KR101313986B1 - Ultrasonic disintegrator equipped with vortex flow accelerator - Google Patents

Ultrasonic disintegrator equipped with vortex flow accelerator Download PDF

Info

Publication number
KR101313986B1
KR101313986B1 KR1020120068523A KR20120068523A KR101313986B1 KR 101313986 B1 KR101313986 B1 KR 101313986B1 KR 1020120068523 A KR1020120068523 A KR 1020120068523A KR 20120068523 A KR20120068523 A KR 20120068523A KR 101313986 B1 KR101313986 B1 KR 101313986B1
Authority
KR
South Korea
Prior art keywords
ultrasonic
swirl flow
sludge
derivative
flow derivative
Prior art date
Application number
KR1020120068523A
Other languages
Korean (ko)
Inventor
김성홍
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to KR1020120068523A priority Critical patent/KR101313986B1/en
Application granted granted Critical
Publication of KR101313986B1 publication Critical patent/KR101313986B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: An ultrasound decomposition bath including a swirl derivative is provided to improve circulation of water by generating swirl and to increase a sludge decomposition efficiency of ultrasound waves by promoting contact of the ultrasound waves being irradiated and the sludge. CONSTITUTION: An ultrasound decomposition bath comprises an ultrasound generator (1), an ultrasound decomposition bath (3); an ultrasound oscillator (2); and a swirl derivative (4). The ultrasound oscillator receives ultrasound waves generated from the ultrasound generator and decomposes sludge. The swirl derivative is located on a bottom surface of the ultrasound decomposition bath to increase a sludge decomposition efficiency by reflecting the ultrasound waves being irradiated, and the swirl derivative is formed in a cone shape and has a spiral type projection part (4a) formed along an outer circumference surface.

Description

선회류 유도체를 구비한 초음파 분해조{ULTRASONIC DISINTEGRATOR EQUIPPED WITH VORTEX FLOW ACCELERATOR}ULTRASONIC DISINTEGRATOR EQUIPPED WITH VORTEX FLOW ACCELERATOR}

본 발명은 초음파를 이용하여 슬러지를 분해하는 초음파 분해조에 관한 것으로서, 상세히는 초음파를 반사하는 유도체의 반사면을 오목하게 하거나 나선형 돌기부가 형성된 유도체로 물의 순환을 좋게 하고 초음파와 슬러지의 접촉을 촉진시켜 보다 효율적으로 슬러지를 분해할 수 있도록 한 선회류 유도체를 구비한 초음파 분해조에 관한 것이다.The present invention relates to an ultrasonic decomposition tank for decomposing sludge using ultrasonic waves, and more particularly, to concave the reflective surface of the derivative reflecting ultrasonic waves or to improve the circulation of water and to promote the contact between the ultrasonic wave and the sludge with a derivative formed with a spiral protrusion. The present invention relates to an ultrasonic digestion tank having a swirl flow derivative capable of more efficiently decomposing sludge.

현재 초음파의 응용범위는 다양한데, 그 중에서 초음파가 다른 고체에 충돌할 때 생기는 파괴력을 이용하여 다양한 산업에 응용하기도 한다. 특히 환경 산업에서는 슬러지에 초음파를 조사하여 슬러지를 분해하고, 액화시키는 전처리로 활용함으로써, 슬러지의 분해속도를 증가시키고 후속하는 처리 공정의 메탄 생산성을 향상시키는데 사용하기도 한다. Currently, the application range of ultrasonic waves is various, among them, it is applied to various industries by using the breaking force generated when the ultrasonic waves collide with other solids. In particular, in the environmental industry, ultrasonic waves are applied to the sludge to be used as a pretreatment to decompose and liquefy the sludge, thereby increasing the decomposition rate of the sludge and improving the methane productivity of the subsequent treatment process.

슬러지에 대한 초음파 처리의 일반적인 방법은 일정한 규모의 분해조에 슬러지를 회분식 또는 연속식으로 주입하고, 초음파 진동자로 초음파를 조사하여 슬러지를 분해하는 방법이 있다. 이 경우 초음파 진동자 아래에 집중적으로 파동이 발생하여 진동자 아래 영역에는 강력하고 반복적인 파동에너지가 발생하여 순간적으로 슬러지가 분해되는데, 별도의 혼합장치나 순환장치가 없는 한 진동자 근처 이외 영역에 있는 슬러지는 초음파의 영향을 받지 못하는 단점이 있다. 이것은 이미 분해된 슬러지에 계속해서 에너지가 주입되어 에너지가 낭비되고 또한, 영향권 밖의 슬러지는 분해되지 못하는 문제점이 있다. A general method of ultrasonic treatment for sludge is a method of injecting sludge batchwise or continuously into a decomposition tank of a constant size, and decomposing sludge by irradiating ultrasonic waves with an ultrasonic vibrator. In this case, the waves are concentrated under the ultrasonic vibrator, and strong and repetitive wave energy is generated in the region under the vibrator, and the sludge is instantaneously decomposed. There is a disadvantage that is not affected by the ultrasound. This is because energy is continuously injected into the sludge that has already been decomposed, and energy is wasted, and sludge outside the sphere of influence is not decomposed.

한국 공개특허공보 제 10-2000-0037890호Korean Unexamined Patent Publication No. 10-2000-0037890

본 발명은 상기한 바와 같은 제반 문제점을 개선하기 위해 안출된 것으로서, 그 목적은 초음파 에너지의 파괴력을 높이고 슬러지 분해 효율을 증가시킴으로써 보다 효율적으로 슬러지를 무해화, 안정화시키는 유도체로 상기 유도체의 초음파 반사면을 오목하게 하거나 상기 반사면에 나선형 돌기부가 형성된 선회류식 초음파 분해조를 제공함에 있다.The present invention has been made to improve the above-mentioned problems, and its object is to increase the destructive power of ultrasonic energy and increase the sludge decomposition efficiency, so that the sludge is harmless and stabilized more effectively. To concave or to provide a spiral flow type ultrasonic decomposition tank formed with a spiral projection on the reflective surface.

상기한 바와 같은 목적을 달성하기 위해 본 발명의 선회류 유도체를 구비한 초음파 분해조는, 초음파를 발생시키는 초음파 발생장치; 슬러지가 담겨있는 초음파 분해조; 상기 초음파 발생장치에서 발생한 초음파를 받아 상기 초음파 분해조에 조사하여 슬러지를 분해시키는 초음파 진동자; 및 조사되는 초음파를 반사하여 슬러지 분해 효율을 높이기 위해 상기 초음파 분해조 바닥에 위치하며, 원뿔형으로 되어 바깥 둘레면을 따라 나선형 돌기부가 형성된 선회류 유도체;로 이루어진 것을 특징으로 하고 있다.In order to achieve the above object, the ultrasonic decomposition tank provided with the swirl flow derivative of the present invention comprises: an ultrasonic generator for generating ultrasonic waves; Ultrasonic digester containing sludge; An ultrasonic vibrator that receives ultrasonic waves generated by the ultrasonic generator and irradiates the ultrasonic digester to decompose sludge; And a swirl flow derivative positioned on the bottom of the ultrasonic digestion tank to reflect the irradiated ultrasonic waves to increase sludge decomposition efficiency, and having a conical shape and a spiral protrusion formed along an outer circumferential surface thereof.

또, 초음파를 발생시키는 초음파 발생장치; 슬러지가 담겨있는 초음파 분해조; 상기 초음파 발생장치에서 발생한 초음파를 받아 상기 초음파 분해조에 조사하여 슬러지를 분해시키는 초음파 진동자; 및 조사되는 초음파를 반사하여 슬러지 분해 효율을 높이기 위해 상기 초음파 분해조 바닥에 위치하며, 원뿔형으로 되어 바깥 둘레면 전체가 안쪽으로 오목하게 된 선회류 유도체;로 이루어진 것을 다른 특징으로 하고 있다.In addition, an ultrasonic wave generator for generating ultrasonic waves; Ultrasonic digester containing sludge; An ultrasonic vibrator that receives ultrasonic waves generated by the ultrasonic generator and irradiates the ultrasonic digester to decompose sludge; And a swirl flow derivative positioned at the bottom of the ultrasonic digestion tank to reflect the irradiated ultrasonic waves to increase the sludge decomposition efficiency, and having a conical shape, the entire outer circumferential surface of which is concave inward.

또, 상기 선회류 유도체는 상단부가 뾰족하거나 뭉툭한 것이 바람직하다.In addition, it is preferable that the swirl flow derivative has a sharp or blunt upper end.

또, 상기 나선형 돌기부는 이중 나선형 돌기부인 것이 바람직하다.In addition, the spiral protrusion is preferably a double spiral protrusion.

상기 선회류 유도체는 바깥 둘레면을 따라 나선형 돌기부가 형성된 것이 바람직하다.Preferably, the swirl flow derivative is formed with a spiral protrusion along the outer circumferential surface thereof.

본 발명의 선회류 유도체를 구비한 초음파 분해조에 의하면, 초음파를 반사하는 선회류 유도체의 반사면를 오목하게 하거나 상기 반사면에 나선형 돌기부를 형성함으로써 선회류가 발생하여 물의 순환을 좋게 되고, 이로 인해 조사되는 초음파와 슬러지의 접촉을 촉진함으로써 초음파의 슬러지 분해효율을 높인 효과가 있다.According to the ultrasonic decomposition tank provided with the swirl flow derivative of the present invention, the swirl flow is generated by concave the reflective surface of the swirl flow derivative reflecting the ultrasonic waves or by forming the spiral protrusion on the reflective surface, thereby improving the circulation of water, and thus By promoting the contact between the ultrasonic wave and the sludge is effective to increase the sludge decomposition efficiency of the ultrasonic wave.

즉, 동일한 강도의 초음파 처리에서 기존의 일반적인 반사체보다 본 발명의 선회류 유도체가 오목한 반사면이나 반사면에 형성한 나선형 돌기부에 의해 초음파와 닿는 면적이 넓어지고, 초음파가 나선형 돌기부나 오목한 부분 등에 조사되어 골고루 꺾여 반사되어 더 많은 슬러지에 초음파를 접촉시켜 슬러지를 더욱 효율적으로 분해하는 효과가 있다. That is, in the ultrasonic treatment of the same intensity, the area where the swirl flow derivative of the present invention comes into contact with the ultrasonic waves is wider than the conventional general reflector by the concave reflection surface or the spiral projection formed on the reflection surface, and the ultrasonic wave is irradiated to the spiral projection or the concave portion. As it is evenly bent and reflected, ultrasonic waves are brought into contact with more sludge, thereby effectively dissolving the sludge.

도 1은 선회류 유도체를 구비한 초음파 분해조의 모식도
도 2는 다양한 선회류 유도체의 사시도
1 is a schematic diagram of an ultrasonic digestion tank having a swirl flow derivative
2 is a perspective view of various swirl flow derivatives

이하, 본 발명에 따른 선회류 유도체를 구비한 초음파 분해조의 바람직한 실시 예를 첨부한 도면을 참조로 하여 상세히 설명한다. 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.Hereinafter, with reference to the accompanying drawings a preferred embodiment of the ultrasonic digestion tank having a swirl flow derivative according to the present invention will be described in detail. It is to be understood that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, It is provided to inform.

도 1은 본 발명에 따른 선회류 유도체를 구비한 초음파 분해조의 모식도를 도시한 것이고, 도 2는 다양한 선회류 유도체의 사시도를 도시한 것이다.1 shows a schematic diagram of an ultrasonic digestion tank having a swirl flow derivative according to the present invention, and FIG. 2 shows a perspective view of various swirl flow derivatives.

도 1에 도시한 바와 같이, 본 발명에 따른 선회류 유도체를 구비한 초음파 분해조는 초음파를 발생시키는 초음파 발생장치(1), 슬러지가 담겨있는 초음파 분해조(3), 상기 초음파 발생장치에서 발생한 초음파를 받아 상기 초음파 분해조에 조사하여 슬러지를 분해시키는 초음파 진동자(2), 조사되는 초음파를 반사하여 슬러지 분해 효율을 높이기 위해 상기 초음파 분해조 바닥에 위치하는 선회류 유도체(4)로 이루어진다.As shown in FIG. 1, the ultrasonic decomposition tank including the swirl flow derivative according to the present invention includes an ultrasonic wave generation device 1 for generating ultrasonic waves, an ultrasonic wave decomposition tank 3 containing sludge, and ultrasonic waves generated by the ultrasonic wave generation device. Ultrasonic vibrator (2) for receiving and decomposing the sludge by irradiating the ultrasonic digestion tank, it is made of a swirling flow derivative (4) located at the bottom of the ultrasonic digestion tank to reflect the irradiated ultrasonic waves to increase the sludge decomposition efficiency.

이와 같은 구성으로 초음파 발생장치(1)에서 발생되는 초음파를 초음파 진동자(2)를 통해 슬러지가 담긴 초음파 분해조(3)에 조사하게 된다. 상기 선회류 유도체(4)는 초음파 분해조(3)의 안쪽 바닥에 설치되며 초음파가 좀더 효율적으로 전파될 수 있도록 초음파 진동자(2)의 중심과 선회류 유도체(4)의 상단부 중심을 맞추어 설치되도록 한다. In this configuration, the ultrasonic wave generated by the ultrasonic generator 1 is irradiated to the ultrasonic decomposition tank 3 containing the sludge through the ultrasonic vibrator 2. The swirl flow derivative (4) is installed on the inner bottom of the ultrasonic digestion tank (3) so that the ultrasonic wave can be more efficiently propagated so that the center of the ultrasonic vibrator (2) and the center of the upper end of the swirl flow derivative (4) do.

상기 선회류 유도체(4)는 물이나 화학약품 또는 초음파에 의해 잘 부식되지 않아야한다. 또, 초음파를 흡수하는 경우 내부발열이 발생할 수 있고 수명이 단축되므로 초음파를 흡수하지 않는 재질로 구성하는 것이 바람직하다. 따라서, 선회류 유도체(4)는 티타늄이나 스테인리스스틸, 구리 등과 같은 금속재질인 것이 좋다. The swirling derivative 4 should not corrode well by water, chemicals or ultrasonic waves. In addition, when the ultrasonic wave is absorbed, since internal heat generation may occur and the life thereof is shortened, it is preferable to configure the material that does not absorb the ultrasonic wave. Therefore, the swirl flow derivative 4 is preferably made of metal such as titanium, stainless steel, copper, or the like.

또한, 도 2에 도시한 바와 같이, 상기 선회류 유도체(4)는 뾰족하고 나선형 돌기부가 있는 선회류 유도체[A], 뾰족하고 오목한 선회류 유도체[B], 뾰족하고 오목하며 나선형 돌기부가 있는 선회류 유도체[C]의 다양한 실시형태가 있다.In addition, as shown in FIG. 2, the swirl flow derivative 4 is a swirl flow derivative [A] having a sharp and spiral protrusion, a sharp and concave swirl flow derivative [B], a swing having a sharp, concave spiral protrusion. There are various embodiments of the derivatives [C].

상기한 뾰족하고 나선형 돌기부가 있는 선회류 유도체[A]는 원뿔형으로 되어 상단부가 뾰족하며, 바깥 둘레면의 반사면을 따라 나선형 돌기부(4a)가 형성된 형태이고, 상기 나선형 돌기부(4a)가 도면에서는 하나로 되어 있지만, 초음파가 반사되는 면적을 더욱 넓게 하기 위해 이중으로 나선형 돌기부가 형성될 수도 있다.The spiral flow derivative [A] having the pointed and spiral protrusion has a conical shape and has a sharp upper end, and a spiral protrusion 4a is formed along the reflective surface of the outer circumferential surface, and the spiral protrusion 4a is shown in the drawing. Although one, the spiral projection may be formed in a double to make the area where the ultrasonic wave is reflected more wide.

또, 상기한 뾰족하고 오목한 선회류 유도체[B]는 원뿔형으로 되어 상단부가 뾰족하며, 바깥 둘레면의 반사면 전체가 안쪽으로 오목하게 되어 있어 평평한 반사면보다 초음파의 접촉면적이 더욱 넓어진다.In addition, the pointed and concave swirling flow derivative [B] has a conical shape and has a sharp upper end, and the entire reflective surface of the outer circumferential surface is concave inward, so that the contact area of the ultrasonic wave is wider than the flat reflective surface.

또한, 뾰족하고 오목하며 나선형 돌기부가 있는 선회류 유도체[C]는 상기 뾰족하고 오목한 선회류 유도체[B]의 오목한 바깥 둘레면의 반사면을 따라 나선형 돌기부(4a)가 형성된 형태이고, 상기 나선형 돌기부(4a)가 도면에서는 하나로 되어 있지만, 초음파가 반사되는 면적을 더욱 넓게 하기 위해 이중으로 나선형 돌기부가 형성될 수도 있다.In addition, the spiral flow derivative [C] having a sharp, concave spiral spiral portion has a shape in which a spiral projection 4a is formed along the reflective surface of the concave outer circumferential surface of the sharp concave spiral flow derivative [B], and the spiral projection Although 4a is shown as one in the figure, a spiral projection may be formed in duplicate to further widen the area where the ultrasonic waves are reflected.

상기 뾰족한 선회류 유도체들은 상기한 바와 같이 선회류 유도체(4)의 상단부가 뾰족한 형태를 유지하고 있는 것을 말한다. 또 상기 선회류 유도체 각각의 상단부가 뾰족하지 않고 뭉특한 나선형 돌기부가 있는 선회류 유도체[A'], 상단부가 뭉툭하고 반사면이 오목한 선회류 유도체[B'], 상단부가 뭉툭하고 반사면이 오목하며 상기 반사면에 나선형 돌기부가 있는 선회류 유도체[C']의 형태로 될 수도 있다.As described above, the pointed swirl flow derivatives mean that the upper end portion of the swirl flow derivative 4 maintains a pointed shape. In addition, the upper flow of each of the swirl flow derivatives is not sharp, the swirl flow derivative [A '] having a unique spiral projection, the top of the blunt and concave reflective surface [B'], the top of the blunt, the reflective surface concave It may be in the form of a swirl flow derivative [C '] having a spiral projection on the reflective surface.

여기서, 초음파 진동자(2)와 선회류 유도체(4) 사이의 거리는 초음파 강도와 관계가 있는데 초음파 강도가 약한 경우에는 파동의 영향력이 약하므로 선회류 유도체(4)는 초음파 진동자(2) 가까이에 위치하도록 해야한다. 따라서, 초음파 강도가 약한 경우에는 선회류 유도체(4)의 상단부가 뾰족한 선회류 유도체[A], [B], [C]를 사용하여 슬러지의 순환력을 좋게 하는 것이 바람직하다.Here, the distance between the ultrasonic vibrator 2 and the swirl flow derivative 4 is related to the ultrasonic intensity, but when the ultrasonic intensity is weak, the wave influence is weak, so the swirl flow derivative 4 is located near the ultrasonic vibrator 2. Should do it. Therefore, when the ultrasonic intensity is weak, it is preferable to improve the circulating force of the sludge by using the swirl flow derivatives [A], [B], and [C] whose upper end portions of the swirl flow derivatives 4 are sharp.

반대로, 초음파의 강도가 셀 경우에는, 초음파 분해조(3)의 크기도 커지고 초음파 파동의 영향력도 커지게 된다. 따라서, 선회류 유도체(4)는 더욱 멀리 떨어져 설치된다. 이 경우에는 선회류 유도체(4)의 상단부가 뭉툭한 선회류 유도체[A'], [B'], [C']의 형태가 초음파 분해력도 높이면서 슬러지 순환도 가능하게 한다.On the contrary, when the intensity of the ultrasonic wave is high, the size of the ultrasonic disintegrating tank 3 increases and the influence of the ultrasonic wave also increases. Thus, the swirl flow derivatives 4 are installed farther apart. In this case, the shape of the swirl flow derivatives [A '], [B'], and [C '] in which the upper end of the swirl flow derivative 4 is blunt also enables the sludge circulation while increasing the ultrasonic resolution.

단, 상단부가 뭉툭한 선회류 유도체[A'], [B'], [C']의 경우 뭉툭한 상단부의 단면의 크기는 초음파 진동자(2)의 단면의 크기보다 커서는 안 된다.However, in the case of the swirling flow derivatives [A '], [B'], and [C '], which have blunt upper ends, the size of the cross-section of the blunt upper ends should not be greater than that of the ultrasonic vibrator 2.

상기 초음파 분해조(3)의 용량이나 초음파의 강도, 운전 조건 등에 따라 서로 다르겠지만 상단부가 뾰족하고 나선형 돌기부가 있는 선회류 유도체[A]와 상단부가 뭉툭하고 나선형 돌기부가 있는 선회류 유도체[A']로 실험한 결과, 약 30L 용량의 초음파 분해조(3)에서 28㎑ 주파수로 200W 강도로 초음파 처리할 경우 초음파 유효 범위는 약 40㎝ 깊이 정도였다. 이 경우에는 상단부가 뭉툭하고 나선형 돌기부가 있는 선회류 유도체[A']가 효과적이었으며, 초음파 진동자(2)와 상단부가 뭉툭하고 나선형 돌기부가 있는 선회류 유도체[A'] 사이의 간격은 10∼20㎝ 정도가 적당하다. 반면, 같은 주파수로 100W 강도로 초음파 처리하는 경우 초음파 유효 범위는 약 25㎝ 깊이 정도이고, 상단부가 뾰족하고 나선형 돌기부가 있는 선회유 유도체 [A]가 유리하며, 초음파 진동자(2)와 상단부가 뾰족하고 나선형 돌기부가 있는 선회류 유도체[A]사이의 간격은 5∼10㎝ 정도가 적당하다. 이와 같이 설계조건이나 운전 조건에 따라 최적의 선회류 유도체(4)의 형태와 위치를 정하여 사용할 수 있다.Although different depending on the capacity of the ultrasonic digestion tank 3, the intensity of the ultrasonic wave, operating conditions, etc., the upper portion has a spiky flow derivative [A] and the spiral portion has a spiral projection [A ' ], The ultrasonic effective range was about 40cm deep when ultrasonic wave treatment with 200W intensity at 28Hz frequency in the ultrasonic digestion tank 3 of about 30L capacity. In this case, the swirl flow derivative [A '] with blunt upper end and spiral protrusion was effective, and the interval between the ultrasonic vibrator 2 and the swirl flow derivative [A'] with blunt upper spiral end was 10-20. About cm is suitable. On the other hand, in the case of ultrasonic treatment at the same frequency with 100W intensity, the effective range of the ultrasonic wave is about 25 cm deep, and the swirling oil derivative [A] having a sharp upper end and a spiral protrusion is advantageous, and the ultrasonic vibrator 2 and the upper end are sharp. The interval between the spiral flow derivatives [A] having spiral protrusions is preferably about 5 to 10 cm. In this way, the shape and position of the optimum swirl flow derivatives 4 can be determined and used according to design conditions or operating conditions.

이상과 같이 본 발명에 따른 선회류 유도체를 구비한 초음파 분해조에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위내에서 당업자에 의해 다양한 변형이 이루어질 수 있음은 물론이다.As described above with reference to the drawings illustrated for the ultrasonic digestion tank having a swirl flow derivative according to the present invention, the present invention is not limited by the embodiments and drawings disclosed herein, the technical spirit of the present invention Of course, various modifications may be made by those skilled in the art within the scope of the present invention.

1 : 초음파 발생장치 2 : 초음파 진동자
3 : 초음파 분해조 4 : 선회류 유도체
4a : 나선형 돌기부
[A] : 상단부가 뾰족하고 나선형 돌기부가 있는 선회류 유도체
[A'] : 상단부가가 뭉툭하고 나선형 돌기부가 있는 선회류 유도체
[B] : 상단부가 뾰족하고 반사면이 오목한 선회류 유도체
[B'] : 상단부가 뭉툭하고 반사면이 오목한 선회류 유도체
[C] : 상단부가 뾰족하고 반사면이 오목하며 상긴 반사면에 나선형 돌기부가 있는 선회류 유도체
[C'] : 상단부가 뭉툭하고 반사면이 오목하며 나선형 돌기부가 있는 선회류 유도체
1: ultrasonic generator 2: ultrasonic vibrator
3: ultrasonic digestion tank 4: swirl flow derivative
4a: spiral protrusion
[A]: Swirl flow derivatives having pointed upper ends and spiral protrusions
[A ']: Swirl flow derivative with blunt upper end and spiral protrusion
[B]: Swirl-flow derivative with pointed upper end and concave reflective surface
[B ']: Vortex flow derivative with blunt top and concave reflecting surface
[C]: Swirl flow derivative with pointed upper end, concave reflecting surface and spiral protrusion on long reflecting surface
[C ']: Vortex flow derivative with blunt top, concave reflecting surface and spiral protrusion

Claims (7)

초음파를 발생시키는 초음파 발생장치;
슬러지가 담겨있는 초음파 분해조;
상기 초음파 발생장치에서 발생한 초음파를 받아 상기 초음파 분해조에 조사하여 슬러지를 분해시키는 초음파 진동자; 및
조사되는 초음파를 반사하여 슬러지 분해 효율을 높이기 위해 상기 초음파 분해조 바닥에 위치하며, 원뿔형으로 되어 바깥 둘레면을 따라 나선형 돌기부가 형성된 선회류 유도체;
로 이루어진 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
An ultrasonic generator for generating ultrasonic waves;
Ultrasonic digester containing sludge;
An ultrasonic vibrator that receives ultrasonic waves generated by the ultrasonic generator and irradiates the ultrasonic digester to decompose sludge; And
A swirl flow derivative positioned at the bottom of the ultrasonic cracking tank to reflect the ultrasonic wave to be irradiated to increase the sludge decomposition efficiency, and having a spiral shape and having a spiral protrusion along an outer circumferential surface thereof;
Ultrasonic digestion tank having a swirl flow derivative, characterized in that consisting of.
초음파를 발생시키는 초음파 발생장치;
슬러지가 담겨있는 초음파 분해조;
상기 초음파 발생장치에서 발생한 초음파를 받아 상기 초음파 분해조에 조사하여 슬러지를 분해시키는 초음파 진동자; 및
조사되는 초음파를 반사하여 슬러지 분해 효율을 높이기 위해 상기 초음파 분해조 바닥에 위치하며, 원뿔형으로 되어 바깥 둘레면 전체가 안쪽으로 오목하게 된 선회류 유도체;
로 이루어진 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
An ultrasonic generator for generating ultrasonic waves;
Ultrasonic digester containing sludge;
An ultrasonic vibrator that receives ultrasonic waves generated by the ultrasonic generator and irradiates the ultrasonic digester to decompose sludge; And
A swirl flow derivative positioned at the bottom of the ultrasonic cracking tank to reflect the ultrasonic wave to be irradiated to increase the sludge decomposition efficiency, and having a conical shape, the entire outer periphery of which is concave inward;
Ultrasonic digestion tank having a swirl flow derivative, characterized in that consisting of.
제 1항에 있어서,
상기 선회류 유도체는 상단부가 뾰족하거나 뭉툭한 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
The method of claim 1,
The swirl flow derivative is ultrasonic decomposition tank having a swirl flow derivative, characterized in that the upper end is pointed or blunt.
제1항 또는 제3항에 있어서,
상기 나선형 돌기부는 이중 나선형 돌기부인 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
The method according to claim 1 or 3,
The spiral protrusion is a ultrasonic decomposition tank having a swirl flow derivative, characterized in that the double spiral protrusion.
제 2항에 있어서,
상기 선회류 유도체는 바깥 둘레면을 따라 나선형 돌기부가 형성된 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
The method of claim 2,
The swirl flow derivative is ultrasonic decomposition tank having a swirl flow derivative, characterized in that the spiral projection is formed along the outer peripheral surface.
제5항에 있어서,
상기 나선형 돌기부는 이중 나선형 돌기부인 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
The method of claim 5,
The spiral protrusion is a ultrasonic decomposition tank having a swirl flow derivative, characterized in that the double spiral protrusion.
제2항, 제5항 및 제6항 중 어느 한 항에 있어서,
상기 선회류 유도는 상단부가 뾰족하거나 뭉툭한 것을 특징으로 하는 선회류 유도체를 구비한 초음파 분해조.
The method according to any one of claims 2, 5 and 6,
The swirl flow induction is ultrasonic decomposition tank having a swirl flow derivative, characterized in that the upper end is pointed or blunt.
KR1020120068523A 2012-06-26 2012-06-26 Ultrasonic disintegrator equipped with vortex flow accelerator KR101313986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120068523A KR101313986B1 (en) 2012-06-26 2012-06-26 Ultrasonic disintegrator equipped with vortex flow accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120068523A KR101313986B1 (en) 2012-06-26 2012-06-26 Ultrasonic disintegrator equipped with vortex flow accelerator

Publications (1)

Publication Number Publication Date
KR101313986B1 true KR101313986B1 (en) 2013-10-01

Family

ID=49637542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120068523A KR101313986B1 (en) 2012-06-26 2012-06-26 Ultrasonic disintegrator equipped with vortex flow accelerator

Country Status (1)

Country Link
KR (1) KR101313986B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272089A (en) * 2019-04-24 2019-09-24 陕西师范大学 A kind of compact scroll acoustic beam generator and particle rotation and lens system
CN114702214A (en) * 2022-06-07 2022-07-05 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Vertical sludge cell explains and uses whirl device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000037890A (en) * 1998-12-03 2000-07-05 김정술 Treating method of non disintegrating organic matters
KR20050011391A (en) * 2003-07-23 2005-01-29 명규남 Method and instrument for sludge solubilization by using of multi-frequency and multi-stage ultrasonic irradiation
JP2009131827A (en) 2007-11-08 2009-06-18 Idemitsu Eng Co Ltd Method for treating sewage
JP2011189240A (en) 2010-03-12 2011-09-29 Toshiba Corp Cyclone type water treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000037890A (en) * 1998-12-03 2000-07-05 김정술 Treating method of non disintegrating organic matters
KR20050011391A (en) * 2003-07-23 2005-01-29 명규남 Method and instrument for sludge solubilization by using of multi-frequency and multi-stage ultrasonic irradiation
JP2009131827A (en) 2007-11-08 2009-06-18 Idemitsu Eng Co Ltd Method for treating sewage
JP2011189240A (en) 2010-03-12 2011-09-29 Toshiba Corp Cyclone type water treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272089A (en) * 2019-04-24 2019-09-24 陕西师范大学 A kind of compact scroll acoustic beam generator and particle rotation and lens system
CN114702214A (en) * 2022-06-07 2022-07-05 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Vertical sludge cell explains and uses whirl device

Similar Documents

Publication Publication Date Title
Chuah et al. A review of cleaner intensification technologies in biodiesel production
KR101313986B1 (en) Ultrasonic disintegrator equipped with vortex flow accelerator
PT1332511E (en) PLASMA GAS TREATMENT DEVICE
US20190374913A1 (en) Stirred tank
CN101096030B (en) Ultrasonic radiator
CN203484379U (en) Combined ultrasonic cleaning device
RU2422493C1 (en) Procedure for hydrocarbon cracking and plasma reactor for its implementation
RU195914U1 (en) Device for ultrasonic pipe cleaning
JP2005224580A (en) Tera-hertz wave irradiation system
JP6910090B1 (en) Microwave processing device and microwave processing method
CN105567912A (en) Water restraint layer assisted regulation device and method for laser shock treatment
CN105036187A (en) Method for disordering transition metal oxide nanocrystallines through ultrasonic induction and product
CN210753613U (en) Novel throw-in type ultrasonic cleaning rod
KR20000027334A (en) Microwave oven having dispersing device for microwaves
Dolgopolov Generation and radiation of the second harmonic at electromagnetic wave incidience on a semi-bounded plasma
RU2017106881A (en) METHOD OF LASER STRENGTHENING OF SURFACE OF PARTS
Bhattacharyya et al. Spanwise structures in the wake of a rotationally oscillating tapered cylinder
Bowman et al. A Low-Cost, High Power RF Resonance System Phase II Results
Grayson et al. Experimental and Weakly Non-linear Investigation into the Long-term Spatial and Temporal Development of Triadic Resonance Instability
Haldar Suppression of Heating due to Emergence of Local Conservation Laws in Clean Interacting Floquet Quantum Matter
Balakirev et al. The chaotic motion of a beam of phased oscillators
RU2353029C2 (en) Telemetric antenna
Topaz et al. Faraday Wave Pattern Selection in the Presence of Competing Harmonic and Subharmonic Instabilities
RU2002127544A (en) UHF THERAPY DEVICE
RU149831U1 (en) ULTRASONIC FLOW REACTOR

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170711

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee