KR101299412B1 - Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof - Google Patents
Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof Download PDFInfo
- Publication number
- KR101299412B1 KR101299412B1 KR1020130012257A KR20130012257A KR101299412B1 KR 101299412 B1 KR101299412 B1 KR 101299412B1 KR 1020130012257 A KR1020130012257 A KR 1020130012257A KR 20130012257 A KR20130012257 A KR 20130012257A KR 101299412 B1 KR101299412 B1 KR 101299412B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- dispersion
- photocatalyst
- hours
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/04—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/2038—Resistance against physical degradation
- C04B2111/2061—Materials containing photocatalysts, e.g. TiO2, for avoiding staining by air pollutants or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 및 그 제조방법에 관한 것으로, 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 Cr 등을 코팅시킨 아나타제형 TiO2를 주성분으로 하여 이루어진 광촉매 분산액에, 계면활성제, 소듐실리케이트 등을 혼합하여 광촉매 코팅액을 제조하고, 상기 광촉매 코팅액에 벽돌 성형체를 함침시켜서 자외선뿐만 아니라 가시광선까지 영역에서도 광촉매능을 갖는 벽돌 및 그 제조방법에 관한 것이다.
The present invention relates to a brick coated with ultraviolet and visible light-reactive photocatalyst and a method for manufacturing the same, which is a perovskite compound Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) A photocatalyst coating solution was prepared by mixing a surfactant, sodium silicate, etc., with a photocatalyst dispersion mainly composed of anatase-type TiO 2 coated with O 3-y and Cr, and impregnating the brick molded body with the photocatalyst coating solution to in addition to ultraviolet light. The present invention relates to a brick having a photocatalytic ability even in the visible light region and a method of manufacturing the same.
일반적으로 벽체 또는 바닥재 등의 건축자재로 사용되는 벽돌은 점토 및 모래를 배합하여 분쇄, 성형, 건조 후 소성시켜 생산하였다. 이와 같은 벽돌은 그 원료로 점토 60∼90wt%, 모래 40∼10wt%를 혼합하여 이를 분쇄하고, 진공사출성형기로 성형하여 성형물을 약 100∼200℃에서 60∼80시간 건조 후, 1,100∼1,200℃ 온도에서 소성하여 냉각하는 방법으로 적색계열의 색상과 표면에 유약을 바른 단순한 벽돌을 생산하였으므로 대부분의 벽돌은 외장재로 용도가 한정되어 왔다.In general, bricks, which are used as building materials such as walls or floors, are produced by mixing clay and sand, and then crushing, forming, drying and firing them. Such a brick is mixed with 60 to 90 wt% of clay and 40 to 10 wt% of sand as its raw material, pulverized and molded into a vacuum injection molding machine, and the molded product is dried at about 100 to 200 ° C. for 60 to 80 hours, and then 1,100 to 1,200 ° C. Most bricks have been limited to exterior materials because they produced simple bricks with glaze on the red color and surface by firing and cooling at temperature.
그러나, 이렇게 사용한 건축 및 보도용의 벽돌은 ‘건축자재’라는 단순 기능만으로 사용되어 왔고, 사용된 건축 및 보도용 벽돌이 오랜시간이 경과함에 따라 공해로 인해 많은 먼지성분 등이 함유된 우수를 비롯하여 각종 오염물질 등에 의해 더러워지거나 오염되는 것은 정기적으로 화학적 처리 등을 실시하여 그 청결 상태를 유지할 수밖에 없어 보수 및 유지관리비용이 계속해서 발생하고, 벽돌 제품이 설치되어 있는 현장 주위의 냄새제거는 물론 대기오염물질인 NOx 등의 분해기능 등은 전혀 기대할 수 없었다.However, the building and sidewalk bricks used in this way have been used only with the simple function of 'building materials', and as the used building and sidewalk bricks have passed for a long time, the rainwater containing a lot of dust components due to pollution, Dirty or contaminated by various contaminants, etc. must be regularly treated with chemical treatment to maintain its cleanliness, and maintenance and maintenance costs continue to occur, and odor removal around the site where brick products are installed, as well as air The decomposition function of the pollutant NOx could not be expected at all.
상기와 같은 일반 건축용 벽돌이 갖고 있는 문제점을 해결하기 위하여, 점토벽돌의 표면에 광촉매 기능을 구비하는 산화티타늄 등을 다른 성분들과 혼합하여 성형하거나, 성형벽돌의 표면에 스프레이 코팅처리한 광촉매 코팅벽돌에 대한 연구개발이 진행되고 있다. In order to solve the problems of the general building bricks as described above, the photocatalyst coated bricks are formed by mixing titanium oxide having a photocatalytic function on the surface of clay bricks with other components, or spray coating the surface of the molded bricks. R & D is underway.
광촉매가 코팅된 벽돌이 실제 현장에서 광촉매능을 발휘하기 위해서는 실험실의 자외선등 아래에서가 아닌 야외에서 가시광선이 대부분인 햇빛을 받아서 촉매능을 발휘하여야 한다. In order for the photocatalyst-coated brick to exhibit photocatalytic ability in actual field, it must be catalytically subjected to sunlight, which is mostly visible light in the open air, not under the ultraviolet light of the laboratory.
광촉매에 대한 연구는 지난 수 십년 간 전 세계적으로 광범위하게 진행되어 왔으며 광촉매 물질로 산화티타늄(TiO2) 외에 황화주석(SnO), 산화아연(ZnO), 산화철(Fe2O3), 황화카드뮴(CdS), 인산은(Ag3PO4), 페롭스카이트형 화합물인 SrTiO3 -y 등이 알려져 있고, 이 중 이산화티타늄은 물리적-화학적으로 안정하여 독성이 없고 값이 저렴하여 경제적인 광촉매 재료인 반면에 밴드갭이 3.0eV로 자외선 영역(파장 영역 413㎚ 부근)에서 광촉매 능을 보인다는 결정적인 결함이 있다.Research on photocatalysts has been extensively conducted worldwide for several decades, and in addition to titanium oxide (TiO 2 ), tin sulfide (SnO), zinc oxide (ZnO), iron oxide (Fe2O3), cadmium sulfide (CdS), Silver phosphate (Ag3PO4), SrTiO 3 -y , which is a perovskite compound, are known. Among them, titanium dioxide is physically and chemically stable, non-toxic and inexpensive, which is an economical photocatalyst material, while its bandgap is 3.0 eV. Therefore, there is a critical defect that the photocatalytic ability is exhibited in the ultraviolet region (near the wavelength region of 413 nm).
이와 같이, 이산화티타늄 광촉매가 촉매능을 발휘하는 자외선 영역은 태양광선의 약 5% 미만에 불과하므로, 대부분이 가시광선으로 이루어진 태양광선 아래의 자연상태에서는 종래 광촉매 코팅벽돌에 의한 광촉매능의 효과는 거의 기대할 수 없었다.As described above, since the ultraviolet region in which the titanium dioxide photocatalyst exhibits a catalytic ability is less than about 5% of the sunlight, the effect of the photocatalytic ability by the conventional photocatalyst coating brick in the natural state under the most of the visible rays is I could hardly expect it.
즉, 광촉매 코팅벽돌이 광촉매능을 발휘하기 위해서는 자외선 영역 뿐 아니라 가시광선 영역에서도 촉매능을 보여야 하나, 종래의 광촉매 코팅벽돌에 사용되어지고 있는 이산화티타늄 광촉매는 자외선 영역(파장 영역 413㎚부근)에서만 촉매능을 발휘하고 있어, 실제 건축자재용 벽돌이 축조 또는 설치되는 태양광선 아래에서는 광촉매 기능이 발현되지 못하는 현상이 발생되는 등 여러가지 문제점이 있었다.
In other words, in order for the photocatalyst coated brick to exhibit the photocatalytic ability, the catalytic activity must be shown not only in the ultraviolet region but also in the visible region. However, the titanium dioxide photocatalyst used in the conventional photocatalyst coating brick is only in the ultraviolet region (near 413 nm wavelength region). Because of the catalytic performance, there were various problems, such as a phenomenon in which the photocatalytic function could not be expressed under the sunlight in which the brick for building materials was actually constructed or installed.
본 발명의 목적은 보도블럭용 벽돌에 적용 가능하며 가시광선 및 자외선 영역에서 작동하는 점토벽돌 및 그 제조방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a clay brick which is applicable to bricks for sidewalk blocks and operates in the visible and ultraviolet regions and a method of manufacturing the same.
본 발명의 목적은 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 TiO2 을 포함하는 광촉매 코팅액을 점토벽돌에 함침시켜서 자외선뿐만 아니라 가시광선까지 영역에서도 우수한 광촉매능을 구비할 수 있는 점토벽돌 및 그 제조방법을 제공하는 것이다.
An object of the present invention is a perovskite compound of Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase type TiO 2 Impregnating a photocatalyst coating solution comprising a clay brick to provide a clay brick and a method for producing the same, which can have excellent photocatalyst ability in the region as well as ultraviolet light.
본 발명의 점토벽돌은 벽돌성형체에 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 코팅 이산화티타늄(TiO2)을 포함하는 광촉매 코팅액을 함침시킨 후, 가열 건조시켜, 자외선 영역 및 가시광선 영역 즉, 태양광선하에서 광촉매능을 구비하도록 되어 있다.
The clay brick of the present invention is a photocatalyst comprising Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase-type coated titanium dioxide (TiO 2 ) in a brick molded body. After impregnating a coating liquid, it heats and dries and is equipped with a photocatalytic ability in an ultraviolet range and visible region, ie, sunlight.
이와 같이, 본 발명은 기존의 자외선 영역에서 작동하는 광촉매를 적용한 보도블럭용 벽돌의 한계점을 뛰어넘어서 가시광선에서도 작동하는 광촉매 분산액을 적용한 보도블럭용 벽돌을 제공한다. As such, the present invention provides a brick for a sidewalk block to which a photocatalyst dispersion liquid that operates even in visible light is surpassed the limit of a brick for a sidewalk block to which a photocatalyst operating in a conventional ultraviolet region is applied.
즉, 본 발명은 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 TiO2 을 포함하는 광촉매 코팅액을 점토벽돌에 함침하도록 되어 있어, 비교적 저렴한 비용으로 자외선 뿐 아니라 가시광선 영역에서도 우수한 광촉매능을 발휘하도록 되어 있으며, 이로 인해 기존의 상당히 비싼 가격에 판매되는 일본산 광촉매 제품에 대한 의존을 배제하여 국산화를 꾀할 수 있다. That is, the present invention is a clay brick photocatalyst coating liquid containing a perovskite-based compound Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase type TiO 2 Impregnated at low cost, and excellent in photocatalytic activity not only in ultraviolet light but also in visible light. This makes it possible to localize by eliminating dependence on Japanese photocatalytic products that are sold at very high prices. have.
본 발명은 점토벽돌의 성형체에 광촉매 코팅액을 함침하도록 되어 있어, 점토벽돌의 생산공정을 단순화하고, 이를 통해 생산 원가를 절감할 수 있다. The present invention is to impregnate the photocatalyst coating liquid in the molded body of the clay brick, to simplify the production process of the clay brick, thereby reducing the production cost.
본 발명은 야외에 시공되어 오랜 기간을 눈비를 맞고, 때로는 물에 잠기고, 다시 햇빛을 받아서 건조되고 하는 과정을 수없이 반복되어도, 지속적인 광촉매능을 발휘할 수 있는 등 많은 효과가 있다.
The present invention has many effects, such as being able to exert a continuous photocatalytic ability even if repeated many times the process of being outdoors and being exposed to rain for a long time, sometimes submerged in water, dried again by sunlight.
