KR101316456B1 - Apparatus for oxidized layer of magnesium-based metal material - Google Patents
Apparatus for oxidized layer of magnesium-based metal material Download PDFInfo
- Publication number
- KR101316456B1 KR101316456B1 KR1020120053183A KR20120053183A KR101316456B1 KR 101316456 B1 KR101316456 B1 KR 101316456B1 KR 1020120053183 A KR1020120053183 A KR 1020120053183A KR 20120053183 A KR20120053183 A KR 20120053183A KR 101316456 B1 KR101316456 B1 KR 101316456B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnesium
- plasma
- oxide layer
- base material
- supply unit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 마그네슘계 금속재의 산화층 제조장치에 관한 것이다.
The present invention relates to an oxide layer production apparatus of a magnesium-based metal material.
마그네슘은 전자파 차폐성, 방진성, 치수안정성, 절삭가공성 등에 우수한 특성을 가진 친환경적 소재이다. 상온에서 압연가공이 어려운 마그네슘은 최근 가공성 확보에 대한 문제점이 극복되면서 그 활용처가 증가되고 있다. 특히, 자동차, 항공 및 선박 소재의 경량화 추세에 따라 마그네슘이나 마그네슘합금의 개발이 주목 받고 있다. 그러나, 기존의 마그네슘은 수분 및 염분에 의하여 부식이 가속화되어 내식성에 대한 심각한 문제점을 안고 있다.
Magnesium is an environmentally friendly material with excellent characteristics such as electromagnetic shielding, dustproofness, dimensional stability, and cutting processability. Magnesium, which is difficult to be rolled at room temperature, has recently been used in an increasing number of applications as the problem of securing workability has been overcome. In particular, the development of magnesium or magnesium alloys are attracting attention according to the light weight trend of automobile, aviation and marine materials. However, conventional magnesium has a serious problem of corrosion resistance due to accelerated corrosion by water and salt.
내식성을 향상하기 위한 마그네슘 표면처리 기술로는 대표적으로 크로메이트 처리법, 화성처리법, 양극 산화법(anodizing), 플라즈마 전해질 산화법(plasma electrolyte oxidation, PEO)등이 있다. 또한, 화성처리 기술은 공정이 까다롭고 품질이 낮다는 단점이 있다. 알루미늄 산화층 형성에 널리 사용되고 있는 양극 산화법은 마그네슘 표면에 산화층 형성시 치밀도가 떨어지며 기공이 생기는 문제점을 안고 있다.
Magnesium surface treatment techniques for improving the corrosion resistance are typically chromate treatment, chemical conversion treatment, anodizing, plasma electrolyte oxidation (PEO) and the like. In addition, chemical conversion treatment has a disadvantage in that the process is difficult and the quality is low. The anodic oxidation method, which is widely used for forming an aluminum oxide layer, has a problem that pores are generated when the density of oxide layer is formed on the magnesium surface.
예를 들어, 일반적으로 양극 산화법 또는 플라즈마 전해질 산화법을 이용하여 마그네슘계 금속의 표면에 산화층을 형성시킴으로써 내식성을 향상시키게 된다. 그러나, 상기에서 언급한 바와 같이, 양극 산화법을 이용하여 산화층을 형성시키는 경우에는 치밀하지 못한 산화층의 형성으로 인해 내식성이 떨어진다는 문제점이 있다.
For example, corrosion resistance is improved by forming an oxide layer on the surface of a magnesium metal using an anodization method or a plasma electrolyte oxidation method. However, as mentioned above, in the case of forming the oxide layer using the anodic oxidation method, there is a problem that corrosion resistance is poor due to the formation of a dense oxide layer.
최근 마그네슘 표면에 고전압을 걸어줌으로써 플라즈마를 발생시켜 보다 치밀한 산화층을 형성하는 플라즈마 전해질 산화법 기술이 제안되고 있다. 그러나, 플라즈마 전해질 산화법은 고전압을 요구하기 때문에 양산화에 어려움을 가지고 있을 뿐 아니라 균일한 산화층 형성이 어려워 산화층에 부식이 일어나는 문제점이 있다. 또한, 기존의 플라즈마 전해질 산화법은 습식 공정으로 폐수처리의 문제점을 가지고 있어 친환경적 표면처리 방법이 요구되는 실정이다.
Recently, a plasma electrolyte oxidation technique has been proposed to generate a more dense oxide layer by generating plasma by applying a high voltage to the magnesium surface. However, since the plasma electrolyte oxidation method requires a high voltage, not only does it have difficulty in mass production, but it is difficult to form a uniform oxide layer, which causes corrosion of the oxide layer. In addition, the conventional plasma electrolyte oxidation method has a problem of waste water treatment in a wet process, the situation is required for an environmentally friendly surface treatment method.
본 발명은 가스를 이용함으로써, 건식 공정으로 마그네슘 금속재의 표면에 산화층을 형성시킬 수 있는 제조장치를 제공하고자 한다.
The present invention is to provide a manufacturing apparatus capable of forming an oxide layer on the surface of a magnesium metal material by a dry process by using a gas.
본 발명의 일측면은 마그네슘계 모재에 플라즈마를 조사하여 산화층을 형성하는 마그네슘계 금속재의 산화층 제조장치에 있어서, 상기 마그네슘계 모재(600)가 놓여지는 챔버(300), 상기 마그네슘계 모재(600)에 플라즈마를 조사하는 플라즈마 발생부(400), 상기 플라즈마에 의해 상기 마그네슘계 모재의 표면에 아크가 발생하도록 상기 마그네슘계 모재에 음극을 가하는 음극 공급부(610) 및 상기 플라즈마 발생부(400)에 소스 가스를 공급하는 소스공급부(100)를 포함하는 마그네슘 금속재의 산화층 제조장치를 제공한다.
One aspect of the present invention is a magnesium-based metal oxide oxide layer manufacturing apparatus for forming an oxide layer by irradiating a plasma to the magnesium-based base material, the
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof will be more fully understood by reference to the following specific embodiments.
본 발명에 의하면 가스를 이용하여 마그네슘계 모재에 산화층을 형성시킴으로써, 마그네슘계 금속을 보호할 만한 두께로 층을 형성시킬 뿐만 아니라, 폐수가 발생하지 않아 친환경적으로 산화층을 형성시킬 수 있다.
According to the present invention, by forming an oxide layer on the magnesium-based base material by using a gas, not only the layer is formed to a thickness that protects the magnesium-based metal, but also no waste water is generated, thereby forming the oxide layer in an environmentally friendly manner.
도 1은 본 발명이 제안한 플라즈마 어레이 형태를 보여주는 사시도이다.
도 2의 (a)는 대기중에서 플라즈마를 조사할 경우, 플라즈마의 길이 및 폭을 나타낸 사시도이다.
도 2의 (b)는 챔버 안에서 고에너지 아크 플라즈마를 조사할 경우, 플라즈마의 길이 및 폭을 나타낸 사시도이다.
도 3은 본 발명이 제안한 장치의 일예를 나타낸 단면도이다.
도 4는 본 발명이 제안한 장치의 사시도이다.1 is a perspective view showing a plasma array form proposed by the present invention.
2A is a perspective view showing the length and width of the plasma when irradiating the plasma in the atmosphere.
Figure 2 (b) is a perspective view showing the length and width of the plasma when irradiating a high energy arc plasma in the chamber.
3 is a cross-sectional view showing an example of the device proposed by the present invention.
4 is a perspective view of the device proposed by the present invention.
전술한 바와 같이, 기존의 양극 산화법을 이용하여 마그네슘계 모재의 표면에 산화층을 형성시키는 방법은 산화층 형성 자체가 용이하지 않거나, 산화층이 치밀하지 못하여 내식성이 떨어지는 문제가 있다. 한편, 플라즈마 전해질 산화법을 이용하는 경우에는 치밀한 산화층을 형성하기 위해 고전압을 인가해야하며 처리속도가 떨어지는 단점을 안고 있다. 본 발명은 이러한 문제점을 해결하기 위해 안출된 것이다.
As described above, the method of forming the oxide layer on the surface of the magnesium-based base material by using the conventional anodizing method has a problem that the oxide layer formation itself is not easy or the oxide layer is not dense and the corrosion resistance is poor. On the other hand, in the case of using the plasma electrolyte oxidation method, a high voltage must be applied to form a dense oxide layer, and the processing speed is disadvantageous. The present invention has been made to solve this problem.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in this specification and claims should not be construed in a common or dictionary sense, and the inventors will be required to properly define the concepts of terms in order to best describe their invention. Based on the principle that it can, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서, 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해해야 한다.
Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, at the time of the present application, various alternatives that can be substituted for them It should be understood that there may be equivalents and variations.
이하, 본 발명의 일측면인 마그네슘계 금속재의 산화층 제조장치에 대하여 상세히 설명한다.
Hereinafter, an apparatus for producing an oxide layer of a magnesium metal material, which is one side of the present invention, will be described in detail.
본 발명의 일 실시 형태를 나타낸 도 3 및 4에 나타내었다. 이를 참고하여 본 발명 제조장치에 대해 상세히 설명한다.
3 and 4 show one embodiment of the present invention. This will be described in detail with respect to the manufacturing apparatus of the present invention.
본 발명은 마그네슘계 모재(600)를 수용하는 챔버(300), 상기 마그네슘계 모재(600)에 플라즈마(500)를 조사하는 플라즈마 발생부(400), 상기 플라즈마에 의해 상기 마그네슘계 모재의 표면에 아크가 발생하도록 상기 마그네슘계 모재에 음극을 가하는 음극 공급부(610), 상기 플라즈마 발생부(400)에 소스 가스를 공급하는 소스공급부(100) 및 플라즈마 발생부(400)와 챔버(300)의 온도를 유지시켜주는 온도유지라인(200)을 포함한다.
The present invention is a
본 발명의 제조장치는 마그네슘계 모재(600)를 수용하는 챔버(300)를 포함한다. 상기 챔버(300)는 마그네슘계 모재(600)를 수용하고, 산소와 플라즈마가 반응해서 산화층을 형성함에 있어서, 고온의 산소를 포함하는 역할을 한다. 또한, 챔버(300)내 산소 온도범위의 하한은 25℃를 초과하는 것이 바람직하며, 상한은 특별히 한정되지 않으나 마그네슘의 용융점인 650℃이하가 바람직하다. 보다 바람직하게는 100~500℃이다.
The manufacturing apparatus of the present invention includes a
더불어, 플라즈마는 플라즈마의 조사환경에 따라 플라즈마의 길이 및 폭이 변경된다. 플라즈마를 조사시 플라즈마의 조사에 방해가 되는 물질이 많이 존재하는 환경에 놓여 있을 경우에는 플라즈마의 조사 길이가 짧고 폭이 좁다. 반면에, 플라즈마의 조사에 방해가 되는 물질이 적게 존재하는 환경에 놓여 있을 경우에는 플라즈마의 조사 길이가 길고 폭이 넓다. 이는 플라즈마가 플라즈마 발생부에서 조사될 때, 플라즈마의 조사에 방해가 되는 물질(예를 들면, 공기)와 부딕치게 되면서 에너지를 빼앗겨 에너지 손실이 발생되어 이에 따라 플라즈마의 길이 및 폭이 변경된다. 도 2의 (a)에 나타난 바와 같이 대기압에서 플라즈마를 조사할 경우에 대기 중 공기입자와 플라즈마의 충돌에 의해 플라즈마의 에너지의 손질이 커짐에 따라 플라즈마의 조사 길이가 짧고 폭이 좁다. 반면에, 도 2의 (b)에 나타난 바와 같이 챔버와 같이 챔버안 유입 가스의 압력을 낮춤으로써 압력이 낮은 환경에서 플라즈마를 조사할 경우에는 플라즈마의 조사 길이가 길고 폭이 넓다. 이와 같은 방법으로 외부 압력 조절을 통하여 플라즈마 조사 길이 및 조사 폭을 자유롭게 제어할 수 있다.
In addition, the plasma is changed in length and width in accordance with the plasma irradiation environment. When the plasma is placed in an environment in which there are many substances that interfere with the irradiation of the plasma, the irradiation length of the plasma is short and narrow. On the other hand, when placed in an environment in which there are few substances that interfere with the irradiation of the plasma, the irradiation length of the plasma is long and wide. When the plasma is irradiated from the plasma generating unit, the plasma is absorbed with a substance (for example, air) that interferes with the irradiation of the plasma, and energy is lost by generating energy, thereby changing the length and width of the plasma. As shown in (a) of FIG. 2, when the plasma is irradiated at atmospheric pressure, the plasma irradiation length is shorter and narrower as the energy of the plasma increases due to the collision of air particles with the plasma. On the other hand, as shown in (b) of Figure 2 when the plasma is irradiated in a low pressure environment by lowering the pressure of the inlet gas in the chamber, such as the chamber, the irradiation length of the plasma is long and wide. In this way, the plasma irradiation length and the irradiation width can be freely controlled by adjusting the external pressure.
상기 제조장치는 상기 마그네슘계 모재(600)에 플라즈마(500)를 조사하는 플라즈마 발생부(400)를 포함한다. 소스공급부(100)로부터 유입되는 소스가스를 이용하여 플라즈마(500)를 발생시키고, 이를 마그네슘계 모재(600)에 조사하는 작용을 한다. 상기 플라즈마 발생부(400)로부터 조사되는 플라즈마는 챔버(300) 내부의 산소와 반응하여 마그네슘계 모재의 표면에 산화층을 형성한다. 상기 플라즈마 발생부는 도 4에 나타난 바와 같이 어레이 구조(410)를 갖는 것이 바람직하다. 상기 플라즈마 어레이 구조를 도 1에 자세히 나타내었다. 도 1에 나타난 바와 같이 플라즈마 발생부는 모재의 표면 골고루 플라즈마를 조사시키기 위해서 지그재그 형식의 어레이 구조를 가지는 것이 보다 바람직하다.
The manufacturing apparatus includes a
상기 제조장치는 상기 플라즈마 발생부(400)에서 플라즈마(500)를 조사시킬 수 있는 동력원 제공해 주는 소스공급부(100)를 포함한다. 상기 소스공급부(100)에서 공급되는 소스가스로는 질소, 산소, 공기가 사용될 수 있다. 상기 소스가스 중 질소를 이용하는 경우에는 플라즈마 발생부에서 발생된 플라즈마는 대기중의 산소원자 또는 산소를 이용하여 마그네슘계 모재의 표면에 산화층을 형성시킬 수 있다. 또한 상기 소스가스 중 산소 및 공기를 이용하는 경우에는 플라즈마 발생부에서 발생된 플라즈마는 질소와 마찬가지로 대기중의 산소원자 또는 산소를 이용할 뿐만 아니라, 발생된 플라즈마의 산소이온 및 산소라디컬도 이용하여 마그네슘계 모재의 표면에 산화층을 형성시킬 수 있다.
The manufacturing apparatus includes a
상기 제조장치는 상기 챔버(300)와 플라즈마 발생부(400)을 연결하는 고온 가스 공급부(200)를 포함할 수 있다. 상기 고온 가스 공급부(200)는 챔버(300) 내부의 고온 가스를 플라즈마 발생부(400)에 전달시켜준다. 이와 같이 고온 가스 공급부(200)를 통하여 전달된 고온 가스는 소스 공급부(100)에서 상온의 소스 가스가 공급될 때보다 고에너지 플라즈마를 효율적으로 발생시킬 수 있다.
The manufacturing apparatus may include a hot
또한, 고온 가스 공급부(200)를 이용하여 챔버안의 높은 온도의 가스를 활용할 수 있다. 상기 고온 가스 공급부(200)의 온도범위는 본 발명이 의도하고자 하는 목적을 만족시킬 수 있는 온도이면 가능하다. 고온의 하한은 25℃를 초과하는 것이 바람직하며, 상한은 특별히 한정되지 않는다. 다만, 고온의 상한은 본 발명에 적용되는 장치나 방법을 고려하여 결정될 수 있다.
In addition, the high temperature gas in the chamber may be utilized by using the hot
상기 제조장치는 상기 챔버(300)과 플라즈마 발생부(400)의 온도를 유지시켜주는 온도유지라인(200)을 포함할 수 있다. 상기 챔버(300)내부와 플라즈마 발생부(400)를 연결시켜 상기 챔버(300)내부와 플라즈마 발생부(400)의 온도를 고온으로 유지되어 에너지 효율을 높일 수 있다.
The manufacturing apparatus may include a
상기 제조장치는 플라즈마에 의해 상기 마그네슘계 모재(600)의 표면에 미세 아크(700)가 발생하도록 상기 마그네슘계 모재(600)에 음극을 가하는 음극 공급부(610)를 포함한다. 상기 음극공급부(610)는 마그네슘계 모재(600)에 음극을 가하여 플라즈마 발생부(400)의 노즐 입구에서 발생되는 미세 아크(700)을 모재의 표면에 형성시키게 함으로써, 플라즈마에서 조사되는 산소 이온 및 산소 라디컬이 마그네슘계 모재의 표면에 부딪히는 충격(bombardment)에 의해 열이 발생하게 되며 이렇게 발생된 열은 챔버내의 온도를 유지하는 열적 효과를 이용할 수 있다
The manufacturing apparatus includes a
또한, 플라즈마(500)에서 조사되는 산소 이온 및 산소 라디컬이 마그네슘계 모재의 표면에 심어주어(implantation) 빠른 시간 안에 마그네슘계 모재(600)를 보호할 만한 두께의 산화층을 형성시킬 수 있다.
In addition, oxygen ions and oxygen radicals irradiated from the
이때, 상기 마그네슘계 모재에 음극을 인가해주기 위한 방법은 특별히 한정하지는 않는다. 일 실시예로, 전류가 잘 흐르는 강판에 마그네슘계 모재를 놓아둔 후, 강판에 음극을 가해주면 강판의 전류가 마그네슘계 모재에 전도되어 마그네슘계 모재에 음극이 인가 등의 방식을 이용하여 마그네슘계 모재에 음극을 인가할 수 있다.
At this time, the method for applying the negative electrode to the magnesium base material is not particularly limited. In one embodiment, after placing the magnesium-based base material on the steel sheet flowing well, if a negative electrode is applied to the steel sheet, the current of the steel plate is conducted to the magnesium-based base material and the magnesium-based base material is applied to the magnesium-based base material. The negative electrode can be applied to the base material.
또한, 상기 음극 공급부(610)의 전압을 조절하여 산화층의 두께 및 복합층을 형성시킬 수 있다. 마그네슘계 모재에 음극을 변화시킴에 따라 상기 마그네슘계 모재의 표면의 전기장의 양이 변화되면서 조사되는 플라즈마의 온도 즉, 에너지가 바뀌게 되므로 이를 통하여 산화층의 두께 및 복합층을 형성시킬 수 있다.
In addition, the voltage of the
100: 소스 공급부
200: 고온 가스 공급부
300: 챔버
400: 플라즈마 발생부
410: 플라즈마 어레이
500: 플라즈마
600: 마그네슘계 모재
610: 음극 공급부
700: 미세아크100: source supply
200: hot gas supply unit
300: chamber
400: plasma generating unit
410: plasma array
500: plasma
600: magnesium base material
610: cathode supply
700: fine arc
Claims (6)
상기 마그네슘계 모재를 수용하는 챔버;
상기 마그네슘계 모재에 조사되는 플라즈마를 발생시키는 플라즈마 발생부;
상기 플라즈마에 의해 상기 마그네슘계 모재의 표면에 아크가 발생하도록 상기 마그네슘계 모재에 음극을 가하는 음극 공급부; 및
상기 플라즈마 발생부에 소스 가스를 공급하는 소스공급부를 포함하는 마그네슘계 금속재의 산화층 제조장치.
An apparatus for producing an oxide layer of a magnesium-based metal material which forms an oxide layer by irradiating a plasma to a magnesium-based base material,
A chamber accommodating the magnesium base material;
A plasma generator for generating a plasma irradiated on the magnesium base material;
A negative electrode supply unit which applies a negative electrode to the magnesium-based base material such that an arc is generated on the surface of the magnesium-based base material by the plasma; And
Magnesium-based metal oxide manufacturing apparatus comprising a source supply for supplying a source gas to the plasma generating unit.
상기 플라즈마 발생부는 어레이 형태를 이루는 마그네슘계 금속재의 산화층 제조장치.
The method of claim 1,
The plasma generator is an oxide layer manufacturing apparatus of a magnesium-based metal material in the form of an array.
상기 소스공급부는 플라즈마 발생부 상부에 위치하는 마그네슘계 금속재의 산화층 제조장치.
The method of claim 1,
The source supply unit is an oxide layer manufacturing apparatus of a magnesium-based metal material located on the plasma generating unit.
상기 음극 공급부는 챔버 외부에 위치하는 마그네슘계 금속재의 산화층 제조장치.
The method of claim 1,
The cathode supply unit is an oxide layer manufacturing apparatus of a magnesium-based metal material located outside the chamber.
상기 챔버와 플라즈마 발생부를 연결하고, 챔버 내부의 고온 가스를 플라즈마 발생부에 공급시켜주는 고온 가스 공급부를 포함하는 마그네슘계 금속재의 산화층 제조장치.
The method of claim 1,
An apparatus for producing an oxide layer of a magnesium-based metal material comprising a hot gas supply unit connecting the chamber to a plasma generator and supplying a hot gas into the plasma generator.
상기 소스가스는 질소, 산소 및 공기 중 1종 이상을 포함하는 마그네슘계 금속재의 산화층 제조장치.The method of claim 1,
The source gas is an oxide layer manufacturing apparatus of a magnesium-based metal material containing at least one of nitrogen, oxygen and air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120053183A KR101316456B1 (en) | 2012-05-18 | 2012-05-18 | Apparatus for oxidized layer of magnesium-based metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120053183A KR101316456B1 (en) | 2012-05-18 | 2012-05-18 | Apparatus for oxidized layer of magnesium-based metal material |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101316456B1 true KR101316456B1 (en) | 2013-10-08 |
Family
ID=49638051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120053183A KR101316456B1 (en) | 2012-05-18 | 2012-05-18 | Apparatus for oxidized layer of magnesium-based metal material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101316456B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0599730A2 (en) | 1992-11-24 | 1994-06-01 | Sumitomo Chemical Company, Limited | Semiconductor device and method of producing the same |
JP2000216154A (en) | 1999-01-25 | 2000-08-04 | Sony Corp | Forming method of oxide film and manufacture of p-type semiconductor device |
KR20090104596A (en) * | 2008-03-31 | 2009-10-06 | 재단법인 포항산업과학연구원 | Method of treating a surface of a magnesium member and a magensium member having a sruface treated by the same |
KR101056199B1 (en) | 2006-08-28 | 2011-08-11 | 도쿄엘렉트론가부시키가이샤 | Plasma oxidation treatment method |
-
2012
- 2012-05-18 KR KR1020120053183A patent/KR101316456B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0599730A2 (en) | 1992-11-24 | 1994-06-01 | Sumitomo Chemical Company, Limited | Semiconductor device and method of producing the same |
JP2000216154A (en) | 1999-01-25 | 2000-08-04 | Sony Corp | Forming method of oxide film and manufacture of p-type semiconductor device |
KR101056199B1 (en) | 2006-08-28 | 2011-08-11 | 도쿄엘렉트론가부시키가이샤 | Plasma oxidation treatment method |
KR20090104596A (en) * | 2008-03-31 | 2009-10-06 | 재단법인 포항산업과학연구원 | Method of treating a surface of a magnesium member and a magensium member having a sruface treated by the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy | |
EP3952618B1 (en) | Anion generator | |
Pogrebnyak et al. | Electrolytic plasma processing for plating coatings and treating metals and alloys | |
JP2009054557A (en) | In-liquid plasma generating device | |
JP6625728B2 (en) | Plasma generator | |
Ayieko et al. | Controlled texturing of aluminum sheet for solar energy applications | |
Laleh et al. | Formation of a compact oxide layer on AZ91D magnesium alloy by microarc oxidation via addition of cerium chloride into the MAO electrolyte | |
RU2422555C1 (en) | Procedure for electric-explosive application of metal coating on contact surfaces | |
CN106381460B (en) | The anti-corrosion method and MgCO of a kind of magnesium and its alloy3Application of the layer as etch resistant layer | |
Wang et al. | Growth methods of PEO coatings on 7075 aluminum alloy at two cathodic current densities | |
KR101316456B1 (en) | Apparatus for oxidized layer of magnesium-based metal material | |
Khasanah et al. | Large-area suspended graphene as a laser target to produce an energetic ion beam | |
CN103572348A (en) | Aluminum section surface micro-arc oxidation treatment method | |
KR101267023B1 (en) | Metal manifold comprising plasma electronic oxidation layer | |
KR101316504B1 (en) | Manifacturing for oxidized layer of magnesium-based metal material | |
KR101396009B1 (en) | Fuel cell bipolar plate for transporting and manufacturing method thereof | |
KR101327825B1 (en) | Surface treatment method of Aluminium using plasma | |
JP6415133B2 (en) | Method for producing conductive diamond electrode | |
KR101316464B1 (en) | Manifacturing for oxidized layer of magnesium-based metal material | |
JP2010270364A (en) | Ozone-generating method and ozone-generating apparatus | |
WO2006113463A3 (en) | Apparatus and method for the controllable production of hydrogen at an accelerated rate | |
Kochergin et al. | Bipolar Method of Plasma Electrochemical Synthesis of Carbon Nanostructures Decorated with MnO x | |
KR101316251B1 (en) | Manifacturing for oxidized layer of magnesium-based metal material | |
CN104616898A (en) | Method for improving hole production performance of aluminum foil through additional annealing treatment | |
CN111826606A (en) | Aluminum and aluminum alloy surface plasma oxidation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |