KR101315002B1 - Method for manufacturing abzo transparent conductive oxide - Google Patents

Method for manufacturing abzo transparent conductive oxide Download PDF

Info

Publication number
KR101315002B1
KR101315002B1 KR1020130095132A KR20130095132A KR101315002B1 KR 101315002 B1 KR101315002 B1 KR 101315002B1 KR 1020130095132 A KR1020130095132 A KR 1020130095132A KR 20130095132 A KR20130095132 A KR 20130095132A KR 101315002 B1 KR101315002 B1 KR 101315002B1
Authority
KR
South Korea
Prior art keywords
boron
layer
transparent conductive
abzo
soda lime
Prior art date
Application number
KR1020130095132A
Other languages
Korean (ko)
Inventor
권성구
Original Assignee
군산대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 군산대학교산학협력단 filed Critical 군산대학교산학협력단
Application granted granted Critical
Publication of KR101315002B1 publication Critical patent/KR101315002B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]

Abstract

PURPOSE: A method for manufacturing an ABZO transparent conductive layer is provided to improve electrical conductivity by a boron vapor diffusion process. CONSTITUTION: Boron is thermally diffused on a soda lime glass substrate (100). The boron is diffused on the soda lime glass substrate with vapor. An AZO layer (200) is formed by diffusion process. The AZO layer is annealed. A boron silicated glass layer (150) is formed on the soda lime glass substrate. [Reference numerals] (100) Soda lime glass substrate; (150) Form a BGS layer; (AA) Deposit an AZO layer (200); (BB) Annealing: boron diffusion

Description

ABZO 투명 전도막의 제작방법{METHOD FOR MANUFACTURING ABZO TRANSPARENT CONDUCTIVE OXIDE}Production method of AHO transparent conductive film {METHOD FOR MANUFACTURING ABZO TRANSPARENT CONDUCTIVE OXIDE}

본 발명은 ABZO 투명전도막의 제조방법에 관한 것이다.
The present invention relates to a method for producing an ABZO transparent conductive film.

투명전도막은 LCD, OLED, 태양전지, LED, 각종 터치 패널 등 많은 전자소자에 사용되고 있다. 지금까지 투명전도막의 주류를 이루는 물질은 ITO(Indium tin oxide)로 투명도와 전도도에 있어 가장 만족할 만한 성능을 나타내고 있다. 그러나, In은 희토류 금속으로 매장량이 적어 귀하고 값이 비싸, 점점 사용량이 늘어나는 투명전도막에 대하여 ITO를 대체할 물질을 찾는 연구가 활발히 진행되고 있다. ITO를 대체할 물질로 유력하게 제안되는 것은 AZO이다. ZnO에 Al을 첨가한 AZO는 희토류를 사용하지 않아 ITO와 같은 부담이 없으나, 문제는 전도도가 ITO에 비해 떨어진다는 점이다. 이와 같은 문제점을 해결하기 위해, AZO에 추가적으로 In산화물이나 붕소(B)를 도핑하여 투명 전도막을 형성하는 시도가 이루어지고 있다. 그에 따라 붕소를 ZnO 또는 SnO2 타겟에 도핑(doping)시켜 상기 타겟을 스퍼터링 하여 투명전도막을 형성하는 방법 등도 시도되고 있다. Transparent conductive films are used in many electronic devices such as LCDs, OLEDs, solar cells, LEDs, and various touch panels. Until now, the main material of transparent conductive film is indium tin oxide (ITO), which has the most satisfactory performance in transparency and conductivity. However, In is a rare earth metal, which is rare and valuable because of its low reserves. Therefore, research is actively being conducted to find a substitute material for ITO for an increasingly conductive transparent conductive film. A promising alternative to ITO is AZO. AZO with Al added to ZnO does not have the same burden as ITO because it does not use rare earth, but the problem is that the conductivity is lower than that of ITO. In order to solve this problem, an attempt has been made to form a transparent conductive film by doping In oxide or boron (B) in addition to AZO. Accordingly, a method of forming a transparent conductive film by sputtering the target by doping boron to a ZnO or SnO 2 target has also been attempted.