도 1 은 본 발명에 따른 구성을 보인 점토벽돌 예시도
도 2 는 본 발명에 따른 점토벽돌 제조방법을 보인 블록 예시도
도 3 은 본 발명 실시예1에 따른 결과를 보인 예시도
도 4 는 본 발명 실시예3에 따른 UV-vis spectroscopy 실험결과를 보인 예시도
도 5 는 본 발명 실시예4에 따른 메틸렌 블루(Methylene blue)의 감손(degradation) 실험결과를 보인 예시도
도 6 은 실시예 5 에 사용된 햇빛의 스펙트럼을 보인 예시도
도 7 은 본 발 실시예5에 따른 촉매능 시험결과를 보인 사진예시도Figure 1 is an illustration of clay brick showing a configuration according to the present invention
Figure 2 is an exemplary block diagram showing a clay brick manufacturing method according to the present invention
Figure 3 is an exemplary view showing the results according to the first embodiment of the present invention
Figure 4 is an exemplary view showing the results of UV-vis spectroscopy experiment according to Example 3 of the present invention
5 is an exemplary view showing a result of a degradation experiment of methylene blue according to Example 4 of the present invention.
6 is an exemplary view showing a spectrum of sunlight used in Example 5
Figure 7 is a photographic example showing the catalytic performance test according to Example 5 of the present invention
도 1 은 본 발명에 따른 구성을 보인 점토벽돌 예시도를 도시한 것으로, 본 발명에 따른 점토벽돌은, 보도블록 등의 벽돌 성형체에 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 코팅 이산화티타늄(TiO2)을 포함하는 광촉매 코팅액이 함침되어, 자외선 영역 및 가시광선 영역에서 우수한 광촉매능을 구비하도록 되어 있다. Figure 1 shows an example of clay brick showing the configuration according to the present invention, the clay brick according to the invention, Sr (Ti 1-x V x ) O 3-y , Sr ( The photocatalyst coating liquid containing Ti 1-x W x ) O 3-y and anatase type coated titanium dioxide (TiO 2 ) is impregnated to have excellent photocatalytic ability in the ultraviolet region and the visible region.
즉, 본 발명은 점토벽돌 성형체에 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 코팅 이산화티타늄(TiO2)을 포함하는 광촉매 코팅액을 함침시킨 후, 가열 건조시키도록 되어 있다.
That is, the present invention provides a photocatalyst comprising Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase-type coated titanium dioxide (TiO 2 ) in a clay brick molded body. After impregnating a coating liquid, it is made to heat-dry.
페롭스카이트형 화합물인 SrTiO3-y 또한 주로 자외선 영역에서 광촉매능을 발휘하여 물의 광분해용 전극(환경과 인간, 자유아카데미, 이용근, 53쪽, 1990년 9월 30일 발행)으로 이용되기도 한다. 하지만 SrTiO3-y 또한 밴드갭이 3.2eV로 자외선 영역의 빛(387㎚)이 광촉매능에 관여하게(Hydrogen-Evolving solar cell, Adam Heller, Science, 1984. March) 된다. 따라서 SrTiO3 -y 자체는 광촉매라는 면에서 이산화티타늄과 큰 차이가 없어 보이지만, 본 발명은 Sr 자리나 Ti 자리에 비슷한 크기를 갖는 다른 이온을 부분 치환시킴으로써, 전기전도도, 자기적 성질, 광학적 성질, 산소 함량의 제어, 밀도의 변화, 색깔의 변화 등의 물성을 제어된 광촉매가 벽돌에 코팅되어 있다. SrTiO 3-y , a perovskite-type compound, is also used as an electrode for photolysis of water (environmental and human, free academy, Lee Yong-geun, p. 53, issued Sept. 30, 1990), mainly due to its photocatalytic activity in the ultraviolet region. However, SrTiO 3-y also has a bandgap of 3.2 eV, which causes light in the ultraviolet region (387 nm) to be involved in photocatalytic activity (Hydrogen-Evolving solar cell, Adam Heller, Science, 1984. March). Therefore, although SrTiO 3 -y itself does not appear to be much different from titanium dioxide in terms of photocatalyst, the present invention partially replaces other ions having similar sizes in the Sr site or the Ti site, thereby providing electrical conductivity, magnetic properties, optical properties, Photocatalysts with controlled properties such as oxygen content control, density change, and color change are coated on the bricks.
또한, 본 발명에 따른 광촉매는 적당한 크기의 광촉매가 바람직하다. 이는 각종 벽지, 벽돌, 회벽 등의 물체에 광촉매를 분사하여 시공하는 경우 가능한 한 작은 크기의 즉 나노 크기를 갖는 광촉매가 유리하지만, 본원발명에 따른 보도블럭용 벽돌의 경우에는 나노 크기의 광촉매는 물에 분산이 너무 잘되서 벽돌의 기벽에 함침시키는 경우 방해 요인이 될 수 있으므로, 적당한 크기의 광촉매를 사용한다.
In addition, the photocatalyst according to the present invention is preferably a photocatalyst of a suitable size. When the photocatalyst is sprayed onto an object such as a wallpaper, a brick, a gray wall, or the like, a photocatalyst having a small size, that is, a nano size, is advantageous. If the dispersion is too good to impregnate the brick walls, an appropriate size photocatalyst should be used.
상기 광촉매 코팅액은 광촉매 분산액 100 중량부에 대하여, 인산에스테르계 음이온 계면활성제 0.03∼2.5중량부, 콜로이달 소듐실리케이트 0.05∼3중량부, 디메틸실록산(Dimethylsiloxane) 0.01∼0.5중량부, 1∼100㎛의 장석 0.2∼2 중량부를 포함하되,The photocatalyst coating solution is 0.03 to 2.5 parts by weight of phosphate ester anionic surfactant, 0.05 to 3 parts by weight of colloidal sodium silicate, 0.01 to 0.5 parts by weight of dimethylsiloxane, and 1 to 100 μm with respect to 100 parts by weight of the photocatalyst dispersion. It contains 0.2 to 2 parts by weight of feldspar,
상기 광촉매 분산액은 페롭스카이트계 화합물인 Sr(Ti1 - xVx)O3-y 분산액 20∼40 중량부, Sr(Ti1 - xWx)O3-y 분산액 20∼40중량부 및, 아나타제형 코팅 이산화티타늄(TiO2) 분산액 30∼50중량부 범위내에서 혼합하여 최종적으로 100중량부가 되도록 되어 있다. 이때, 0.0<x<0.3, 0.0<y<0.5 의 범위내에 있다. The photocatalyst dispersion is 20 to 40 parts by weight of Sr (Ti 1 - x V x ) O 3-y dispersion, 20 to 40 parts by weight of Sr (Ti 1 - x W x ) O 3-y dispersion, which is a perovskite compound, The anatase-type coated titanium dioxide (TiO 2 ) dispersion is mixed in the range of 30 to 50 parts by weight, and finally 100 parts by weight. At this time, it is in the range of 0.0 <x <0.3, 0.0 <y <0.5.
즉, 상기 광촉매 분산액은 Sr(Ti1 - xVx)O3-y 분산액 20∼40 중량%, Sr(Ti1 - xWx)O3-y 분산액 20∼40중량% 및, 아나타제형 코팅 이산화티타늄(TiO2) 분산액 30∼50중량%를 포함하도록 혼합될 수 있다.
That is, the photocatalyst dispersion is 20 to 40% by weight Sr (Ti 1 - x V x ) O 3-y dispersion, 20 to 40% by weight Sr (Ti 1 - x W x ) O 3-y dispersion, and anatase type coating It may be mixed to include 30 to 50% by weight of titanium dioxide (TiO 2 ) dispersion.
상기와 같은 광촉매 분산액의 배합율은 태양광선 아래에서 최적의 광촉매능의 발휘할 수 있는 최적의 배합이며, 그 범위를 벗어날 경우, 본원발명의 배합에 따른 효능이 저하되는 현상이 발생된다.
The blending ratio of the photocatalyst dispersion as described above is the optimum blending which can exhibit the optimum photocatalytic ability under sunlight, and when it is out of the range, a phenomenon in which the efficacy of the blending of the present invention is lowered occurs.
상기 Sr(Ti1 - xVx)O3-y 분산액은 스트론튬티타네이드(SrTiO3)의 물성의 제어를 위하여 Ti 자리의 일부를 V을 부분 치환한 고용체의 분산액으로, Sr(Ti1 - xVx)O3-y 분산액 0.8∼1.2 중량부를 증류수 100중량부의 비율로, 일예로, Sr(Ti1-xVx)O3-y 10g을 증류수 1000g에 분산시켜서 형성한다. The Sr (Ti 1 - x V x ) O 3-y dispersion is a dispersion of a solid solution in which part of the Ti site is partially substituted for V to control the physical properties of strontium titanide (SrTiO 3 ), and Sr (Ti 1 - x V x) O 3-y dispersions 0.8 to 1.2 parts by weight of distilled water in a ratio of 100 parts by weight of, as an example, is formed by dispersing the Sr (Ti 1-x V x ) O 3-y 10g to 1000g of distilled water.
즉, 상기 Sr(Ti1-xVx)O3-y 분산액은 strontium acetate((CH3COO)2Sr)와 vanadium Ⅲ acetate((CH3COO)3V)을 원료로 하여 Sr(Ti1-xVx)O3-y의 고용체를 합성하고, 이를 순수(증류수)에 분산시켜 형성한다.
That is, the Sr (Ti 1-x V x ) O 3-y dispersion is strontium acetate ((CH 3 COO) 2 Sr) , and vanadium Ⅲ acetate ((CH 3 COO ) 3 V) to a as a raw material Sr (Ti 1 A solid solution of -x V x ) O 3-y is synthesized and formed by dispersing it in pure water (distilled water).
상기 Sr(Ti1 - xWx)O3-y 분산액은 스트론튬티타네이드(SrTiO3)의 Ti 자리의 일부를 W로 부분 치환한 고용체 분산액으로, Sr(Ti1 - xWx)O3-y 0.8∼1.2중량부를 증류수 100중량부의 비율로 분산시켜 형성한다. 일예로, Sr(Ti1-xWx)O3-y 분산액 10g을 증류수 1000g에 분산시켜 형성한다. The Sr (Ti 1 - x W x ) O 3-y dispersion is a solid solution dispersion in which a part of the Ti sites of strontium titanide (SrTiO 3 ) is partially substituted with W, and Sr (Ti 1 - x W x ) O 3- y 0.8-1.2 weight part is formed by disperse | distributing in the ratio of 100 weight part of distilled water. For example, 10 g of Sr (Ti 1-x W x ) O 3-y dispersion is formed by dispersing 1000 g of distilled water.
즉, 상기 Sr(Ti1-xWx)O3-y 분산액은 strontium acetate((CH3COO)2Sr)와 tungsten oxide(WO3)를 원료로 하여 Sr(Ti1-xWx)O3-y의 고용체를 합성하고, 이를 증류수에 분산시켜 형성한다.
That is, the Sr (Ti 1-x W x ) O 3-y dispersion is strontium acetate ((CH 3 COO) 2 Sr) and tungsten oxide (WO 3) to to a material Sr (Ti 1-x W x ) O A solid solution of 3-y is synthesized and formed by dispersing it in distilled water.
상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액은 크롬(Cr), 철(Fe), 구리(Cu), 망간(Mn) 또는 이들의 합금에 의해 코팅되어 분산성이 향상된 분산액으로, 크롬(Cr), 철(Fe), 구리(Cu), 망간(Mn) 또는 이들의 합금 중 선택된 하나에 의해 코팅된 0.8∼1.2 중량부의 이산화티타늄(TiO2)에 대하여 증류수 100 중량부의 비율로 분산시켜 형성한다. 일예로, 10g의 이산화티타늄(TiO2)에 대하여 증류수 1000g의 비율로 분산시켜 형성된다. The anatase-type coated titanium dioxide (TiO 2 ) dispersion is coated with chromium (Cr), iron (Fe), copper (Cu), manganese (Mn) or an alloy thereof to improve dispersion, chromium (Cr) It is formed by dispersing in an amount of 100 parts by weight of distilled water with respect to 0.8 to 1.2 parts by weight of titanium dioxide (TiO 2) coated by iron (Fe), copper (Cu), manganese (Mn) or one of their alloys. For example, it is formed by dispersing 10 g of titanium dioxide (TiO 2) at a rate of 1000 g of distilled water.
