shortcomings through the modification or alloying of cellulose, there are still limitations to overcome. Therefore, in order to replace the cellulose reverse osmosis membrane, research on the polyurethane-based, aromatic polysulfone-based, and aromatic polyamide-based separators has been actively conducted. However, there has been a problem that the water permeation rate and the salt rejection rate of the reverse osmosis membrane is insufficient.

일반적으로 역삼투막은 분리막 지지층과 지지층 위에 형성된 폴리아마이드계 박막인 활성층으로 이루어져 있다. 폴리아마이드 활성층은 2개 이상의 1급 아민 그룹을 가지고 있는 다관능성 방향족 아민 (aromatic amine)과 적어도 3개 이상의 산 할라이드 (acid halide) 그룹을 갖고 있는 다관능성 산 할라이드 간의 계면 중합에 의해 형성될 수 있다. In general, the reverse osmosis membrane is composed of a membrane support layer and an active layer which is a polyamide-based thin film formed on the support layer. The polyamide active layer may be formed by interfacial polymerization between a polyfunctional aromatic amine having at least two primary amine groups and a polyfunctional acid halide having at least three acid halide groups. .

금속-유기 구조체(metal-organic framework, MOF)를 이용한 분리막의 경우, MOF 복합막이 기존의 CO2/CH4 기체 분리막과 비교하여 선택도의 감소 없이 투과도를 증가시키는 기술 등이 알려진 바 있고, 종래 기술은 기체 투과도에 대한 특성만을 기술하고 있을 뿐, MOF를 수처리용 역삼투 분리막에서 적용한 사례는 전무하다.
In the case of a membrane using a metal-organic framework (MOF), a technique of increasing the permeability without decreasing the selectivity of the MOF composite membrane is known compared to the conventional CO 2 / CH 4 gas separation membrane, etc. The technology only describes the characteristics of gas permeability, and there are no examples of applying MOF to reverse osmosis membranes for water treatment.

대한민국 특허출원 제10-2010-7003154호Republic of Korea Patent Application No. 10-2010-7003154

상기와 같은 문제점을 해결하기 위하여 본 발명은, 금속-유기 구조체(metal-organic framework, MOF)를 포함하는 다관능성 산 할라이드 용액 및 다관능성 아민 용액을 계면중합 반응시켜 제조한 수투과성 및 염배제성이 우수한 액체투과성 분리막 및 이의 제조방법, 그리고 이를 이용한 수처리 방법을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, the present invention is a water-permeable and salt-exclusive property prepared by interfacial polymerization of a polyfunctional acid halide solution and a polyfunctional amine solution containing a metal-organic framework (MOF) It is an object of the present invention to provide an excellent liquid permeable membrane, a method for producing the same, and a water treatment method using the same.

상기와 같은 목적을 해결하기 위하여 본 발명은 금속-유기 구조체(metal-organic framework, MOF) 및 폴리아마이드 고분자를 포함하는 활성층; 및 분리막 지지층;을 포함하는 수처리용 분리막을 제공한다.The present invention to solve the above object is an active layer comprising a metal-organic framework (MOF) and a polyamide polymer; And a membrane support layer.

본 발명의 일실시예에 있어서, 상기 금속-유기 구조체 및 폴리아마이드 고분자의 중량비가 1:99 내지 0.01:99.99일 수 있다.In one embodiment of the present invention, the weight ratio of the metal-organic structure and the polyamide polymer may be 1:99 to 0.01: 99.99.

본 발명의 일실시예에 있어서, 상기 금속-유기 구조체의 금속은 철, 알루미늄, 아연, 크롬, 지르코늄 및 구리로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one embodiment of the present invention, the metal of the metal-organic structure may be at least one selected from the group consisting of iron, aluminum, zinc, chromium, zirconium and copper.

본 발명의 일실시예에 있어서, 상기 금속-유기 구조체의 비표면적은 100 내지 4300m2/g일 수 있다.In one embodiment of the present invention, the specific surface area of the metal-organic structure may be 100 to 4300m 2 / g.

본 발명의 일실시예에 있어서, 상기 금속-유기 구조체는 직경이 0.1 내지 10㎛인 기공을 가질 수 있다.In one embodiment of the present invention, the metal-organic structure may have pores having a diameter of 0.1 to 10㎛.

본 발명의 일실시예에 있어서, 상기 금속-유기 구조체의 밀도는 0.1 내지 1.0g/cm3일 수 있다. In one embodiment of the present invention, the density of the metal-organic structure may be 0.1 to 1.0g / cm 3 .

본 발명의 일실시예에 있어서, 상기 분리막 지지층은 폴리에테르설폰(PES), 폴리설폰(PSf), 폴리카보네이트(PC), 폴리에틸렌(PE), 폴리프로필렌(PP), 테트라플루오로에틸렌 (PTFE), 폴리비닐리덴 플루오라이드(PVDF), 폴리아크릴로니트릴(PAN), 셀룰로오스 아세테이트(CA) 및 셀룰로오스 트리아세테이트(CTA)로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one embodiment of the present invention, the membrane support layer is polyethersulfone (PES), polysulfone (PSf), polycarbonate (PC), polyethylene (PE), polypropylene (PP), tetrafluoroethylene (PTFE) And polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), cellulose acetate (CA) and cellulose triacetate (CTA).

본 발명의 일실시예에 있어서, 상기 분리막은 수투과도가 30 내지 90Lm-2h-1이고, 염배제율이 97 내지 99.99%일 수 있다.In one embodiment of the present invention, the separation membrane may have a water permeability of 30 to 90Lm -2 h -1 and a salt excretion rate of 97 to 99.99%.

또한, 본 발명은 금속-유기 구조체(metal-organic framework, MOF)를 다관능성 산 할라이드 용액에 분산시켜 제1용액을 제조하는 단계; 및 In addition, the present invention comprises the steps of dispersing a metal-organic framework (MOF) in a polyfunctional acid halide solution to prepare a first solution; And

분리막 지지층 상에서 다관능성 아민 용액과 상기 제1용액을 반응시켜 폴리아마이드 고분자를 중합시키는 단계;를 포함하는 수처리용 분리막의 제조방법을 제공한다.It provides a method for producing a separation membrane for water treatment comprising the step of polymerizing a polyamide polymer by reacting a polyfunctional amine solution and the first solution on a membrane support layer.

본 발명의 일실시예에 있어서, 상기 다관능성 산 할라이드는 트라이메신산트라이클로라이드, 테레프탈산다이클로라이드, 아이소프탈산다이클로라이드, 바이페닐다이카복실산다이클로라이드, 나프탈렌다이카복실산다이클로라이드, 벤젠트라이설폰산트라이클로라이드, 벤젠다이설폰산다이클로라이드, 클로로설폰일벤젠다이카복실산다이클로라이드, 프로페인다이카복실산다이클로라이드, 뷰테인다이카복실산다이클로라이드, 펜테인다이카복실산다이클로라이드, 프로페인트라이카복실산트라이클로라이드, 뷰테인트라이카복실산트라이클로라이드, 펜테인트라이카복실산트라이클로라이드, 글루타릴할라이드, 아디포일할라이드, 사이클로프로페인트라이카복실산트라이클로라이드, 사이클로뷰테인테트라카복실산테트라클로라이드, 사이클로펜테인트라이카복실산트라이클로라이드, 사이클로펜테인테트라카복실산테트라클로라이드, 사이클로헥세인트라이카복실산트라이클로라이드, 테트라하이드로퓨란테트라카복실산테트라클로라이드, 사이클로펜테인다이카복실산다이클로라이드, 사이클로뷰테인다이카복실산다이클로라이드, 사이클로헥세인다이카복실산다이클로라이드 및 테트라하이드로퓨란다이카복실산다이클로라이드로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one embodiment of the present invention, the polyfunctional acid halide is trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzene trisulfonic acid trichloride, Benzene disulfonic acid dichloride, chlorosulfonyl benzene dicarboxylic acid dichloride, propane dicarboxylic acid dichloride, butane dicarboxylic acid dichloride, pentane dicarboxylic acid dichloride, propane tricarboxylic acid trichloride, butane tricarboxylic acid trichloride, Pentane tricarboxylic acid trichloride, glutaryl halide, adipoyl halide, cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid tetrachloride, cyclophene Intracarboxylic acid trichloride, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, tetrahydrofuran tetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid It may be at least one selected from the group consisting of dichloride and tetrahydrofurane dicarboxylic acid dichloride.