산화아연은 별도의 도핑이 없어도 내부 격자결함에 의해 n형의 반도체 특성을 나타내나, 이러한 결함들은 농도제어가 용이하지 않고, 외부 환경(습도, 온도 등) 의 변화에 민감하게 반응하기 때문에, 특성에 대한 신뢰성이 낮다. 따라서, 외부에서 불순물을 강제적으로 주입하여 전도도의 제어가 가능하며, 내환경성이 우수한 ZnO 기반의 투명전도소재를 개발하고자 하는 연구가 활발히 진행되어 오고 있다. Zinc oxide exhibits n-type semiconductor characteristics due to internal lattice defects without additional doping, but these defects are not easy to control the concentration and are sensitive to changes in the external environment (humidity, temperature, etc.). Low reliability on Therefore, research has been actively conducted to develop ZnO-based transparent conductive materials which can control conductivity by forcibly injecting impurities from the outside and have excellent environmental resistance.

ZnO는 전기음성도 차이가 크기 때문에 이온결정의 특성을 보이고 있다. Zn(II)은 2가 양이온의 특성을 가지며, O는 2가 음이온의 성질을 가짐에 따라 이온결합특성이 매우강하다. 많이 사용되는 n형 도펀트와 이들의 크기를 표 1 (Zn 및 n형 dopant 들의 원자반경 및 이온반경)에 나타내었다.ZnO has the characteristics of ion crystals because of the large difference in electronegativity. Zn (II) has the properties of divalent cations, and O has the properties of divalent anions, so the ionic bonding properties are very strong. Popular n-type dopants and their sizes are shown in Table 1 (atomic radius and ion radius of Zn and n-type dopants).

원자반지름(nm)Atomic radius (nm) 이온반지름(nm)Ion radius (nm) 4배위Quadruple BB 0.0870.087 0.0250.025 CC 0.0670.067 0.0290.029 ZnZn 0.1420.142 0.0740.074 AlAl 0.1180.118 0.0530.053 GaGa 0.1360.136 0.0610.061 InIn 0.1560.156 0.0760.076 OO 0.0480.048 0.1240.124

Zn2+대신에 n형 도펀트인 3가의 B3+, Al3+, Ga3+, In3+등의 이온을 많이 친환하면 전기 운반체인 전자의 밀도가 증가하여 전기전도도가 향상된다. 충분한 양의 도펀트를 치환하기 위한 요건으로는 Zn2+와 다른 치환이온간의 크기 차이가 15% 이내에 들어야 하며, 그렇지 않을 경우에는 결정구조가 붕괴되기 때문에 충분한 양을 치환할 수 없게 된다. 아연이온과 붕소이온간의 크기 차이는 약 66 % 이기 때문에 약주 극소량의 치환만이 가능하며, 따라서 전기전도도의 향상이 제한된다. 붕소가 치환된 BZO는 대개 비저항이 가장 우수한 경우에도 1x10-3 Ω-cm 정도이며, 전송자 밀도가 1020 /cm3 이하인 경우가 대부분인데, 이는 크기 차이가 매우 크기 때문에 치환될 수 있는 B의 양이 제한되기 때문이다.If much eco-friendly ions, such as Zn is trivalent n-type dopant in place of 2+ B 3+, Al 3+, Ga 3+, In 3+ have an electrical conductivity is improved by the density of the electric vehicle increases e. The requirement for substituting a sufficient amount of dopant is that the size difference between Zn 2+ and other substitution ions must be within 15%, otherwise the crystal structure will collapse, making it impossible to substitute a sufficient amount. Since the difference in size between zinc ions and boron ions is about 66%, only a small amount of chemicals can be substituted, thus improving the electrical conductivity. Boron-substituted BZO is usually about 1x10 -3 Ω-cm even at the best resistivity, and the carrier density is usually less than 10 20 / cm 3 , which is a large difference in the amount of B that can be substituted. Because it is limited.

