KR101298721B1 - Airfoil of blade for wind turbine - Google Patents

Airfoil of blade for wind turbine Download PDF

Info

Publication number
KR101298721B1
KR101298721B1 KR1020110139008A KR20110139008A KR101298721B1 KR 101298721 B1 KR101298721 B1 KR 101298721B1 KR 1020110139008 A KR1020110139008 A KR 1020110139008A KR 20110139008 A KR20110139008 A KR 20110139008A KR 101298721 B1 KR101298721 B1 KR 101298721B1
Authority
KR
South Korea
Prior art keywords
airfoil
blade
wind
ratio
wind turbine
Prior art date
Application number
KR1020110139008A
Other languages
Korean (ko)
Other versions
KR20130071668A (en
Inventor
김철완
조태환
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020110139008A priority Critical patent/KR101298721B1/en
Publication of KR20130071668A publication Critical patent/KR20130071668A/en
Application granted granted Critical
Publication of KR101298721B1 publication Critical patent/KR101298721B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 풍력발전기용 블레이드 익형에 관한 것으로서, 보다 상세하게는 블레이드의 길이 방향(스팬 방향) 50% 부근의 단면 익형에서 최대두께(t)와 코드길이(c)의 비율인 최대 두께비(t/c)를 21%로 형성함으로써 높은 양항비(양력과 항력의 비)를 갖도록 하여, 풍력발전기에 사용되는 블레이드의 출력 성능을 높일 수 있는 풍력발전기용 블레이드 익형에 관한 것이다.The present invention relates to a blade airfoil for a wind turbine, and more particularly, the maximum thickness ratio (t /) which is the ratio of the maximum thickness t and the cord length c in a cross-section airfoil near 50% of the blade in the longitudinal direction (span direction). It relates to a blade airfoil for wind power generators that can have a high lifting ratio (ratio of lift and drag) by forming c) at 21%, thereby increasing the output performance of the blade used in the wind power generator.

Description

풍력발전기용 블레이드 익형 {Airfoil of blade for wind turbine}Airfoil blade blades {Airfoil of blade for wind turbine}

본 발명은 풍력발전기용 블레이드 익형에 관한 것으로서, 보다 상세하게는 블레이드의 길이 방향(스팬 방향) 50% 부근의 단면 익형에서 높은 양항비(양력과 항력의 비)를 갖도록 하여, 풍력발전기에 사용되는 블레이드의 출력 성능을 높일 수 있는 풍력발전기용 블레이드 익형에 관한 것이다.
The present invention relates to a blade airfoil for a wind turbine, and more particularly, to have a high lifting ratio (ratio of lift and drag) in a cross-section airfoil near 50% of the blade in the longitudinal direction (span direction). The present invention relates to a blade airfoil for a wind turbine generator capable of increasing the output performance of a blade.

바람의 힘을 이용하여 전기에너지를 발생시키는 풍력발전기는 산업의 발달과 인구 증가에 의한 석유, 석탄, 천연가스 등의 천연자원의 고갈에 따라 대체 에너지원으로 많은 연구가 진행되고 있다.Wind power generators that generate electrical energy using the power of wind are being researched as an alternative energy source due to the depletion of natural resources such as oil, coal, and natural gas due to the development of industry and population growth.

풍력발전이란 공기 유동이 갖는 운동에너지를 기계적 에너지로 변환시킨 후 다시 전기에너지를 생산하는 기술로서, 자연에 존재하는 바람을 에너지원으로 이용하므로 비용이 들지 않으면서도 친환경적인 바, 점차 사용 범위가 증가하고 있다.Wind power generation is a technology to convert kinetic energy of air flow into mechanical energy and then to produce electric energy again. Since it uses natural wind as an energy source, it is eco-friendly without increasing cost. .

종래의 풍력발전기의 구조는 도 1에 도시한 바와 같이, 지면상에 세워지는 고층의 타워(1) 상단에 로터블레이드(3)를 회동 지지하는 나셀(2)을 회전 가능하도록 설치하고, 나셀(2) 내부에는 증속기, 발전기 및 제어장치(미도시)를 두어, 로터블레이드(3)의 회전력이 허브(4)를 거쳐 주축을 통해 발전기에 이르도록 구성된다. 한편, 공기 유동 후류에 해당하는 나셀(2)의 상단에는 풍향풍속계(5)가 배치된다. 이는 바람의 속도에 따라 전체 시스템을 최적 제어하고 발전량을 모니터링하기 위함인데, 풍향풍속계(5)에서 측정되는 풍향과 풍속에 기반하여 로터블레이드(3)의 피치 각도를 조절하고 나셀(2)의 방향을 유동방향 쪽으로 회전시켜 발전 효율을 극대화한다.As shown in FIG. 1, a conventional wind turbine is constructed such that a nacelle 2 for rotatably supporting a rotor blade 3 is rotatably installed on an upper end of a tower 1 of a high- 2) is provided with a speed reducer, a generator and a control device (not shown) so that the rotational force of the rotor blade 3 is transmitted to the generator via the hub 4 via the main shaft. On the other hand, the wind vane 5 is disposed at the upper end of the nacelle 2 corresponding to the air flow wake. This is to optimally control the entire system and monitor the power generation according to the wind speed. The pitch angle of the rotor blades 3 is adjusted based on the wind direction and wind speed measured by the wind vane 5 and the direction of the nacelle 2. Rotate to the direction of flow to maximize power generation efficiency.