본 발명의 일실시예에 있어서, 상기 다관능성 아민은 m-페닐렌다이아민, p-페닐렌다이아민, o-페닐렌다이아민, 1,3,5-트라이아미노벤젠, 1,2,4-트라이아미노벤젠, 3,5-다이아미노벤조산, 2,4-다이아미노톨루엔, 2,6-다이아미노톨루엔, N,N'-다이메틸-m-페닐렌다이아민, 2,4-다이아미노아니솔, 아미돌(Amidol), 자일릴렌다이아민, 에틸렌다이아민, 프로필렌다이아민, 트리스(2-아미노에틸)아민, n-페닐-에틸렌다이아민, 1,3-다이아미노사이클로헥세인, 1,2-다이아미노사이클로헥세인, 1,4-다이아미노사이클로헥세인, 피페라진, 2,5-다이메틸피페라진 및 4-아미노메틸피페라진으로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one embodiment of the present invention, the multifunctional amine is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4 -Triaminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diamino Anisole, Amidol, Xylylenediamine, Ethylenediamine, Propylenediamine, Tris (2-aminoethyl) amine, n-phenyl-ethylenediamine, 1,3-diaminocyclohexane, 1 It may be one or more selected from the group consisting of, 2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine and 4-aminomethylpiperazine.

본 발명의 일실시예에 있어서, 상기 폴리아마이드 고분자를 중합시키는 단계에서의 반응은 계면중합 반응일 수 있다.In one embodiment of the present invention, the reaction in the step of polymerizing the polyamide polymer may be an interfacial polymerization reaction.

또한, 본 발명은 상기 수처리용 분리막을 사용하는 수처리 방법을 제공한다.The present invention also provides a water treatment method using the separation membrane for water treatment.

본 발명의 수처리용 분리막은 수투과성 및 염배제율이 우수하여 액체투과성이며 수처리용으로, 다가 이온을 배제할 수 있는 나노여과막에 적합하며, 구체적으로 초순수의 제조, 음용수 처리, 폐수 전처리, 경수 연수화, 해수의 탈염 및 담수화와 같은 용도를 위한 역삼투 여과막 수처리에 적용할 수 있어 공정상의 에너지 효율성을 높여 공정에 소요되는 비용을 감소시킬 수 있다.The separation membrane for water treatment of the present invention is excellent in water permeability and salt rejection, and is suitable for nanofiltration membranes capable of excluding polyvalent ions for liquid permeability and water treatment. Specifically, ultrapure water preparation, drinking water treatment, wastewater pretreatment, hard water softening It can be applied to reverse osmosis membrane water treatment for applications such as ignition, desalination and desalination of seawater, which can increase the energy efficiency of the process and reduce the cost of the process.

도 1은 본 발명의 일 실시예에 따른 분리막의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 분리막의 제조방법 중 계면중합 반응의 화학 메커니즘이다.
도 3 및 4는 본 발명의 일 실시예에 따른 분리막에 포함되는 MOF의 주사현미경 표면사진 및 X선 회절 분석 결정구조 그래프이다.
도 5는 본 발명의 일 비교예에 따른 폴리에테르설폰의 주사현미경 표면 사진이다.
도 6은 본 발명의 일 실시예에 따른 MOF/폴리아마이드 복합 분리막의 주사현미경 표면 사진이다.
도 7은 본 발명의 일 비교예에 따른 MOF/폴리아마이드 복합 분리막의 X선 회절 분석 결정구조 그래프이다.
도 8은 본 발명의 일 실시예에 따른 분리막의 수투과도 및 염배제율을 나타내는 그래프이다.
1 is a schematic diagram of a separator according to an embodiment of the present invention.
2 is a chemical mechanism of the interfacial polymerization reaction in the method of manufacturing a separator according to an embodiment of the present invention.
3 and 4 is a scanning microscope surface photograph and X-ray diffraction analysis crystal structure graph of the MOF included in the separator according to an embodiment of the present invention.
5 is a scanning microscope surface photograph of a polyether sulfone according to a comparative example of the present invention.
Figure 6 is a scanning microscope surface photograph of the MOF / polyamide composite separator according to an embodiment of the present invention.
7 is an X-ray diffraction analysis crystal structure graph of the MOF / polyamide composite separator according to a comparative example of the present invention.
8 is a graph showing the water permeability and salt rejection rate of the separator according to an embodiment of the present invention.

이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.
Hereinafter, preferred embodiments of the present invention will be described in detail in order to facilitate the present invention by those skilled in the art.

본 발명은 금속-유기 구조체(metal-organic framework, MOF) 및 폴리아마이드 고분자를 포함하는 활성층; 및 분리막 지지층;을 포함하는 수처리용 분리막을 제공한다.
The present invention includes an active layer comprising a metal-organic framework (MOF) and a polyamide polymer; And a membrane support layer.

본 발명에 따른 수처리용 분리막은, 금속-유기 구조체(metal-organic framework, MOF)를 다관능성 산 할라이드 용액에 분산시켜 제1용액을 제조하는 단계; 및 The separator for water treatment according to the present invention comprises the steps of dispersing a metal-organic framework (MOF) in a polyfunctional acid halide solution to prepare a first solution; And

분리막 지지층 상에서 다관능성 아민 용액과 상기 제1용액을 반응시켜 폴리아마이드 고분자를 중합시키는 단계;를 포함하는 수처리용 분리막의 제조방법에 의하여 제조될 수 있다.
It may be prepared by a method for producing a membrane for water treatment, comprising the step of polymerizing a polyamide polymer by reacting a polyfunctional amine solution and the first solution on a membrane support layer.

이하, 본 발명에 따른 수처리용 분리막의 제조방법에 대하여 상세히 설명하도록 한다.
Hereinafter, a method of preparing a separator for water treatment according to the present invention will be described in detail.

먼저, 금속-유기 구조체(metal-organic framework, MOF)를 다관능성 산 할라이드 용액에 분산시켜 제1용액을 제조한다.
First, a metal-organic framework (MOF) is dispersed in a polyfunctional acid halide solution to prepare a first solution.

금속-유기 구조체(metal-organic framework, MOF)는 나노 기공을 가지는 금속 이온의 결정질 화합물로, 1차, 2차 또는 3차원 구조를 가져 내부에 유기 분자를 함유할 수 있는 특징을 갖는다. 금속-유기 구조체는 기체 정제 및 기체 분리 등에 적용되어 왔으나, 액체 투과용으로 사용된 적은 없었다.
The metal-organic framework (MOF) is a crystalline compound of metal ions having nano pores, and has a feature of having a primary, secondary or three-dimensional structure to contain organic molecules therein. Metal-organic structures have been applied to gas purification and gas separation and the like, but have never been used for liquid permeation.

본 발명에서 상기 금속-유기 구조체의 금속은 특별히 한정되는 것은 아니나, 철, 알루미늄, 아연, 크롬, 지르코늄 및 구리로 이루어진 군에서 선택되는 하나 이상일 수 있다.
In the present invention, the metal of the metal-organic structure is not particularly limited, but may be one or more selected from the group consisting of iron, aluminum, zinc, chromium, zirconium and copper.

본 발명에서 상기 금속-유기 구조체의 비표면적은 특별히 한정되는 것은 아니나, 100 내지 4300m2/g인 것이 바람직하고, 더욱 바람직하게는 200 내지 2500m2/g일 수 있다. 비표면적이 100m2/g 미만이면 복합화하여도 다공성 지지체로서의 흡착 및 투과 성능이 매우 저하되고, 4300m2/g 초과인 금속-유기 구조체는 제조되고 있지 않기 때문이다.
The metal in the present invention the specific surface area of the organic structure may be not particularly limited, 100 to 4300m 2 / g is preferable, more preferably from 200 to 2500m 2 / g. If the specific surface area is less than 100 m 2 / g, even if it is complexed, the adsorption and permeation performance as a porous support deteriorates very much, and a metal-organic structure having more than 4300 m 2 / g is not produced.