도펀트로 가장 많이 활용되는 Al3+의 경우에 이온반경에 따른 크기차이는 약 28%로 붕소에 비하여 크게 개선되었지만 크기 차이가 15% 이상이기 때문에 치환될 수 있는 Al의 양 역시 제한되기 때문에 대개 비저항이 2~5x10-4 Ω-cm 수준이며, 전송자 밀도 또한 1~5x1020 /cm3 수준으로 붕소에 비하여 5~10배 정도 개선되지만 ITO 대비 다소 부족한 편이다. 크기 면에서 가장 바람직한 도펀트는 In3+와 Ga3+로 크기 차이는 각각 2.7% 와 17 % 로 In은 상당히 많은 양의 주입이 가능하며, Ga 의 경우에도 수%의 치환이 가능할 것으로 판단되나, 원료의 비용이 높다는 단점이 존재한다. 따라서, Al이 치환된 AZO에 기판표면에 있는 붕소의 농도구배를 이용한 열확산을 통하여 추가적으로 이온 주입이 가능하다면 저비용으로 추가적인 전기전도도 향상이 가능할 것으로 기대된다. In the case of Al 3+ which is most commonly used as a dopant, the size difference according to the ion radius is about 28%, which is greatly improved compared to boron, but since the difference in size is more than 15%, the amount of Al that can be substituted is also limited. It is 2-5x10 -4 Ω-cm level and the transmitter density is 1-5x10 20 / cm 3 level, which is 5 ~ 10 times better than that of boron, but it is somewhat insufficient compared to ITO. In terms of size, the most preferable dopants are In 3+ and Ga 3+ , and the difference in size is 2.7% and 17%, respectively, and In can be injected in a large amount. The disadvantage is the high cost of the raw materials. Therefore, if the ion can be additionally implanted through thermal diffusion using the concentration gradient of boron on the surface of the Al-substituted AZO, it is expected that further electrical conductivity can be improved at low cost.

이와 같은 원리로 AZO에 B를 도핑 한 ABZO로 된 투명전도막의 제조는 제조공정이 간편할수록, 비용이 적게 들수록 그리고 전기전도도가 높을수록 시장성이 좋아진다.
With this principle, the manufacturing of ABZO-doped transparent conductive film doped with B in AZO is more marketable as the manufacturing process is simpler, the cost is lower, and the electrical conductivity is higher.

따라서 본 발명의 목적은 ITO를 대체할 수 있는 ABZO로 된 투명전도막을 간편하고 저비용으로 제작할 수 있는 새로운 ABZO 투명전도막 제조방법을 제공하고자 함이다.
Accordingly, an object of the present invention is to provide a new method for manufacturing a transparent ABZO transparent conductive film that can be easily and low-cost manufacturing a transparent conductive film made of ABZO to replace ITO.

그에 따라 본 발명은, 소다 라임 유리기판에 붕소를 열 확산 또는 증기 확산시킨 후, AZO층을 형성하고, 이를 어닐링 하여 AZO층에 붕소가 확산되게 하여 ABZO로 된 투명전도막 기판 제작방법을 제공한다.Accordingly, the present invention provides a method for manufacturing a transparent conductive film substrate made of ABZO by thermally diffusing or vapor diffusing boron on a soda lime glass substrate, forming an AZO layer, and annealing the boron to diffuse the boron in the AZO layer. .

또한, 본 발명은, 소다 라임 유리기판에 BSG(Boron Silicated Glass)층을 형성하고, 그 위에 AZO층을 형성하고, 이를 어닐링 하여 AZO층에 붕소가 확산 되게 하여 ABZO로 된 투명전도막 기판 제작방법을 제공한다.In addition, the present invention is to form a BSG (Boron Silicated Glass) layer on a soda lime glass substrate, to form an AZO layer thereon, to anneal it to diffuse the boron in the AZO layer to produce a transparent conductive film substrate of ABZO To provide.

또한, 본 발명은, 상기 투명전도막 기판 제작 방법에 있어서, 어닐링 온도는 200 내지 700 ℃로 하는 투명전도막 기판 제작 방법을 제공한다.In addition, the present invention provides a method for producing a transparent conductive film substrate in which the annealing temperature is 200 to 700 ° C in the method for producing a transparent conductive film substrate.