한편, 로터블레이드(3)는 도 2에 도시한 바와 같이 복수의 에어포일(6, airfoil) 형상을 스팬 방향(길이 방향)을 따라 분포시켜 3차원 형상을 얻는다. 그리고 로터블레이드(3)의 익근(root) 쪽은 구조적인 강성을 위해 두꺼운 에어포일(6)을 사용하고 로터블레이드(3)의 팁(tip) 쪽에는 얇으면서 양항비(=양력계수/항력계수)가 우수한 에어포일(6)을 사용하는 것이 보통이다.On the other hand, as shown in Fig. 2, the rotor blade 3 distributes a plurality of airfoil shapes along the span direction (length direction) to obtain a three-dimensional shape. The root side of the rotor blade (3) uses a thick airfoil (6) for structural stiffness, while the tip side of the rotor blade (3) has a thin drag ratio (= lift coefficient / drag coefficient). It is common to use an airfoil 6 having excellent).

또한, 에어포일(6)은 도 3에 도시한 바와 같이 코드(65)를 따라 분포되는 윗면(63, upper surface) 및 아랫면(64, lower surface)이 합쳐져 이루어지며, 에어포일(6)의 앞부분을 앞전(61, leading edge)라 하고, 뒷부분을 뒷전(62, trailing edge)라 칭한다. 이때, 에어포일(6)의 최대두께(t) 및 코드 길이(c)는 에어포일(6)의 성능을 결정짓는 중요한 변수중의 하나로 취급된다. 또한, 최대두께(66)는 코드 길이로 나누어 두께비로 무차원화 하여 사용되는 것이 보통이다.The airfoil 6 is formed by joining an upper surface 63 and a lower surface 64 distributed along the cord 65 as shown in FIG. Is referred to as a leading edge 61 and a trailing edge is referred to as a trailing edge 62. [ At this time, the maximum thickness t and the cord length c of the airfoil 6 are treated as one of the important variables that determine the performance of the airfoil 6. In addition, the maximum thickness 66 is usually used by dividing the code length into a dimensionless thickness ratio.

이와 바와 같이 풍력발전기의 성능 및 효율은 로터블레이드(3)의 단면을 이루는 각 에어포일(6)의 형상에 따라 좌우되고, 적절한 에어포일(6)의 선택은 장기간 운전되는 풍력발전기에 있어서 매우 중요하다.As described above, the performance and efficiency of the wind turbine are dependent on the shape of each airfoil 6 forming the cross section of the rotor blade 3, and the selection of an appropriate airfoil 6 is very important for a wind turbine Do.

그러나, 현재 풍력발전기에 사용되는 대부분의 에어포일(6)은 항공기용으로 개발된 것들이 보통이다. 유체역학적으로 중요한 변수인 레이놀즈수(=밀도*코드 길이*풍속/공기의 점성 계수)로 예를 들어 보면, 항공기의 경우 운전 조건에서의 레이놀즈수가 6,000,000 정도인데 반하여, 풍력발전기의 경우에는 500,000~1,600,000 사이에 불과하여, 운전조건이 전혀 다른 분야의 에어포일(6)이 풍력발전기의 로터블레이드(3) 단면 형상으로 사용됨으로써 상당한 성능 저하를 감수해야만 했다.However, most of the airfoils 6 currently used in wind power generators are usually developed for aircraft. For example, the Reynolds number (= density * code length * wind velocity / air viscosity coefficient), which is an important hydrodynamically variable parameter, is about 500,000-1,600,000 for wind turbines And the airfoil 6 having a completely different operating condition is used as the cross-sectional shape of the rotor blade 3 of the wind power generator, so that a considerable performance deterioration has to be taken.

더욱이, 풍력발전기의 로터블레이드(3)는 스팬이 10m 이상으로 대형이고, 외부 환경의 오염(먼지, 곤충의 시체, 습기, 결빙 등)에 지속적으로 노출되는 반면 청소는 용이하지 아니하여 오염에 따른 성능 저하가 예상됨에도 이러한 영향을 고려하지 않은 채 항공기용으로 개발된 에어포일(6)을 그대로 사용함으로써 더욱더 고효율 로터블레이드(3)는 기대할 수 없었다. 이와 관련된 종래기술로 한국등록특허(10-1059784)인 "유전 알고리즘을 이용한 풍력발전기의 로터블레이드 에어포일 설계 방법 및 이에 따라 설계된 에어포일"이 있다.
Moreover, the rotor blades 3 of the wind turbine are large in spans of 10 m or more and are continuously exposed to pollution of the external environment (dust, insect bodies, moisture, freezing, etc.), while cleaning is not easy, Even with the expected performance deterioration, the high-efficiency rotor blades 3 could not be expected by using the airfoils 6 developed for aircrafts without considering these effects. The related art is a Korean Patent Registration (10-1059784), "Rotorblade airfoil design method of a wind power generator using a dielectric algorithm and an airfoil designed accordingly".

KR 10-1059784 B1 (2011.08.22.)KR 10-1059784 B1 (2011.08.22.)

본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 블레이드의 길이 방향(스팬 방향)으로 50% 부근의 단면 익형에서 최대두께(t)와 코드길이(c)의 비율인 최대 두께비(t/c)를 21%로 형성함으로써 높은 양항비(양력과 항력의 비)를 갖도록 하여, 풍력발전기에 사용되는 블레이드의 출력 성능을 높일 수 있는 풍력발전기용 블레이드 익형을 제공하는 것이다.
The present invention has been made to solve the above problems, the object of the present invention is the ratio of the maximum thickness (t) and the cord length (c) in the cross section airfoil around 50% in the longitudinal direction (span direction) of the blade It is to provide a blade airfoil blade for wind power generator that can increase the output performance of the blade used in the wind power generator to have a high lifting ratio (the ratio of lift and drag) by forming a maximum thickness ratio (t / c) of 21% .

상기한 바와 같은 목적을 달성하기 위한 본 발명의 풍력발전기용 블레이드 익형은, 풍력발전기용 블레이드 익형에 있어서, 상기 블레이드의 길이 방향(스팬 방향)으로 50% 부근에 사용되는 익형(1000)이며, 상기 익형(1000)은 윗면(400)에서 아랫면(500)까지의 최대두께(t)와 앞전(100)과 뒷전(200)을 잇는 직선인 코드(300)의 코드길이(c)의 비율인 최대 두께비(t/c)가 21%인 것을 특징으로 한다.Wind blade blade for the wind power generator of the present invention for achieving the above object, the blade blade for wind power generator, the blade (1000) used in the vicinity of 50% in the longitudinal direction (span direction) of the blade, The airfoil 1000 has a maximum thickness ratio that is a ratio of the maximum thickness t from the top surface 400 to the bottom surface 500 and the cord length c of the cord 300 that is a straight line connecting the front 100 and the rear 200. (t / c) is characterized in that 21%.

또한, 상기 익형(1000)은 운전되는 레이놀즈수(Re# = 공기밀도*풍속*코드길이 / 공기점성계수)가 2,000,000 내지 3,000,000인 것을 특징으로 한다.The airfoil 1000 is characterized in that the number of Reynolds numbers to be operated (Re # = air density * wind speed * code length / air viscosity coefficient) is 2,000,000 to 3,000,000.

또한, 상기 윗면(400)과 아랫면(500)의 프로파일(profile)은, 상기 코드(300)를 따라 상기 앞전(100)에서 뒷전(200)으로의 거리에 해당하는 수평좌표값(x/c)과, 상기 코드(300)에서 윗면(400) 또는 아랫면(500)의 거리에 해당하는 수직좌표값(y/c)을 각각 갖는 것을 특징으로 한다.
In addition, the profile of the upper surface 400 and the lower surface 500, the horizontal coordinate value (x / c) corresponding to the distance from the front 100 to the rear 200 along the code 300 And a vertical coordinate value (y / c) corresponding to the distance of the upper surface 400 or the lower surface 500 from the cord 300, respectively.

본 발명의 풍력발전기용 블레이드 익형은, 블레이드의 길이 방향(스팬 방향) 50% 부근의 단면 익형에서 최대 두께비(t/c)를 21%로 형성함으로써 높은 양항비(양력과 항력의 비)를 갖도록 하여, 풍력발전기에 사용되는 블레이드의 출력 성능을 높일 수 있는 장점이 있다.
The blade airfoil for a wind turbine of the present invention has a high lifting ratio (ratio of lift and drag) by forming a maximum thickness ratio (t / c) of 21% in a cross-section airfoil near 50% of the blade in the longitudinal direction (span direction). Thus, there is an advantage to increase the output performance of the blade used in the wind turbine.

도 1은 종래의 풍력발전기를 나타낸 사시도.
도 2는 도 1의 익형을 나타낸 개념도.
도 3은 도 2의 익형을 나타낸 단면도.
도 4는 본 발명의 풍력발전기용 블레이드 익형을 나타낸 단면도이다.
도 5는 본 발명의 풍력발전기용 블레이드 익형의 형상(profile)을 나타낸 그래프.
도 6은 본 발명의 풍력발전기용 블레이드 익형의 풍동시험 장면 사진.
도 7 및 도 8은 본 발명의 풍력발전기용 블레이드 익형의 양력(Cl) 및 항력(Cdw)을 나타낸 그래프.
1 is a perspective view showing a conventional wind power generator;
FIG. 2 is a conceptual view showing the airfoil of FIG. 1; FIG.
3 is a cross-sectional view showing the airfoil of FIG. 2;
4 is a cross-sectional view showing a blade airfoil for a wind power generator of the present invention.
5 is a graph showing the profile of a blade airfoil for a wind turbine of the present invention.
6 is a photograph of a wind tunnel test of a blade airfoil for a wind turbine of the present invention.
7 and 8 are graphs showing lift (Cl) and drag (Cdw) of the blade airfoil for a wind turbine of the present invention.

이하, 상기한 바와 같은 본 발명의 풍력발전기용 블레이드 익형을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, the blade airfoil for a wind turbine of the present invention as described above will be described in detail with reference to the accompanying drawings.

도 4는 본 발명의 풍력발전기용 블레이드 익형을 나타낸 단면도이며, 도 5는 본 발명에 따른 익형의 형상을 나타낸 그래프이다.FIG. 4 is a cross-sectional view showing a blade airfoil for a wind turbine according to the present invention, and FIG. 5 is a graph showing a shape of an airfoil according to the present invention.

우선, 본 발명의 풍력발전기용 블레이드 익형(1000)은 풍력발전기의 블레이드에 사용되는 익형에 관한 것으로, 블레이드의 길이 방향(스팬 방향)으로 50% 부근에 주로 사용되는 익형에 관한 것이며, 도시된 바와 같이 본 발명의 풍력발전기용 블레이드 익형(1000)은 유동되는 공기와 맞닿는 쪽에 앞전(100, leading edge)이 형성되고 이와 일정거리 이격되어 뒷전(200, trailing edge)이 형성된다. 그리고 앞전(100)과 뒷전(200) 사이의 상측과 하측에는 각각 윗면(400)과 아랫면(500)이 형성된다.First, the blade blade for the wind turbine generator 1000 of the present invention relates to the airfoil used for the blade of the wind power generator, relates to the airfoil mainly used in the vicinity of 50% in the longitudinal direction (span direction) of the blade, as shown As described above, the blade blade for the wind turbine generator 1000 according to the present invention is formed with a leading edge 100 on the side in contact with the flowing air and is spaced a predetermined distance from the trailing edge 200 to form a trailing edge 200. The upper surface 400 and the lower surface 500 are formed on the upper side and the lower side between the front electrode 100 and the rear electrode 200, respectively.

여기에서 앞전(100)과 뒷전(200)을 잇는 가상의 직선이 코드(300)이고 앞전(100)과 뒷전(200) 사이의 거리가 코드길이(c)가 되며, 코드(300)에 수직한 방향으로 윗면(400)과 아랫면(500) 사이가 가장 먼 지점의 거리가 최대두께(t)가 된다.A virtual straight line connecting the front and rear trains 100 and 200 is a code 300 and a distance between the front and rear trains 100 and 200 is a code length c, The maximum distance t between the upper surface 400 and the lower surface 500 is the maximum thickness t.

이때, 본 발명의 풍력발전기용 블레이드 익형(1000)은 윗면(400)에서 아랫면(500)까지의 최대두께(t)와 앞전(100)과 뒷전(200)을 잇는 직선인 코드(300)의 코드길이(c)의 비율인 최대 두께비(t/c)가 21%로 이루어진다.The blade airfoil 1000 for a wind turbine of the present invention has a maximum thickness t from the upper surface 400 to the lower surface 500 and a code of a straight cord 300 connecting the leading edge 100 and the trailing edge 200. [ And the maximum thickness ratio (t / c) as a ratio of the length (c) is 21%.

일반적인 연구 결과에 따르면 익형의 두께는 얇아질수록 성능이 향상되나, 너무 얇으면 블레이드의 내부 구조물의 제작 및 구조적인 강도에 문제점이 발생할 수 있어 두께비를 12% 이상으로 형성하는 것이 적절하다고 알려져 있다.According to general research results, the thickness of the airfoil is improved as the thickness is thinned, but if it is too thin, the internal structure of the blade and the structural strength may be problematic.

그리하여 상기와 같이 본 발명의 풍력발전기용 블레이드 익형(1000)은 최대 두께비(t/c)를 21%로 형성함으로써, 기존의 다른 익형에 비해 높은 양항비(양력/항력=양력계수/항력계수)를 갖도록 하여 풍력발전기에 사용되는 블레이드의 출력 성능 및 효율을 높일 수 있는 장점이 있다.Thus, as described above, the blade airfoil 1000 for the wind power generator of the present invention has a maximum thickness ratio (t / c) of 21%, which is higher than other conventional airfoil ratios (lift / drag = lift coefficient / drag coefficient) By having the advantage that can increase the output performance and efficiency of the blade used in the wind turbine.

그리고 본 발명의 풍력발전기용 블레이드 익형(1000)이 운전되는 조건 중에서 레이놀즈수가 있으며, 운전되는 레이놀즈수는 풍속에 따른 익형의 운전조건을 말한다. 이때, 상기 익형(1000)은 운전되는 레이놀즈수(Re# = 공기밀도*풍속*코드길이 / 공기점성계수)가 2,000,000 내지 3,000,000이다.The Reynolds number in the condition that the blade airfoil 1000 for a wind turbine of the present invention is operated means the operating condition of the airfoil according to the wind speed. At this time, the airfoil 1000 has a Reynolds number (Re # = air density * wind speed * code length / air viscosity coefficient) is 2,000,000 to 3,000,000.

즉, 본 발명의 익형(1000)의 양력 및 항력 특성을 확인하기 위해 도 6과 같이 풍동시험을 수행하였고, 익형의 성능은 상기 레이놀즈수 범위 내에서 측정된 결과이며, 도 7 및 도 8과 같이 받음각(Alpha)에 따라 양력(Cl)과 항력(Cdw)이 측정되었다.In order to confirm lift and drag characteristics of the airfoil 1000 of the present invention, a wind tunnel test was performed as shown in FIG. 6, and the performance of the airfoil was measured within the Reynolds number range. As shown in FIGS. 7 and 8 Lifting (Cl) and drag (Cdw) were measured according to the angle of attack (Alpha).

여기에서 상기 받음각(Alpha)은 AoA(angle of attack)라고도 하며, 코드(300) 라인과 공기의 흐름(기류)의 방향이 이루는 각도이다. 그리고 도시된 바와 같이 받음각에 따라 익형의 양력과 항력이 달라지며, 운전되는 레이놀즈수에 따라서도 달라짐을 알 수 있다.Here, the angle of attack Alpha is also referred to as an angle of attack (AoA), and is an angle formed by the direction of the airflow (airflow) and the line of code 300. And as shown, the lift and drag of the airfoil vary according to the angle of attack, and it can be seen that it also depends on the Reynolds number being driven.

또한, 본 발명의 풍력발전기용 블레이드 익형(1000)에서 상기 윗면(400)과 아랫면(500)의 프로파일(profile)은, 상기 코드(300)를 따라 상기 앞전(100)에서 뒷전(200)으로의 거리에 해당하는 수평좌표값(x/c)과, 상기 코드(300)에서 윗면(400) 또는 아랫면(500)의 거리에 해당하는 수직좌표값(y/c)을 각각 갖으며, 상기 수평좌표값(x/c) 및 수직좌표값(y/c)은 아래의 표에 해당된다.The profile of the upper surface 400 and the lower surface 500 of the blade airfoil 1000 for a wind turbine according to the present invention may be such that a profile of the front blade 100 and the trailing blade 200 (Y / c) corresponding to the distance between the upper surface 400 and the lower surface 500 in the code 300 and the horizontal coordinate value (x / c) corresponding to the distance, Values (x / c) and vertical coordinate values (y / c) correspond to the following table.

이때, 상기 프로파일은 윗면과 아랫면의 윤곽을 말하고, 도 5와 같이 상기 코드(300)의 길이를 1.0이라고 할 때, 상기 코드(300)상의 임의의 수평좌표값(x/c)에서 수직으로 상측에 위치하는 지점의 상대적인 거리인 수직좌표값(y/c)을 이은 곡선이 윗면(400)이 된다. 마찬가지로 상기 코드(300)상의 임의의 수평좌표값(x/c)에서 수직으로 하측에 위치하는 지점의 상대적인 거리인 수직좌표값(y/c)을 이은 곡선이 아랫면(500)이 된다. 그리고 상기 윗면(400)과 아랫면(500)의 각각의 좌표값은 아래의 표 1과 같다.In this case, the profile refers to the contour of the upper and lower surfaces, and when the length of the cord 300 is 1.0 as shown in FIG. 5, the profile is vertically upward from an arbitrary horizontal coordinate value (x / c) on the cord 300. The upper surface 400 is a curve formed by a vertical coordinate value y / c, which is a relative distance of a point located at. Similarly, the curve that is the vertical coordinate value (y / c), which is the relative distance of the vertically lower point on the arbitrary horizontal coordinate value (x / c) on the code 300, becomes the lower surface 500. The coordinate values of the upper surface 400 and the lower surface 500 are shown in Table 1 below.

윗면Top 아랫면Bottom x/cx / c y/cy / c x/cx / c y/cy / c 0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0000 -0.0001 -0.0001 0.0001 0.0001 0.0021 0.0021 0.0001 0.0001 -0.0026 -0.0026 0.0002 0.0002 0.0031 0.0031 0.0002 0.0002 -0.0036 -0.0036 0.0003 0.0003 0.0040 0.0040 0.0003 0.0003 -0.0043 -0.0043 0.0004 0.0004 0.0047 0.0047 0.0004 0.0004 -0.0050 -0.0050 0.0005 0.0005 0.0053 0.0053 0.0005 0.0005 -0.0055 -0.0055 0.0008 0.0008 0.0067 0.0067 0.0008 0.0008 -0.0067 -0.0067 0.0010 0.0010 0.0079 0.0079 0.0010 0.0010 -0.0077 -0.0077 0.0013 0.0013 0.0090 0.0090 0.0013 0.0013 -0.0086 -0.0086 0.0015 0.0015 0.0099 0.0099 0.0015 0.0015 -0.0093 -0.0093 0.0018 0.0018 0.0108 0.0108 0.0018 0.0018 -0.0100 -0.0100 0.0020 0.0020 0.0116 0.0116 0.0020 0.0020 -0.0106 -0.0106 0.0030 0.0030 0.0143 0.0143 0.0030 0.0030 -0.0127 -0.0127 0.0040 0.0040 0.0167 0.0167 0.0040 0.0040 -0.0145 -0.0145 0.0050 0.0050 0.0188 0.0188 0.0050 0.0050 -0.0160 -0.0160 0.0060 0.0060 0.0207 0.0207 0.0060 0.0060 -0.0174 -0.0174 0.0070 0.0070 0.0224 0.0224 0.0070 0.0070 -0.0186 -0.0186 0.0080 0.0080 0.0241 0.0241 0.0080 0.0080 -0.0197 -0.0197 0.0090 0.0090 0.0256 0.0256 0.0090 0.0090 -0.0208 -0.0208 0.0100 0.0100 0.0271 0.0271 0.0100 0.0100 -0.0218 -0.0218 0.0125 0.0125 0.0305 0.0305 0.0125 0.0125 -0.0240 -0.0240 0.0150 0.0150 0.0336 0.0336 0.0150 0.0150 -0.0260 -0.0260 0.0175 0.0175 0.0365 0.0365 0.0175 0.0175 -0.0279 -0.0279 0.0200 0.0200 0.0392 0.0392 0.0200 0.0200 -0.0296 -0.0296 0.0250 0.0250 0.0441 0.0441 0.0250 0.0250 -0.0326 -0.0326 0.0300 0.0300 0.0486 0.0486 0.0300 0.0300 -0.0353 -0.0353 0.0350 0.0350 0.0527 0.0527 0.0350 0.0350 -0.0378 -0.0378 0.0400 0.0400 0.0566 0.0566 0.0400 0.0400 -0.0400 -0.0400 0.0450 0.0450 0.0603 0.0603 0.0450 0.0450 -0.0420 -0.0420 0.0500 0.0500 0.0637 0.0637 0.0500 0.0500 -0.0438 -0.0438 0.0550 0.0550 0.0670 0.0670 0.0550 0.0550 -0.0455 -0.0455 0.0600 0.0600 0.0701 0.0701 0.0600 0.0600 -0.0471 -0.0471 0.0650 0.0650 0.0730 0.0730 0.0650 0.0650 -0.0486 -0.0486 0.0700 0.0700 0.0758 0.0758 0.0700 0.0700 -0.0500 -0.0500 0.0750 0.0750 0.0784 0.0784 0.0750 0.0750 -0.0513 -0.0513 0.0800 0.0800 0.0810 0.0810 0.0800 0.0800 -0.0526 -0.0526 0.0850 0.0850 0.0834 0.0834 0.0850 0.0850 -0.0538 -0.0538 0.0900 0.0900 0.0858 0.0858 0.0900 0.0900 -0.0550 -0.0550 0.0950 0.0950 0.0880 0.0880 0.0950 0.0950 -0.0561 -0.0561 0.1000 0.1000 0.0902 0.0902 0.1000 0.1000 -0.0572 -0.0572 0.1100 0.1100 0.0942 0.0942 0.1100 0.1100 -0.0591 -0.0591 0.1200 0.1200 0.0980 0.0980 0.1200 0.1200 -0.0610 -0.0610 0.1300 0.1300 0.1015 0.1015 0.1300 0.1300 -0.0627 -0.0627 0.1400 0.1400 0.1048 0.1048 0.1400 0.1400 -0.0642 -0.0642 0.1500 0.1500 0.1079 0.1079 0.1500 0.1500 -0.0657 -0.0657 0.1600 0.1600 0.1108 0.1108 0.1600 0.1600 -0.0670 -0.0670 0.1700 0.1700 0.1135 0.1135 0.1700 0.1700 -0.0682 -0.0682 0.1800 0.1800 0.1161 0.1161 0.1800 0.1800 -0.0694 -0.0694 0.1900 0.1900 0.1184 0.1184 0.1900 0.1900 -0.0704 -0.0704 0.2000 0.2000 0.1206 0.1206 0.2000 0.2000 -0.0713 -0.0713 0.2100 0.2100 0.1226 0.1226 0.2100 0.2100 -0.0721 -0.0721 0.2200 0.2200 0.1245 0.1245 0.2200 0.2200 -0.0729 -0.0729 0.2300 0.2300 0.1262 0.1262 0.2300 0.2300 -0.0735 -0.0735 0.2400 0.2400 0.1277 0.1277 0.2400 0.2400 -0.0741 -0.0741 0.2500 0.2500 0.1291 0.1291 0.2500 0.2500 -0.0746 -0.0746 0.2600 0.2600 0.1303 0.1303 0.2600 0.2600 -0.0750 -0.0750 0.2700 0.2700 0.1313 0.1313 0.2700 0.2700 -0.0753 -0.0753 0.2800 0.2800 0.1322 0.1322 0.2800 0.2800 -0.0756 -0.0756 0.2900 0.2900 0.1329 0.1329 0.2900 0.2900 -0.0757 -0.0757 0.3000 0.3000 0.1335 0.1335 0.3000 0.3000 -0.0758 -0.0758 0.3100 0.3100 0.1339 0.1339 0.3100 0.3100 -0.0758 -0.0758 0.3200 0.3200 0.1342 0.1342 0.3200 0.3200 -0.0757 -0.0757 0.3300 0.3300 0.1343 0.1343 0.3300 0.3300 -0.0756 -0.0756 0.3400 0.3400 0.1342 0.1342 0.3400 0.3400 -0.0754 -0.0754 0.3500 0.3500 0.1340 0.1340 0.3500 0.3500 -0.0750 -0.0750 0.3600 0.3600 0.1337 0.1337 0.3600 0.3600 -0.0747 -0.0747 0.3700 0.3700 0.1332 0.1332 0.3700 0.3700 -0.0742 -0.0742 0.3800 0.3800 0.1326 0.1326 0.3800 0.3800 -0.0737 -0.0737 0.3900 0.3900 0.1319 0.1319 0.3900 0.3900 -0.0731 -0.0731 0.4000 0.4000 0.1311 0.1311 0.4000 0.4000 -0.0725 -0.0725 0.4100 0.4100 0.1301 0.1301 0.4100 0.4100 -0.0717 -0.0717 0.4200 0.4200 0.1291 0.1291 0.4200 0.4200 -0.0709 -0.0709 0.4300 0.4300 0.1280 0.1280 0.4300 0.4300 -0.0701 -0.0701 0.4400 0.4400 0.1268 0.1268 0.4400 0.4400 -0.0691 -0.0691 0.4500 0.4500 0.1255 0.1255 0.4500 0.4500 -0.0681 -0.0681 0.4750 0.4750 0.1221 0.1221 0.4750 0.4750 -0.0652 -0.0652 0.5000 0.5000 0.1182 0.1182 0.5000 0.5000 -0.0619 -0.0619 0.5250 0.5250 0.1139 0.1139 0.5250 0.5250 -0.0582 -0.0582 0.5500 0.5500 0.1093 0.1093 0.5500 0.5500 -0.0540 -0.0540 0.5750 0.5750 0.1045 0.1045 0.5750 0.5750 -0.0496 -0.0496 0.6000 0.6000 0.0995 0.0995 0.6000 0.6000 -0.0448 -0.0448 0.6250 0.6250 0.0943 0.0943 0.6250 0.6250 -0.0398 -0.0398 0.6500 0.6500 0.0889 0.0889 0.6500 0.6500 -0.0346 -0.0346 0.6750 0.6750 0.0833 0.0833 0.6750 0.6750 -0.0293 -0.0293 0.7000 0.7000 0.0777 0.0777 0.7000 0.7000 -0.0240 -0.0240 0.7250 0.7250 0.0719 0.0719 0.7250 0.7250 -0.0189 -0.0189 0.7500 0.7500 0.0661 0.0661 0.7500 0.7500 -0.0140 -0.0140 0.7750 0.7750 0.0601 0.0601 0.7750 0.7750 -0.0096 -0.0096 0.8000 0.8000 0.0541 0.0541 0.8000 0.8000 -0.0057 -0.0057 0.8250 0.8250 0.0481 0.0481 0.8250 0.8250 -0.0025 -0.0025 0.8500 0.8500 0.0419 0.0419 0.8500 0.8500 0.0000 0.0000 0.8750 0.8750 0.0357 0.0357 0.8750 0.8750 0.0017 0.0017 0.9000 0.9000 0.0295 0.0295 0.9000 0.9000 0.0025 0.0025 0.9100 0.9100 0.0269 0.0269 0.9100 0.9100 0.0026 0.0026 0.9200 0.9200 0.0244 0.0244 0.9200 0.9200 0.0025 0.0025 0.9300 0.9300 0.0219 0.0219 0.9300 0.9300 0.0024 0.0024 0.9400 0.9400 0.0193 0.0193 0.9400 0.9400 0.0020 0.0020 0.9500 0.9500 0.0168 0.0168 0.9500 0.9500 0.0016 0.0016 0.9600 0.9600 0.0142 0.0142 0.9600 0.9600 0.0010 0.0010 0.9700 0.9700 0.0116 0.0116 0.9700 0.9700 0.0003 0.0003 0.9800 0.9800 0.0089 0.0089 0.9800 0.9800 -0.0005 -0.0005 0.9900 0.9900 0.0062 0.0062 0.9900 0.9900 -0.0015 -0.0015 1.0000 1.0000 0.0034 0.0034 1.0000 1.0000 -0.0026 -0.0026

본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It goes without saying that various modifications can be made.

1000 : (본 발명의) 풍력발전기용 블레이드 익형
100 : 앞전 (leading edge)
200 : 뒷전 (trailing edge)
300 : 코드
400 : 윗면
500 : 아랫면
t : 최대두께
c : 코드길이
1000: Blade airfoil for wind turbine (of the present invention)
100: Leading edge
200: trailing edge
300: Code
400: Top surface
500: underside
t: maximum thickness
c: Code length

Claims (3)

풍력발전기용 블레이드 익형에 있어서,
상기 블레이드의 길이 방향(스팬 방향)으로 50% 부근에 사용되는 익형(1000)이며, 상기 익형(1000)은 윗면(400)에서 아랫면(500)까지의 최대두께(t)와 앞전(100)과 뒷전(200)을 잇는 직선인 코드(300)의 코드길이(c)의 비율인 최대 두께비(t/c)가 21%이며,
상기 윗면(400)과 아랫면(500)의 프로파일(profile)은,
상기 코드(300)를 따라 상기 앞전(100)에서 뒷전(200)으로의 거리에 해당하는 수평좌표값(x/c)과, 상기 코드(300)에서 윗면(400) 또는 아랫면(500)의 거리에 해당하는 수직좌표값(y/c)을 각각 갖으며, 상기 수평좌표값(x/c) 및 수직좌표값(y/c)은 아래의 표에 해당하는 것을 특징으로 하는 풍력발전기용 블레이드 익형.
Figure 112013068302614-pat00012

Figure 112013068302614-pat00013

Figure 112013068302614-pat00014

In a blade airfoil for a wind power generator,
The airfoil 1000 is used in the longitudinal direction (span direction) of the blade in the vicinity of 50%, the airfoil 1000 is the maximum thickness (t) and the leading edge 100 from the upper surface 400 to the lower surface 500 and The maximum thickness ratio t / c, which is the ratio of the cord length c of the cord 300 that is a straight line connecting the trailing edge 200, is 21%,
The profiles of the top surface 400 and the bottom surface 500 are,
A horizontal coordinate value (x / c) corresponding to the distance from the front 100 to the rear 200 along the cord 300 and the distance of the upper surface 400 or the lower surface 500 from the cord 300. Each having a vertical coordinate value (y / c) corresponding to the horizontal coordinate value (x / c) and the vertical coordinate value (y / c) blade wind blades for wind turbines, characterized in that corresponding to the table below .
Figure 112013068302614-pat00012

Figure 112013068302614-pat00013

Figure 112013068302614-pat00014

제1항에 있어서,
상기 익형(1000)은 운전되는 레이놀즈수(Re# = 공기밀도*풍속*코드길이 / 공기점성계수)가 2,000,000 내지 3,000,000인 것을 특징으로 하는 풍력발전기용 블레이드 익형.
The method of claim 1,
The airfoil 1000 is a blade airfoil for wind turbines, characterized in that the Reynolds number (Re # = air density * wind speed * code length / air viscosity coefficient) is 2,000,000 to 3,000,000.
삭제delete
KR1020110139008A 2011-12-21 2011-12-21 Airfoil of blade for wind turbine KR101298721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110139008A KR101298721B1 (en) 2011-12-21 2011-12-21 Airfoil of blade for wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110139008A KR101298721B1 (en) 2011-12-21 2011-12-21 Airfoil of blade for wind turbine

Publications (2)

Publication Number Publication Date
KR20130071668A KR20130071668A (en) 2013-07-01
KR101298721B1 true KR101298721B1 (en) 2013-08-21

Family

ID=48986603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110139008A KR101298721B1 (en) 2011-12-21 2011-12-21 Airfoil of blade for wind turbine

Country Status (1)

Country Link
KR (1) KR101298721B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562420A (en) * 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
US6068446A (en) * 1997-11-20 2000-05-30 Midwest Research Institute Airfoils for wind turbine
KR101051575B1 (en) * 2009-07-30 2011-07-22 주식회사 효성 Tip airfoil on blade for 2 megawatt wind generator
KR101059784B1 (en) * 2008-11-18 2011-08-26 한국에너지기술연구원 Rotorblade airfoil design method of wind power generator using genetic algorithm and airfoil designed accordingly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562420A (en) * 1994-03-14 1996-10-08 Midwest Research Institute Airfoils for wind turbine
US6068446A (en) * 1997-11-20 2000-05-30 Midwest Research Institute Airfoils for wind turbine
KR101059784B1 (en) * 2008-11-18 2011-08-26 한국에너지기술연구원 Rotorblade airfoil design method of wind power generator using genetic algorithm and airfoil designed accordingly
KR101051575B1 (en) * 2009-07-30 2011-07-22 주식회사 효성 Tip airfoil on blade for 2 megawatt wind generator

Also Published As

Publication number Publication date
KR20130071668A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
KR101059784B1 (en) Rotorblade airfoil design method of wind power generator using genetic algorithm and airfoil designed accordingly
KR101179277B1 (en) Wind Turbine which have Nacelle Fence
JP2012180771A (en) Wind turbine blade and wind power generating apparatus including the same
US9664173B2 (en) Tip airfoil of wind turbine blade
KR101710974B1 (en) A airfoil of blade for a horizontal axis wind turbine
KR101299049B1 (en) Airfoil of blade for wind turbine
KR101016062B1 (en) Airfoil arrangement method and Wind turbine rotor blade
KR101331961B1 (en) Blade airfoil for wind turbine generator having trailing edge shape which possible inserting of aerodynamic control unit
Kekezoğlu et al. A new wind turbine concept: design and implementation
CN103883483B (en) A kind of 100W blade of wind-driven generator
KR101298721B1 (en) Airfoil of blade for wind turbine
KR101298716B1 (en) Airfoil of blade for wind turbine
KR101454258B1 (en) 25% Thickness Airfoil for Large Scale Wind Turbine Blade
KR101440587B1 (en) 21% Airfoil of blade for windturbine
KR101445106B1 (en) 40% Airfoil of blade for windturbine
KR101454260B1 (en) 35% Thickness Airfoil for Large Scale Wind Turbine Blade
KR101454257B1 (en) 21% Thickness Airfoil for Large Scale Wind Turbine Blade
KR101454261B1 (en) 40% Thickness Airfoil for Large Scale Wind Turbine Blade
KR20130073946A (en) Wind turbine blade, wind-powered electricity generator provided with same, and method for designing wind turbine blade
KR101216308B1 (en) Aerogenerator blade of root airfoil
KR20110092609A (en) Low-noise tip airfoil geometry for urban small wind turbines in low wind speed condition
JP5675270B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
JP5433553B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
Bhayo et al. Performance investigation of the S-Rotors
KR101454259B1 (en) 30% Thickness Airfoil for Large Scale Wind Turbine Blade

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 6