본 발명에서 상기 금속-유기 구조체는 특별히 한정되는 것은 아니나, 직경이 0.1 내지 10㎛인 기공을 가지는 것이 바람직하고, 더욱 바람직하게는 0.1 내지 2㎛일 수 있다. 기공의 직경이 0.1㎛ 미만인 금속-유기 구조체는 일반적으로 활용하기 어렵고, 10㎛ 초과인 금속-유기 구조체는 분리막에 혼합하였을 때 폴리아마이드 고분자 바인더가 금속-유기 구조체 입자를 고정시키지 못하기 때문이다.In the present invention, the metal-organic structure is not particularly limited, but preferably has pores having a diameter of 0.1 to 10 μm, more preferably 0.1 to 2 μm. Metal-organic structures having a pore diameter of less than 0.1 μm are generally difficult to use, and metal-organic structures larger than 10 μm do not fix the metal-organic structure particles when mixed with the separator.

본 발명에서 상기 금속-유기 구조체의 밀도는 특별히 한정되는 것은 아니나, 0.1 내지 1.0g/cm3 인 것이 바람직하고, 더욱 바람직하게는 0.1 내지 0.6g/cm3일 수 있다. 밀도가 0.1g/cm3 미만인 금속-유기 구조체는 제조되지 않고 있고 1.0g/cm3 초과인 금속-유기 구조체는 충분한 비표면적을 가지지 못하기 때문에 분리막의 효율이 매우 낮다.
In the present invention, the density of the metal-organic structure is not particularly limited, but is preferably 0.1 to 1.0 g / cm 3 , more preferably 0.1 to 0.6 g / cm 3 . Metal-organic structures having a density of less than 0.1 g / cm 3 have not been produced, and metal-organic structures having more than 1.0 g / cm 3 do not have a sufficient specific surface area, and thus the efficiency of the separator is very low.

본 발명에서 사용되는 금속-유기 구조체는 예를 들어, Cu-BTC MOF (Copper benzene-1,3,5-tricarboxylate), ZIF 8 (2-Methylimidazole zinc salt), MIL 53 (Aluminum terephthalate), Fe-BTC (Iron 1,3,5-benzenetricarboxylate), KRICT F100 (Iron trimesate), KRICT C100 (Chromium terephthalate), KRICT C200 (Copper trimesate) 및 KRICT Z100 (Zirconium carboxylate)로 이루어지는 군에서 선택되는 하나 이상일 수 있으나, 반드시 이에 한정되는 것은 아니다.
Metal-organic structures used in the present invention are, for example, Cu-BTC MOF (Copper benzene-1,3,5-tricarboxylate), ZIF 8 (2-Methylimidazole zinc salt), MIL 53 (Aluminum terephthalate), Fe- It may be one or more selected from the group consisting of BTC (Iron 1,3,5-benzenetricarboxylate), KRICT F100 (Iron trimesate), KRICT C100 (Chromium terephthalate), KRICT C200 (Copper trimesate), and KRICT Z100 (Zirconium carboxylate) It is not necessarily limited thereto.

본 발명에서 다관능성 산 할라이드란, 반응성 카보닐기를 2개 이상 갖는 다관능성 산 할라이드이다.In the present invention, the polyfunctional acid halide is a polyfunctional acid halide having two or more reactive carbonyl groups.

다관능성 산 할라이드로는, 방향족, 지방족 및 지환식 다관능성 산 할라이드를 들 수 있다.Examples of the polyfunctional acid halides include aromatic, aliphatic and alicyclic polyfunctional acid halides.

방향족 다관능성 산 할라이드로는, 예컨대, 트라이메신산트라이클로라이드, 테레프탈산다이클로라이드, 아이소프탈산다이클로라이드, 바이페닐다이카복실산다이클로라이드, 나프탈렌다이카복실산다이클로라이드, 벤젠트라이설폰산트라이클로라이드, 벤젠다이설폰산다이클로라이드, 클로로설폰일벤젠다이카복실산다이클로라이드 등을 들 수 있다.Examples of the aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, and benzene disulfonic acid dichloride. And chlorosulfonylbenzene dicarboxylic acid dichloride.

지방족 다관능성 산 할라이드로는, 예컨대, 프로페인다이카복실산다이클로라이드, 뷰테인다이카복실산다이클로라이드, 펜테인다이카복실산다이클로라이드, 프로페인트라이카복실산트라이클로라이드, 뷰테인트라이카복실산트라이클로라이드, 펜테인트라이카복실산트라이클로라이드, 글루타릴할라이드, 아디포일할라이드 등을 들 수 있다.Examples of the aliphatic polyfunctional acid halides include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propane tricarboxylic acid trichloride, butane tricarboxylic acid trichloride, and pentane tricarboxylic acid trichloride. Chloride, glutaryl halide, adipoyl halide and the like.

지환식 다관능성 산 할라이드로는, 예컨대, 사이클로프로페인트라이카복실산트라이클로라이드, 사이클로뷰테인테트라카복실산테트라클로라이드, 사이클로펜테인트라이카복실산트라이클로라이드, 사이클로펜테인테트라카복실산테트라클로라이드, 사이클로헥세인트라이카복실산트라이클로라이드, 테트라하이드로퓨란테트라카복실산테트라클로라이드, 사이클로펜테인다이카복실산다이클로라이드, 사이클로뷰테인다이카복실산다이클로라이드, 사이클로헥세인다이카복실산다이클로라이드, 테트라하이드로퓨란다이카복실산다이클로라이드 등을 들 수 있다.Examples of the alicyclic polyfunctional acid halides include cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid trichloride, cyclopentane tricarboxylic acid trichloride, cyclopentane tetracarboxylic acid trichloride, cyclohexane tricarboxylic acid trichloride, and the like. And tetrahydrofuran tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, tetrahydrofurane dicarboxylic acid dichloride, and the like.

이러한 다관능성 산 할라이드는 1종으로 사용할 수도 있고, 2종 이상을 병용할 수도 있다. 높은 염 저지 성능의 활성층을 얻기 위해서는, 방향족 다관능성 산 할라이드를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, 이온에 대한 높은 배제율을 얻기 위해서는 조밀한 3차원 가교 구조를 형성하기 위해서는 다관능성 산 할라이드 성분의 적어도 일부에 3가 이상의 다관능성 산 할라이드를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.
These polyfunctional acid halides may be used by 1 type, and may use 2 or more types together. In order to obtain an active layer having a high salt blocking performance, it is preferable to use an aromatic polyfunctional acid halide, but is not limited thereto. In addition, in order to obtain a high exclusion rate for ions, in order to form a dense three-dimensional crosslinked structure, it is preferable to use a trivalent or higher polyfunctional acid halide for at least a part of the polyfunctional acid halide component, but is not limited thereto.

상기 다관능성 산 할라이드는 용액상으로 사용되는데, 이때 사용되는 용매는 특별히 한정되는 것은 아니나 부탄, 펜탄, 헥산, 데칸 및 도데칸과 같은 지방족 용매, 사이클로헥산 및 사이클로펜탄과 같은 고리형 용매, 및 톨루엔 및 벤젠과 같은 방향족 용매일 수 있다.
The polyfunctional acid halide is used in solution, where the solvent used is not particularly limited but aliphatic solvents such as butane, pentane, hexane, decane and dodecane, cyclic solvents such as cyclohexane and cyclopentane, and toluene And aromatic solvents such as benzene.

상기 용매에 다관능성 산 할라이드를 용해시켜 용액을 제조하는데, 이때 다관능성 산 할라이드의 함량은 다관능성 산 할라이드 용액 총 중량을 기준으로 0.1 내지 5 중량%일 수 있고, 보다 바람직하게는 0.1 내지 3 중량%일 수 있다. 제조된 다관능성 산 할라이드 용액에 금속-유기 구조체(MOF)를 분산시켜 분산액(제1용액)을 제조한다. 이 때 금속-유기 구조체의 함량은 금속-유기 구조체를 포함하는 다관능성 산 할라이드 용액 총 중량을 기준으로 0.01 내지 1 중량%일 수 있고, 보다 바람직하게는 0.01 내지 0.1 중량%일 수 있다.
To prepare a solution by dissolving the polyfunctional acid halide in the solvent, wherein the content of the polyfunctional acid halide may be 0.1 to 5% by weight, more preferably 0.1 to 3% by weight based on the total weight of the polyfunctional acid halide solution May be%. A dispersion (first solution) is prepared by dispersing a metal-organic structure (MOF) in the prepared polyfunctional acid halide solution. In this case, the content of the metal-organic structure may be 0.01 to 1% by weight, more preferably 0.01 to 0.1% by weight based on the total weight of the multifunctional acid halide solution including the metal-organic structure.