즉, 상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액은 TIP(Titanium(Ⅳ) Iso-propoxide (Ti(OCH (CH3)2)4)), Acethyl acetonate 및 0.1-N CH3COOH 용액으로부터 TiO2를 제조한 후, Cr 등을 코팅하고, 이를 증류수에 분산시켜 형성한다.
That is, the anatase-type coated titanium dioxide (TiO 2 ) dispersion is TIP (Titanium (IV) Iso-propoxide (Ti (OCH (CH 3 ) 2 ) 4 )), Acethyl acetonate and TiO 2 from 0.1-N CH 3 COOH solution. After the preparation, it is formed by coating Cr and the like, and dispersing it in distilled water.
도 2 는 본 발명에 따른 점토벽돌 제조방법을 보인 블록 예시도를 도시한 것으로, 본 발명은 광촉매능이 알려져 있던 기존의 스트론튬티타네이드(SrTiO3)의 물성의 제어를 위하여, Ti 자리의 일부를 V을 부분 치환한 고용체의 분산액, 스트론튬티타네이드(SrTiO3)의 Ti 자리의 일부를 W로 부분 치환한 고용체 분산액 및, Cr 등을 코팅한 아나타제형 TiO2의 분산액을 일정 비율로 혼합하여 광촉매 분산액에, 인산에스테르계 음이온 계면활성제, 콜로이달 소듐 실리케이트 등을 혼합하여 광촉매 코팅액(STM)을 제조한 다음, 상기 광촉매 코팅액에 보도블럭용 벽돌 성형체를 함침시켜서 코팅한 후 건조하여 자외선 영역 및 가시광선 영역에서 자체 정화능을 갖는 보도블럭용 벽돌 제품을 제조하도록 되어 있다. 이때 햇빛에 의한 광촉매능을 갖는 우수한 양자효율을 부여하기 위하여 졸-겔법을 적용하여 관련 고용체들의 미분체를 제조한다.
Figure 2 illustrates a block diagram showing a clay brick manufacturing method according to the present invention, the present invention is to control the physical properties of the conventional strontium titanide (SrTiO 3 ) known photocatalytic activity, a portion of the Ti site V A dispersion of a solid solution partially substituted with a solid solution, a solid solution dispersion in which a part of the Ti sites of strontium titanide (SrTiO 3 ) is partially substituted with W, and a dispersion of anatase type TiO 2 coated with Cr and the like are mixed in a predetermined ratio, A photocatalyst coating solution (STM) was prepared by mixing a phosphate ester anionic surfactant and colloidal sodium silicate. Then, the photocatalyst coating solution was impregnated with a brick molding for a sidewalk block and then dried to dry itself in the ultraviolet and visible region. It is intended to produce a brick product for a sidewalk block having a purifying capacity. At this time, in order to give excellent quantum efficiency having photocatalytic ability by sunlight, sol-gel method is applied to prepare fine powders of related solid solutions.
즉, 본 발명은 햇빛에 의한 광촉매능을 갖는 우수한 양자효율을 부여하기 위하여 졸-겔법을 적용하여 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y, Sr(Ti1-xWx)O3-y 및 아나타제형 이산화티타늄(TiO2) 분산액을 각각 제조하고, 상기 각각의 분산액을 일정비율로 혼합하여 광촉매 분산액을 형성한 후, 상기 광촉매 분산액에 인산에스테르계 음이온 계면활성제, 콜로이달 소듐 실리케이트 등을 혼합하여 광촉매 코팅액(STM)을 제조한 다음, 상기 광촉매 코팅액에 보도블럭용 벽돌 성형체를 함침시켜서 코팅, 건조하도록 되어 있다.
That is, the present invention is applied to the sol-gel method in order to give excellent quantum efficiency having a photocatalytic ability by sunlight, Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase type titanium dioxide (TiO 2 ) dispersions were prepared, and the respective dispersions were mixed at a predetermined ratio to form a photocatalyst dispersion, and then a phosphate ester anionic surfactant was added to the photocatalyst dispersion. The photocatalyst coating solution (STM) is prepared by mixing colloidal sodium silicate and the like, and then the photocatalyst coating solution is impregnated with a brick molded article for the sidewalk block to coat and dry the coating.
이와 같은 본 발명은, 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y 분산액, Sr(Ti1-xWx)O3-y 분산액 및, 아나타제형 이산화티타늄(TiO2) 분산액을 포함하는 광촉매 코팅액을 형성하는 광촉매 코팅액 형성단계;Such a present invention is a perovskite compound of Sr (Ti 1-x V x ) O 3-y dispersion, Sr (Ti 1-x W x ) O 3-y dispersion, and anatase titanium dioxide (TiO 2 ) A photocatalyst coating liquid forming step of forming a photocatalyst coating liquid including a dispersion;
상기 광촉매 코팅액을 벽돌 성형체에 함침 또는 도포하는 코팅단계;A coating step of impregnating or applying the photocatalyst coating solution to the brick molded body;
광촉매 코팅액이 함침 또는 도포된 벽돌성형체를 가열-건조하여 벽돌을 형성하는 건조단계;를 포함하도록 되어 있다.
And a drying step of forming bricks by heating-drying the brick molded article impregnated or coated with the photocatalyst coating solution.
상기 광촉매 코팅액 형성단계는 strontium acetate((CH3COO)2Sr)와 vanadium Ⅲ acetate((CH3COO)3V)을 원료로 하여 Sr(Ti1-xVx)O3-y의 고용체를 합성하고, 이를 증류수에 분산시켜 Sr(Ti1-xVx)O3-y 분산액을 형성하는 Sr(Ti1-xVx)O3-y 분산액 형성단계;The photocatalyst coating solution forming step uses a solid solution of Sr (Ti 1-x V x ) O 3-y using strontium acetate ((CH 3 COO) 2 Sr) and vanadium III acetate ((CH 3 COO) 3 V) as raw materials. Synthesizing and dispersing it in distilled water to form an Sr (Ti 1-x V x ) O 3-y dispersion to form an Sr (Ti 1-x V x ) O 3-y dispersion;
strontium acetate((CH3COO)2Sr)와 tungsten oxide(WO3)를 원료로 하여 Sr(Ti1-xWx)O3-y의 고용체를 합성하고, 이를 증류수에 분산시켜 Sr(Ti1-xWx)O3-y 분산액을 형성하는 Sr(Ti1-xWx)O3-y 분산액 형성단계;A solid solution of Sr (Ti 1-x W x ) O 3-y was synthesized from strontium acetate ((CH 3 COO) 2 Sr) and tungsten oxide (WO 3 ) and dispersed in distilled water to give Sr (Ti 1 -x W x) O 3-y dispersion Sr (Ti 1-x W x to form a) O 3-y dispersion formation step;
TIP(Titanium(Ⅳ) Iso-propoxide (Ti(OCH (CH3)2)4)), Acethyl acetonate 및 0.1-N CH3COOH 용액으로 TiO2를 제조한 후, 크롬(Cr), 철(Fe), 구리(Cu), 망간(Mn) 또는 이들의 합금 등에 의해 코팅하고, 이를 증류수에 분산시켜 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 형성하는 아나타제형 코팅 이산화티타늄(TiO2) 분산액 형성단계; TiO 2 was prepared from TIP (Titanium (IV) Iso-propoxide (Ti (OCH (CH 3 ) 2 ) 4 )), Acethyl acetonate and 0.1-N CH 3 COOH solution, followed by chromium (Cr) and iron (Fe). , copper (Cu), manganese (Mn), or coated by an alloy, which was dispersed in distilled water, anatase coated titanium dioxide (TiO 2) anatase coated titanium dioxide to form a dispersion (TiO 2) dispersion formation step;
상기 Sr(Ti1-xVx)O3-y 분산액, Sr(Ti1-xWx)O3-y 분산액, 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 일정비율로 혼합하여 광촉매 분산액을 형성하는 광촉매 분산액 형성단계;The photocatalyst dispersion was prepared by mixing the Sr (Ti 1-x V x ) O 3-y dispersion, the Sr (Ti 1-x W x ) O 3-y dispersion, and the anatase-type coated titanium dioxide (TiO 2 ) dispersion in a proportion. Forming a photocatalyst dispersion;
상기 광촉매 분산액에 인산에스테르계 음이온 계면활성제, 콜로이달 소듐실리케이트, 디메틸실록산(Dimethylsiloxane), 1∼100㎛의 크기를 구비하는 점착제용 장석을 첨가하여 광촉매 코팅액을 형성하는 혼합단계;를 포함한다.
And a mixing step of forming a photocatalyst coating solution by adding phosphate ester anionic surfactant, colloidal sodium silicate, dimethylsiloxane, and feldspar for pressure sensitive adhesive having a size of 1 to 100 μm to the photocatalyst dispersion.
상기 Sr(Ti1-xVx)O3-y 분산액 형성단계는 Sr(Ti1-xVx)O3-y 분산액을 형성하기 위한 것으로, 상기 Sr(Ti1-xVx)O3-y 분산액은, 11∼12중량부의 스트론튬 아세테이트(strontium acetate, (CH3COO)2Sr)와 0.12∼0.62 중량부의 바나듐 III 아세테이트(vanadium III acetate, (CH3COO)3V)을, 1000 중량부의 0.1M 초산용액에 혼합하고서, 80∼95℃(바람직하게는 약90℃)에서 2.5∼3.5시간(약3시간)동안 환류한 후 냉각하고, 16.8∼17.5중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, Ti[OCH(CH3)2]4)를 110∼130중량부의 부틸 알콜(butyl alcohol, C4H9OH, 99.9%)에 용해시키고서 2∼4시간동안 쉐이커를 이용하여 혼합한 후, 이 두 용액을 혼합하고 아세틸아세톤(acetyloacetone, CH3COCH2COCH3)을 2∼4중량부를 가하고 자석 교반기로 교반해주면서 앞의 두 용액을 40∼80분동안 반응시켜서 졸상의 생성물을 얻는다.The Sr (Ti 1-x V x ) O 3-y dispersion forming step is for forming Sr (Ti 1-x V x ) O 3-y dispersion, and the Sr (Ti 1-x V x ) O 3 The -y dispersion contains 11-12 parts by weight of strontium acetate (CH 3 COO) 2 Sr and 0.12-0.62 parts by weight of vanadium III acetate (CH 3 COO) 3 V. Mixed with a negative 0.1 M acetic acid solution, refluxed at 80 to 95 ° C. (preferably about 90 ° C.) for 2.5 to 3.5 hours (about 3 hours), and then cooled, and 16.8 to 17.5 parts by weight of titanium tetraisoprooxide (Titanium) tetraisoprooxide, Ti [OCH (CH 3 ) 2 ] 4 ) was dissolved in 110-130 parts by weight of butyl alcohol (butyl alcohol, C 4 H 9 OH, 99.9%) and mixed using a shaker for 2-4 hours. , by mixing the two solutions and acetylacetone (acetyloacetone, CH 3 COCH 2 COCH 3) a 2 to 4 parts by weight was added and reaction stirred haejumyeonseo the two solutions in front of 40-80 minutes with a magnetic stirrer sol-like To obtain a product.
상기 졸상의 생성물을 1∼3일(약 2일간) 상온(약 20∼25℃ 내외)에서 건조한 후 전기유발연마기(사발 직경:100㎜)에서 2.5∼3.5시간(바람직하게는 약3시간) 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 11∼13시간동안 열처리하고 서냉하여 얻은 Sr(Ti1-xVx)O3-y 식으로 표현되는 분체 시료 8∼12 중량부를, 증류수 100중량부에, 첨가하고, 에틸알코올 4∼7중량부를 첨가한 후, 전기 교반기와 직경이 1.2㎜인 세라믹 비드를 이용해서 10∼14시간 동안 혼합-분쇄한다. The sol-like product was dried at room temperature (about 20-25 ° C.) for 1 to 3 days (about 2 days), and then mixed for 2.5 to 3.5 hours (preferably about 3 hours) at an electro-polishing polisher (bowl diameter: 100 mm). 8-12 weight of powder sample expressed by Sr (Ti 1-x V x ) O 3-y formula obtained by heat-treatment with air partial pressure pair = 1.0atm and heat treatment for 11-13 hours at 1150-1200 ℃ and slow cooling Part is added to 100 parts by weight of distilled water, 4 to 7 parts by weight of ethyl alcohol is added, and then mixed-pulverized for 10 to 14 hours using an electric stirrer and ceramic beads having a diameter of 1.2 mm.
이와 같이 혼합-분쇄한 다음, 이 분체시료를 공기 중에서 10∼13시간 동안 800∼850℃의 온도 범위에서 어닐링한 후 분당 5∼10℃의 속도로 상온(약 20∼25℃ 내외)까지 서냉시킨 후 세라믹 비드를 이용하여 22∼26시간(약24시간) 동안 분쇄 및 혼합하여 형성한다. 이때, 냉각을 고려하여 온도조절이 미세조정되는 전기로를 사용하는 것이 바람직하다.After mixing and pulverizing as described above, the powder sample was annealed in air at a temperature range of 800 to 850 ° C for 10 to 13 hours, and then slowly cooled to room temperature (about 20 to 25 ° C) at a rate of 5 to 10 ° C per minute. It is then formed by grinding and mixing for 22 to 26 hours (about 24 hours) using ceramic beads. At this time, it is preferable to use an electric furnace in which temperature control is finely adjusted in consideration of cooling.
상기와 같은 형성된 Sr(Ti1-xVx)O3-y 0.8∼1.2 중량부를 증류수 100중량부의 비율로 분산시켜 Sr(Ti1-xVx)O3-y 분산액을 형성한다.
To form Sr (Ti 1-x V x ) O 3-y 0.8~1.2 parts by weight of distilled water was dispersed in 100 parts by weight ratio Sr (Ti 1-x V x ) O 3-y dispersion formed as above.
상기 Sr(Ti1-xWx)O3-y 분산액 형성단계는 Sr(Ti1-xWx)O3-y 분산액을 형성하는 단계로, 상기 Sr(Ti1-xWx)O3-y 분산액은, 11∼12중량부의 스트론튬 아세테이트(strontium acetate, (CH3COO)2Sr) 0.13∼0.63중량부의 텅스텐 옥사이드(tungsten oxide, WO3)를, 1000중량부의 0.1M 초산용액에 혼합하고서 80∼95℃(약90℃)에서 2.5∼3.5시간(약3시간)동안 환류한 후 냉각하고, 16.8∼17.5중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, Ti[OCH(CH3)2]4)를 110∼130중량부의 부틸 알콜(butyl alcohol, C4H9OH, 99.9%)에 용해시키고서 2∼4시간동안 쉐이커를 이용하여 혼합한 후, 이 두 용액을 혼합하고 아세틸아세톤(acetyloacetone, CH3COCH2COCH3)을 2∼4중량부를 가하고 자석 교반기로 교반해주면서 앞의 두 용액을 40∼60분동안 반응시켜서 졸상의 생성물을 얻는다.The Sr (Ti 1-x W x ) O 3-y dispersion forming step is a step of forming a Sr (Ti 1-x W x ) O 3-y dispersion, wherein the Sr (Ti 1-x W x ) O 3 The -y dispersion was prepared by mixing 11-12 parts by weight of strontium acetate (CH 3 COO) 2 Sr with 0.13-0.63 parts by weight of tungsten oxide (W0 3 ) in 1000 parts by weight of 0.1 M acetic acid solution. After refluxing at 80-95 ° C. (about 90 ° C.) for 2.5-3.5 hours (about 3 hours), the mixture was cooled and cooled to 16.8-17.5 parts by weight of titanium tetraisoprooxide, Ti [OCH (CH 3 ) 2 ] 4 ) Was dissolved in 110-130 parts by weight of butyl alcohol (butyl alcohol, C 4 H 9 OH, 99.9%) and mixed with a shaker for 2-4 hours, and then the two solutions were mixed and acetylacetone (acetyloacetone, 2 to 4 parts by weight of CH 3 COCH 2 COCH 3 ) is added and the above two solutions are reacted for 40 to 60 minutes while stirring with a magnetic stirrer to obtain a sol-like product.
상기 졸상의 생성물을 1∼3일(약2일간) 상온(약 20∼25℃ 내외)에서 건조한 후 전기유발연마기(사발 직경:100㎜)에서 2.5∼3.5(약3시간) 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 11∼13시간동안 열처리하고 서냉하여 얻은 Sr(Ti1-xWx)O3-y 식으로 표현되는 분체 시료 8∼12중량부를 증류수 100중량부에 첨가한 후, 에틸알코올 4∼7중량부를 첨가하여 전기 교반기와 직경이 1.2㎜인 세라믹 비드를 이용해서 10∼14시간 동안 혼합-분쇄한다.The sol-like product was dried at room temperature (about 20-25 ° C.) for 1 to 3 days (about 2 days), and then mixed-polished with air at 2.5 to 3.5 (about 3 hours) at an electro-induced polishing machine (bowl diameter: 100 mm). 8 to 12 parts by weight of powder sample represented by Sr (Ti 1-x W x ) O 3-y formula obtained by heat treatment after partial heat treatment at a partial pressure pair = 1.0atm and a temperature range of 1150 to 1200 ° C. for 11 to 13 hours. After the addition, 4 to 7 parts by weight of ethyl alcohol were added and mixed-milled for 10 to 14 hours using an electric stirrer and ceramic beads having a diameter of 1.2 mm.
이와 같이 혼합-분쇄된 분체시료를 공기 중에서 0∼30㎖/min의 분율로 질소 기체를 흘려주면서 22∼26시간(약24시간) 동안 800∼850℃의 온도 범위에서 어닐링한 후 분당 5∼10℃의 속도로 상온(약 20∼25℃ 내외)까지 서냉시킨 후 세라믹 비드를 이용하여 22∼26시간(약24시간) 동안 분쇄 및 혼합하여 형성한다. The mixed-pulverized powder sample was annealed at 800 to 850 ° C. for 22 to 26 hours (about 24 hours) while flowing nitrogen gas at a fraction of 0 to 30 ml / min in air, and then 5 to 10 minutes per minute. After slow cooling to room temperature (about 20 to 25 ° C) at a rate of ℃, it is formed by grinding and mixing for 22 to 26 hours (about 24 hours) using ceramic beads.
상기와 같은 형성된 Sr(Ti1-xWx)O3-y 0.8∼1.2중량부를 증류수 100중량부의 비율로 분산시켜 Sr(Ti1-xWx)O3-y 분산액을 형성한다.
Sr (Ti 1-x W x ) is formed, such as the O 3-y 0.8~1.2 parts by weight distilled water were dispersed at a ratio of 100 parts by weight of the parts to form Sr (Ti 1-x W x ) O 3-y dispersion.
상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액 형성단계는 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 형성하는 단계로, 상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액은, 이산화티타늄(TiO2)의 전구체인 30∼38중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, TIP, Ti[OCH(CH3)2]4), 안정화제인 3∼6중량부의 아세틸 아세토네이트(Acethyl acetonate) 및 120∼170중량부의 0.1-N 초산(CH3COOH) 용액을 출발물질로 하여 졸-겔법으로 이산화티타늄(TiO2)을 제조하고, 상기 이산화티타늄(TiO2) 8∼12중량부를 170∼180℃의 전기 오븐 내에서 건조하고 전기유발연마기에서 1.5∼2.5(약 2시간) 연마한 후 공기 분압 Pair=1.0 atm 및 온도 범위 750∼770℃에서 22∼26시간(약24시간)동안 열처리하여 아나타제형 이산화티타늄(TiO2)을 얻는다.The anatase-type coating of titanium dioxide (TiO 2) dispersion formation step is a step of forming the anatase-coated titanium dioxide (TiO 2) dispersion of the anatase-coated titanium dioxide (TiO 2) dispersion of the titanium dioxide (
이렇게 제조한 아나타제형 이산화티타늄(TiO2) 8∼12중량부를 증발기(evaporator) 내에 반경 50㎜의 원모양으로 펼친 후 720∼750℃, 0.01∼1기압의 공기 분압 조건 하에서 순수한 Cr, Fe, Cu, Mn 로 이루어진 군에서 선택된 하나 또는 이들의 합금을 이용하여 진공증착(evaporation)법에 의해 3회 코팅을 실시한 후 상온(약 20∼25℃ 내외)으로 서냉한 다음, 직경이 1.2㎜인 세라믹 비드를 이용하여 70∼75시간(약72시간) 동안 분쇄하고, 0.8∼1.2중량부의 TiO2에 대하여 증류수 100중량부의 비율로 분산시켜서 형성한다. 이때, 상기 진공증착법에 의해 코팅되는 순수한 Cr, Fe, Cu, Mn 로 이루어진 군에서 선택된 하나 또는 이들의 합금은 약 1∼3중량부가 사용된다.
8-12 parts by weight of anatase type titanium dioxide (TiO 2 ) thus prepared was expanded in an evaporator in a circular shape with a radius of 50 mm and then pure Cr, Fe, Cu under an air partial pressure of 720 to 750 ° C. and 0.01 to 1 atmosphere. , Three times coating by the evaporation method using one or their alloys selected from the group consisting of Mn, and then cooled slowly to room temperature (about 20-25 ℃), and then ceramic beads having a diameter of 1.2 mm It is formed by pulverizing for 70 to 75 hours (about 72 hours), and dispersed at 100 parts by weight of distilled water with respect to 0.8 to 1.2 parts by weight of TiO 2 . In this case, about 1 to 3 parts by weight of one or an alloy thereof selected from the group consisting of pure Cr, Fe, Cu, and Mn coated by the vacuum deposition method is used.
상기 광촉매 분산액 형성단계는, 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y 분산액 20∼40중량부, Sr(Ti1-xWx)O3-y 분산액 20∼40중량부, 아나타제형 코팅 이산화티타늄(TiO2) 분산액 30∼50중량부를 혼합하여 최종적으로 100 중량부 의 광촉매 분산액을 형성한다.
The photocatalyst dispersion forming step is 20 to 40 parts by weight of Sr (Ti 1-x V x ) O 3-y dispersion, which is a perovskite compound, 20 to 40 weight by weight of Sr (Ti 1-x W x ) O 3-y dispersion 30 parts by weight to 50 parts by weight of the anatase-coated titanium dioxide (TiO 2 ) dispersion was finally formed to form 100 parts by weight of the photocatalyst dispersion.
상기 혼합단계는 광촉매 분산액 100중량부에, 인산에스테르계 음이온 계면활성제 0.03∼2.5중량부, 콜로이달 소듐실리케이트 0.05∼3중량부, 디메틸실록산(Dimethylsiloxane) 0.01∼0.5중량부, 점착제용 장석 0.2∼2중량부를 첨가하고, 전기 교반기를 사용하여 30∼80℃ 구간에서 45∼50시간(약48시간) 동안 가열하면서 혼합 및 숙성시켜서 광촉매 코팅액을 형성한다.
The mixing step is 100 parts by weight of the photocatalyst dispersion, 0.03 to 2.5 parts by weight of phosphate ester anionic surfactant, 0.05 to 3 parts by weight of colloidal sodium silicate, 0.01 to 0.5 parts by weight of dimethylsiloxane, 0.2 to 2 feldspar for pressure-sensitive adhesive A part by weight is added and mixed and aged while heating for 45-50 hours (about 48 hours) in a 30-80 degreeC section using an electric stirrer, and a photocatalyst coating liquid is formed.
상기 인산에스테르계 음이온 계면활성제는 콜로이드 분산성 증대시키고, 콜로이달 소듐실리케이트는 광촉매의 함침시 결착력을 증대시키며, 디메틸실록산은 광촉매의 함침시 침투력을 증대시키고, 장석은 벽돌과의 점착력 등 상호작용을 돕기 위하여 첨가된다. 상기 장석은 점착력 및 침투력의 증대를 위하여 약 1∼100㎛의 크기를 구비하는 것이 바람직하다.
The phosphate ester-based anionic surfactants increase colloidal dispersibility, colloidal sodium silicate increases the binding power when the photocatalyst is impregnated, dimethylsiloxane increases the penetration force when the photocatalyst is impregnated, and feldspar helps to interact with bricks. Is added. The feldspar preferably has a size of about 1 to 100 μm for the purpose of increasing adhesion and penetration.
상기 코팅단계는 광촉매 코팅액 내에 벽돌성형체를 함침시키는 단계로, 벽돌성형체의 표면에 광촉매 코팅액이 두께 10∼30㎜를 구비하도록 함침시킨다. 상기 코팅단계는 분당 40회의 속도로 좌우로 왕복운동하는 전기 쉐이커를 사용하여, 벽돌성형체에 효율적으로 광촉매 코팅액을 침투시킬 수 있다. The coating step is a step of impregnating the brick molded body in the photocatalyst coating liquid, the surface of the brick molded body is impregnated so that the photocatalyst coating liquid has a thickness of 10 ~ 30mm. The coating step may efficiently penetrate the photocatalyst coating liquid to the brick molded body by using an electric shaker reciprocating from side to side at a rate of 40 times per minute.
상기 벽돌성형체는 장석 1∼5중량%에 나머지가 산청 백토로 이루어진 벽돌성형체 또는, 점토 0.01∼4 중량%, 장석 1∼5 중량%, 산화망간 0.01∼2 중량% 및, 나머지가 산청 백토로 이루어진 벽돌성형체를 사용할 수 있다. The brick molded body is a brick molded body consisting of 1 to 5% by weight of feldspar, and the remainder is made of coarse blue clay, or 0.01 to 4% by weight clay, 1 to 5% by weight of feldspar, 0.01 to 2% by weight of manganese oxide, and the remainder is made of a bitumen clay Brick moldings can be used.
상기 벽돌성형체는 공지의 벽돌 제조방법에 의해 성형되는 것이므로, 이에 대한 상세한 설명은 생략한다.
Since the brick molded body is molded by a known brick manufacturing method, a detailed description thereof will be omitted.
상기 건조단계는 550∼800℃의 온도구간과 상압 하에서 광촉매 코팅액이 함침된 벽돌성형체를 24∼48시간 건조시킨다.
In the drying step, the brick molded product impregnated with the photocatalyst coating solution is dried for 24 to 48 hours at a temperature range of 550 to 800 ° C. and atmospheric pressure.
이하, 본 발명을 실시 예에 의해 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.
실시예 1Example 1
11.2g의 strontium acetate((CH3COO)2Sr)와 0.5g의 vanadium Ⅲ acetate ((CH3COO)3V)을 1000g의 0.1M-초산용액에 혼합하고서 90℃에서 3시간동안 환류한 후 냉각하였다. 17.2g의 Titanium tetraisoprooxide(Ti[OCH(CH3)2]4)를 125g의 butyl alcohol (C4H9OH, 99.9%)에 용해시키고서 3시간동안 쉐이커를 이용하여 혼합하였다. 이 두 용액을 혼합하고 acetyloacetone (CH3COCH2COCH3)을 3g 가하고 자석 교반기로 교반해주면서 앞의 두 용액을 1시간동안 반응시켜서 졸상의 생성물을 얻었다. 이것을 2일간 상온(약 25℃ 내외)에서 건조한 후 전기유발연마기(사발 직경:100㎜)에서 3시간 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 12시간동안 열처리하고 서냉하여 Sr(Ti1-xVx)O3-y 식으로 표현되는 페롭스카이트 형 복합산화물 출발물질(Sr(Ti1-xVx)O3-y)을 얻었다. 11.2 g of strontium acetate ((CH 3 COO) 2 Sr) and 0.5 g of vanadium III acetate ((CH 3 COO) 3 V) were mixed in 1000 g of 0.1 M acetic acid solution and refluxed at 90 ° C. for 3 hours. Cooled. 17.2 g of Titanium tetraisoprooxide (Ti [OCH (CH 3 ) 2 ] 4 ) was dissolved in 125 g of butyl alcohol (C 4 H 9 OH, 99.9%) and mixed using a shaker for 3 hours. The two solutions were mixed, 3 g of acetyloacetone (CH 3 COCH 2 COCH 3 ) was added, and the previous two solutions were reacted for 1 hour while stirring with a magnetic stirrer to obtain a sol-like product. After drying for 2 days at room temperature (about 25 ℃), mixed-polishing for 3 hours in an electro-polishing polishing machine (bowl diameter: 100㎜), heat-treated for 12 hours at an air partial pressure pair = 1.0 atm and a temperature range of 1150 ~ 1200 ℃ and slow cooling and Sr (Ti 1-x V x ) O 3-y , which is represented by the formula perop Sky tree-type composite oxide starting material (Sr (Ti 1-x V x) O 3-y) was obtained.
상기 출발물질(Sr(Ti1-xVx)O3-y 의 결정학적 구조 규명을 위하여 X-ray powder diffraction 실험을 실시하여 목표로 한 물질의 합성을 확인하였다. 그 결과는 도 3 에 나타내었다. (XRD data : a=3.936, S.G. Pm3m(221), 대조한 JCPDS data : no. 40-1500)
In order to investigate the crystallographic structure of the starting material (Sr (Ti 1-x V x ) O 3-y , X-ray powder diffraction experiments were conducted to confirm the synthesis of the target material. (XRD data: a = 3.936, SG Pm3m (221), contrasted JCPDS data: no. 40-1500)
실시예 2Example 2
Sr(TiSr (Ti 1-x1-x VV xx )O) O 3-y3-y 분산액 제조 Dispersion Preparation
상기 실시예 1 에 따라 형성된 출발물질(Sr(Ti1-xVx)O3-y) 10g을 증류수 1000g에 분산시켜 Sr(Ti1-xVx)O3-y 분산액을 형성하였다.
10 g of the starting material (Sr (Ti 1-x V x ) O 3-y ) formed according to Example 1 was dispersed in 1000 g of distilled water to form a Sr (Ti 1-x V x ) O 3-y dispersion.
Sr(TiSr (Ti 1-x1-x WW xx )O) O 3-y 3-y 분산액 제조Dispersion Preparation
11.2g의 스트론튬 아세테이트(strontium acetate, (CH3COO)2Sr) 0.5g의 텅스텐 옥사이드(tungsten oxide, WO3)를, 1000g의 0.1M 초산용액에 혼합하고서 90℃에서 3시간동안 환류한 후 냉각하고, 17.2g의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, Ti[OCH(CH3)2]4)를 125g의 부틸 알콜(butyl alcohol, C4H9OH, 99.9%)에 용해시키고서 3시간동안 쉐이커를 이용하여 혼합한 후, 이 두 용액을 혼합하고 아세틸아세톤(acetyloacetone, CH3COCH2COCH3)을 3g 가하고 자석 교반기로 교반해주면서 앞의 두 용액을 1시간동안 반응시켜서 졸상의 생성물을 얻었다. 11.2 g of strontium acetate (CH 3 COO) 2 Sr, 0.5 g of tungsten oxide (W0 3 ) was mixed in 1000 g of 0.1 M acetic acid solution, refluxed at 90 ° C. for 3 hours, and then cooled. 17.2 g of titanium tetraisoprooxide (Ti [OCH (CH 3 ) 2 ] 4 ) was dissolved in 125 g of butyl alcohol (C 4 H 9 OH, 99.9%) for 3 hours. After mixing using a shaker, the two solutions were mixed, 3 g of acetylacetone (CH 3 COCH 2 COCH 3 ) was added thereto, and the former two solutions were reacted for 1 hour while stirring with a magnetic stirrer to obtain a sol-like product.
이것을 2일간 상온에서 건조한 후 전기유발연마기(사발 직경:100㎜)에서 3시간 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 12시간동안 열처리하고 서냉하여 얻은 Sr(Ti1-xWx)O3-y 식으로 표현되는 분체 시료 10g에 증류수 100g, 에틸알코올 5g으로 하여 전기 교반기와 직경이 1.2㎜인 세라믹 비드를 이용해서 12시간 동안 혼합-분쇄한 후, 이와 같이 혼합-분쇄된 분체시료를 공기 중에서 0∼30㎖/min의 분율로 질소 기체를 흘려주면서 24시간 동안 800∼850℃의 온도 범위에서 어닐링한 후 분당 5∼10℃의 속도로 상온까지 서냉시킨 후 세라믹 비드를 이용하여 24시간 동안 분쇄 및 혼합하여 형성한다. After drying this at room temperature for 2 days induced electric polisher (bowl diameter: 100㎜) at the 3 hour mixing-grinding hagoseo air partial pressure Pair = 1.0atm, and the temperature range obtained by the heat treatment and slow cooling for 12 hours at 1150~1200 ℃ Sr (Ti 1 10 g of powder sample represented by -x W x ) O 3-y formulated with 100 g of distilled water and 5 g of ethyl alcohol was mixed and ground for 12 hours using an electric stirrer and ceramic beads having a diameter of 1.2 mm, and then mixed as described above. The pulverized powder sample was annealed at 800 to 850 ° C. for 24 hours while flowing nitrogen gas at a rate of 0 to 30 ml / min in air, followed by slow cooling to room temperature at a rate of 5 to 10 ° C. per minute, followed by ceramic Form by grinding and mixing for 24 hours using beads.
상기와 같은 형성된 Sr(Ti1-xWx)O3-y 10g을 증류수 1000g에 분산시켜 Sr(Ti1-xWx)O3-y 분산액을 형성하였다.
The Sr (Ti 1-x W x ) O 3-y to a dispersion in distilled water 10g 1000g Sr (Ti 1-x W x) O 3-y dispersion formed as above were formed.
아나타제형 코팅 이산화티타늄(TiOAnatase type coated titanium dioxide (TiO 22 ) 분산액 제조Dispersion Preparation
이산화티타늄(TiO2)의 전구체인 34g의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, TIP, Ti[OCH(CH3)2]4), 안정화제인 4g의 아세틸 아세토네이트(Acethyl acetonate) 및 150g의 0.1-N 초산(CH3COOH) 용액을 출발물질로 하여 졸-겔법으로 10g의 이산화티타늄(TiO2)을 제조하고, 이것을 180℃의 전기 오븐 내에서 건조하고 전기유발연마기에서 2시간 연마한 후 공기 분압 Pair=1.0 atm 및 온도 범위 750∼770℃에서 24시간동안 열처리하여 아나타제형 이산화티타늄(TiO2)을 얻었다.34 g of titanium tetraisoprooxide (TIP, Ti [OCH (CH 3 ) 2 ] 4 ), precursor of titanium dioxide (TiO 2 ), 4 g of acetyl acetonate as stabilizer, and 150 g of 0.1- N-acetic acid (CH 3 COOH) solution was used as a starting material to prepare 10 g of titanium dioxide (TiO 2 ) by sol-gel method, which was dried in an electric oven at 180 ° C. and polished for 2 hours in an electropolishing machine, followed by air partial pressure. Anatase type titanium dioxide (TiO 2 ) was obtained by heat treatment at Pair = 1.0 atm and a temperature range of 750 to 770 ° C for 24 hours.
이렇게 제조한 아나타제형 이산화티타늄(TiO2) 10g을 증발기(evaporator) 내에 반경 50㎜의 원모양으로 펼친 후 750℃, 0.01∼1기압의 공기 분압 조건 하에서 진공증착(evaporation)법에 의하여 순수한 Cr, Fe, Cu, Mn 또는 일정 성분비의 그들의 합금을 이용하여 코팅을 3회 실시한 후 상온으로 서냉한 후, 직경이 1.2㎜인 세라믹 비드를 이용하여 72시간 동안 분쇄한 다음 10g의 TiO2에 대하여 증류수 1000g의 비율로 분산시켜서 형성하였다.
10 g of anatase type titanium dioxide (TiO 2 ) thus prepared was expanded in an evaporator in a circular shape with a radius of 50 mm, and then purified by pure evaporation under a vacuum evaporation method under an air partial pressure of 750 ° C. and 0.01 to 1 atm. After coating three times using Fe, Cu, Mn or their alloys in a certain ratio, and then cooled slowly to room temperature, pulverized for 72 hours using 1.2 mm diameter ceramic beads, and then 1000 g of distilled water for 10 g of TiO 2 . It was formed by dispersing at a ratio of.
광촉매 코팅액 제조Photocatalyst Coating Solution
상기 제조된 Sr(Ti1 - xVx)O3-y 분산액 300g, Sr(Ti1 - xWx)O3-y 분산액 300g 및, 아나타제형 이산화티타늄(TiO2) 분산액 400g를 혼합하여 광촉매 분산액 1000g를 형성하였으며,Photocatalyst was prepared by mixing 300g of Sr (Ti 1 - x V x ) O 3-y dispersion prepared above, 300g of Sr (Ti 1 - x W x ) O 3-y dispersion, and 400g of anatase type titanium dioxide (TiO 2 ) dispersion. 1000 g of dispersion was formed,
상기 광촉매 분산액 1000g 에, 인산에스테르계 음이온 계면활성제 15g, 콜로이달 소듐실리케이트 20g, 디메틸실록산(Dimethylsiloxane) 3.0g, 1∼100㎛의 크기를 구비하는 점착제용 장석 10g를 첨가하고, 전기 교반기를 사용하여 30∼80℃ 구간에서 48시간 동안 가열하면서 혼합 및 숙성시켜서 광촉매 코팅액을 제조하였다.
To 1000 g of the photocatalyst dispersion, 15 g of phosphate ester anionic surfactant, 20 g of colloidal sodium silicate, 3.0 g of dimethylsiloxane, and 10 g of feldspar for pressure sensitive adhesive having a size of 1 to 100 µm were added, and an electric stirrer was used. The photocatalyst coating solution was prepared by mixing and aging while heating at 30 to 80 ° C. for 48 hours.
실시예 3Example 3
실시예 2 에 따른 광촉매 코팅액의 광촉매능을 확인하기 위하여 UV-vis spectroscopy 실험을 실시하였으며, 그 결과를 도 4 에 나타내었다. In order to confirm the photocatalytic ability of the photocatalyst coating solution according to Example 2, UV-vis spectroscopy experiments were performed, and the results are shown in FIG. 4.
도 4 는 본 발명 실시예3에 따른 UV-vis spectroscopy 실험결과를 보인 예시도를 도시한 것으로, SrTiO3는 자외선(200∼380㎚)과 가시광선 영역(380∼600㎚)에서 흡수가 미약한 반면 본 발명에 따른 광촉매 코팅액(STM)은 자외선 영역 및 가시광선 영역에서 빛의 흡수가 골고루 일어남을 확인하였다.
4 is an exemplary view showing the results of the UV-vis spectroscopy experiment according to Example 3 of the present invention, SrTiO 3 is weak absorption in the ultraviolet (200 ~ 380 nm) and visible region (380 ~ 600 nm) On the other hand, the photocatalyst coating liquid (STM) according to the present invention was found to evenly absorb light in the ultraviolet region and the visible region.
실시예 4Example 4
10㎜×10㎜×40㎜의 내부 용적을 갖는 2개의 석영 용기 내에 약 3g의 SrTiO3 분산액과, 실시예2에 따라 제조된 본 발명의 광촉매 코팅액(STM) 3g을 각각 넣고, 창문을 통과한 태양광으로 Methylene blue의 감손(degradation) 실험(화창한 날, 시간 : 가을, 낮 12시∼14시)을 실시하였으며, 그 결과를 도 5 에 나타내었다.About 3 g of SrTiO 3 dispersion and 3 g of photocatalyst coating liquid (STM) of the present invention prepared according to Example 2 were respectively placed in two quartz containers having an internal volume of 10 mm × 10 mm × 40 mm, and passed through a window. Methylene blue degradation (light day, time: autumn, day 12-14 o'clock) was conducted with sunlight, and the results are shown in FIG. 5.
도 5 는 본 발명 실시예3에 따른 메틸렌 블루(Methylene blue)의 감손(degradation) 실험결과를 보인 예시도를 도시한 것으로, UV-vis spectrophotometer로 측정한 흡광도의 변화로부터 Methylene Blue의 degradation 실험을 실시한 결과 SrTiO3 분산액에 Methylene Blue를 가해준 용액(◆)은 시간의 경과에 따라 Methylene Blue의 분해가 거의 진행되지 않아서 광촉매능이 거의 없는 것을 확인한 반면, 본 발명의 광촉매 코팅액(STM,▲)에 Methylene Blue 용액을 가해준 용액은 약 120분 후에 거의 다 분해되어 우수한 광촉매능을 보였다. FIG. 5 is an exemplary view showing a result of a degradation test of methylene blue according to Example 3 of the present invention, in which a degradation experiment of Methylene Blue is performed from a change in absorbance measured by a UV-vis spectrophotometer. As a result, the solution (◆) to which Methylene Blue was added to the SrTiO 3 dispersion showed little photocatalytic activity due to little decomposition of Methylene Blue over time, whereas Methylene Blue was added to the photocatalyst coating solution (STM, ▲) of the present invention. The solution was almost decomposed after about 120 minutes and showed excellent photocatalytic activity.
즉, 본 발명에 따른 광촉매 코팅액은 자외선뿐 아니라 가시광선 영역에서도 촉매능을 보이고 있음을 알 수 있었다.
In other words, it can be seen that the photocatalyst coating solution according to the present invention exhibits catalytic performance not only in ultraviolet light but also in visible light.
실시예 5Example 5
분당 40회의 속도로 좌우로 왕복운동하는 전기 쉐이커를 사용하여, 실시예2에 따라 제조된 광촉매 코팅액내에 5∼10분동안 실험체를 함침시키고, 600∼750℃의 온도구간과 상압 하에서 광촉매 코팅액이 함침된 실험체를 약 40시간 건조시킨 후, 이를 물이 담겨진 용기내에 넣어 관찰하였다.(11월 초, 오전 11시경, 창문을 통과한 태양광을 쪼여줌, 날씨 : 쾌청)Using an electric shaker reciprocating left and right at a rate of 40 times per minute, the specimen was impregnated for 5 to 10 minutes in the photocatalyst coating liquid prepared according to Example 2, and the photocatalyst coating liquid was impregnated at a temperature range of 600 to 750 ° C. and atmospheric pressure. After drying the sample for about 40 hours, it was placed in a container filled with water and observed. (Early November, around 11 am, shed light through the window, weather: sunny)
도 6 은 실시예 5 에 활용한 햇빛의 스펙트럼을 도시한 것으로, 빛의 스페트럼 대부분이 가시광선으로 이루어진 것을 알 수 있다. 즉, 야외에 시공되어 촉매능을 발휘해야 할 보도블록용 벽돌이 자외선에만 노출되지 않을 것이므로, 자외선 램프만을 활용한 촉매능의 시험은 의미가 없어, 본 발명은 실제 광촉매 코팅벽돌이 설치되는 현장여건에 맞도록 자외선 램프가 아닌 태양광을 이용하여 실험하였다.6 shows the spectrum of sunlight used in Example 5, and it can be seen that most of the spectrum of light is made of visible light. That is, since the brick for the sidewalk block, which should be constructed outdoors and exhibit the catalytic ability, will not be exposed only to ultraviolet rays, the test of catalytic ability using only an ultraviolet lamp is meaningless, and thus the present invention provides a site for installing a photocatalyst coated brick. In order to meet the experiment using sunlight rather than ultraviolet lamps.
이때, 상기 실험체는 점토 0.01 중량%, 장석 3 중량%, 산화망간 0.01 중량% 나머지가 산청 백토로 이루어진 벽돌성형체를 사용하였다. At this time, the test body was used as a brick molded body made of clay, 0.01% by weight of clay, 3% by weight of feldspar, 0.01% by weight of manganese oxide.
도 7 은 본 발명 실시예5에 따른 촉매능 시험결과를 보인 사진예시도를 도시한 것으로, 도 7 에 도시된 바와 같이, 창문 통과광을 쪼여준 결과 상당량의 기포가 발생하는 것을 관찰할 수 있었으며, 이를 통해 실험체 내부 또는 물에 존재하는 오염 물질의 분해에 의한 기포 발생 외에 물을 광분해시킬 정도의 우수한 촉매능을 구비함을 알 수 있었다.
Figure 7 shows a photographic example showing the catalytic performance test results according to Example 5 of the present invention, as shown in Figure 7, it can be observed that a significant amount of bubbles generated as a result of the window light through the window. In addition, it can be seen that it has excellent catalytic ability to photodecompose water in addition to bubble generation by decomposition of contaminants present in the test body or water.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.
(10) : 광촉매 코팅액 (20) : 벽돌성형체
(100): 벽돌(10): photocatalyst coating liquid (20): brick molded body
100: brick
Claims (11)
After impregnating the photocatalyst coating solution containing Sr (Ti 1-x V x ) O 3-y , Sr (Ti 1-x W x ) O 3-y and anatase-type coated titanium dioxide (TiO 2 ), Heat-drying to provide photocatalytic ability in the ultraviolet region and the visible region, wherein x and y are coated in the ultraviolet and visible light reactive photocatalyst, characterized in that the range of 0.0 <x <0.3, 0.0 <y <0.5. Brick.
광촉매 코팅액은 광촉매 분산액 100 중량부에 대하여, 인산에스테르계 음이온 계면활성제 0.03∼2.5중량부, 콜로이달 소듐실리케이트 0.05∼3.0중량부, 디메틸실록산(Dimethylsiloxane) 0.01∼0.5중량부, 장석 0.2∼2.0 중량부를 포함하되,
상기 광촉매 분산액은 페롭스카이트계 화합물인 Sr(Ti1-xVx)O3-y 분산액 20∼40중량부, ,Sr(Ti1-xWx)O3-y 분산액 20∼40중량부, 아나타제형 코팅 이산화티타늄(TiO2) 분산액 30∼50중량부를 포함하여 최종적으로 100중량부가 되도록 한 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌.
The method of claim 1,
The photocatalyst coating solution is 0.03 to 2.5 parts by weight of phosphate ester anionic surfactant, 0.05 to 3.0 parts by weight of colloidal sodium silicate, 0.01 to 0.5 parts by weight of dimethylsiloxane, and 0.2 to 2.0 parts by weight of feldspar based on 100 parts by weight of the photocatalyst dispersion. Including,
The photocatalyst dispersion is 20 to 40 parts by weight of Sr (Ti 1-x V x ) O 3-y dispersion, Perrskyte compound, 20 to 40 parts by weight of Sr (Ti 1-x W x ) O 3-y dispersion, An anatase-type coated titanium dioxide (TiO 2 ), including 30 to 50 parts by weight of the dispersion and finally coated with ultraviolet light and visible light reactive photocatalyst, characterized in that to 100 parts by weight.
상기 Sr(Ti1-xVx)O3-y 분산액은, 증류수 100중량부에 Sr(Ti1-xVx)O3-y 0.8∼1.2 중량부를 분산시켜 형성되고,
상기 Sr(Ti1-xWx)O3-y 분산액은, 증류수 100중량부에 Sr(Ti1-xVx)O3-y 0.8∼1.2중량부를 분산시켜 형성되며,
상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액은, 증류수 100중량부에, 크롬(Cr), 철(Fe), 구리(Cu), 망간(Mn) 중 선택된 하나 이상의 단독 성분 또는 합금에 의해 코팅된 이산화티타늄(TiO2) 0.8∼1.2중량부를 분산시켜 형성된 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌.
The method of claim 2,
The Sr (Ti 1-x V x ) O 3-y dispersion is formed by dispersing 0.8-1.2 parts by weight of Sr (Ti 1-x V x ) O 3-y in 100 parts by weight of distilled water,
The Sr (Ti 1-x W x ) O 3-y dispersion is formed by dispersing 0.8-1.2 parts by weight of Sr (Ti 1-x V x ) O 3-y in 100 parts by weight of distilled water,
The anatase-type coated titanium dioxide (TiO 2 ) dispersion, 100 parts by weight of distilled water, is coated with one or more single components or alloys selected from chromium (Cr), iron (Fe), copper (Cu), manganese (Mn) Titanium dioxide (TiO 2 ) is a brick coated with ultraviolet and visible light reaction photocatalyst, characterized in that formed by dispersing 0.8 to 1.2 parts by weight.
벽돌성형체는 장석 1∼5 중량%에 나머지가 산청 백토로 이루어진 벽돌성형체이거나,
점토 0.01∼4 중량%, 장석 1∼5 중량%, 산화망간 0.01∼2 중량% 및, 나머지가 산청 백토로 이루어진 벽돌성형체인 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌.
The method of claim 1,
The brick molded body is a brick molded body made of 1 to 5% by weight of feldspar, and the remainder of which is acid blue clay,
0.01 to 4% by weight of clay, 1 to 5% by weight of feldspar, 0.01 to 2% by weight of manganese oxide, and the remainder of which is a brick molded body composed of coarse blue clay.
상기 광촉매 코팅액을 벽돌 성형체에 함침 또는 도포하는 코팅단계;
광촉매 코팅액이 함침 또는 도포된 벽돌성형체를 가열-건조하여 벽돌을 형성하는 건조단계;를 포함하여 이루어져 자외선 영역 및 가시광선 영역에서 광촉매능을 구비하도록 하되, 식중 x, y 는 0.0<x<0.3, 0.0<y<0.5 의 범위인 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
Photocatalyst coating solution comprising Sr (Ti 1-x V x ) O 3-y dispersion, Sr (Ti 1-x W x ) O 3-y dispersion, which is a perovskite compound, and anatase type titanium dioxide (TiO 2 ) dispersion Forming a photocatalyst coating liquid;
A coating step of impregnating or applying the photocatalyst coating solution to the brick molded body;
And a drying step of forming a brick by heating-drying the brick molded article impregnated or coated with the photocatalyst coating solution to include a photocatalytic ability in the ultraviolet region and the visible region, wherein x and y are 0.0 <x <0.3, UV and visible light reactive photocatalyst coated brick manufacturing method characterized in that the range of 0.0 <y <0.5.
상기 광촉매 코팅액 형성단계는,
strontium acetate((CH3COO)2Sr)와 vanadium Ⅲ acetate((CH3COO)3V)을 원료로 하여 Sr(Ti1-xVx)O3-y의 고용체를 합성하고, 이를 증류수에 분산시켜 Sr(Ti1-xVx)O3-y 분산액을 형성하는 Sr(Ti1-xVx)O3-y 분산액 형성단계;
strontium acetate((CH3COO)2Sr)와 tungsten oxide(WO3)를 원료로 하여 Sr(Ti1-xWx)O3-y의 고용체를 합성하고, 이를 증류수에 분산시켜 Sr(Ti1-xWx)O3-y 분산액을 형성하는 Sr(Ti1-xWx)O3-y 분산액 형성단계;
TIP(Titanium(Ⅳ) Iso-propoxide (Ti(OCH (CH3)2)4)), Acethyl acetonate 및 CH3COOH 용액으로 TiO2를 제조하고, 크롬(Cr), 철(Fe), 구리(Cu), 망간(Mn) 또는 일정 성분비의 그들의 합금 중 선택된 하나에 의해 코팅한 다음, 증류수에 분산시켜 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 형성하는 아나타제형 코팅 이산화티타늄(TiO2) 분산액 형성단계;
상기 Sr(Ti1-xVx)O3-y 분산액, Sr(Ti1-xWx)O3-y 분산액, 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 소정비율로 혼합하여 광촉매 분산액을 형성하는 광촉매 분산액 형성단계;
상기 광촉매 분산액에 인산에스테르계 음이온 계면활성제, 콜로이달 소듐실리케이트, 디메틸실록산(Dimethylsiloxane), 장석을 첨가하여 광촉매 코팅액을 형성하는 혼합단계;를 포함하는 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
The method of claim 5, further comprising:
The photocatalyst coating liquid forming step,
Solid solution of Sr (Ti 1-x V x ) O 3-y was synthesized using strontium acetate ((CH 3 COO) 2 Sr) and vanadium III acetate ((CH 3 COO) 3 V) as raw materials, to Sr (Ti 1-x V x ) O 3-y Sr (Ti 1-x V x) to form a dispersion dispersion-y O 3 dispersion formation step;
A solid solution of Sr (Ti 1-x W x ) O 3-y was synthesized from strontium acetate ((CH 3 COO) 2 Sr) and tungsten oxide (WO 3 ) and dispersed in distilled water to give Sr (Ti 1 -x W x) O 3-y dispersion Sr (Ti 1-x W x to form a) O 3-y dispersion formation step;
TiO 2 was prepared from TIP (Titanium (IV) Iso-propoxide (Ti (OCH (CH 3 ) 2 ) 4 )), Acethyl acetonate and CH 3 COOH solution, and chromium (Cr), iron (Fe), copper (Cu) ), manganese (Mn) or a predetermined coated by a selected one of the alloys of the component ratio, and then was dispersed in distilled water, anatase coated titanium dioxide (TiO 2) anatase coated titanium dioxide to form a dispersion (TiO 2) dispersion formation step ;
The photocatalyst dispersion was prepared by mixing the Sr (Ti 1-x V x ) O 3-y dispersion, the Sr (Ti 1-x W x ) O 3-y dispersion, and the anatase-type coated titanium dioxide (TiO 2 ) dispersion in a predetermined ratio. Forming a photocatalyst dispersion;
UV- and visible light-reactive photocatalyst coating comprising a; mixing step of forming a photocatalyst coating liquid by adding a phosphate ester anionic surfactant, colloidal sodium silicate, dimethylsiloxane, feldspar to the photocatalyst dispersion Brick manufacturing method.
상기 Sr(Ti1-xVx)O3-y 분산액은,
11∼12중량부의 스트론튬 아세테이트(strontium acetate, (CH3COO)2Sr)와 0.12∼0.62 중량부의 바나듐 III 아세테이트(vanadium III acetate, (CH3COO)3V)을, 1000 중량부의 0.1M 초산용액에 혼합하고서 80∼95℃에서 2.5∼3.5시간동안 환류한 후 냉각하는 단계;
16.8∼17.5 중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, Ti[OCH(CH3)2]4)를 110∼130중량부의 부틸 알콜(butyl alcohol, C4H9OH, 99.9%)에 용해시키고서 2∼4시간동안 쉐이커를 이용하여 혼합하는 단계;
두 용액을 혼합하고 아세틸아세톤(acetyloacetone, CH3COCH2COCH3)을 2∼4중량부를 가하고 자석 교반기로 교반해주면서 40∼80분동안 반응시켜서 졸상의 생성물을 얻는 단계;
상기 졸상의 생성물을 1∼3일간 상온에서 건조한 후 전기유발연마기에서 2.5∼3.5시간 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 11∼13시간동안 열처리하고 서냉하여 얻은 Sr(Ti1-xVx)O3-y 식으로 표현되는 분체 시료 8∼12 중량부를, 증류수 100 중량부에 첨가하고, 에틸알코올 4∼7중량부를 첨가한 후, 10∼14시간 동안 혼합-분쇄하는 단계;
혼합-분쇄된 분체시료를 공기 중에서 10∼14시간 동안 800∼850℃의 온도 범위에서 어닐링한 후 분당 5∼10℃의 속도로 상온까지 서냉시키고, 22∼26시간 동안 분쇄 및 혼합하여 형성된 Sr(Ti1-xVx)O3-y 0.8∼1.2 중량부를 증류수 100중량부의 비율로 분산시켜 Sr(Ti1-xVx)O3-y 분산액을 형성하는 단계;로 이루어진 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
The method according to claim 5 or 6;
The Sr (Ti 1-x V x ) O 3-y dispersion,
11-12 parts by weight of strontium acetate (CH 3 COO) 2 Sr and 0.12-0.62 parts by weight of vanadium III acetate (CH 3 COO) 3 V, 1000 parts by weight of 0.1 M acetic acid solution Mixing to reflux at 80-95 ° C. for 2.5-3.5 hours and then cooling;
16.8-17.5 parts by weight of titanium tetraisoprooxide (Ti [OCH (CH 3 ) 2 ] 4 ) was dissolved in 110-130 parts by weight of butyl alcohol (C 4 H 9 OH, 99.9%). Mixing using a shaker for 2-4 hours;
Mixing the two solutions, adding 2 to 4 parts by weight of acetylacetone (CH 3 COCH 2 COCH 3 ) and reacting for 40 to 80 minutes while stirring with a magnetic stirrer to obtain a sol-like product;
Sr obtained by drying the sol-like product at room temperature for 1 to 3 days, mixed-polishing for 2.5 to 3.5 hours in an electro-induced polishing machine, and heat-treated for 11 to 13 hours at an air partial pressure of Pair = 1.0 atm and a temperature range of 1150 to 1200 ° C for 11 to 13 hours. 8 to 12 parts by weight of the powder sample represented by (Ti 1-x V x ) O 3-y is added to 100 parts by weight of distilled water, and 4 to 7 parts by weight of ethyl alcohol is added, followed by mixing for 10 to 14 hours. Grinding;
The mixed-milled powder sample was annealed in air at a temperature in the range of 800 to 850 ° C. for 10 to 14 hours, and then slowly cooled to room temperature at a rate of 5 to 10 ° C. per minute, and then pulverized and mixed for 22 to 26 hours to form Sr ( Dispersing 0.8 to 1.2 parts by weight of Ti 1-x V x ) O 3-y at a rate of 100 parts by weight of distilled water to form a Sr (Ti 1-x V x ) O 3-y dispersion; And a visible light reactive photocatalyst coated brick manufacturing method.
상기 Sr(Ti1-xWx)O3-y 분산액은,
11∼12중량부의 스트론튬 아세테이트(strontium acetate, (CH3COO)2Sr) 0.13∼0.63중량부의 텅스텐 옥사이드(tungsten oxide, WO3)를, 1000중량부의 0.1M 초산용액에 혼합하고서 80∼95℃에서 2.5∼3.5시간동안 환류한 후 냉각하는 단계;
16.8∼17.5중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, Ti[OCH(CH3)2]4)를 110∼130중량부의 부틸 알콜(butyl alcohol, C4H9OH, 99.9%)에 용해시키고서 2∼4시간동안 쉐이커를 이용하여 혼합하는 단계;
두 용액을 혼합하고 아세틸아세톤(acetyloacetone, CH3COCH2COCH3)을 2∼4중량부를 가하고 자석 교반기로 교반해주면서 40∼60분동안 반응시켜서 졸상의 생성물을 얻는 단계;
졸상의 생성물을 1∼3일간 상온에서 건조한 후 전기유발연마기에서 2.5∼3.5시간 혼합-연마하고서 공기 분압 Pair=1.0atm 및 온도 범위 1150∼1200℃에서 11∼13시간동안 열처리하고 서냉하여 얻은 Sr(Ti1-xWx)O3-y 식으로 표현되는 분체 시료 8∼12중량부를 증류수 100중량부에 첨가한 후, 에틸알코올 4∼7중량부를 첨가하여 10∼14시간 동안 혼합-분쇄하는 단계;
혼합-분쇄된 분체시료를 공기 중에서 0∼30㎖/min의 분율로 질소 기체를 흘려주면서 22∼26시간 동안 800∼850℃의 온도 범위에서 어닐링한 후 분당 5∼10℃의 속도로 상온까지 서냉시킨 후 22∼26시간 동안 분쇄 및 혼합하여 형성된 Sr(Ti1-xWx)O3-y 0.8∼1.2중량부를 증류수 100중량부의 비율로 분산시켜 Sr(Ti1-xWx)O3-y 분산액을 형성하는 단계;로 이루어진 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
The method according to claim 5 or 6;
The Sr (Ti 1-x W x ) O 3-y dispersion,
11-12 parts by weight of strontium acetate (CH 3 COO) 2 Sr, 0.13-0.63 parts by weight of tungsten oxide (W0 3 ), was mixed with 1000 parts by weight of 0.1 M acetic acid solution at 80-95 ° C. Refluxing for 2.5-3.5 hours and then cooling;
16.8-17.5 parts by weight of titanium tetraisoprooxide (Ti [OCH (CH 3 ) 2 ] 4 ) was dissolved in 110-130 parts by weight of butyl alcohol (C 4 H 9 OH, 99.9%). Mixing using a shaker for 2-4 hours;
Mixing the two solutions, adding 2 to 4 parts by weight of acetylacetone (CH 3 COCH 2 COCH 3 ) and reacting for 40 to 60 minutes while stirring with a magnetic stirrer to obtain a sol-like product;
Sr obtained by drying the sol-like product at room temperature for 1 to 3 days, mixed-polishing for 2.5 to 3.5 hours in an electro-induced polishing machine and heat-treated for 11 to 13 hours at an air partial pressure of Pair = 1.0 atm and a temperature range of 1150 to 1200 ° C for 11 to 13 hours. Adding 8-12 parts by weight of the powder sample represented by Ti 1-x W x ) O 3-y to 100 parts by weight of distilled water, followed by mixing and grinding for 10 to 14 hours by adding 4 to 7 parts by weight of ethyl alcohol. ;
The mixed-pulverized powder sample was annealed at 800 to 850 ° C. for 22 to 26 hours while flowing nitrogen gas at a rate of 0 to 30 ml / min in air, and then slowly cooled to room temperature at a rate of 5 to 10 ° C. per minute. 0.8-1.2 parts by weight of Sr (Ti 1-x W x ) O 3-y formed by pulverizing and mixing for 22 to 26 hours, and then dispersed in a ratio of 100 parts by weight of distilled water, and then Sr (Ti 1-x W x ) O 3- Forming a dispersion y ; UV and visible light reactive photocatalyst coated brick manufacturing method characterized in that consisting of.
상기 아나타제형 코팅 이산화티타늄(TiO2) 분산액은,
이산화티타늄(TiO2)의 전구체인 30∼38중량부의 티타늄 테트라이소프로옥사이드(Titanium tetraisoprooxide, TIP, Ti[OCH(CH3)2]4), 안정화제인 3∼6중량부의 아세틸 아세토네이트(Acethyl acetonate) 및 120∼170중량부의 0.1-N 초산(CH3COOH) 용액을 출발물질로 하여 졸-겔법으로 이산화티타늄(TiO2)을 형성하는 단계;
상기 이산화티타늄(TiO2) 8∼12중량부를 170∼180℃의 전기 오븐 내에서 건조하고 전기유발연마기에서 1.5∼2.5시간 연마한 후 공기 분압 Pair=1.0 atm 및 온도 범위 750∼770℃에서 20∼26시간동안 열처리하여 아나타제형 이산화티타늄(TiO2)을 얻는 단계;
상기 아나타제형 이산화티타늄(TiO2) 8∼12중량부를 증발기(evaporator) 내에서 720∼780℃, 0.01∼1기압의 공기 분압 조건 하에서 1∼3중량부의 순수한 Cr, Fe, Cu, Mn 로 이루어진 군에서 선택된 하나 또는 이들의 합금을 이용하여 진공증착(evaporation)법에 의해 3회 코팅을 실시한 후 상온으로 서냉한 다음, 세라믹 비드를 이용하여 70∼75시간 동안 분쇄한 다음, 0.8∼1.2중량부의 TiO2를 증류수 100중량부의 비율로 분산시켜, 아나타제형 코팅 이산화티타늄(TiO2) 분산액을 형성하는 단계;로 이루진 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
The method according to claim 5 or 6;
The anatase type coated titanium dioxide (TiO 2 ) dispersion,
Titanium tetraisoprooxide (TIP, Ti [OCH (CH 3 ) 2 ] 4 ), precursor of titanium dioxide (TiO 2 ), and 3-6 parts by weight of acetyl acetonate as a stabilizer ) And 120-170 parts by weight of 0.1-N acetic acid (CH 3 COOH) solution as a starting material to form titanium dioxide (TiO 2 ) by the sol-gel method;
8-12 parts by weight of the titanium dioxide (TiO 2 ) was dried in an electric oven at 170-180 ° C. and polished for 1.5-2.5 hours in an electropolishing machine, followed by an air partial pressure of Pair = 1.0 atm and a temperature range of 20-750 ° C. at 750-770 ° C. Heat treatment for 26 hours to obtain anatase type titanium dioxide (TiO 2 );
8 to 12 parts by weight of the anatase type titanium dioxide (TiO 2 ) in an evaporator of 720 to 780 ° C. in an air partial pressure of 0.01 to 1 atmosphere of 1 to 3 parts by weight of pure Cr, Fe, Cu, Mn group Three coatings were carried out by evaporation using one or more alloys selected from the above, followed by slow cooling to room temperature, followed by grinding for 70 to 75 hours using ceramic beads, followed by 0.8 to 1.2 parts by weight of TiO. Dispersing 2 in a ratio of 100 parts by weight of distilled water to form anatase-type coated titanium dioxide (TiO 2 ) dispersion; UV and visible light reaction photocatalyst coated brick manufacturing method comprising the.
상기 코팅단계는 벽돌성형체의 표면에 광촉매 코팅액이 두께 10∼30㎜를 구비하도록 함침시키고,
상기 건조단계는 550∼800℃에서 열처리하고, 상압 하에서 광촉매 코팅액이 함침된 벽돌성형체를 24∼48시간 건조시킨 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.
The method of claim 5, further comprising:
In the coating step, the surface of the brick molded body is impregnated to have a photocatalyst coating liquid having a thickness of 10 to 30 mm,
The drying step is a heat-treatment at 550 ~ 800 ℃, UV and visible light reaction photocatalyst coated brick manufacturing method characterized in that the brick molded product impregnated with the photocatalyst coating solution was dried for 24 to 48 hours under normal pressure.
벽돌성형체는 장석 1∼5중량%에 나머지가 산청 백토로 이루어진 벽돌성형체이거나,
점토 0.01∼4중량%, 장석 1∼5중량%, 산화망간 0.01∼2중량% 및, 나머지가 산청 백토로 이루어진 벽돌성형체인 것을 특징으로 하는 자외선 및 가시광선 반응형 광촉매가 코팅된 벽돌 제조방법.The method of claim 5 or 10;
The brick molded body is a brick molded body made of 1 to 5% by weight of feldspar, and the remainder of which is sancheong clay.
0.01 to 4% by weight of clay, 1 to 5% by weight of feldspar, 0.01 to 2% by weight of manganese oxide, and the remainder of which is a brick molded body composed of acid blue clay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130012257A KR101299412B1 (en) | 2013-02-04 | 2013-02-04 | Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130012257A KR101299412B1 (en) | 2013-02-04 | 2013-02-04 | Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101299412B1 true KR101299412B1 (en) | 2013-08-23 |
Family
ID=49221110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130012257A KR101299412B1 (en) | 2013-02-04 | 2013-02-04 | Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101299412B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102557244B1 (en) * | 2022-12-22 | 2023-07-20 | 빌트조명(주) | Lighting Devices having visible Light-responsive Photocatalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11348173A (en) * | 1998-06-05 | 1999-12-21 | Toto Ltd | Member having photocatalytic layer and manufacture thereof |
US6524750B1 (en) * | 2000-06-17 | 2003-02-25 | Eveready Battery Company, Inc. | Doped titanium oxide additives |
JP2005040788A (en) * | 2003-07-07 | 2005-02-17 | Shinya Matsuo | Photocatalyst |
-
2013
- 2013-02-04 KR KR1020130012257A patent/KR101299412B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11348173A (en) * | 1998-06-05 | 1999-12-21 | Toto Ltd | Member having photocatalytic layer and manufacture thereof |
US6524750B1 (en) * | 2000-06-17 | 2003-02-25 | Eveready Battery Company, Inc. | Doped titanium oxide additives |
JP2005040788A (en) * | 2003-07-07 | 2005-02-17 | Shinya Matsuo | Photocatalyst |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102557244B1 (en) * | 2022-12-22 | 2023-07-20 | 빌트조명(주) | Lighting Devices having visible Light-responsive Photocatalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101124196B1 (en) | Carbon-containing, titanium dioxide-based photocatalyst, and process for producing the same | |
Zaleska | Doped-TiO2: a review | |
US5897958A (en) | Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent | |
US7686879B2 (en) | Coating composition | |
Guo et al. | Sol gel derived photocatalytic porous TiO2 thin films | |
Guo et al. | Photocatalytic effect of the sol–gel derived nanoporous TiO2 transparent thin films | |
Ke et al. | Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles | |
Poongodi et al. | Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method | |
CN102863020B (en) | Preparation method of hollow titanium dioxide material | |
JP2013224256A (en) | Infrared reflective material and manufacturing method for the same, and paint and resin composition containing the same | |
KR20150028979A (en) | Coating composition and uses thereof | |
WO2008079756A1 (en) | Photocatalytic coating | |
CN109399711A (en) | A kind of preparation method of rutile phase hypovanadic oxide nano-powder | |
Subasri et al. | Investigations on the photocatalytic activity of sol–gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates | |
CN110449155A (en) | The preparation of copper ion modified nano-titanium dioxide and characterizing method | |
Jahromi et al. | Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film | |
Barmeh et al. | Photocatalytic and self-cleaning properties of glazed ceramic tiles coated with TiO2 and Al-doped TiO2 thin films | |
Liao et al. | Enhanced self-cleaning capacity of RBP@ TiO2 based building coating: Synergetic effect of photocatalysis and photo-induced superhydrophilicity | |
KR101299412B1 (en) | Bricks coated with ultraviolet-active and visible-light-active photocatalyst and the synthesis method thereof | |
Naghibi et al. | Evaluation of Photocatalytic Activity of Fe Doped TiO2 thin film prepared by Sol-Gel hot dip-coating | |
JP3885248B2 (en) | Photocatalyst composition | |
CN106978068A (en) | A kind of normal temperature autoadhesion tio_2 suspension purified for metope automatically cleaning and preparation method thereof | |
KR102162579B1 (en) | Production method of transparent coating liquid for photocatalysis | |
Razak et al. | Effect of PEG doped on optical properties of Ag/TiO2 thin film | |
Nuño | Photocatalytic coatings in the built environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |