KR101310372B1 - Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME - Google Patents

Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME Download PDF

Info

Publication number
KR101310372B1
KR101310372B1 KR1020110125415A KR20110125415A KR101310372B1 KR 101310372 B1 KR101310372 B1 KR 101310372B1 KR 1020110125415 A KR1020110125415 A KR 1020110125415A KR 20110125415 A KR20110125415 A KR 20110125415A KR 101310372 B1 KR101310372 B1 KR 101310372B1
Authority
KR
South Korea
Prior art keywords
precursor
catalyst
fuel cell
platinum
palladium
Prior art date
Application number
KR1020110125415A
Other languages
Korean (ko)
Other versions
KR20130059214A (en
Inventor
박병일
차문순
김해리
여권구
Original Assignee
오덱(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오덱(주) filed Critical 오덱(주)
Priority to KR1020110125415A priority Critical patent/KR101310372B1/en
Publication of KR20130059214A publication Critical patent/KR20130059214A/en
Application granted granted Critical
Publication of KR101310372B1 publication Critical patent/KR101310372B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 연료전지용 Pt-Pd 합금저백금 전극촉매의 제조방법에 관한 것으로 탄소섬유, 탄소나노튜브 또는 카본블랙과 같은 고결정성 탄소 담지체에 백금 및 팔라듐을 염기성 형태로 합성, 혼합하여 전구체를 제조한 후 그 전구체를 이용하여 일회의 담지공정을 통해 제조하는 연료전지용 저백금 전극 촉매의 제조방법에 관한 것이다. The present invention relates to a method for producing a Pt-Pd alloy low platinum electrode catalyst for a fuel cell, to prepare a precursor by synthesizing and mixing platinum and palladium in a basic form on a high crystalline carbon support such as carbon fiber, carbon nanotube or carbon black. After that, the present invention relates to a method for producing a low platinum electrode catalyst for a fuel cell, which is prepared through a single supporting step using the precursor.

Description

연료전지 전극 촉매용 백금-팔라듐합성 전구체 및 이를 이용한 저백금 촉매의 제조방법{Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME} Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME}

본 발명은 연료전지용 전극촉매의 Pt-Pd 합금 저백금 전극촉매의 제조방법에 관한 것으로, 더욱 상세하게는 염기성 형태의 Pt-Pd 혼합 전구체를 합성하고, 이를 이용해 고분산성, 고결정성의 Pt-Pd 합금 촉매를 일회의 제조공정으로 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing a Pt-Pd alloy low platinum electrode catalyst of a fuel cell electrode catalyst, and more particularly, to synthesize a Pt-Pd mixed precursor in a basic form, and to use it to form a highly dispersible and highly crystalline Pt-Pd. It relates to a method for producing an alloy catalyst in one manufacturing process.

연료전지란 반응물의 화학에너지를 전기에너지로 직접 전환시키는 고효율, 무공해의 발전장치로 현재 가정용 발전소나 전기자동차 등에 적용하여 사용되고 있으며, 그 밖에 산업용, 군용 등으로 다양한 분야에서 활용되고 있다. 연료전지는 전해질, 작동온도 및 연료의 종류에 따라 용융탄산염 연료전지, 고체산화물형 연료전지, 알칼리 연료전지, 인산형 연료전지, 고분자 전해질 연료전지 및 직접 메탄올 연료전지 등으로 구분된다. 이들 연료전지 중 고분자 전해질 연료전지는 에너지 변환 효율이 우수하고 저온에서도 높은 전류밀도를 얻을 수 있어 다양한 분야에 적용하기 위한 개발이 활발히 진행되고 있다. A fuel cell is a high efficiency, pollution-free power generation device that directly converts chemical energy of a reactant into electrical energy. It is currently used in household power plants or electric vehicles, and is also used in various fields such as industrial and military use. Fuel cells are classified into molten carbonate fuel cells, solid oxide fuel cells, alkali fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, and direct methanol fuel cells according to electrolytes, operating temperatures, and types of fuels. Among these fuel cells, the polymer electrolyte fuel cell has excellent energy conversion efficiency and high current density even at low temperature, so that development for various fields is being actively conducted.

고분자 전해질 연료전지의 성능은 연료전지의 막적극 접합체 촉매의 성능에 의해 크게 좌우되며, 그 원료 중 하나인 백금(Pt)은 가격이 매우 비싸기 때문에 연료전지의 원가에도 많은 영향을 미치고 있다. 이에 연료전지의 성능을 향상시키고 원가를 절감하기 위해 촉매의 연구개발이 많이 이루어지고 있다. The performance of a polymer electrolyte fuel cell is largely determined by the performance of a membrane positive electrode catalyst of a fuel cell, and platinum (Pt), which is one of its raw materials, has a great effect on the cost of a fuel cell because the price is very expensive. Accordingly, in order to improve fuel cell performance and reduce cost, many researches and developments of catalysts have been made.

연료전지 촉매의 활성을 높이기 위해 백금을 나노크기로 제조하는 연구와 높은 표면적을 가지는 카본에 백금을 고분산, 고비율로 담지하는 연구가 진행되어 왔다. 이러한 백금/지지체 촉매는 통상적으로 수소 및 환원제 등을 이용한 함침법이 널리 사용되고 있다. 또한, 연료전지원가의 대부분을 차지하는 백금의 함량을 줄이기 위해 다른 금속과의 합금을 이용하는 연구가 진행되고 있다.
In order to increase the activity of fuel cell catalysts, research has been conducted to manufacture platinum in nano size and to support platinum in high dispersion and high ratio on carbon having high surface area. As such a platinum / support catalyst, an impregnation method using hydrogen, a reducing agent, or the like is commonly used. In addition, research is being conducted using alloys with other metals to reduce the content of platinum, which accounts for most of the fuel costs.

백금에 전이금속 등을 첨가하여 전극의 성능을 향상시키기 위해 백금에 루테늄이나 철 등을 합금하여 촉매로 이용하거나(유럽특허 84303984호), 백금-철-코발트의 3성분을 합금하여 촉매로 이용한(영국특허 861599호) 선행기술 등이 있다.In order to improve the electrode performance by adding transition metals to platinum, alloying ruthenium or iron with platinum is used as a catalyst (European Patent No. 84303984), or alloying three components of platinum-iron-cobalt as a catalyst ( British Patent No. 861599) and the prior art.

본 발명은 연료전지의 성능을 향상시키고 원가를 절감하며 간단한 공정으로 대량생산 가능하도록 하는 연료전지 촉매용 Pt-Pd 합성 전구체 및 이를 이용한 저백금촉매의 제조방법을 제공하기 위한 것이다. The present invention is to provide a Pt-Pd synthetic precursor for a fuel cell catalyst and a method for producing a low platinum catalyst using the same, which improves the performance of a fuel cell, reduces costs, and enables mass production in a simple process.

연료전지의 백금촉매를 저렴한 단가의 팔라듐(Pd)으로 대체하여 촉매의 단가를 줄이는 동시에 순수한 백금촉매와 비슷한 수준의 성능을 유지하도록 하는 저백금연료전지 촉매를 제안하며, 두번의 공정을 통하는 일반적인 합성방법과 달리 한번의 공정으로 Pt-Pd합금 촉매를 제조하는 방법을 제안하여 우수한 성능의 연료전지 촉매를 저렴한 비용으로 대량생산 가능하도록 하는 것이 본 발명의 목적이다.
It proposes a low platinum fuel cell catalyst that replaces the platinum catalyst of fuel cell with inexpensive unit price palladium (Pd) to reduce the cost of the catalyst and maintain the performance similar to that of pure platinum catalyst. Unlike the method, it is an object of the present invention to propose a method of manufacturing a Pt-Pd alloy catalyst in one step, so that a fuel cell catalyst having excellent performance can be mass produced at low cost.

본 발명은 상기의 목적을 위해 Pt-acetate와 Pt-amide를 각각 합성하여 혼합한 Pt-Pd 혼합 용액(이하 '전구체1') 및 리간드를 사용하여 합성한 Pt-Pd 이핵 착화합물(이하 '전구체2')을 제조하고, 이들 전구체를 사용하여 일 회의 공정만으로 고분산, 고결정성의 Pt-Pd 합성촉매를 제조한다. The present invention provides a Pt-Pd heteronuclear complex (hereinafter, 'precursor 2') synthesized using a Pt-Pd mixed solution (hereinafter, 'precursor 1') and a ligand synthesized by mixing Pt-acetate and Pt-amide, respectively. ') And these precursors are used to prepare a highly dispersed, highly crystalline Pt-Pd synthesis catalyst in one step.

본 발명은 일 회의 제조공정만으로 촉매의 제조를 가능하게 할 Pt-Pd 합금 전구체를 합성하는 전구체 제조단계 및 상기 전구체를 사용하여 연료전지용 촉매를 제조하는 촉매 제조단계로 이루어져 있다. The present invention consists of a precursor manufacturing step of synthesizing a Pt-Pd alloy precursor to enable the production of a catalyst by only one manufacturing process and a catalyst manufacturing step of preparing a catalyst for a fuel cell using the precursor.

전구체 제조단계는 전구체1과 2에 차이가 있다. Precursor manufacturing steps are different in precursors 1 and 2.

전구체1의 제조는 팔라듐에 과량의 아세트산을 첨가하여 고온에서 반응을 일으켜 팔라듐-아세테이트(Pd-Acetate)를 제조하고, 백금과 아민계 유기물을 반응시켜 백금-아미드(Pt-Amide)를 제조하여 두 합성된 용액을 혼합하는 단계로 이루어져 있다. 상기의 방법으로 염소(Cl)가 포함되지 않은 Pt-Pd혼합용액인 전구체1을 제조한다. In the preparation of precursor 1, an excess of acetic acid is added to palladium to cause a reaction at high temperature to produce palladium-acetate, and platinum and an amine-based organic compound are reacted to prepare platinum-amide (Pt-Amide). Mixing the synthesized solution. By the above method, precursor 1, which is a Pt-Pd mixed solution containing no chlorine (Cl), is prepared.

전구체2의 제조는 리간드를 사용하여 Pt-Pd 이핵착화물을 합성하는 방법에 의한다. 상기 리간드는 말론산다이에틸(Diethyl malonate)과 이황화 탄소(CS2)를 반응시켜 케텐 메캅탈 염(ketene mercaptal salt)를 합성하고, 상기 합성물질과 알킬 할라이드(Alkyl halide)를 반응시킨 후 BaCl2와 합성하여 제조한다. 상기 합성된 리간드와 Pt(SO4)(Me4en)을 결합시켜 Pt 착화합물을 만들고, 여기에 Pd(NO3)2(Me4en)을 결합시켜 Pt-Barium bis(ethylthio)methylenepropanedioato-Pd-NO3 (이하 'Pt-BETMP-Pd-NO3)를 합성하는 단계로 이루어져 있다. 상기의 방법으로 Pt-Pd 이핵착화합물인 전구체2를 제조한다. Preparation of precursor 2 is by the method of synthesizing Pt-Pd dinuclease using ligand. The ligand reacts diethyl malonate with carbon disulfide (CS 2 ) to synthesize a ketene mercaptal salt, and reacts the synthetic material with an alkyl halide (Alkyl halide), followed by B a Cl It is prepared by synthesizing with 2 . Pt (SO 4 ) (Me 4 en) is combined with the synthesized ligand to form a Pt complex, and Pd (NO 3 ) 2 (Me 4 en) is bonded to Pt-Barium bis (ethylthio) methylenepropanedioato-Pd- NO 3 (Hereinafter referred to as' Pt-BETMP-Pd-NO 3 ). In the above method, Pt-Pd dinuclear complex compound 2 was prepared.

촉매 제조는 탄소섬유, 탄소나노튜브, 카본 블랙 등의 고결정성 탄소 담지체에 전구체1 또는 전구체2를 담지시키는 방법에 의한다. 구체적으로는 용매에 담지체를 혼합하고 분산하는 담지체 분산단계; 담지체가 분산된 용매에 전구체1 또는 전구체2를 혼합, 분산시키는 전구체 분산단계; 상기 전구체 분산단계를 거친 혼합물에 산용액을 투입하는 안정화 단계; 및 상기 안정화 단계를 거친 혼합물을 여과, 세척하여 얻은 촉매담지체를 가열, 건조하는 후처리 단계로 이루어져 있다. 통상의 합금촉매의 경우 상기의 담지공정을 두 차례 반복하여야 하나 본 발명의 전구체를 이용하면 촉매 제조 공정을 일회로 단축할 수 있다. The catalyst is prepared by a method of supporting precursor 1 or precursor 2 on a highly crystalline carbon carrier such as carbon fiber, carbon nanotube, carbon black, or the like. Specifically, the carrier dispersion step of mixing and dispersing the carrier in a solvent; Precursor dispersion step of mixing and dispersing precursor 1 or precursor 2 in a solvent in which the carrier is dispersed; Stabilizing step of adding an acid solution to the mixture passed through the precursor dispersion step; And a post-treatment step of heating and drying the catalyst carrier obtained by filtering and washing the mixture that has undergone the stabilization step. In the case of a conventional alloying catalyst, the above supporting process should be repeated twice, but the catalyst preparation process can be shortened by using the precursor of the present invention.

상기 담지체 분산단계에 있어서는 담지체 1중량부에 에틸렌글리콜 150중량부를 혼합하고, 분산기와 초음파 장치를 동시에 적용하여 담지체에 에틸렌 클리폴을 분산시키는 것이 바람직하며, 상기 담지체는 탄소섬유, 탄소나노튜브 및 카본블랙으로 이루어진 그룹으로 선택하는 것이 바람직하다. In the carrier dispersion step, 150 parts by weight of ethylene glycol is mixed with 1 part of the carrier, and a disperser and an ultrasonic device are simultaneously applied to disperse the ethylene cliple on the carrier, and the carrier is carbon fiber or carbon. It is preferred to select from the group consisting of nanotubes and carbon black.

상기 전구체 분산단계에 있어서는 상기 담지체 분산단계를 거친 혼합물에 전구체1 또는 전구체2를 투입하고 1시간 동안 교반한 후에 150~170℃의 온도로 가열한 상태에서 3시간 동안 교반하여 이루어지는 것이 바람직하다. In the precursor dispersing step, the precursor 1 or precursor 2 is added to the mixture that has passed through the carrier dispersing step and stirred for 1 hour, and then stirred for 3 hours while being heated to a temperature of 150 to 170 ° C.

상기 안정화 단계에 있어서는 전구체 분산단계를 거친 혼합물에 산용액을 투입하여 혼합물의 pH를 2~5로 조절하는 것으로 이루어지는 것이 바람직하며, 상기 산용액은 0.5몰농도를 갖는 황산, 질산 또는 아세트산으로 이루어진 그룹으로 부터 선택된 하나로 이루어지는 것이 더욱 바람직하다. In the stabilization step, it is preferable that the acid solution is added to the mixture through the precursor dispersion step to adjust the pH of the mixture to 2 to 5, and the acid solution is a group consisting of sulfuric acid, nitric acid or acetic acid having a 0.5 molar concentration. More preferably, it is made of one selected from.

상기 후처리 단계에 있어서는 안정화 단계를 거친 혼합물을 감압필터를 사용하여 미반응 촉매성분 및 산용액 등을 여과하고, 분리된 촉매 담지체의 표면에 묻어있는 잔류용액을 증류수로 3~5회 세척하는 단계; 및 상기 세척된 촉매 담지체를 질소가 채워진 오븐을 이용하여 80~140℃의 온도에서 2~8시간 가열하여 건조시키는 단계로 이루어지는 것이 바람직하다.
In the post-treatment step, the unreacted catalyst component and the acid solution are filtered using a reduced pressure filter of the mixture that has passed the stabilization step, and the remaining solution buried on the surface of the separated catalyst carrier is washed three to five times with distilled water. step; And drying the washed catalyst carrier by heating at 80 to 140 ° C. for 2 to 8 hours using an oven filled with nitrogen.

본 발명에 따른 연료전지용 저백금 전극촉매의 제조방법은 백금을 원가가 저렴한 팔라듐으로 대체하고, Pt-Pd 합성 전구체를 사용하여 일회의 공정으로 전극촉매를 제조하여 제조 단가를 현저히 감소시키는 효과가 있다. 또한 염소가 포함되어 있지 않은 전구체를 사용하여 막전극접합체의 내구성 및 성능을 향상시키고, Pt-Pd 이핵착화물을 전구체로 사용하여 촉매의 성분비 조절 및 입자의 크기조절에 용이한 효과가 있으며, 결과적으로 연료전지의 성능을 향상시키고 수명을 연장하는 효과가 있다.
The method of manufacturing a low platinum electrode catalyst for fuel cells according to the present invention has the effect of replacing platinum with inexpensive palladium and manufacturing the electrode catalyst in one step using a Pt-Pd synthetic precursor to significantly reduce the manufacturing cost. . In addition, by using a precursor that does not contain chlorine, the durability and performance of the membrane electrode assembly are improved, and Pt-Pd dinucleide is used as a precursor, and thus it is easy to control the composition ratio of the catalyst and the particle size. This improves fuel cell performance and extends lifespan.

도1은 본 발명에 따른 전구체1 및 전구체2의 제조방법을 나타낸 순서도이고,
도2는 본 발명에 따른 연료전지용 전극촉매의 제조방법을 나타낸 순서도이며,
도3은 본 발명의 실시예2를 통해 제조된 Pt-Pd이핵착합물(전구체2)의 X-Ray결정구조이고,
도4는 본 발명의 실시예1, 2 및 비교예를 통해 제조된 연료전지용 전극촉매의 분산도를 TEM으로 촬영한 사진이며,
도5는 본 발명의 실시예1, 2 및 비교예를 통해 제조된 연료전지용 전극촉매의 XRD결과를 나타낸 그래프이다.
1 is a flow chart showing a method for producing precursor 1 and precursor 2 according to the present invention,
2 is a flowchart illustrating a method of manufacturing an electrode catalyst for a fuel cell according to the present invention;
3 is an X-ray crystal structure of Pt-Pd dinuclear complex (precursor 2) prepared in Example 2 of the present invention,
4 is a photograph taken by TEM of the dispersion degree of the electrode catalyst for a fuel cell manufactured according to Examples 1, 2 and Comparative Examples of the present invention,
Figure 5 is a graph showing the XRD results of the electrode catalyst for fuel cells produced through Examples 1, 2 and Comparative Examples of the present invention.

이하, 실시예 및 비교예를 통해서 본 발명을 보다 상세하게 설명하나, 이로 인해 발명의 범위가 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited thereto.

<실시예1>
&Lt; Example 1 >

1. 전구체1의 합성1. Synthesis of Precursor 1

팔라듐-나이트레이트(Pd-nitate)전구체와 과량의 아세트산을 혼합하여 3~8시간이상 80℃로 교반하여 팔라듐-아세테이트(Pd-acetate)전구체를 합성하였으며, 백금-클로라이드(Pt-chloride) 및 모노에탄올아민(monoethanolamine)을 160℃의 온도에서 반응시켜 백금-아미드(Pt-amide)전구체를 합성하였다. Pd-nitate precursor and excess acetic acid were mixed and stirred at 80 ° C. for more than 3 to 8 hours to synthesize Pd-acetate precursors. Pt-chloride and mono Ethanolamine (monoethanolamine) was reacted at a temperature of 160 ℃ to synthesize a platinum-amide (Pt-amide) precursor.

합성된 Pd-acetate와 Pt-amide를 교반기에 투입하고 1시간 이상 교반하여 Pt-Pd 합금 전구체1을 제조하였다.
Synthesized Pd-acetate and Pt-amide were added to the stirrer and stirred for 1 hour or more to prepare Pt-Pd alloy precursor 1.

2. 전극촉매의 제조2. Preparation of Electrocatalyst

카본블랙 1중량부와 에틸렌클리콜 300중량부를 투입하고 1시간 동안 교반한 혼합물에 분산기(Homogenizer)와 고주파장치(소닉배스, Sonic Bath)를 4시간동안 번갈아가며 처리하여 카본블랙은 에틸렌글리콜에 분산시켰다.1 part by weight of carbon black and 300 parts by weight of ethylene glycol were added, and the mixture was stirred for 1 hour, and the disperser (Homogenizer) and the high frequency device (sonic bath, Sonic bath) were treated for 4 hours, and the carbon black was dispersed in ethylene glycol. I was.

상기 카본블랙 담지체에 약 70% 담지되도록 계산된 양의 전구체1을 투입하고 교반기를 이용하여 3.5G의 크기로 2시간 동안 교반한 후에 160℃의 온도로 가열하면서 3.5G의 크기로 3시간 동안 가열 교반하였다.The amount of precursor 1 calculated to be about 70% supported on the carbon black carrier was added and stirred for 2 hours at a size of 3.5G using a stirrer, followed by heating at a temperature of 160 ° C. for 3 hours at a size of 3.5G. It stirred by heating.

상기 가열교반된 혼합물을 상온으로 냉각한 상태에서 황산용액을 투입하여 혼합물의 pH를 4로 조절한 후에 8시간 동안 교반하였다. After the mixture was cooled to room temperature, sulfuric acid was added to the mixture to adjust the pH of the mixture to 4, followed by stirring for 8 hours.

상기 교반완료된 혼합물을 여과장비를 통해 촉매와 여액으로 분리하였으며, 분리된 촉매의 표면에 잔류되어 있는 여액을 증류수로 3~5회 세척하여 제거하였다. 세척이 완료된 촉매담지체를 질소가 채워진 오븐을 이용하여 120℃의 온도에서 6시간 동앙ㄴ 가열하여 연료전지용 Pt-Pd 합금 전극촉매를 제조하였다. The stirred mixture was separated into a catalyst and a filtrate through filtration equipment, and the filtrate remaining on the surface of the separated catalyst was removed by washing 3 to 5 times with distilled water. The washed catalyst carrier was heated for 6 hours at a temperature of 120 ° C. using an oven filled with nitrogen to prepare a Pt-Pd alloy electrode catalyst for a fuel cell.

<실시예2>
Example 2

1. 전구체2의 합성1. Synthesis of Precursor 2

디옥산 300ml와 에틸에테르 200ml의 혼합용액에 에틸 말로네이트 40g, 이황화탄소 19ml을 투입하고 상온에서 1~2시간 반응을 시켜 노란산 케텐 메캅탈 염(ketene mercaptal salt)을 얻었다. 상기 케텐메캅탈염을 알킬할라이드와 치환반응을 시켜 얻은 이칼륨염(dipotassium salt)을 증류수 400ml에 녹인 후 BaCl2·2H2O 7.33g과 1시간 반응 하여 리간드(BETMP)를 얻었다. 40 g of ethyl malonate and 19 ml of carbon disulfide were added to a mixed solution of 300 ml of dioxane and 200 ml of ethyl ether, and reacted at room temperature for 1 to 2 hours to obtain a yellow acid ketene mercaptal salt. A dipotassium salt obtained by substituting the ketenemecaptal salt with an alkyl halide was dissolved in 400 ml of distilled water, and then reacted with 7.33 g of BaCl 2 · 2H 2 O for 1 hour to obtain a ligand (BETMP).

상기 리간드를 증류수 400ml에 녹이고 Pt(SO4)Me4en을 당량에 맞게 계산 투입하여 80℃에서 3시간 반응하여 Pt 착화합물을 합성하였다. The ligand was dissolved in 400 ml of distilled water, Pt (SO 4 ) Me 4 en was added to the equivalent weight, and reacted at 80 ° C. for 3 hours to synthesize a Pt complex.

상기 합성된 Pt 착화합물을 증류수 400ml에 녹인 후 Pd(NO3)2Me4en을 당량에 맞게 계산 투입하여 80℃에서 3시간 반응하여 Pt-Pd 이핵 착화합물인 전구체2를 합성하였다.
After dissolving the synthesized Pt complex in 400ml of distilled water, Pd (NO 3 ) 2 Me 4 en was added to the equivalent amount and reacted at 80 ° C. for 3 hours to synthesize Pt-Pd dinuclear complex precursor 2.

2. 전극촉매의 제조2. Preparation of Electrocatalyst

상기 실시예1에서와 같은 방법으로 전구체2를 담지체에 담지하여 연료전지용 Pt-Pd 함급전극촉매를 제조하였다.
In the same manner as in Example 1, precursor 2 was supported on a carrier to prepare a Pt-Pd-containing electrode catalyst for a fuel cell.

<비교예><Comparative Example>

1. Pd-전극촉매의 제조1. Preparation of Pd Electrode Catalyst

카본블랙 1중량부와 에틸렌클리콜 300중량부를 투입하고 1시간 동안 교반한 혼합물에 분산기(Homogenizer)와 고주파장치(소닉배스, Sonic Bath)를 4시간동안 번갈아가며 처리하여 카본블랙은 에틸렌글리콜에 분산시켰다.1 part by weight of carbon black and 300 parts by weight of ethylene glycol were added, and the mixture was stirred for 1 hour, and the disperser (Homogenizer) and the high frequency device (sonic bath, Sonic bath) were treated for 4 hours, and the carbon black was dispersed in ethylene glycol. I was.

상기 카본블랙 담지체에 약 35% 담지되도록 계산된 양의 Pd-nitrate를 투입하고 교반기를 이용하여 3.5G의 크기로 2시간 동안 교반한 후에 160℃의 온도로 가열하면서 3.5G의 크기로 3시간 동안 가열 교반하였다.The amount of Pd-nitrate calculated to be about 35% supported on the carbon black carrier was added and stirred for 2 hours at a size of 3.5G using a stirrer, followed by heating at a temperature of 160 ° C. for 3 hours at a size of 3.5G. Stirring while heating.

상기 가열교반된 혼합물을 상온으로 냉각한 상태에서 황산용액을 투입하여 혼합물의 pH를 4로 조절한 후에 8시간 동안 교반하였다. After the mixture was cooled to room temperature, sulfuric acid was added to the mixture to adjust the pH of the mixture to 4, followed by stirring for 8 hours.

상기 교반완료된 혼합물을 여과장비를 통해 촉매와 여액으로 분리하였으며, 분리된 촉매의 표면에 잔류되어 있는 여액을 증류수로 3~5회 세척하여 제거하였다. 세척이 완료된 촉매담지체를 질소가 채워진 오븐을 이용하여 120℃의 온도에서 6시간 동안 가열하여 Pd 전극촉매(Pd/C 전극촉매)를 제조하였다.
The stirred mixture was separated into a catalyst and a filtrate through filtration equipment, and the filtrate remaining on the surface of the separated catalyst was removed by washing 3 to 5 times with distilled water. The washed catalyst carrier was heated for 6 hours at a temperature of 120 ° C. using an oven filled with nitrogen to prepare a Pd electrode catalyst (Pd / C electrode catalyst).

1. Pt-Pd 합금전극촉매의 제조1. Preparation of Pt-Pd Alloy Electrode Catalyst

상기 제조된 Pd/C 전극촉매에 약 35% 담지되도록 계산된 양의 Pt-amide를 투입하고 150~170℃의 온도에서 3시간 동안 동안 가열 교반하였다.The calculated amount of Pt-amide was added to the prepared Pd / C electrode catalyst so as to support about 35%, and the mixture was heated and stirred for 3 hours at a temperature of 150 to 170 ° C.

상기 가열교반된 혼합물을 상온으로 냉각한 상태에서 황산용액을 투입하여 혼합물의 pH를 4로 조절한 후에 8시간 동안 교반하였다. After the mixture was cooled to room temperature, sulfuric acid was added to the mixture to adjust the pH of the mixture to 4, followed by stirring for 8 hours.

상기 교반완료된 혼합물을 여과장비를 통해 촉매와 여액으로 분리하였으며, 분리된 촉매의 표면에 잔류되어 있는 여액을 증류수로 3~5회 세척하여 제거하였다. 세척이 완료된 촉매담지체를 질소가 채워진 오븐을 이용하여 120℃의 온도에서 6시간 동안 가열하여 Pt-Pd 전극촉매를 제조하였다.
The stirred mixture was separated into a catalyst and a filtrate through filtration equipment, and the filtrate remaining on the surface of the separated catalyst was removed by washing 3 to 5 times with distilled water. The washed catalyst carrier was heated at a temperature of 120 ° C. for 6 hours using an oven filled with nitrogen to prepare a Pt-Pd electrode catalyst.

<비교실험 등의 결과><Result of Comparative Experiment, etc.>

1. 백금 분산도의 비교1. Comparison of Platinum Dispersion

상기 실시예1, 2 및 비교예를 통해 제조된 연료전지용 Pt-Pd 합금 전극촉매의 백금분산도를 TEM(Transmission Electron Microscope)으로 촬영하여 비교하였다. Platinum dispersion of the Pt-Pd alloy electrode catalyst for fuel cells prepared according to Examples 1, 2 and Comparative Examples was photographed and compared with a TEM (Transmission Electron Microscope).

도4에 나타난 것처럼 본 발명의 실시예에 의해 일회의 공정으로 제조된 연료전지용 전극촉매는 비교예에 의해 두번의 공정을 거쳐 제조된 연료전지용 전극촉매에 비해 금속입자의 결정성이 매우 우수한 것을 알 수 있었다.
As shown in FIG. 4, the fuel cell electrode catalyst prepared in one step according to the embodiment of the present invention shows that the crystallinity of the metal particles is very excellent compared to the fuel cell electrode catalyst prepared in two steps by the comparative example. Could.

2. 금속입자사이즈의 비교2. Comparison of Metal Particle Size

상기 실시예1, 2 및 비교예를 통해 제조된 연료저지용 Pt-Pd 합금 전극촉매의 금속입자의 입자사이즈를 XRD(X-Ray Diffraction)로 측정하여 비교하였다.The particle size of the metal particles of the Pt-Pd alloy electrocatalyst for fuel blocking prepared according to Examples 1 and 2 and Comparative Examples was measured by XRD (X-Ray Diffraction).

도5에 나타낸 것처럼 본 발명의 실시예1을 통해 제조된 연료전지용 Pt-Pd 합금 전극촉매의 평균입자사이즈는 3.45nm로 비교예를 통해 제조된 연료전지용 Pt-Pd 합금 전극촉매의 평균입자사이즈인 4.3nm보다 작았으며, 특히 실시예1을 통해 제조된 촉매입자는 XRD 피크가 샤프하게 형성되어 있어 결정성이 높은 것을 확인할 수 있었다. As shown in FIG. 5, the average particle size of the Pt-Pd alloy electrode catalyst for fuel cells prepared through Example 1 of the present invention is 3.45 nm, which is the average particle size of the Pt-Pd alloy electrode catalyst for fuel cells prepared through the comparative example. It was smaller than 4.3nm, especially the catalyst particles prepared in Example 1 was confirmed that the XRD peak is sharply formed, the crystallinity is high.

Claims (6)

삭제delete 백금과 팔라듐을 합성한 전구체를 제조하는 전구체제조단계; 및
상기 전구체를 사용하여 연료전지용 촉매를 제조하는 촉매제조단계;를 포함하며,
상기 전구체제조단계는 염기성 형태의 팔라듐 용액 및 백금용액을 제조하여 혼합하는 것을 특징으로 하는 연료전지용 촉매 제조방법.
A precursor manufacturing step of preparing a precursor synthesized with platinum and palladium; And
And a catalyst manufacturing step of preparing a catalyst for a fuel cell using the precursor.
The precursor manufacturing step is a catalyst manufacturing method for a fuel cell, characterized in that to prepare and mix the basic form of palladium solution and platinum solution.
백금과 팔라듐을 합성한 전구체를 제조하는 전구체제조단계; 및
상기 전구체를 사용하여 연료전지용 촉매를 제조하는 촉매제조단계;를 포함하며,
상기 전구체제조단계는 팔라듐과 아세트산을 고온에서 반응시켜 팔라듐-아세테이트를 제조하는 단계;
백금과 아민계 유기물을 반응시켜 백금-아미드를 제조하는 단계; 및
상기 팔라듐-아세테이트와 백금-아미드를 혼합하는 단계;를 포함하는 것을 특징으로 하는 연료전지용 촉매 제조방법.
A precursor manufacturing step of preparing a precursor synthesized with platinum and palladium; And
And a catalyst manufacturing step of preparing a catalyst for a fuel cell using the precursor.
The precursor manufacturing step comprises the steps of reacting palladium and acetic acid at a high temperature to produce palladium-acetate;
Reacting platinum with an amine organic material to produce platinum-amide; And
Mixing the palladium-acetate and platinum-amide; Fuel cell catalyst manufacturing method comprising a.
백금과 팔라듐을 합성한 전구체를 제조하는 전구체제조단계; 및
상기 전구체를 사용하여 연료전지용 촉매를 제조하는 촉매제조단계;를 포함하며,
상기 전구체제조단계는 말론산다이에틸과 이황화탄소를 반응시켜 케텐메캅탈염을 합성하는 단계;
상기 케텐메캅탈염과 알킬할라이드를 반응시킨 후 B2Cl2를 합성하여 리간드를 합성하는 단계;
상기 리간드와 Pt(SO4)Me4en을 결합시켜 Pt 착화합물을 합성하는 단계; 및
상기 Pt 착화합물과 Pd(NO3)2Me4en을 결합시켜 Pt-Pd 이핵착화합물을 제조하는 단계;를 포함하는 것을 특징으로 하는 연료전지용 촉매 제조방법.
A precursor manufacturing step of preparing a precursor synthesized with platinum and palladium; And
And a catalyst manufacturing step of preparing a catalyst for a fuel cell using the precursor.
The precursor manufacturing step comprises the steps of reacting diethyl malonate and carbon disulfide to synthesize a ketenmecaptal salt;
Reacting the ketenemecaptal salt with an alkyl halide and then synthesizing a ligand by synthesizing B 2 Cl 2 ;
Combining the ligand with Pt (SO 4 ) Me 4 en to synthesize a Pt complex; And
Preparing a Pt-Pd dinuclear complex compound by combining the Pt complex compound and Pd (NO 3 ) 2 Me 4 en;
제2항 내지 제4항 중 어느 한 항에 있어서,
상기 촉매제조단계는 용매에 담지체를 혼합, 분산시키는 담지체 분산단계;
담지체가 분산된 용매에 전구체1 또는 전구체2를 혼합, 분산시키는 전구체 분산단계;
상기 전구체 분산단계를 거친 혼합물에 산용액을 투입하는 안정화 단계; 및
상기 안정화 단계를 거친 혼합물을 여과, 세척하여 얻은 촉매담지체를가열, 건조하는 후처리 단계;를 포함하는 것을 특징으로 하는 연료전지용 촉매 제조방법.
5. The method according to any one of claims 2 to 4,
The catalyst manufacturing step includes a carrier dispersion step of mixing and dispersing the carrier in a solvent;
Precursor dispersion step of mixing and dispersing precursor 1 or precursor 2 in a solvent in which the carrier is dispersed;
Stabilizing step of adding an acid solution to the mixture passed through the precursor dispersion step; And
And a post-treatment step of heating and drying the catalyst carrier obtained by filtration and washing the mixture which has passed the stabilization step.
제3항에 의한 방법으로 제조된 Pt-Pd 이핵 착화합물.
Pt-Pd dinuclear complex prepared by the method according to claim 3.
KR1020110125415A 2011-11-28 2011-11-28 Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME KR101310372B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110125415A KR101310372B1 (en) 2011-11-28 2011-11-28 Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110125415A KR101310372B1 (en) 2011-11-28 2011-11-28 Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME

Publications (2)

Publication Number Publication Date
KR20130059214A KR20130059214A (en) 2013-06-05
KR101310372B1 true KR101310372B1 (en) 2013-09-23

Family

ID=48858214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110125415A KR101310372B1 (en) 2011-11-28 2011-11-28 Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME

Country Status (1)

Country Link
KR (1) KR101310372B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430736A (en) * 2020-02-25 2020-07-17 中国科学技术大学 Pd-Pt alloy hypercube composite nanomaterial, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658839B1 (en) 2014-02-19 2016-09-23 순천대학교 산학협력단 Fabrication Method of Membrane-Electrode Assembly for Fuel Cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024706A (en) * 2006-09-14 2008-03-19 주식회사 엘지화학 Pt/pd catalysts for use of direct methanol fuel cell
KR20110026648A (en) * 2009-09-08 2011-03-16 숭실대학교산학협력단 Alloy metallic nanostructure and method of it for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080024706A (en) * 2006-09-14 2008-03-19 주식회사 엘지화학 Pt/pd catalysts for use of direct methanol fuel cell
KR20110026648A (en) * 2009-09-08 2011-03-16 숭실대학교산학협력단 Alloy metallic nanostructure and method of it for fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem. Mater., Vol. 23, PP. 4199-4203 (2011.08.19.) *
International Journal of Hydrogen Energy, Vol. 35, PP. 11634-11641 (2010.04.03.) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430736A (en) * 2020-02-25 2020-07-17 中国科学技术大学 Pd-Pt alloy hypercube composite nanomaterial, preparation method and application thereof

Also Published As

Publication number Publication date
KR20130059214A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Wang et al. Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth
CN107876087B (en) preparation of methylamine lead iodine-reduced graphene oxide composite photocatalytic material and application of composite photocatalytic material in photocatalytic hydrogen production
CN107587161B (en) A kind of preparation method of rodlike NiFeSe/C electrolysis water catalyst
US9862605B2 (en) Nitrogen-containing carbon alloy, method for producing same, carbon alloy catalyst, and fuel cell
Wan et al. Boosting nitrate electroreduction to ammonia on NbO x via constructing oxygen vacancies
WO2017117410A1 (en) Non-noble metal electrocatalysts for oxygen depolarized cathodes and their application in chlor-alkali electrolysis cells
CN102231449B (en) Photoelectrochemical biofuel cell based on quantum dot, titanium dioxide and enzyme, and preparation method thereof
Feng et al. An efficient and stable Ni–Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction
Lee et al. Core@ shell structured NiCo@ NiCoP nanorods vertically aligned on Ni foam as an efficient bifunctional electrocatalyst for overall water electrolysis
CN106378160A (en) Method for preparing CdS/MoS2 composite hollow-block photocatalyst
CN108611657A (en) A kind of synthesis and application of the carbon nano-fiber electrochemical catalyst of nitrogenous cobalt molybdenum
CN1986047A (en) Noble metal electrocatalyst based on nano carbon fiber and its preparing method
Ying et al. Mn-doped Bi2O3 nanosheets from a deep eutectic solvent toward enhanced electrocatalytic N2 reduction
KR20200048454A (en) The method of generating oxygen vacancies in nickel-cobalt oxide for oxygen reduction reaction and nickel-cobalt oxide thereby
Ali et al. Molybdenum and phosphorous dual‐doped, transition‐metal‐based, free‐standing electrode for overall water splitting
KR101310372B1 (en) Pt-Pd ALLOY PRECURSOR FOR FUEL CELL ELECTRODE CATALYST AND METHOD OF LAW Pt CATALYST USING SAME
CN109192996B (en) Spherical nitrogen-doped carbon-supported cobalt-based oxygen reduction catalyst and preparation method and application thereof
Wang et al. A facile synthesis of Pt@ Ir zigzag bimetallic nanocomplexes for hydrogenation reactions
Lu et al. Low-temperature synthesized amorphous quasi-high-entropy carbonate electrocatalyst with superior surface self-optimization for efficient water oxidation
Park et al. In situ-grown Co 3 S 4 sheet-functionalized metal–organic framework via surface engineering as a HER catalyst in alkaline media
KR20140065686A (en) Preparation method of carbon-supported palladium-platinum alloy nanoparticles with core-shell structure for the application to fuel cells
CN112725828A (en) IrRu-based multicomponent alloy metal precipitation catalyst and preparation method thereof
Xiao et al. Facile Synthesis of MOF‐derived Mn3O4@ N‐doped Carbon with Efficient Oxygen Reduction
KR20160127683A (en) Method for preparing multiwalled carbon nanotubes/ionic liquid/manganese nanohybrid and hydrogen generation catalyst by the method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180911

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190910

Year of fee payment: 7