그 다음으로, 분리막 지지층 상에서 다관능성 아민 용액과 상기 제1용액을 반응시켜 폴리아마이드 고분자를 중합시킨다.
Next, the polyamide polymer is polymerized by reacting the polyfunctional amine solution with the first solution on the membrane support layer.

폴리아마이드 고분자를 포함하는 활성층을 분리막 지지층의 표면에 형성하는 방법은 특별히 제한되지 않고, 모든 공지된 수법을 사용할 수 있다. 예컨대, 계면 축합법, 상 분리법, 박막 도포법 등을 들 수 있다. 계면 축합법이란, 구체적으로, 다관능성 아민을 함유하는 아민 수용액과, 다관능성 산 할라이드를 함유하는 유기용액을 접촉시켜 계면 중합시킴으로써 활성층을 형성하여, 상기 황성층을 지지층 상에 탑재하는 방법 또는, 지지층 상에서의 상기 계면중합에 의해 폴리아마이드 고분자의 활성층을 지지층 상에 직접 형성하는 방법이다.The method for forming the active layer containing the polyamide polymer on the surface of the membrane support layer is not particularly limited, and any known method can be used. For example, an interfacial condensation method, a phase separation method, a thin film coating method, etc. are mentioned. Specifically, the interfacial condensation method is a method of contacting an aqueous amine solution containing a polyfunctional amine with an organic solution containing a polyfunctional acid halide to form an active layer by interfacial polymerization and mounting the sulfur layer on a support layer, or It is a method of directly forming the active layer of a polyamide polymer on a support layer by the said interfacial polymerization on a support layer.

본 발명의 중합 반응은 계면중합 반응인 것이 바람직하다. 즉, 상기 제1용액의 다관능성 산 할라이드 용액과 다관능성 아민 용액의 계면에서 중합 반응이 진행되어 폴리아마이드가 중합되는 것이다. 이러한 중합 반응이 분리막 지지층 상에서 진행되므로, 분리막 지지층이 중합된 폴리아마이드로 코팅되어, 분리막 지지층 상에 폴리아마이드를 포함하는 활성층을 형성한다. 예를 들어, 트리메소일클로라이드 및 m-페닐렌다이아민의 중합 반응의 화학반응식을 도 2에 나타내었다.
It is preferable that the polymerization reaction of this invention is an interfacial polymerization reaction. That is, the polymerization reaction proceeds at the interface between the polyfunctional acid halide solution and the polyfunctional amine solution of the first solution to polymerize the polyamide. Since the polymerization reaction proceeds on the membrane support layer, the membrane support layer is coated with the polymerized polyamide to form an active layer including polyamide on the membrane support layer. For example, the chemical reaction scheme of the polymerization reaction of trimesoyl chloride and m-phenylenediamine is shown in FIG. 2.

예를 들어, 상기 중합반응은 분리막 지지층을 다관능성 아민 용액에 침지한 후, 침지한 분리막 지지층에 제1용액을 첨가하여 중합반응을 진행시키는 것일 수 있다.
For example, the polymerization may be performed by immersing the membrane support layer in a polyfunctional amine solution, and then adding the first solution to the immersed membrane support layer to advance the polymerization reaction.

본 발명에서 다관능성 아민이란, 2 이상의 반응성 아미노기를 갖는 다관능성 아민으로서, 방향족, 지방족 및 지환식 다관능성 아민을 들 수 있다.In the present invention, the polyfunctional amine is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic and alicyclic polyfunctional amines.

방향족 다관능성 아민으로는, 예컨대, m-페닐렌다이아민, p-페닐렌다이아민, o-페닐렌다이아민, 1,3,5-트라이아미노벤젠, 1,2,4-트라이아미노벤젠, 3,5-다이아미노벤조산, 2,4-다이아미노톨루엔, 2,6-다이아미노톨루엔, N,N'-다이메틸-m-페닐렌다이아민, 2,4-다이아미노아니솔, 아미돌(Amidol), 자일릴렌다이아민 등을 들 수 있다.Examples of the aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol (Amidol), xylylenediamine, etc. are mentioned.

지방족 다관능성 아민으로는, 예컨대, 에틸렌다이아민, 프로필렌다이아민, 트리스(2-아미노에틸)아민, n-페닐-에틸렌다이아민 등을 들 수 있다.Examples of the aliphatic polyfunctional amines include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, n-phenyl-ethylenediamine, and the like.

지환식 다관능성 아민으로는, 예컨대, 1,3-다이아미노사이클로헥세인, 1,2-다이아미노사이클로헥세인, 1,4-다이아미노사이클로헥세인, 피페라진, 2,5-다이메틸피페라진, 4-아미노메틸피페라진 등을 들 수 있다.Examples of the alicyclic polyfunctional amines include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, and 2,5-dimethylpipepe. Razine, 4-aminomethyl piperazine, etc. are mentioned.

이러한 다관능성 아민은 1종으로 사용할 수도 있고, 2종 이상을 병용할 수도 있다. 높은 염 저지 성능의 활성층을 얻기 위해서는, 방향족 다관능성 아민을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, 보다 조밀한 분리막을 제조하기 위해서는 3 관능성 아민을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.
These polyfunctional amines may be used by 1 type, and may use 2 or more types together. In order to obtain an active layer having a high salt blocking performance, it is preferable to use an aromatic polyfunctional amine, but is not limited thereto. In addition, in order to manufacture a more compact separator, it is preferable to use a trifunctional amine, but is not limited thereto.

상기 다관능성 아민은 물에 녹여 수용액을 제조하여 사용한다.
The polyfunctional amine is dissolved in water to prepare an aqueous solution.

상기 용매에 다관능성 아민을 용해시켜 수용액을 제조하는데, 이때 다관능성 아민의 함량은 다관능성 아민 수용액의 총 중량을 기준으로 0.1 내지 10 중량%일 수 있고, 보다 바람직하게는 0.1 내지 5중량%일 수 있다.
The aqueous solution is prepared by dissolving the polyfunctional amine in the solvent, wherein the content of the polyfunctional amine may be 0.1 to 10% by weight, more preferably 0.1 to 5% by weight based on the total weight of the aqueous polyfunctional amine solution Can be.

본 발명에서 상기 분리막 지지층은 분리막의 지지체로서, 일반적으로 당업계에서 사용되는 지지층이면 특별히 한정되는 것은 아니다. 예를 들어, 폴리에테르설폰(PES), 폴리설폰(PSf), 폴리카보네이트(PC), 폴리에틸렌(PE), 폴리프로필렌(PP), 테트라플루오로에틸렌 (PTFE), 폴리비닐리덴 플루오라이드(PVDF), 폴리아크릴로니트릴(PAN), 셀룰로오스 아세테이트(CA) 및 셀룰로오스 트리아세테이트(CTA)로 이루어진 군에서 선택되는 하나 이상일 수 있다. 이러한 분리막 지지층은 일반적으로 다공성이다. 바람직하게는 화학적, 기계적 및 열적 특성이 우수한 폴리에테르설폰 또는 폴리설폰일 수 있다. 또한, 우수한 수투과도를 가지는 한외여과막이 바람직하나, 반드시 이에 한정되는 것은 아니다.In the present invention, the membrane support layer is not particularly limited as long as the support layer of the membrane is generally used in the art. For example, polyethersulfone (PES), polysulfone (PSf), polycarbonate (PC), polyethylene (PE), polypropylene (PP), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) , Polyacrylonitrile (PAN), cellulose acetate (CA) and cellulose triacetate (CTA) may be one or more selected from the group consisting of. Such membrane support layers are generally porous. Preferably it may be polyethersulfone or polysulfone having excellent chemical, mechanical and thermal properties. In addition, an ultrafiltration membrane having excellent water permeability is preferred, but is not necessarily limited thereto.

상기 분리막 지지층의 두께는 20 내지 200㎛인 것이 바람직하고, 더욱 바람직하게는 40 내지 100㎛일 수 있다. 또한, 지지체의 하면은 직포 또는 부직포와 같은 기재로 보강될 수 있다.
The thickness of the separator support layer is preferably 20 to 200㎛, more preferably 40 to 100㎛. In addition, the bottom surface of the support may be reinforced with a substrate such as a woven or nonwoven fabric.

본 발명에서 상기 금속-유기 구조체 : 폴리아마이드 고분자의 중량비는 1:99 내지 0.01:99.99일 수 있고, 바람직하게는 1:90 내지 0.01:99, 더욱 바람직하게는 1:90 내지 0.01:90일 수 있다. 금속-유기 구조체의 중량비가 상기 범위보다 작은 경우에는 다공성 지지체로서의 효과가 미미하고, 상기 범위보다 큰 경우에는 금속-유기 구조체의 함량이 너무 많아서 폴리아마이드가 금속-유기 구조체를 계면에 고정시키기 어렵다.
The weight ratio of the metal-organic structure: polyamide polymer in the present invention may be 1:99 to 0.01: 99.99, preferably 1:90 to 0.01: 99, more preferably 1:90 to 0.01: 90 have. When the weight ratio of the metal-organic structure is smaller than the above range, the effect as a porous support is insignificant, and when the metal-organic structure is larger than the above range, the content of the metal-organic structure is so high that polyamide hardly fixes the metal-organic structure to the interface.

본 발명의 제조방법에 따라 제조된 수처리용 분리막은 그 지지층을 제외한 폴리아마이드 복합 활성층만의 두께가 0.1 내지 5 ㎛, 보다 바람직하게는 0.5 내지 3㎛이나 반드시 이에 한정되는 것은 아니다.
The separation membrane for water treatment prepared according to the manufacturing method of the present invention has a thickness of only the polyamide composite active layer except for the support layer of 0.1 to 5 μm, more preferably 0.5 to 3 μm, but is not necessarily limited thereto.

또한, 본 발명에 따른 수처리용 분리막은 수투과도가 30 내지 90Lm-2h-1이고, 염배제율이 97 내지 99.99%일 수 있다.
In addition, the separation membrane for water treatment according to the present invention may have a water permeability of 30 to 90 Lm -2 h -1 and a salt rejection ratio of 97 to 99.99%.

즉, 본 발명에 따른 유무기 나노 복합막인 수처리용 분리막은 나노 기공을 가지는 다공성 지지체로서 금속-유기 구조체를 포함하여 역삼투막을 제조하는 방법에 의하여 제조되며, 분리막의 투과 성능을 향상시키고 동시에 불순물에 대한 분리 성능이 향상된 복합막을 제조함으로써 수처리 공정상의 에너지 효율을 높일 수 있고, 초순수의 제조, 음용수 처리, 폐수 전처리, 경수 연수화, 해수의 탈염 및 담수화와 같은 수처리 방법에 사용될 수 있다.That is, the organic-inorganic nano composite membrane according to the present invention is prepared by a method of preparing a reverse osmosis membrane including a metal-organic structure as a porous support having nano pores, and improves the permeability of the membrane and at the same time impurities By manufacturing a composite membrane with improved separation performance, the energy efficiency of the water treatment process can be improved, and it can be used in water treatment methods such as ultrapure water production, drinking water treatment, wastewater pretreatment, hard water softening, desalination and desalination of seawater.

이하의 실시를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
The present invention will be described in more detail through the following examples. However, the examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.

[실시예 1]Example 1

폴리아마이드와 MOF를 이용하여 유무기 복합 분리막을 제조하기 위해 부직포 위에 형성된 폴리설폰계 한외여과막 지지체를 사용하였다. 다관능성 산 할라이드로 0.05 중량%의 트라이메신산트라이클로라이드 (trimesic acid trichloride) 용액을 준비하였고, 이 산 할라이드 용액에 금속-유기 구조체(MOF)로서 Cu-BTC MOF (Copper benzene-1,3,5-tricarboxylate)를 각각 0.01, 0.03 및 0.05 중량%만큼 분산시킨 수용액을 제조하였다. 또한, 3 중량%의 다관능성 아민인 m-페닐렌디아민 (m-phenylenediamine) 용액을 제조하여 준비하고 폴리설폰계 한외여과막을 10×10 크기로 잘라서 준비하였다. A polysulfone-based ultrafiltration membrane support formed on a nonwoven fabric was used to prepare an organic-inorganic composite separator using polyamide and MOF. 0.05% by weight of trimesic acid trichloride solution was prepared as a polyfunctional acid halide, and Cu-BTC MOF (Copper benzene-1,3,5) was prepared as a metal-organic structure (MOF). -tricarboxylate) by 0.01, 0.03 and 0.05% by weight, respectively A dispersed aqueous solution was prepared. In addition, m-phenylenediamine solution, which is 3% by weight of polyfunctional amine, was prepared and prepared, and the polysulfone-based ultrafiltration membrane was cut into 10 × 10 size.

먼저, 폴리에테르설폰 한외여과막을 m-페닐다이아민 용액에 침지한 후 표면의 페닐다이아민 용액을 제거하였다. 트라이메신산트라이클로라이드/MOF 수용액에서 MOF가 잘 분산되도록 교반기 위에서 마그네틱 바를 이용하여 10 동안 교반한 후, m-페닐렌다이아민 용액에 침지했던 폴리에테르설폰 한외여과막 지지체 위에 부어 계면중합 반응을 진행하였다. 이때, 한외여과막 아래로 m-페닐렌다이아민 용액이 스며들지 않도록 마스킹을 하였다. 5분 뒤 깨끗한 헥산으로 미반응 트라이메신산트라이클로라이드를 제거하였다. 그리고 메탄올 및 증류수로 수세한 후 건조하여 폴리아마이드/MOF 유무기 복합 분리막을 제조하였다.
First, the polyethersulfone ultrafiltration membrane was immersed in m-phenyldiamine solution, and the phenyldiamine solution on the surface was removed. After stirring for 10 minutes using a magnetic bar on a stirrer so that MOF was well dispersed in trimesinic acid trichloride / MOF aqueous solution, it was poured on a polyethersulfone ultrafiltration membrane support immersed in m-phenylenediamine solution and subjected to an interfacial polymerization reaction. . At this time, masking was performed so that the m-phenylenediamine solution did not penetrate under the ultrafiltration membrane. After 5 minutes, unreacted trimesic acid trichloride was removed with clean hexane. And washed with methanol and distilled water and dried to prepare a polyamide / MOF organic-inorganic composite membrane.

[비교예 1] Comparative Example 1

트라이메신산트라이클로라이드 용액 내에 다공성 지지체인 MOF를 포함시키지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 폴리아마이드 복합막을 제조하여, 이를 비교예 1로 하였다.
A polyamide composite membrane was manufactured in the same manner as in Example 1, except that MOF, which is a porous support, was not included in the trimesin trichloride solution, thereby preparing Comparative Example 1.

[비교예 2]Comparative Example 2

트라이메신산트라이클로라이드 용액 내에 다공성지지체의 함량이 각각 트라이메신산트라이클로라이드 용액 총 중량을 기준으로0.01 중량% 및 0.1 중량%가 되도록 한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 폴리아마이드/MOF 유무기 복합 분리막을 제조하여, 이를 비교예 2로 하였다.
In the same manner as in Example 1, except that the content of the porous support in the trimesic acid trichloride solution was 0.01% by weight and 0.1% by weight based on the total weight of the trimesic acid trichloride solution, respectively. An MOF organic-inorganic composite separator was prepared, which was referred to as Comparative Example 2.

[시험예 1] 다공성 지지체의 특성 분석Test Example 1 Characterization of the Porous Support

다공성 지지체의 크기를 분석하고 계면 중합 전후의 표면의 특성 변화를 비교하기 위하여, MOF, 복합막을 제조하기 전의 폴리에테르설폰의 표면 및 실시예 1(MOF/폴리아마이드 복합막)의 표면을 주사전자현미경(scanning electron microscopy, SEM)으로 측정하여 각각 도3, 도5 및 도6에 나타내었다.In order to analyze the size of the porous support and to compare the surface property change before and after the interfacial polymerization, the surface of the polyethersulfone before the preparation of the MOF and the composite membrane and the surface of Example 1 (MOF / polyamide composite membrane) were scanned with a scanning electron microscope. It was measured by (scanning electron microscopy, SEM) and shown in Figure 3, 5 and 6, respectively.

도 3은 CU-BTC MOF 입자의 크기를 알아보기 위한 SEM 사진이고, 도 3에서 MOF 입자의 크기가 1㎛-3㎛로 균일한 것을 알 수 있었다. 도 5 및 도 6은 각각 계면 중합 전과 후의 SEM 사진이다. 따라서, 도 5는 계면 중합 전의 폴리에테르설폰의 표면 사진을 나타낸 것이고, 도 6은 계면 중합 후의 표면 사진을 나타낸 것이다.
3 is a SEM photograph for determining the size of the CU-BTC MOF particles, it can be seen that the size of the MOF particles are uniform 1㎛-3㎛ in FIG. 5 and 6 are SEM photographs before and after interfacial polymerization, respectively. Therefore, FIG. 5 shows the surface photograph of the polyether sulfone before interfacial polymerization, and FIG. 6 shows the surface photograph after the interfacial polymerization.

[시험예 2] 다공성 지지체의 결정 구조 분석Test Example 2 Analysis of Crystal Structure of Porous Support

다공성 지지체의 결정 구조를 확인하고 계면 중합 후의 결정구조를 확인하기 위해서 XRD 분석을 하였다. 그리고 MOF와 실시예 1(MOF/폴리아마이드 복합막)을 XRD (X-ray diffraction) 분석하여 각각 도 4 및 도 7에 각각 나타내었다.XRD analysis was carried out to confirm the crystal structure of the porous support and to confirm the crystal structure after interfacial polymerization. And MOF and Example 1 (MOF / polyamide composite membrane) was analyzed by XRD (X-ray diffraction) is shown in Figures 4 and 7, respectively.

도4 및 도 7에 나타낸 것과 같이, MOF는 2θ값 10 내지 20에서 7개의 날카로운 피크가 나타나는 것을 확인하였다. MOF/폴리아마이드 복합막은 2θ값 17.5, 22.5, 그리고 26에서 3개의 피크가 강하게 나타났으며, 실험 전 혼합된 MOF의 피크가 나타날 것으로 예상했으나 실제로 폴리아마이드 피크에 묻혀서 MOF의 피크는 나타나지 않았다.
As shown in Figs. 4 and 7, MOF confirmed that seven sharp peaks appeared at 2θ values of 10 to 20. In the MOF / polyamide composite membrane, three peaks were strongly observed at 2θ values of 17.5, 22.5, and 26. Before the experiment, the peaks of the mixed MOFs were expected, but the peaks of the MOFs were not buried in the polyamide peaks.

[시험예 3] 수투과도 및 염배제율 측정Test Example 3 Water Permeability and Salt Exclusion Rate Measurement

상기 실시예 1의 다공성지지체를 포함하는 복합막의 수투과도 및 염배제율을 측정하기 위해서 수평으로 압력을 가해서 측정할 수 있는 평막 평가용 셀을 사용하였다. 샘플로 사용된 복합막의 면적은 18.24 cm2이고 가해진 압력은 225 psig이고 25℃에서 모든 측정이 이루어졌다. In order to measure the water permeability and salt rejection rate of the composite membrane including the porous support of Example 1, a flat membrane evaluation cell that can be measured by applying a horizontal pressure was used. The area of the composite membrane used as the sample was 18.24 cm 2 and the pressure applied was 225 psig and all measurements were made at 25 ° C.

수투과도는 시간에 따라 투과되는 물의 부피를 측정하여 나타내었고 그 단위는 L/m2h로 단위 면적과 시간당 물의 부피로 나타내었다. The water permeability was expressed by measuring the volume of water permeated over time, and the unit was expressed in L / m 2 h as the unit area and the volume of water per hour.

염배제율을 측정하기 위해서 2000 ppm의 NaCl 수용액을 제조하여 투과시켰다. 염배제율은 투과 전후의 NaCl 수용액의 전도도를 측정하여 퍼센트 단위로 나타내었다. 염배제율 (%)은 아래의 방법으로 산출하였다.
In order to measure the salt excretion rate, 2000 ppm aqueous NaCl solution was prepared and permeated. The salt excretion rate was expressed in percent by measuring the conductivity of the aqueous NaCl solution before and after permeation. Salt exclusion rate (%) was calculated by the following method.

염 배제율(%) = {1-(투과된 수용액의 전도도 (uS))/(공급된 수용액의 전도도 (uS))}
% Salt Exclusion = {1- (Conductivity of Permeated Aqueous Solution (uS)) / (Conductivity of Supplyed Aqueous Solution (uS))}

그 결과를 도 8에 나타내었다. 도8에서 볼 수 있듯이, MOF/폴리아마이드 복합막을 제조하여 MOF를 복합화하지 않은 폴리아마이드 복합막과 비교 하였을 때, 28 LMH에서 39 LMH로 증가하여 39% 증가하였고, 배제율은 97.2 %에서 98.8%로 1.6% 증가한 것을 알 수 있었다.The results are shown in Fig. As can be seen in Figure 8, when compared to the polyamide composite membrane prepared MOF / polyamide composite membrane without MOF, the increase from 28 LMH to 39 LMH increased by 39%, the rejection rate was 97.2% to 98.8% It was found to increase 1.6%.

Claims (19)

금속-유기 구조체(metal-organic framework, MOF) 및 폴리아마이드 고분자를 포함하는 활성층; 및 분리막 지지층;을 포함하는 수처리용 분리막.An active layer comprising a metal-organic framework (MOF) and a polyamide polymer; And a membrane support layer. 제 1항에 있어서,
상기 금속-유기 구조체 : 폴리아마이드 고분자의 중량비가 1:99 내지 0.01:99.99인 수처리용 분리막.
The method of claim 1,
Separation membrane for water treatment wherein the weight ratio of the metal-organic structure: polyamide polymer is 1:99 to 0.01: 99.99.
제 1항에 있어서,
상기 금속-유기 구조체의 금속은 철, 알루미늄, 아연, 크롬, 지르코늄 및 구리로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막.
The method of claim 1,
The metal of the metal-organic structure is at least one selected from the group consisting of iron, aluminum, zinc, chromium, zirconium and copper separator for water treatment.
제 1항에 있어서,
상기 금속-유기 구조체의 비표면적은 100 내지 4300m2/g인 수처리용 분리막.
The method of claim 1,
The specific surface area of the metal-organic structure is 100 to 4300m 2 / g separator for water treatment.
제 1항에 있어서,
상기 금속-유기 구조체는 직경이 0.1 내지 10㎛인 기공을 갖는 다공성인 수처리용 분리막.
The method of claim 1,
The metal-organic structure is a porous membrane for water treatment having pores having a diameter of 0.1 to 10㎛.
제 1항에 있어서,
상기 금속-유기 구조체의 밀도는 0.1 내지 1.0g/cm3인 수처리용 분리막.
The method of claim 1,
Separation membrane for water treatment of the metal-organic structure has a density of 0.1 to 1.0g / cm 3 .
제 1항에 있어서,
상기 분리막 지지층은 폴리에테르설폰(PES), 폴리설폰(PSf), 폴리카보네이트(PC), 폴리에틸렌(PE), 폴리프로필렌(PP), 테트라플루오로에틸렌 (PTFE), 폴리비닐리덴 플루오라이드(PVDF), 폴리아크릴로니트릴(PAN), 셀룰로오스 아세테이트(CA) 및 셀룰로오스 트리아세테이트(CTA)로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막.
The method of claim 1,
The membrane support layer is polyethersulfone (PES), polysulfone (PSf), polycarbonate (PC), polyethylene (PE), polypropylene (PP), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) , Polyacrylonitrile (PAN), cellulose acetate (CA) and cellulose triacetate (CTA) at least one selected from the group consisting of water treatment membrane.
제 1항에 있어서,
상기 분리막은 수투과도가 30 내지 90Lm-2h-1이고, 염배제율이 97 내지 99.99%인 수처리용 분리막.
The method of claim 1,
The separator has a water permeability of 30 to 90 Lm -2 h -1 , the salt rejection ratio of 97 to 99.99% water treatment membrane.
금속-유기 구조체(metal-organic framework, MOF)를 다관능성 산 할라이드 용액에 분산시켜 제1용액을 제조하는 단계; 및
분리막 지지층 상에서 다관능성 아민 용액과 상기 제1용액을 반응시켜 폴리아마이드 고분자를 중합시키는 단계;를 포함하는 수처리용 분리막의 제조방법.
Dispersing a metal-organic framework (MOF) in a polyfunctional acid halide solution to prepare a first solution; And
And polymerizing the polyamide polymer by reacting the polyfunctional amine solution with the first solution on the membrane support layer.
제 9항에 있어서,
상기 금속-유기 구조체 : 폴리아마이드 고분자의 중량비가 1:99 내지 0.01:99.99인 수처리용 분리막의 제조방법.
The method of claim 9,
The metal-organic structure: polyamide polymer weight ratio of 1:99 to 0.01: 99.99 method of producing a membrane for water treatment.
제 9항에 있어서,
상기 금속-유기 구조체의 금속은 철, 알루미늄, 아연, 크롬, 지르코늄 및 구리로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막의 제조방법.
The method of claim 9,
The metal of the metal-organic structure is at least one selected from the group consisting of iron, aluminum, zinc, chromium, zirconium and copper.
제 9항에 있어서,
상기 금속-유기 구조체의 비표면적은 100 내지 4300m2/g인 수처리용 분리막의 제조방법.
The method of claim 9,
The specific surface area of the metal-organic structure is 100 to 4300m 2 / g method for producing a separation membrane for water treatment.
제 9항에 있어서,
상기 금속-유기 구조체는 직경이 0.1 내지 10㎛인 기공을 갖는 다공성인 수처리용 분리막의 제조방법.
The method of claim 9,
The metal-organic structure is a porous method for producing a separator for water treatment having pores having a diameter of 0.1 to 10㎛.
제 9항에 있어서,
상기 금속-유기 구조체의 밀도는 0.1 내지 1.0g/cm3인 수처리용 분리막의 제조방법.
The method of claim 9,
The density of the metal-organic structure is 0.1 to 1.0g / cm 3 Method for producing a separator for water treatment.
제 9항에 있어서,
상기 다관능성 산 할라이드는 트라이메신산트라이클로라이드, 테레프탈산다이클로라이드, 아이소프탈산다이클로라이드, 바이페닐다이카복실산다이클로라이드, 나프탈렌다이카복실산다이클로라이드, 벤젠트라이설폰산트라이클로라이드, 벤젠다이설폰산다이클로라이드, 클로로설폰일벤젠다이카복실산다이클로라이드, 프로페인다이카복실산다이클로라이드, 뷰테인다이카복실산다이클로라이드, 펜테인다이카복실산다이클로라이드, 프로페인트라이카복실산트라이클로라이드, 뷰테인트라이카복실산트라이클로라이드, 펜테인트라이카복실산트라이클로라이드, 글루타릴할라이드, 아디포일할라이드, 사이클로프로페인트라이카복실산트라이클로라이드, 사이클로뷰테인테트라카복실산테트라클로라이드, 사이클로펜테인트라이카복실산트라이클로라이드, 사이클로펜테인테트라카복실산테트라클로라이드, 사이클로헥세인트라이카복실산트라이클로라이드, 테트라하이드로퓨란테트라카복실산테트라클로라이드, 사이클로펜테인다이카복실산다이클로라이드, 사이클로뷰테인다이카복실산다이클로라이드, 사이클로헥세인다이카복실산다이클로라이드 및 테트라하이드로퓨란다이카복실산다이클로라이드로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막의 제조방법.
The method of claim 9,
The polyfunctional acid halide is trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, chlorosulfonyl Benzene dicarboxylic acid dichloride, propane dicarboxylic acid dichloride, butane dicarboxylic acid dichloride, pentane dicarboxylic acid dichloride, propane tricarboxylic acid trichloride, butane tricarboxylic acid trichloride, pentane tricarboxylic acid trichloride, glutamate Reyl halide, adipoyl halide, cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid trichloride, cyclopentane tricarboxylic acid trichloro Ryde, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, tetrahydrofuran tetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride and A method for producing a separation membrane for water treatment, which is at least one selected from the group consisting of tetrahydrofurane dicarboxylic acid dichloride.
제 9항에 있어서,
상기 다관능성 아민은 m-페닐렌다이아민, p-페닐렌다이아민, o-페닐렌다이아민, 1,3,5-트라이아미노벤젠, 1,2,4-트라이아미노벤젠, 3,5-다이아미노벤조산, 2,4-다이아미노톨루엔, 2,6-다이아미노톨루엔, N,N'-다이메틸-m-페닐렌다이아민, 2,4-다이아미노아니솔, 아미돌(Amidol), 자일릴렌다이아민, 에틸렌다이아민, 프로필렌다이아민, 트리스(2-아미노에틸)아민, n-페닐-에틸렌다이아민, 1,3-다이아미노사이클로헥세인, 1,2-다이아미노사이클로헥세인, 1,4-다이아미노사이클로헥세인, 피페라진, 2,5-다이메틸피페라진 및 4-아미노메틸피페라진으로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막의 제조방법.
The method of claim 9,
The polyfunctional amine is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5- Diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, Xylylenediamine, ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, n-phenyl-ethylenediamine, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine and 4-aminomethylpiperazine.
제 9항에 있어서,
상기 분리막 지지층은 폴리에테르설폰(PES), 폴리설폰(PSf), 폴리카보네이트(PC), 폴리에틸렌(PE), 폴리프로필렌(PP), 테트라플루오로에틸렌 (PTFE), 폴리비닐리덴 플루오라이드(PVDF), 폴리아크릴로니트릴(PAN), 셀룰로오스 아세테이트(CA) 및 셀룰로오스 트리아세테이트(CTA)로 이루어진 군에서 선택되는 하나 이상인 수처리용 분리막의 제조방법.
The method of claim 9,
The membrane support layer is polyethersulfone (PES), polysulfone (PSf), polycarbonate (PC), polyethylene (PE), polypropylene (PP), tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) , Polyacrylonitrile (PAN), cellulose acetate (CA) and cellulose triacetate (CTA) at least one selected from the group consisting of water treatment membrane.
제 9항에 있어서,
상기 폴리아마이드 고분자를 중합시키는 단계에서의 반응은 계면중합 반응인 수처리용 분리막의 제조방법.
The method of claim 9,
The reaction in the step of polymerizing the polyamide polymer is an interfacial polymerization reaction.
제 1항 내지 제8항 중 어느 한 항에 따른 수처리용 분리막을 사용하는 수처리 방법.A water treatment method using the separation membrane for water treatment according to any one of claims 1 to 8.
KR1020120015294A 2012-02-15 2012-02-15 Membrane comprising metal-organic framework for water treatment and manufacturing method of the same KR101327294B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120015294A KR101327294B1 (en) 2012-02-15 2012-02-15 Membrane comprising metal-organic framework for water treatment and manufacturing method of the same
PCT/KR2013/000470 WO2013122334A1 (en) 2012-02-15 2013-01-21 Membrane for water treatment comprising metal-organic framework and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120015294A KR101327294B1 (en) 2012-02-15 2012-02-15 Membrane comprising metal-organic framework for water treatment and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20130093997A KR20130093997A (en) 2013-08-23
KR101327294B1 true KR101327294B1 (en) 2013-11-11

Family

ID=48984416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120015294A KR101327294B1 (en) 2012-02-15 2012-02-15 Membrane comprising metal-organic framework for water treatment and manufacturing method of the same

Country Status (2)

Country Link
KR (1) KR101327294B1 (en)
WO (1) WO2013122334A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349807A (en) * 2017-07-20 2017-11-17 浙江工业大学 A kind of Fe(BTC)Big flux polyamide nano composite membrane inlayed and its production and use
KR20200126154A (en) * 2019-04-29 2020-11-06 서울대학교산학협력단 Separation membrane and method of manufacturing the same
KR20210017746A (en) * 2019-08-09 2021-02-17 한국과학기술연구원 Water treatment membrane comprising metal-organic framework and cellulose nanofiber composite and the preparation method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214069A1 (en) * 2013-09-26 2016-07-28 The Regents Of The University Of Colorado, A Body Corporate Novel nano-patterned thin film membranes and thin film composite membranes, and methods using same
KR101628883B1 (en) * 2013-10-29 2016-06-10 경희대학교 산학협력단 Separation membrane for water treatment and method for manufacturing the same
CN103877871B (en) * 2014-03-31 2016-01-06 大连欧科膜技术工程有限公司 A kind of composite separating film, its preparation method and application
CN104117290B (en) * 2014-07-03 2016-04-20 北京工业大学 A kind of preparation method of MOFs tubular type hybridized film of aromatics separation/alkane
CN104209022B (en) * 2014-09-03 2018-11-13 北京林业大学 A kind of high throughput polyamide/ZIF-8 Nano filtering composite membranes and preparation method thereof
CN104209021A (en) * 2014-09-03 2014-12-17 北京林业大学 Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material
CN105879715A (en) * 2014-12-16 2016-08-24 天津工业大学 Preparation method for metal organic skeleton film on polyether sulfone support
CN105148752A (en) * 2015-09-29 2015-12-16 北京林业大学 Polyamide reverse-osmosis composite membrane containing MIL type metal-organic framework material and preparation method thereof
KR102075181B1 (en) * 2015-12-23 2020-02-07 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
CN105536566B (en) * 2016-01-19 2017-12-12 长安大学 A kind of composite membrane for separating lithium ion and cobalt ions and preparation method thereof
CN105597577A (en) * 2016-02-24 2016-05-25 复旦大学 Positively-charged nanofiltration membrane based on metal organic skeleton/graphene oxide compound and preparing method thereof
WO2017184991A1 (en) 2016-04-22 2017-10-26 The Regents Of The University Of California Post-synthetically modified metal-organic frameworks for selective binding of heavy metal ions in water
CN105797595A (en) * 2016-05-13 2016-07-27 高学理 Preparation method and application of high-water-stability metal organic framework compound material
CN106110908A (en) * 2016-07-05 2016-11-16 浙江赛特膜技术有限公司 The preparation method of aromatic polyamides hydridization NF membrane
CN106731892B (en) * 2016-12-29 2019-06-04 中国科学院长春应用化学研究所 The amido modified MOF film and preparation method thereof that heavy metal ion high definition is removed in a kind of pair of blood
CN106731894B (en) * 2016-12-29 2019-06-04 中国科学院长春应用化学研究所 The carboxyl modified MOF film and preparation method thereof that heavy metal ion high definition is removed in a kind of pair of blood
KR101949369B1 (en) * 2017-10-25 2019-02-18 고려대학교 산학협력단 Method to Fabricate Thin Film Composite Membranes using Multi-structured Core-shell Materials
CN112755803B (en) * 2019-10-21 2022-12-13 中国石油化工股份有限公司 Method for preparing high-performance oil-water separation membrane
CN112691554B (en) * 2019-10-23 2023-05-30 中国石油化工股份有限公司 Method for preparing MOFs organic gas separation membrane
KR102281352B1 (en) * 2019-11-13 2021-07-23 한국생산기술연구원 Hybrid membrane for redox flow battery, redox flow battery and method of manufacturing same
CN111888944B (en) * 2020-09-02 2022-06-03 吉林建筑大学 Metal-organic framework material/film composite material and preparation method and application thereof
US11254691B1 (en) 2021-02-22 2022-02-22 Kuwait Institute For Scientific Research Method for making metal organic frameworks and thin film nanocomposite membranes using the same
CN113880317B (en) * 2021-11-17 2022-04-01 青岛延晖环保科技有限公司 Biological desalination method in seawater desalination process
CN115193256B (en) * 2022-08-08 2023-10-31 浙江工业大学 PE-based ZIFs/PA secondary sealed composite forward osmosis membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090110041A (en) * 2008-04-17 2009-10-21 한국화학연구원 Ultraporous organic-inorganic nanoporous composites formed by covalent bonding between inorganic-organic hybrids and mesocellular mesoporous materials
KR20100078741A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Organic-inorganic composite compositions, preparation methods thereof, water treatment membranes and water treatment modules comprising the same
KR20110019804A (en) * 2009-08-21 2011-03-02 한국화학연구원 Method for preparing organic-inorganic hybrid nanoporous material, organic-inorganic hybrid nanoporous materials obtained by said method and use thereof
US20110168560A1 (en) 2010-01-12 2011-07-14 International Business Machines Corporation Nanoporous Semi-Permeable Membrane and Methods for Fabricating the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090110041A (en) * 2008-04-17 2009-10-21 한국화학연구원 Ultraporous organic-inorganic nanoporous composites formed by covalent bonding between inorganic-organic hybrids and mesocellular mesoporous materials
KR20100078741A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Organic-inorganic composite compositions, preparation methods thereof, water treatment membranes and water treatment modules comprising the same
KR20110019804A (en) * 2009-08-21 2011-03-02 한국화학연구원 Method for preparing organic-inorganic hybrid nanoporous material, organic-inorganic hybrid nanoporous materials obtained by said method and use thereof
US20110168560A1 (en) 2010-01-12 2011-07-14 International Business Machines Corporation Nanoporous Semi-Permeable Membrane and Methods for Fabricating the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349807A (en) * 2017-07-20 2017-11-17 浙江工业大学 A kind of Fe(BTC)Big flux polyamide nano composite membrane inlayed and its production and use
KR20200126154A (en) * 2019-04-29 2020-11-06 서울대학교산학협력단 Separation membrane and method of manufacturing the same
KR102220190B1 (en) * 2019-04-29 2021-02-25 서울대학교산학협력단 Separation membrane and method of manufacturing the same
KR20210017746A (en) * 2019-08-09 2021-02-17 한국과학기술연구원 Water treatment membrane comprising metal-organic framework and cellulose nanofiber composite and the preparation method thereof
KR102217853B1 (en) * 2019-08-09 2021-02-19 한국과학기술연구원 Water treatment membrane comprising metal-organic framework and cellulose nanofiber composite and the preparation method thereof

Also Published As

Publication number Publication date
WO2013122334A1 (en) 2013-08-22
KR20130093997A (en) 2013-08-23

Similar Documents

Publication Publication Date Title
KR101327294B1 (en) Membrane comprising metal-organic framework for water treatment and manufacturing method of the same
JP6750017B2 (en) Permselective graphene oxide film
JP3006976B2 (en) Method for producing highly permeable composite reverse osmosis membrane
US9643128B2 (en) Thin film composite membrane derived from tetra-functional acyl halide monomer
US11207645B2 (en) Composite semipermeable membrane and spiral wound separation membrane element
KR20120140214A (en) Reveres osmosis membrane having properties of high salt rejection and high flux and manufacturing method thereof
JPH0810595A (en) Composite reverse osmosis membrane
KR101394317B1 (en) High flux reverse osmosis membrane comprising carbodiimide compound and manufacturing method thereof
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
CN107708846B (en) Water treatment membrane and method for manufacturing the same
KR102551961B1 (en) Composite semi-permeable membrane and manufacturing method thereof
WO2015118894A1 (en) Method for producing composite semipermeable membrane
KR20130076498A (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR20170107427A (en) Semipermeable composite membrane, spiral separation membrane element, and method for producing same
JP6521422B2 (en) Spiral type separation membrane element
KR20120077997A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JPH07171363A (en) Composite reverse osmosis membrane
US20230182084A1 (en) Composite reverse osmosis membrane and production method thereof
WO2016121599A1 (en) Ship transport method for spiral separation membrane element
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane
KR20220154659A (en) composite semi-permeable membrane
Lin Graphene Oxide-based Membrane for Liquid and Gas Separation
KR20200070653A (en) Method of manufacturing membrane, membrane and water treatment module
CN116785942A (en) Composite reverse osmosis membrane and method for manufacturing same
CN115646222A (en) Polyamide desalting membrane with high flux, high salt rejection and stain resistance as well as preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171101

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191028

Year of fee payment: 7