또한, 본 발명은, 화학 기상 증착법을 사용하여, 기판 위에 ZnO 층을 형성함과 동시에 Al과 B를 동시 도핑 하여 ABZO로 된 투명전도막 기판 제작 방법을 제공한다.
In addition, the present invention provides a method for producing a transparent conductive film substrate made of ABZO by simultaneously doping Al and B while forming a ZnO layer on a substrate using chemical vapor deposition.

본 발명에 따르면, 저렴한 소다 라임 유리기판 상에 붕소를 확산시킨 후 AZO 층을 형성하고, 이것을 어닐링 하여 AZO층에 붕소를 확산시키는 것으로 ABZO 투명전도막을 형성함으로써 전기전도도를 AZO 에 비하여 크게 개선하면서도 투명도 또한 높게 유지되는 투명전도막 기판을 간단하고도 저비용 공정으로 제조할 수 있다.
According to the present invention, the boron is diffused on an inexpensive soda-lime glass substrate to form an AZO layer, and the annealing is performed to diffuse boron into the AZO layer, thereby forming an ABZO transparent conductive film, thereby greatly improving electrical conductivity compared to AZO, while improving transparency. In addition, the transparent conductive film substrate maintained at a high level can be manufactured in a simple and low cost process.

도 1은 본 발명의 바람직한 일 실시예에 따라 붕소 기상 확산을 이용한 ABZO 투명전도막의 제조방법을 나타내는 모식도이다.
도 2는 본 발명의 바람직한 또 다른 일 실시예에 따라 BSG층과 AZO층을 이용한 ABZO 투명전도막의 제조방법을 나타내는 모식도이다. BSG층 내의 B의 함량은 10~18% 인 경우가 전기전도도 향상에 유리한 것으로 나타났다.
도 3는 본 발명의 바람직한 또 다른 일 실시예에 따라 CVD를 이용한 ABZO 투명전도막의 제조방법을 나타내는 모식도이다.
1 is a schematic diagram showing a method for manufacturing an ABZO transparent conductive film using boron vapor phase diffusion according to an embodiment of the present invention.
2 is a schematic diagram showing a method of manufacturing an ABZO transparent conductive film using a BSG layer and an AZO layer according to another preferred embodiment of the present invention. The content of B in the BSG layer was found to be 10 to 18% to improve the electrical conductivity.
3 is a schematic diagram showing a method of manufacturing an ABZO transparent conductive film using CVD according to another preferred embodiment of the present invention.

이하, 본 발명의 바람직한 실시예에 대하여 첨부도면을 참조하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 소다 라임 유리기판(100)에 ABZO 투명전도막을 형성하는 방법을 나타낸다. 소다 라임 유리기판(100)은 디스플레이용으로 널리 사용되고 있는 저가 유리기판이다. 소다 라임 유리기판(100)에 먼저 붕소를 확산 주입시킨다. 붕소 확산 주입은 소다라임 유리기판(100)을 챔버에 넣고 붕소 분위기로 처리하는 기상확산(Vapor Diffusion) 또는 붕소 분위기를 만들어 줌과 동시에 열처리하는 열 확산으로 할 수 있다. 챔버 내를 저 진공화한 후, 붕소분압을 조절하여 분위기의 압력을 적절하게 조절하여 실시할 수 있으며, 열 확산 온도는 200 내지 600℃ 정도로 실시할 수 있다. 이와 같은 붕소 확산 단계를 통해, 소다 라임 유리기판(100) 표면에는 붕소가 침투하게 된다. 1 illustrates a method of forming an ABZO transparent conductive film on a soda lime glass substrate 100. Soda lime glass substrate 100 is a low-cost glass substrate widely used for display. Boron is first diffused into the soda lime glass substrate 100. The boron diffusion implantation may be performed by placing a soda-lime glass substrate 100 in a chamber and forming a vapor diffusion or boron atmosphere that is treated with a boron atmosphere and heat treatment simultaneously with heat treatment. After the chamber is low vacuumed, the boron partial pressure may be adjusted to appropriately control the pressure of the atmosphere, and the heat diffusion temperature may be performed at about 200 to 600 ° C. Through such a boron diffusion step, boron penetrates into the surface of the soda lime glass substrate 100.

다음, 붕소가 주입된 소다 라임 유리기판(100) 위에 AZO층을 형성한다. AZO층의 형성은 Al을 ZnO층에 도핑 하여 만드는 것으로, 바람직하게는 CVD 공정을 이용한다. 스퍼터링 등의 다른 방법을 이용할 수도 있으나 양산성을 고려할 때 CVD가 유리하다.Next, an AZO layer is formed on the soda lime glass substrate 100 into which boron is injected. The formation of the AZO layer is made by doping Al to the ZnO layer, preferably using a CVD process. Other methods such as sputtering may also be used, but CVD is advantageous when considering mass productivity.

다음, AZO층(200)이 형성된 소다 라임 유리기판(100)을 챔버에서 200 내지 700℃, 바람직하게는, 400 내지 600 ℃로 어닐링한다. 이와 같은 어닐링 과정에서 앞서 소다 라임 유리기판(100) 표면에 확산 주입된 붕소가 AZO층으로 확산 되어 궁극적으로 ABZO(210) 투명전도막을 형성하게 된다. 본 공정은 매우 간편하고 비용도 저비용으로 실시할 수 있어 양산에 매우 유리하다.Next, the soda lime glass substrate 100 on which the AZO layer 200 is formed is annealed at 200 to 700 ° C., preferably 400 to 600 ° C. in the chamber. In the annealing process, the boron diffused on the surface of the soda lime glass substrate 100 is diffused into the AZO layer, thereby ultimately forming the ABZO 210 transparent conductive film. This process is very simple and can be carried out at low cost, which is very advantageous for mass production.

도 2는 또 다른 실시예로서, 소다라임 유리기판(100)에 BSG(Boro-Silicated Glass)층(150)을 PECVD 공정기술을 이용하여 증착한다. 이때 BSG내의 Boron의 함량을 20% 이내로 조절하는 것이 가능하다. 바람직하게는 B의 함량을 2~10 %로 조정할 경우에 B의 확산량이 적당하여 전기전도도 향상에 가장 유리한 것으로 나타났다. 일단 BSG를 증착한 기판 상에 AZO층(200)을 형성한 후, 어닐링하여 BSG(150)층에 있는 붕소를 AZO층(200)으로 확산시켜 AZO층을 ABZO(210)층으로 변화시킨다. 상기에서 BSG(150)층의 형성은 기존의 어떠한 방법으로든 가능하나, 바람직하게는 PECVD법을 사용할 수 있다. 붕소 확산을 위한 어닐링 온도는 200 내지 700℃, 바람직하게는, 400 내지 600 ℃로 한다. FIG. 2 illustrates another example of depositing a BSG (Boro-Silicated Glass) layer 150 on a soda-lime glass substrate 100 using a PECVD process. At this time, it is possible to adjust the content of Boron in the BSG within 20%. Preferably, when the amount of B is adjusted to 2 to 10%, the amount of diffusion of B is appropriate, which is most advantageous for improving the electrical conductivity. Once the AZO layer 200 is formed on the substrate on which the BSG is deposited, annealing is performed to diffuse boron in the BSG 150 layer into the AZO layer 200 to change the AZO layer to the ABZO 210 layer. The BSG 150 layer may be formed by any conventional method, but preferably, PECVD may be used. The annealing temperature for boron diffusion is 200 to 700 ° C, preferably 400 to 600 ° C.

한편, 도 3과 같이 소다 라임 유리기판(100)에 CVD법으로 ZnO에 Al과 B를 동시에 도핑 하여 ABZO층(210)을 형성할 수 있다. Meanwhile, as illustrated in FIG. 3, the ABZO layer 210 may be formed by simultaneously doping ZnO with Al and B on the soda lime glass substrate 100 by CVD.

붕소가 도핑 된 ABZO층(210)은 응력에 의한 막 손상의 우려가 적어 충분한 양의 Al을 주입할 수 있어 전기전도도를 향상시키면서도 붕소로 인한 광 투과도 또한 여전히 우수하게 유지된다. The boron-doped ABZO layer 210 is less susceptible to damage to the film due to stress, so that a sufficient amount of Al can be injected, thereby improving electrical conductivity while maintaining excellent light transmission due to boron.

상기 실시예들에서 ABZO(210)층의 두께는 0.1μm 내지 2μm 정도로 할 수 있고, 면저항이 5 내지 10 Ω/□로 특정 응용분야 (태양전지, 터치 패드 등)에서는 ITO를 대체할만한 성능수준을 나타내었다.
In the above embodiments, the thickness of the ABZO 210 layer may be about 0.1 μm to 2 μm, and the sheet resistance is 5 to 10 Ω / □, which may replace the ITO in a specific application (solar cell, touch pad, etc.). Indicated.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.
It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

100: 소다 라임 유리기판
150: BSG
200: AZO층
210: ABZO
100: soda lime glass substrate
150: BSG
200: AZO layer
210: ABZO

Claims (6)

소다 라임 유리기판에 붕소를 열 확산 또는 증기 확산시킨 후, AZO층을 형성하고, 이를 어닐링 하여 AZO층에 붕소가 확산 되게 하여 ABZO로 된 투명전도막 기판 제작 방법.A method of manufacturing a transparent conductive film substrate made of ABZO by thermally diffusing or vapor diffusing boron on a soda lime glass substrate, forming an AZO layer, and annealing the boron to diffuse the boron in the AZO layer. 소다 라임 유리기판에 BSG(Boron Silicated Glass)층을 형성하고, 그 위에 AZO층을 형성하고, 이를 어닐링 하여 AZO층에 붕소가 확산 되게 하여 ABZO로 된 투명전도막 기판 제작 방법.A method of manufacturing a transparent conductive film substrate made of ABZO by forming a BSG (Boron Silicated Glass) layer on a soda lime glass substrate, forming an AZO layer thereon, and annealing the boron to diffuse the boron in the AZO layer. 제1항 또는 제2항에 있어서, 어닐링 온도는 200 내지 700 ℃로 하는 투명전도막 기판 제작 방법.The method for producing a transparent conductive film substrate according to claim 1 or 2, wherein the annealing temperature is 200 to 700 ° C. 화학 기상 증착법을 사용하여, 소다 라임 유리 기판 위에 ZnO 층을 형성함과 동시에 Al과 B를 동시 도핑 하여 ABZO층을 형성하는 투명전도막 기판 제작 방법.A method of fabricating a transparent conductive film substrate using a chemical vapor deposition method to form a ZnO layer on a soda lime glass substrate and simultaneously doping Al and B to form an ABZO layer. 제2항에 있어서, 소다라임 기판 상에 증착된 BSG층에 포함된 붕소의 농도가 1 내지 20 %인 것을 특징으로 하는 투명전도막 기판 제작 방법.The method of claim 2, wherein the concentration of boron contained in the BSG layer deposited on the soda lime substrate is 1 to 20%. 제 5항에서, 소다라임 기판 상에 증착된 BSG층에 포함된 붕소의 농도가 2 내지 10 %인 것을 특징으로 하는 투명전도막 기판 제작 방법.The method of claim 5, wherein the concentration of boron contained in the BSG layer deposited on the soda lime substrate is 2 to 10%.
KR1020130095132A 2013-04-05 2013-08-12 Method for manufacturing abzo transparent conductive oxide KR101315002B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130037423 2013-04-05
KR20130037423 2013-04-05

Publications (1)

Publication Number Publication Date
KR101315002B1 true KR101315002B1 (en) 2013-10-04

Family

ID=49637746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130095132A KR101315002B1 (en) 2013-04-05 2013-08-12 Method for manufacturing abzo transparent conductive oxide

Country Status (1)

Country Link
KR (1) KR101315002B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157744A (en) * 2021-05-21 2022-11-29 청주대학교 산학협력단 Method for manufacturing 3-dimensional transparent conducting thin film having low-resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090101571A (en) * 2008-03-24 2009-09-29 성균관대학교산학협력단 Boron-doped zinc oxide based transparent conducting film and manufacturing method of thereof
KR100979483B1 (en) 2008-04-24 2010-09-03 한국과학기술연구원 Transparent conducting thin films consisting of zinc oxide and fabricating method for the same
JP4540311B2 (en) 2003-06-26 2010-09-08 ジオマテック株式会社 Transparent conductive film and method for producing the same
KR20120071100A (en) * 2010-12-22 2012-07-02 서울대학교산학협력단 Method for fabricating transparent conductive film and transparent conductive film by thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540311B2 (en) 2003-06-26 2010-09-08 ジオマテック株式会社 Transparent conductive film and method for producing the same
KR20090101571A (en) * 2008-03-24 2009-09-29 성균관대학교산학협력단 Boron-doped zinc oxide based transparent conducting film and manufacturing method of thereof
KR100979483B1 (en) 2008-04-24 2010-09-03 한국과학기술연구원 Transparent conducting thin films consisting of zinc oxide and fabricating method for the same
KR20120071100A (en) * 2010-12-22 2012-07-02 서울대학교산학협력단 Method for fabricating transparent conductive film and transparent conductive film by thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220157744A (en) * 2021-05-21 2022-11-29 청주대학교 산학협력단 Method for manufacturing 3-dimensional transparent conducting thin film having low-resistance
KR102551823B1 (en) * 2021-05-21 2023-07-05 청주대학교 산학협력단 Method for manufacturing 3-dimensional transparent conducting thin film having low-resistance

Similar Documents

Publication Publication Date Title
KR20100007605A (en) Conductive laminate and manufacturing method thereof
Tutsch et al. The sputter deposition of broadband transparent and highly conductive cerium and hydrogen co‐doped indium oxide and its transfer to silicon heterojunction solar cells
US20150279498A1 (en) Transparent conductive thin film electrodes, electronic devices and methods of producing the same
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
CN103779425A (en) Preparing method for indium gallium zinc oxide semi-conductor film
Li et al. Study on the hydrogen doped indium oxide for silicon heterojunction solar cell application
KR101449258B1 (en) High Flexible and Transparent Electrode based Oxide
TWI603462B (en) Thim film transistor and method for making the same, thim film transistor panel and display device
CN102498525A (en) Transparent conductive film and device comprising same
KR101315002B1 (en) Method for manufacturing abzo transparent conductive oxide
Peng et al. Excellent properties of Ga‐doped ZnO film as an alternative transparent electrode for thin‐film solar cells
CN101159178A (en) Transparency conductive film and preparation method thereof
US9546415B2 (en) Composite transparent electrodes
CN102950829B (en) Conducting glass and preparation method thereof
KR101314907B1 (en) Method for manufacturing abzo transparent conductive oxide
CN103952678B (en) A kind of preparation method mixing fluorine zinc-oxide-base transparent conducting film of high mobility
US9559249B2 (en) Microwave-annealed indium gallium zinc oxide films and methods of making the same
CN108374162B (en) Preparation method of aluminum-doped zinc oxide transparent conductive film
KR101466842B1 (en) Method of fabricating zinc oxide based thin film for transparent electrode
TW201927695A (en) Method for manufacturing transparent conductive film
KR101607144B1 (en) Multilayer transparent eletrode comprising MgZnO alloy and Method for preparing the same
US9666324B2 (en) Transparent conductive thin film
CN106637204A (en) Depositing method for Ag/ZnO/Mg photoelectric transparent conducting thin film
Wu et al. The Role of Annealing Process in Ag-Based BaSnO 3 Multilayer Thin Films
KR101807957B1 (en) Highly conductive flexible transparent electrodes based oxide and method for manufacturing thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 7