KR101289246B1 - Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions - Google Patents

Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions Download PDF

Info

Publication number
KR101289246B1
KR101289246B1 KR1020120032246A KR20120032246A KR101289246B1 KR 101289246 B1 KR101289246 B1 KR 101289246B1 KR 1020120032246 A KR1020120032246 A KR 1020120032246A KR 20120032246 A KR20120032246 A KR 20120032246A KR 101289246 B1 KR101289246 B1 KR 101289246B1
Authority
KR
South Korea
Prior art keywords
electrodeposition
electrolytic cell
solar cell
electrolyzer
precursor
Prior art date
Application number
KR1020120032246A
Other languages
Korean (ko)
Inventor
나스 바타차르야 라구
김영호
오미경
채수병
윤상효
Original Assignee
엘리언스 포 서스터너블 에너지, 엘엘씨
(주) 다쓰테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘리언스 포 서스터너블 에너지, 엘엘씨, (주) 다쓰테크 filed Critical 엘리언스 포 서스터너블 에너지, 엘엘씨
Priority to KR1020120032246A priority Critical patent/KR101289246B1/en
Application granted granted Critical
Publication of KR101289246B1 publication Critical patent/KR101289246B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A manufacturing method of I B III B VI B group thin film solar cell precursor which applies a single electrolyzer electrodeposition method and multiple electrolyzer electrodeposition method at the same time is provided to improve performance by amending a physical property of an electrodeposition thin film. CONSTITUTION: A prepared working electrode is electrodeposited. A thin film of a close-packed structure is formed. A component element is spread equally in the thin film. A value which is deviated from the component element formation ratio is corrected. The multiple electrolyzer electrodeposition method is used for correction.

Description

단일전해조전착법 및 다중전해조전착법을 동시에 적용하는 IBⅢBⅥB계 박막태양전지 전구체의 제조방법{Preparation Method for ⅠBⅢBⅥB compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions}Preparation method for IBIIIBVIB compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions

본 발명은 박막태양전지 전구체의 제조방법에 관한 것으로, 보다 상세하게는 GaAs와 같은 ⅢBⅤB계 반도체태양전지, CdTe와 같은ⅡBⅥB계 반도체태양전지, 그리고 CIS와 같은 ⅠBⅢBⅥB계 반도체태양전지 등의 화합물반도체박막태양전지 가운데 ⅠBⅢBⅥB계 박막태양전지의 전구체 제조방법으로서 단일전해조전착법과 다중전해조전착법을 동시에 사용하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell precursor, and more particularly, to compound semiconductor thin films such as IIIBVB-based semiconductor solar cells such as GaAs, IIBVIB-based semiconductor solar cells such as CdTe, and IBIIIBVIB-based semiconductor solar cells such as CIS. The present invention relates to a method of manufacturing a precursor of an IBIIIBVIB-based thin film solar cell using a single electrolytic cell electrodeposition method and a multiple electrolytic cell electrodeposition method simultaneously.

ⅠB ⅢB ⅥB계 박막태양전지의 일반적인 구조는 유리, 스테인레스스틸, 티타늄, 알루미늄 또는 폴리이미드와 같은 하부기판 위에 약1미크론 두께의 몰리브덴층을 스퍼터링으로 올리고, 그 위에 p형 ⅠBⅢBⅥB계 반도체 광흡수층을 올리고, 그 위에 n형의 반도체인 CdS, Zn(O, S, OH), ZnMgO, In(O,S,OH), 또는 In2S3와 같은 버퍼층을 올린 후, 그 위에 i-ZnO 고저항버퍼층을 올린 다음, 그 위에 n형의 반도체인 n-ZnO 투명전극층을 올린 후, 마지막으로 반사방지층 및 표면 전극으로 구성하는 형태이다(도 1 참조).The general structure of the IB IIIB VIB-based thin film solar cell is to sputter a molybdenum layer having a thickness of about 1 micron on a lower substrate such as glass, stainless steel, titanium, aluminum, or polyimide, and place a p-type IBIIIBVIB semiconductor light absorbing layer thereon. And a buffer layer such as CdS, Zn (O, S, OH), ZnMgO, In (O, S, OH), or In 2 S 3 , which are n-type semiconductors, is placed thereon and an i-ZnO high resistance buffer layer thereon. After raising, the n-ZnO transparent electrode layer, which is an n-type semiconductor, is placed thereon, and finally, an antireflection layer and a surface electrode are formed (see FIG. 1).

여기서, ⅠBⅢBⅥB계 박막태양전지의 태양광전환효율, 즉 발전성능에 결정적인 역할을 하는 ⅠBⅢBⅥB계 p형 반도체로 흡수층을 형성하는 방법은 동시증발법, 스퍼터링법, 전착법, 그리고 잉크법과 같이 크게 네 가지로 알려져 있다.Here, there are four methods of forming an absorbing layer using the IBIIIBVIB-based p-type semiconductor, which plays a decisive role in the photovoltaic conversion efficiency, that is, the power generation performance of the IBIIIBVIB-based thin film solar cell, such as the co-evaporation method, the sputtering method, the electrodeposition method, and the ink method. Known as

본 발명은 이 가운데 전착법을 이용하여 ⅠBⅢBⅥB계 p형 반도체박막을 제조하는 방법에 관한 것이다. 전착법을 이용해서 ⅠBⅢBⅥB계 흡수층의 전구체를 제조할 때에는 주기율표상 ⅠB족(Cu, Ag, 그리고 Au), ⅢB족(B, Al, Ga, In 그리고 Tl), 그리고 ⅥB족(O, S, Se, Te, 그리고 Po)에 대하여, 각 족으로부터 적어도 한 개 이상의 원소들을 한 개의 전해조에 동시에 용해시켜 동시에 전착시키는 단일전해조착법(one-bath electrodeposition)과, 복수의 전해조들을 가지고, 복수의 전해조 각각에 주기율표상 ⅠB족(Cu, Ag, 그리고 Au), ⅢB족(B, Al, Ga, In, 그리고 Tl), 그리고 ⅥB족(O, S, Se, Te, 그리고 Po)의 원소들 가운데 적어도 한 개의 이상의 원소를 포함시키고, 각 전해조에서 연속적으로 전착을 하여 다층구조를 형성하는 다중전해조전착법(multi-bath electrodeposition)이 일반적이다.The present invention relates to a method of manufacturing an IBIIIBVIB-based p-type semiconductor thin film using the electrodeposition method among these. When the precursor of the IBIIIBVIB-based absorbing layer was prepared by electrodeposition, the group IB (Cu, Ag, and Au), IIIB (B, Al, Ga, In and Tl), and VIB (O, S, Se) of the periodic table , Te, and Po) have a one-bath electrodeposition for simultaneously dissolving at least one element from each group in one electrolyzer and simultaneously electrodeposition, and having a plurality of electrolyzers, At least one of the elements of Group IB (Cu, Ag, and Au), Group IIIB (B, Al, Ga, In, and Tl) and Group VIB (O, S, Se, Te, and Po) on the periodic table The multi-bath electrodeposition method which contains the above element and continuously electrodeposits in each electrolytic cell to form a multilayered structure is common.

상기에서 단일전해조전착법은 한 개의 전해조에서 한 번의 전착과정에 의해 성막이 이루어지기 때문에 설비 및 공정이 간단하고, 각각의 성분들이 동시에 섞여서 성막이 이루어지기 때문에 얻어지는 박막은 성분원소들이 균일하게 섞여있게 되어 다음 공정인 열처리에 의한 결정화과정을 통해서 보다 균일하고 치밀한 결정구조를 얻을 수 있다. 그러나 모든 성분이온들을 동시에 용해시키기 위한 조건을 찾기가 어려우며, 각각의 성분이온들의 표준환원전위가 크게 다르고, 이 또한 성분원소들 간의 화합물형태로 전착될 경우나 pH, 온도와 같은 전착환경이 변화할 때 또한 환원전위가 달라지는 문제가 있으며, 성분원소 각각의 전착속도 또한 서로 다르기 때문에 전착을 위한 환원전위를 선택하기가 매우 어려워지며, 설사 최적의 환원전위와 용액조성을 찾는다고 하더라도 용액내의 복잡한 성분원소들의 농도오차 또는 농도변화 그리고 전착환경에 매우 민감하기 때문에 재현성 있는 원소조성비를 가지는 박막을 얻기가 상대적으로 어렵다고 알려져 있다.[Solar Energy Materials & Solar Cells 80 483-490 (2003).]The single electrolytic cell electrodeposition method is easy to install and process because the electrodeposition is performed by one electrodeposition process in one electrolyzer, and the thin film obtained because the film formation is performed by mixing each component at the same time is the component elements are uniformly mixed. Thus, a more uniform and dense crystal structure can be obtained through crystallization by heat treatment, which is the next process. However, it is difficult to find the conditions for dissolving all component ions at the same time, and the standard reduction potential of each component ions is greatly different, and this may also change the electrodeposition environment such as pH and temperature when electrodeposited in the form of compounds among the components. In addition, there is a problem that the reduction potential is different, and the electrodeposition rate of each component is also different, so it is very difficult to select a reduction potential for electrodeposition, and even if the optimum reduction potential and solution composition are found, It is known that it is relatively difficult to obtain a thin film with reproducible element composition ratio because it is very sensitive to concentration error or concentration change and electrodeposition environment. [Solar Energy Materials & Solar Cells 80 483-490 (2003).]

한편, 다중전해조전착법은 성분원소들을 두 개, 세 개, 네 개 등, 복수의 전해조들에 따로따로 나누어 용해시키고, 각각의 전해조에서 서로 다른 성분을 가지는 박막층을 연속적으로 전착하여 다층구조를 형성하게 되기 때문에, 각각의 전해조에 대해서는 용액조성이 비교적 간단하게 되어, 각각의 박막층의 전착을 위한 최적의 전착조건을 비교적 용이하게 찾을 수 있어서 최종적인 다층구조 전체의 원소조성비의 조절이 비교적 쉽지만, 복수의 전해조가 필요하게 되어 설비가 복잡해지고 여러 단계의 전착과정으로 인해 공정이 복잡해지며, 얻어지는 박막은 다층구조로 이루어지기 때문에 이어지는 열처리과정에서 결정화반응과 함께 다층구조 내 박막층간의 상호확산이 요구되어 균일한 화합물결정구조를 얻는데 상대적으로 불리하다고 알려져 왔다. [US Patent #4,581,108.]On the other hand, the multi-electrolyzer electrodeposition method dissolves the component elements separately in a plurality of electrolytic cells, such as two, three, four, etc., to form a multi-layer structure by continuously electrodepositing a thin film layer having different components in each electrolytic cell As a result, the solution composition becomes relatively simple for each electrolytic cell, and thus the optimum electrodeposition conditions for electrodeposition of each thin film layer can be found relatively easily, so that it is relatively easy to control the element composition ratio of the entire multilayer structure. The electrolytic bath is required, which makes the facility complicated and the process complicated by the various stages of electrodeposition process. The obtained thin film is made of multi-layered structure. It has been known to be relatively disadvantageous in obtaining a compound crystal structure. . [US Patent # 4,581,108.]

한편, ⅠBⅢBⅥB계 반도체 가운데 대표적인 것은 구리, 인듐(또는 인듐과 갈륨), 그리고 셀렌(또는 셀렌과 황)으로 이루어지는 CIS계 반도체로서 이를 이용한 박막태양전지를 살펴보면, CIS계 박막태양전지에 있어서 성분원소간의 조성비 중 가장 중요한 원소간의 비율은 구리:인듐(또는 인듐+갈륨)이다. 이 비율이 1:1일 경우를 기준으로 하여 구리의 비율이 더 클 경우에는 생성되는 CIS계 박막 내에 전도도가 높은 p형의 Cu2-xSe도 형성되기 때문에 태양전지로 이용될 수 없으며, 구리비율이 아주 약간 적을 경우에는 CIS계 반도체 결정격자내에 구리원자의 빈자리(VCu)가 생겨나고 이 빈자리가 억셉터로 작용하여 p형 반도체의 성질이 나타나 CIS계 박막태양전지 흡수층으로 이용할 때 적합한 물성을 나타나게 되지만, 구리의 비율이 점차로 감소할수록 VCu가 증가하게 되고, 이 증가된 VCu들 가운데 일부에 인듐원자(또는 갈륨원자)가 들어가게 되는데, 이 치환된 자리(InCu 또는 InGa )는 도우너로 작용하여 전체적인 물성이 p형 반도체에서 n형 반도체로 변해가므로 흡수층의 역할을 제대로 하지 못하여 태양전지로의 이용이 어렵게 된다.On the other hand, a representative IBIIIBVIB semiconductor is a CIS semiconductor composed of copper, indium (or indium and gallium), and selenium (or selenium and sulfur). The most important ratio between elements in the composition ratio is copper: indium (or indium + gallium). When the ratio of copper is larger based on the ratio of 1: 1, p-type Cu 2-x Se having high conductivity is also formed in the resulting CIS-based thin film, and thus it cannot be used as a solar cell. suitable physical properties when the case the ratio is only slightly smaller is used as a CIS-based semiconductor crystal blanks of copper atoms in the lattice (V Cu) is to high the vacancy acts as an acceptor springing the nature of the p-type semiconductor shown CIS based thin film solar absorbing layer However, as the ratio of copper gradually decreases, V Cu increases, and indium atoms (or gallium atoms) enter some of the increased V Cus , which are substituted sites (In Cu or In Ga ). As the donor acts as a donor, the overall physical properties change from a p-type semiconductor to an n-type semiconductor, and thus it is difficult to use as a solar cell because it does not function properly as an absorbing layer.

따라서 CIS계 박막태양전지에 있어서 전기적 특성은 성분원소의 비율에 크게 의존하며, 일반적으로 알려진 최적의 구리:인듐(또는 인듐+갈륨):셀렌(또는 셀렌과 황)간의 비율은 1:1(또는 0.7+0.3):2이고, 더 자세하게는 구리비율이 약간 부족한, 즉 구리:인듐(또는 인듐+갈륨):셀렌(또는 셀렌과 황) = 1-y:1+y:2(y=0.05~0.11)의 비율이 적합하다.Therefore, in CIS-based thin-film solar cells, the electrical characteristics are highly dependent on the component ratio, and the optimum ratio of copper to indium (or indium + gallium) to selenium (or selenium and sulfur) is generally 1: 1 (or 0.7 + 0.3): 2, and more specifically, a slight lack of copper ratio, i.e. copper: indium (or indium + gallium): selenium (or selenium and sulfur) = 1-y: 1 + y: 2 (y = 0.05 to 0.11) is suitable.

또한, CIS계 태양전지의 대량생산에 있어서는 CIS계 흡수층의 성분비를 경제적으로 그리고 효과적으로 조절하는 기술은 매우 중요하다.In addition, in mass production of CIS solar cells, a technique for economically and effectively controlling the component ratio of the CIS absorber layer is very important.

상기의 경우 전착법을 이용함에 있어서 원자간의 섞임이 균일하고 고밀도의 CIS결정을 얻기 위해서는 단일전해조전착법 유리하지만, 전착에 요구되는 많은 조건들을 한 번에 맞추어야 하기 때문에 최적의 성분비를 맞추기가 힘들게 된다. 따라서 성분원소 조성비를 보정해줄 수 있는 추가적인 방법을 필요로 한다.In the above case, in order to obtain uniform CIS crystals with uniform mixing between atoms in the electrodeposition method, it is advantageous to use the single electrolytic cell electrodeposition method, but it is difficult to achieve the optimum component ratio because many conditions required for electrodeposition must be matched at once. . Therefore, there is a need for an additional method that can correct the component composition ratio.

이에 대해 Bhattacharya 등은 US Patent #5,871,630와 Thin Solid Films 361, 396 (2000)에서 CIGS광흡수층을 단일전해조전착법 의해 성막하고, 조성비를 맞추기 위해 구리와 셀렌 또는 인듐과 셀렌을 PVD(physical vapor deposition)후처리공정에 의해 도입하는 방법을 고안했고 이 방법으로 최고 15.4%의 광전환효율을 기록했다. 그러나 이 방법은 전착법에 덧붙여서 고진공환경을 요구하는 PVD법을 이용하기 때문에, 고가진공장비가 필요하고, 고순도의 재료를 필요로 하며, 95%이상의 재료사용률을 가질 수 없는 등의 경제적인 관점에서 전착법이 가지는 장점들을 잃는 문제를 나타낸다.On the other hand, Bhattacharya et al., In US Patent # 5,871,630 and Thin Solid Films 361, 396 (2000), form a CIGS light absorbing layer by a single electrolytic cell electrodeposition method, and copper and selenium or indium and selenium to PVD (Physical Vapor Deposition) to match the composition ratio. The method was introduced by the post-treatment process, which recorded up to 15.4% optical conversion efficiency. However, this method uses the PVD method, which requires a high vacuum environment in addition to the electrodeposition method, and therefore requires economical equipment such as high vacuum equipment, high purity materials, and cannot use more than 95%. This represents a problem of losing the advantages of electrodeposition.

따라서, 단일전해조전착법에서 얻어진 CIS계 박막태양전지 전구체의 성분원소간의 조성비를 최적조건으로 조절할 때, 전착법에서 얻을 수 있는 경제적인 장점들을 유지하는 방법을 개발할 필요가 있다.Therefore, there is a need to develop a method for maintaining the economic advantages obtained by the electrodeposition method when the composition ratio between the elements of the CIS-based thin film solar cell precursor obtained in the single electrolytic cell electrodeposition method to the optimum conditions.

본 발명은 따라서 상기와 같은 종래 기술의 문제점을 해결하고, ⅠBⅢBⅥB계 화합물반도체박막태양전지의 전구체를 전착법으로 제조함에 있어서 전착법에서 얻을 수 있는 경제적인 장점들을 유지하고, 전착법만을 적용하여 성분원소조성비를 조절할 수 있는 방법을 확립하고 이에 따라 성분원소조성비를 최적화하여 보정할 수 있는, 단일전해조전착법과 다중전해조전착법을 동시에 적용하는 ⅠBⅢBⅥB계 박막태양전지 전구체의 제조방법을 제공함에 그 목적이 있다.The present invention thus solves the problems of the prior art as described above, and maintains the economic advantages obtained in the electrodeposition method in the precursor of the IBIIIBVIB-based compound thin film solar cell electrodeposition method, applying only the electrodeposition method component The purpose of the present invention is to provide a method for manufacturing an IBIIIBVIB thin film solar cell precursor which simultaneously adopts a single electrolytic cell electrodeposition method and a multiple electrolytic cell electrodeposition method, which establishes a method for controlling the element composition ratio and optimizes and corrects the element composition ratio accordingly. have.

본 발명은 상기와 같은 본 발명의 목적을 달성하기 위해, ⅠBⅢBⅥB계 화합물반도체박막태양전지 전구체를 전착법으로 제조하는 방법으로서, 준비된 작업전극 위에 성분원소들이 균일하게 분포되고, 조밀한 구조를 갖는 박막을 형성시키기 위한 단일전해조전착법과, 단일전해조전착법으로 부터 얻어진 전구체박막으로 ⅠBⅢBⅥB계 화합물반도체박막을 형성할 때 최적의 성분원소조성비로부터 벗어난 값을 보정해주기 위하여 다중전해조전착법을 사용함을 특징으로 하는 태양전지전구체의 제조방법을 제공한다.The present invention is a method for producing an IBIIIBVIB compound semiconductor thin film solar cell precursor by electrodeposition in order to achieve the object of the present invention as described above, the component elements are uniformly distributed on the prepared working electrode, a thin film having a dense structure A single electrolytic cell electrodeposition method for forming a film, and a multiple electrolytic cell electrodeposition method are used to correct the deviation from the optimum component composition ratio when forming an IBIIIBVIB compound semiconductor thin film using the precursor thin film obtained from the single electrolytic cell electrodeposition method. It provides a method of manufacturing a solar cell precursor.

상기에서 ⅠBⅢBⅥB계 반도체는 주기율표상 Cu, Ag 및 Au를 포함하는 ⅠB족; B, Al, Ga, In 및 Tl을 포함하는 ⅢB족, 그리고 O, S, Se, Te 및 Po를 포함하는 ⅥB족에서 선택되는 1종 이상의 원소들로 이루어 지는 것이며, 상기 전착은 단일전해조전착 후 다중전해조전착을 실시하여 성분원소조성비를 보정함이 바람직한데 그 이유는 단일전해조전착법에 의해서 얻어지는 전구체 박막의 조성은 구리과잉(Copper-rich)인 경우가 많고, 이러한 구리과잉(Copper-rich)인 조성을 갖는 전구체 박막은 이어지는 셀렌화열처리에 의한 ⅠBⅢBⅥB계 화합물반도체로의 결정화과정에서 Cu2-xSe와 같은 불순물상의 형성을 유발하여 태양전지로의 이용에 부적합하게 되기 때문이다.The IBIIIBVIB-based semiconductors include Group IB including Cu, Ag, and Au on the periodic table; It is composed of one or more elements selected from group IIIB including B, Al, Ga, In and Tl, and group VIB including O, S, Se, Te and Po. It is desirable to correct the component composition ratio by performing the multi-electrolyzer electrodeposition. The reason is that the composition of the precursor thin film obtained by the single-electrolyzer electrodeposition method is often copper-rich, and such copper-rich This is because a precursor thin film having a phosphorus composition causes impurity phases such as Cu 2-x Se to be formed in the crystallization of the IBIIIBVIB-based compound semiconductor by the subsequent selenization heat treatment, making it unsuitable for use as a solar cell.

또한 상기 ⅠBⅢBⅥB계 화합물반도체의 원소조성은 Cu-In-S, Cu-In-Se, Cu-In-Se-S, Cu-Ga-S, Cu-Ga-Se, Cu-In-Ga-S, Cu-In-Ga-Se 및 Cu-In-Ga-Se-S와 같은 원소조성 중 하나인 것이 바람직하다.In addition, the element composition of the IBIIIBVIB-based compound semiconductor is Cu-In-S, Cu-In-Se, Cu-In-Se-S, Cu-Ga-S, Cu-Ga-Se, Cu-In-Ga-S, It is preferable that it is one of elemental compositions, such as Cu-In-Ga-Se and Cu-In-Ga-Se-S.

또한, 상기에서 단일전해조전착은 성분원소들이 균일하게 분포된 조밀한 구조의 박막형성을 하기 위함이고, 상기 단일전해조에서는 ⅠB, ⅢB, 그리고 Ⅵ의 성분을 넣고 전착하여 상기성분이 포함된 Mo/ⅠBⅢBⅥB구조를 형성하고, 이어서 다중전해조전착으로 IB족 원소를 포함하는 전해조와 IIIB족 원소를 포함하는 단수 또는 복수의 전해조에서 연속적으로 전착을 행하여 Mo/ⅠBⅢBⅥB/ⅠB/IIIB구조 또는 Mo/ⅠBⅢBⅥB/ⅠB/IIIB/IIIB'구조의 전구체를 형성시킨다.In addition, the single electrolytic cell electrodeposition is to form a thin film having a dense structure in which the element elements are uniformly distributed, and in the single electrolytic cell, the components of IB, IIIB, and VI are electrodeposited and then electrodeposited to form Mo / ⅠBIIIBVIB. Structure was formed, followed by electrodeposition in a single or plural electrolysers containing group IB elements and group IIIB elements by multi-electrolyzer electrodeposition, followed by Mo / ⅠBIIIBVIB / ⅠB / IIIB structures or Mo / ⅠBIIIBVIB / ⅠB / A precursor of IIIB / IIIB 'structure is formed.

또한 상기에서 단일전해조전착공정에서의 작업전극은 Mo를 작업전극으로 사용하고, 전해조의 용액조성은 CuCl2 , InCl3 , GaCl3 , H2SeO3 및 LiCl로 구성됨이 바람직하다.In addition, the working electrode in the single electrolytic cell electrodeposition process is using Mo as the working electrode, the solution composition of the electrolytic cell is preferably composed of CuCl 2 , InCl 3 , GaCl 3 , H 2 SeO 3 and LiCl.

또한 상기에서 다중전해조전착공정에서의 전해조는 구리 전해조와 인듐 전해조(또는 인듐과 갈륨 전해조) 또는 구리 전해조, 인듐 전해조와 갈륨 전해조로 구성함이 바람직하고, 여기서 구리 전해조의 용액조성은 CuSO4, Na2SO4 및 H2 SO4를 포함하고, 인듐 전해조의 용액조성을 InCl3 및 NaCl(또는 인듐과 갈륨 전해조의 용액조성을 InCl3, GaCl3 및 NaCl)를 포함하고, 갈륨 전해조의 용액조성을 GaCl3 및 NaCl로 구성됨이 바람직하다.In addition, the electrolyzer in the multi-electrolyzer electrodeposition process is preferably composed of a copper electrolyzer and an indium electrolyzer (or indium and gallium electrolyzer) or a copper electrolyzer, an indium electrolyzer and a gallium electrolyzer, wherein the solution composition of the copper electrolyzer is CuSO 4 , Na 2 SO 4 and H 2 SO 4 , the solution composition of the indium electrolytic cell comprises InCl 3 and NaCl (or the solution composition of the indium and gallium electrolytic cell InCl 3 , GaCl 3 and NaCl), the solution composition of the gallium electrolytic cell is GaCl 3 and It is preferably composed of NaCl.

상기와 같은 본 발명에 의하면 전착법의 장점들을 유지하면서 단일전해조를 통해 얻어지는 전착박막의 물성을 다중전해조 공정을 실시하여 보정할 수 있어 고성능의 박막태양전지전구체를 만들 수 있는 최적의 성분원소조성비가 얻어질 수 있다. 또한 본 발명의 방법을 통한 전구체를 사용해 태양전지디바이스를 제조하면 높은 전환효율을 나타내게 할 수 있어서 고성능의 ⅠBⅢBⅥB계 화합물반도체박막태양전지를 제공할 수 있게 된다. According to the present invention as described above, while maintaining the advantages of the electrodeposition method can be corrected by performing a multi-electrolyzer process of the electrodeposited thin film obtained through a single electrolyzer, the optimum component element composition ratio to make a high performance thin film solar cell precursor Can be obtained. In addition, manufacturing a solar cell device using the precursor through the method of the present invention can exhibit a high conversion efficiency, it is possible to provide a high performance IBIIIBVIB compound semiconductor thin film solar cell.

도 1은 ⅠBⅢBⅥB계 박막태양전지의 일반적인 구조도.
도 2는 본 발명의 일실시예에 따른 CIGS 셀디바이스성능을 솔라시뮬레이션을 이용한 결과 그래프.
도 3은 본 발명의 또다른 실시예에 따른 CIGS 셀디바이스성능을 솔라시뮬레이션을 이용한 결과 그래프.
1 is a general structural diagram of an IBIIIBVIB-based thin film solar cell.
Figure 2 is a graph of the results using the solar simulation of CIGS cell device performance according to an embodiment of the present invention.
Figure 3 is a graph of the results using the solar cell CIGS cell device performance according to another embodiment of the present invention.

이하에서는 바람직한 실시예를 통하여 본 발명을 보다 상세히 설명한다. 하기의 실시예는 본 발명을 당업자가 실시할 수 있게 설명하고자 하는 것이지 본 발명을 이에 한정하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. The following examples are intended to explain the present invention to those skilled in the art, but not to limit the present invention.

본 발명에서는 ⅠBⅢBⅥB계 반도체 박막태양전지의 전구체를 제조함에 있어서 성분원소들이 균일하게 분포를 하면서 고밀도의 박막을 형성하며, 이 때 요구되는 성분원소들간의 조성비도 용이하게 조절할 수 있는 방법을 제공함에 있어, 고가진공장비가 필요하지 않고, 고순도의 재료를 필요로 하지 않으며, 95%이상의 재료사용률을 가지는 등의 경제적인 관점에서의 전착법의 장점을 살릴 수 있는 방법을 제공한다.In the present invention, in forming the precursor of the IBIIIBVIB-based semiconductor thin film solar cell, the components are uniformly distributed to form a high density thin film, and at this time, a method for easily adjusting the composition ratio between the required components is provided. It provides a way to take advantage of the electrodeposition method from an economical point of view, such as no need for expensive vacuum equipment, high purity materials, and 95% or more material usage.

이를 위하여, 본 발명에서는 성분원소들이 균일하게 분포된 밀집된 구조의 박막의 형성은 단일전해조전착법을 통하고, 이 단일전해조전착법만으로는 성분원소들간의 최적조성비를 맞추기 어렵기 때문에, 최적의 성분원소 조성비로부터 벗어난 값을 보정하기 위하여 다중전해조전착법을 적용하고자 한다.To this end, in the present invention, the formation of a thin film of a dense structure in which the component elements are uniformly distributed is performed through a single electrolytic cell electrodeposition method, and this single electrolytic cell electrodeposition method alone makes it difficult to match the optimum composition ratio between the component elements. In order to correct the deviation from the composition ratio, the multiple electrolytic cell electrodeposition method is applied.

이 때, ⅠBⅢBⅥB계 화합물반도체박막태양전지의 주 성분원소 중 ⅥB족의 원소는 ⅠBⅢBⅥB계 화합물반도체박막태양전지의 전구체의 제조후의 다음과정인 열처리와 동반된 셀렌화(Selenization)공정에서 보정이 가능하기 때문에, 나머지 ⅠB족의 원소와 ⅢB족의 원소량만 보정하면 성분원소들간의 최적조성비를 맞출 수 있음으로, 다중전해조전착법은 ⅠB족의 원소를 포함하는 전해조와 ⅢB족의 원소를 포함하는 전해조를 필요로 한다.In this case, the elements of group VIB of the main components of the IBIIIBVIB compound semiconductor thin film solar cell can be corrected in the selenization process accompanied by heat treatment after the preparation of the precursor of the IBIIIBVIB compound semiconductor thin film solar cell. Therefore, the optimum composition ratio between the elements can be adjusted by correcting only the elements of the remaining Group IB and Group IIIB elements. Therefore, the multielectrolyzer electrodeposition method uses an electrolytic cell containing Group IB elements and an electrolytic cell containing Group IIIB elements. Need.

결과적으로 본 발명은 단일전해조전착법과 다중전해조전착법의 연속적인 적용을 특징으로 하며, 이러한 일련의 전착방법을 혼성전착법(hybrid-electrodeposition)으로 명명한다. As a result, the present invention is characterized by the continuous application of the single electrolytic cell electrodeposition method and the multiple electrolytic cell electrodeposition method, and this series of electrodeposition methods are referred to as hybrid-electrodeposition.

단일전해조전착공정은 ⅠBⅢBⅥB계 화합물반도체박막태양전지 흡수층 전구체의 구성성분 원소들에 대하여 각각의 원소를 수용액에 용해시켜 이온화하여 전해질 수용액을 제조한다. 여기서 용액특성의 향상을 위하여 지지전해질, 광택제, 부식방지제, 분산제, 착물형성제, pH버퍼제 등의 첨가제를 더할 수 있으며 각각의 성분원소의 농도는 전착속도, 전착량(전착두께), 얻어지는 박막의 성분원소의 조성비 등에 따라 달라진다. 얻어진 전해질수용액을 전해조에 담고 몰리브덴을 작업전극으로 이용하고 전류를 일정하게 걸어주는 일정전류법을 통하여 성막한다. 여기서 전류밀도에 따라 전착속도가 달라지며, 동시에 얻어지는 전착박막의 물성도 다양하게 된다.In the single electrolytic cell electrodeposition process, each of the constituent elements of the IBIIIBVIB compound semiconductor thin film solar cell absorption layer precursor is dissolved in an aqueous solution and ionized to prepare an aqueous electrolyte solution. In this case, additives such as a supporting electrolyte, a brightening agent, a corrosion inhibitor, a dispersing agent, a complex forming agent, and a pH buffering agent may be added to improve the solution properties, and the concentration of each component is the electrodeposition rate, electrodeposition amount (deposition thickness), and the resulting thin film. Depends on the composition ratio of the component elements. The obtained aqueous electrolyte solution is placed in an electrolytic cell and formed by a constant current method using molybdenum as a working electrode and applying a constant current. Here, the electrodeposition speed varies depending on the current density, and the physical properties of the electrodeposited thin film obtained at the same time vary.

다중전해조전착법을 위해서는 복수의 전해조를 이용하는데 각각은 IB족의 원소를 포함하는 전해조와, ⅢB족의 원소를 포함하는 전해조들이며, 이 각각의 전해조의 용액특성의 향상을 위하여 지지전해질, 광택제, 부식방지제, 분산제, 착물형성제, pH버퍼제 등의 첨가제를 더할 수 있다. 여기서 다중전해조전착법 각각의 전해조는 그 용액조성이 상대적으로 간단하기 때문에 전착환경을 제어하기가 용이하기 때문에 전해조의 용액조성을 적절하게 하면 고성능을 나타내는 박막태양전지의 전구체를 위한 최적의 성분원소 조성비를 조절 가능하게 된다.A multi-electrolyzer electrodeposition method uses a plurality of electrolyzers, each of which is an electrolyzer comprising an element of group IB and an electrolyzer comprising an element of group IIIB. In order to improve the solution characteristics of each electrolyzer, a supporting electrolyte, a polishing agent, Additives such as corrosion inhibitors, dispersants, complexing agents, pH buffers and the like can be added. Since each electrolytic cell is easy to control the electrodeposition environment because its solution composition is relatively simple, the solution composition of the electrolytic cell can be suitably selected to provide an optimal component composition ratio for the precursor of the thin film solar cell. It becomes adjustable.

[실시예1][Example 1]

3㎜두께의 소다라임유리(Soda Lime Glass, SLG)위에 l ㎛두께의 Mo를 스퍼터링하여 후면전극을 제조하였다. 후면전극의 표면저항은 약 0.24 Ω/㎠정도였다. 전착을 위하여 후면전극을 25ㅧ70 ㎠으로 절단하여 작업전극으로 사용하였다.A back electrode was manufactured by sputtering Mo of l 탆 on 3 mm thick soda lime glass (SLG). The surface resistance of the back electrode was about 0.24 Ω / cm 2. For electrodeposition, the rear electrode was cut into 25 ㅧ 70 cm 2 and used as a working electrode.

전착과정은 Fisher Scientific 사의 FB300Q Power Supply를 이용하여 일정전류법으로 이루어졌고, 전극은 Mo/SLG 작업전극과 백금상대전극의 2전극계를 사용하였다. The electrodeposition process was carried out by constant current method using Fisher Scientific's FB300Q power supply. The electrode was a two-electrode system of Mo / SLG working electrode and platinum relative electrode.

우선, 단일전해조전착법을 위한 전해조의 용액조성은 3 mM CuCl2, 4.5 mM InCl3,7 mM GaCl3, 5.1 mM H2SeO3, 그리고 0.32 M LiCl로 이루어졌다.First, the solution composition of the electrolytic cell for the single electrolytic cell electrodeposition method consisted of 3 mM CuCl 2 , 4.5 mM InCl 3 , 7 mM GaCl 3 , 5.1 mM H 2 SeO 3 , and 0.32 M LiCl.

전착조건은 수용액온도 25℃에서 전류밀도 0.5 mA/㎠그리고 전착시간은 20분으로 이루어졌다. Electrodeposition conditions consisted of a current density of 0.5 mA / cm 2 and an electrodeposition time of 20 minutes at an aqueous solution temperature of 25 ° C.

단일전해조전착법으로 얻어진 박막(CIGS)은 초순수로 세정 후 질소로 드라이 한 후 다음의 다중전해조전착법의 작업전극으로 이용되었다.The thin film obtained by the single electrolytic cell electrodeposition method (CIGS) was used as the working electrode of the following multielectrolyte electrodeposition method after washing with ultrapure water and drying with nitrogen.

다음으로, 다중전해조 전착법은 구리 전해조, 그리고 인듐 전해조의 두 개의 전해조로 구성되었다. 단일 전해조 전착법으로 얻어진 박막을 구리 전해조에 넣어 작업전극으로 하고 백금을 상대전극으로 하는 2전극계를 사용하여 수용액온도 25℃에서 5.5mA/㎠의 전류밀도로 2분간 전착 후 초순수로 세정 후 질소로 드라이 한 후, 인듐 전해조에 넣어 작업전극으로 하고 백금을 상대전극으로 하는 2전극계를 사용하여 수용액온도 25℃에서 5.5 mA/㎠의 전류밀도로 5분간 전착 후 초순수로 세정 후 질소로 드라이 하여 얻어졌다. Next, the multi-electrolyzer electrodeposition method consisted of two electrolyzers, a copper electrolyzer and an indium electrolyzer. Using a two-electrode system in which a thin film obtained by a single electrolytic cell electrodeposition method was placed in a copper electrolytic cell as a working electrode and platinum as a counter electrode, electrodeposited for 2 minutes at a current density of 5.5 mA / cm 2 at an aqueous solution temperature of 25 ° C., followed by cleaning with ultrapure water and nitrogen After drying in an indium electrolytic cell, using a two-electrode system as a working electrode and platinum as a counter electrode, electrodeposition was carried out for 5 minutes at a current density of 5.5 mA / cm 2 at an aqueous solution temperature of 25 ° C, washed with ultrapure water, and dried with nitrogen. Obtained.

구리 전해조의 용액조성은 0.1 M CuSO4, 0.1 M Na2SO4 그리고 0.1 M H2SO4였고, 인듐 전해조의 용액조성은 0.2 M InCl3 그리고 0.1 M NaCl이었다.The solution composition of the copper electrolyzer was 0.1 M CuSO 4 , 0.1 M Na 2 SO 4 and 0.1 MH 2 SO 4 , and the solution composition of the indium electrolyzer was 0.2 M InCl 3 and 0.1 M NaCl.

얻어진 샘플은 500℃ 셀렌진공증착장비내에서 셀렌증기와 45분간 반응시켜 상호확산(Interdiffusion) 및 결정화(Crystallization)과정을 통하여 SLG/Mo/CIGS의 구조를 얻었다. 얻어진 CIGS흡수층의 성분비는 Cu: 22.1 atom%, In: 28.7 atom%, Ga: 0.33 atom% 그리고 Se: 48.9 atom% 였다.The obtained sample was reacted with selenium vapor for 45 minutes in a 500 ℃ selenium vacuum deposition equipment to obtain a structure of SLG / Mo / CIGS through the process of interdiffusion and crystallization (Crystallization). The component ratio of the obtained CIGS absorption layer was Cu: 22.1 atom%, In: 28.7 atom%, Ga: 0.33 atom%, and Se: 48.9 atom%.

다음으로 CdS 버퍼층을 형성하기 위하여 온도 65℃의 2 mM CdCl2, 75 mM SC(NH2)2, 그리고 60 mL의 NH4OH를 합한 500 mL 염기성 수용액에 15분간 담가 CdS층을 화학성장 시켰다.Next, in order to form a CdS buffer layer, the CdS layer was chemically grown for 15 minutes in a 500 mL basic aqueous solution containing 2 mM CdCl 2 , 75 mM SC (NH 2 ) 2 , and 60 mL of NH 4 OH at a temperature of 65 ° C.

다음으로, ZnO 및 ZnO:Al(Al2O3 2.wt%)타겟을 이용하여 각각 100 ㎚의 i-ZnO 층 그리고 1 ㎛의 n-ZnO층을 스퍼터링법으로 성막 후, 마지막으로 표면에 스크린프린팅법으로 금속그리드를 형성하여 CIGS셀디바이스를 제조하였다.Next, using a ZnO and ZnO: Al (Al 2 O 3 2.wt%) target, respectively, 100 nm i-ZnO layer and 1 μm n-ZnO layer were formed by sputtering, and finally, the screen was screened on the surface. Metal grids were formed by printing to prepare CIGS cell devices.

제조된 CIGS 셀디바이스의 성능은 솔라시뮬레이터를 이용하여 확인한 결과 0.430 ㎠의 면적에서 5.97%의 전환효율을 나타내었다(도2참조).The performance of the manufactured CIGS cell device was confirmed by using a solar simulator showed a conversion efficiency of 5.97% in an area of 0.430 cm 2 (see Fig. 2).

[실시예2][Example 2]

3 mm 두께의 소다라임유리(Soda Lime Glass, SLG)위에 1 ㎛ 두께의 Mo를 스퍼터링하여 후면전극을 제조하였다. 후면전극의 표면저항은 약 0.24 Ω/㎠ 정도였다. 전착을 위하여 후면전극을 25ㅧ70 ㎠으로 절단하여 작업전극으로 사용하였다.A back electrode was prepared by sputtering 1 μm thick Mo on 3 mm thick soda lime glass (SLG). The surface resistance of the back electrode was about 0.24 Ω / cm 2. For electrodeposition, the rear electrode was cut into 25 ㅧ 70 cm 2 and used as a working electrode.

전착과정은 Fisher Scientific 사의 FB300Q Power Supply를 이용하여 일정전류법으로 이루어졌고, 전극은 Mo/SLG 작업전극과 백금상대전극의 2전극계를 사용하였다. The electrodeposition process was carried out by constant current method using Fisher Scientific's FB300Q power supply. The electrode was a two-electrode system of Mo / SLG working electrode and platinum relative electrode.

우선, 단일전해조전착법을 위한 전해조의 용액조성은 3mM CuCl2, 7 mM GaCl3, 5.1 mM H2SeO3, 그리고 0.32 M LiCl로 이루어졌다.First, the solution composition of the electrolytic cell for the single electrolytic cell electrodeposition method was composed of 3mM CuCl 2 , 7 mM GaCl 3 , 5.1 mM H 2 SeO 3 , and 0.32 M LiCl.

전착조건은 수용액온도 25℃에서 전류밀도 0.5m A/㎠ 그리고 전착시간은 20분으로 이루어졌다.Electrodeposition conditions consisted of a current density of 0.5m A / cm 2 and an electrodeposition time of 20 minutes at an aqueous solution temperature of 25 ° C.

단일전해조전착법으로 얻어진 박막(CGS)은 초순수로 세정 후 질소로 드라이 한 후 다음의 다중전해조전착법의 작업전극으로 이용되었다.The thin film (CGS) obtained by the single electrolytic cell electrodeposition method was used as the working electrode of the following multielectrolyte electrodeposition method after washing with ultrapure water and drying with nitrogen.

다음으로, 다중전해조전착법은 구리 전해조, 그리고 인듐 전해조의 두 개의 전해조로 구성되었다. 단일전해조전착법으로 얻어진 샘플을 구리전해조에 넣어 작업전극으로 하고 백금을 상대전극으로 하는 2 전극계를 사용하여 수용액온도 25℃에서 5.5 mA/㎠의 전류밀도로 2분간 전착 후 초순수로 세정 후 질소로 드라이 한 후, 인듐 전해조에 넣어 작업전극으로 하고 백금을 상대전극으로 하는 2전극계를 사용하여 수용액온도 25℃에서 5.5 mA/㎠의 전류밀도로 5분간 전착 후 초순수로 세정 후 질소로 드라이 하여 얻어졌다.Next, the multi-electrolyzer electrodeposition method consisted of two electrolyzers, a copper electrolyzer and an indium electrolyzer. The sample obtained by the electrolytic cell electrodeposition method was placed in a copper electrolytic bath as a working electrode and platinum was used as a counter electrode. Electrode electrodeposition was carried out for 2 minutes at a current density of 5.5 mA / cm 2 at an aqueous solution temperature of 25 ° C, followed by cleaning with ultrapure water. After drying in an indium electrolytic cell, using a two-electrode system as a working electrode and platinum as a counter electrode, electrodeposition was carried out for 5 minutes at a current density of 5.5 mA / cm 2 at an aqueous solution temperature of 25 ° C, washed with ultrapure water, and dried with nitrogen. Obtained.

구리 전해조의 용액조성은 0.1 M CuSO4, 0.1 M Na2SO4 그리고 0.1 M H2SO4였고, 인듐 전해조의 용액조성은 0.2 M InCl3 그리고 0.1 M NaCl이었다.The solution composition of the copper electrolyzer was 0.1 M CuSO 4 , 0.1 M Na 2 SO 4 and 0.1 MH 2 SO 4 , and the solution composition of the indium electrolyzer was 0.2 M InCl 3 and 0.1 M NaCl.

얻어진 샘플은 500℃ 셀렌진공증착장비내에서 셀렌증기와 45분간 반응시켜 상호확산 및 결정화과정을 통하여 SLG/Mo/CIGS의 구조를 얻었다. 얻어진 CIGS흡수층의 성분비는 Cu: 20 atom%, In: 29 atom%, Ga: 0.35 atom% 그리고 Se: 49.9 atom% 였다.The obtained sample was reacted with selenium vapor for 45 minutes in 500 ℃ selenium vacuum deposition equipment to obtain a structure of SLG / Mo / CIGS through the interdiffusion and crystallization process. The component ratio of the obtained CIGS absorption layer was Cu: 20 atom%, In: 29 atom%, Ga: 0.35 atom%, and Se: 49.9 atom%.

다음으로 CdS 버퍼층을 형성하기 위하여 온도 65℃의 2 mM CdCl2, 75 mM SC(NH2)2, 그리고 60 mL의 NH4OH를 합한 500 mL 염기성 수용액에 15분간 담가 CdS층을 화학성장 시켰다.Next, in order to form a CdS buffer layer, the CdS layer was chemically grown for 15 minutes in a 500 mL basic aqueous solution containing 2 mM CdCl 2 , 75 mM SC (NH 2 ) 2 , and 60 mL of NH 4 OH at a temperature of 65 ° C.

다음으로, ZnO 및 ZnO:Al(Al2O3 2.wt%)타겟을 이용하여 각각 100 ㎚의 i-ZnO 층 그리고 1 ㎛의 n-ZnO층을 스퍼터링법으로 성막 후, 마지막으로 표면에 스크린프린팅법으로 금속그리드를 형성하여 CIGS셀디바이스를 제조하였다.Next, using a ZnO and ZnO: Al (Al 2 O 3 2.wt%) target, respectively, 100 nm i-ZnO layer and 1 μm n-ZnO layer were formed by sputtering, and finally, the screen was screened on the surface. Metal grids were formed by printing to prepare CIGS cell devices.

제조된 CIGS 셀디바이스의 성능은 솔라시뮬레이터를 이용하여 확인한 결과 0.430 ㎠의 면적에서 7.79%의 전환효율을 나타내었다(도3참조).
The performance of the manufactured CIGS cell device was 7.79% conversion efficiency in the area of 0.430 cm 2 as confirmed by the solar simulator (see Fig. 3).

Claims (10)

ⅠBⅢBⅥB계 반도체 박막태양전지 전구체를 전착법으로 제조하는 방법으로서, 준비된 작업전극에 전착하기 위해 성분원소들이 균일하게 분포된 밀집구조의 박막을 형성시키기 위한 단일전해조전착법과, ⅠBⅢBⅥB계 반도체 전구체의 성분원소조성비로부터 벗어난 값을 보정하기위한 다중전해조전착법을 사용함을 특징으로 하는 태양전지전구체의 제조방법.A method for producing an IBIIIBVIB-based semiconductor thin film solar cell precursor by electrodeposition, comprising: a single electrolytic cell electrodeposition method for forming a densely packed thin film with uniformly distributed elemental elements for electrodeposition to a prepared working electrode, and a component element of an IBIIIBVIB-based semiconductor precursor A method of manufacturing a solar cell precursor characterized by using a multiple electrolytic cell electrodeposition method for correcting a value deviating from the composition ratio. 제 1 항에 있어서, 상기 ⅠBⅢBⅥB계 반도체는 주기율표상 Cu, Ag 및 Au를 포함하는 ⅠB족; B, Al, Ga, In 및 Tl을 포함하는ⅢB족, 그리고 O, S, Se, Te 및 Po를 포함하는 ⅥB족에서 선택되는 원소들로 이루어짐을 특징으로 하는 태양전지전구체의 제조방법.The semiconductor of claim 1, wherein the IBIIIBVIB-based semiconductor comprises: a group IB including Cu, Ag, and Au on a periodic table; A method for manufacturing a solar cell precursor, comprising elements selected from group IIIB including B, Al, Ga, In, and Tl, and group VIB including O, S, Se, Te, and Po. 제 1 항에 있어서, 상기 전착은 단일전해조전착 후 다중전해조전착을 실시함을 특징으로 하는 태양전지전구체의 제조방법.The method of manufacturing a solar cell precursor according to claim 1, wherein the electrodeposition is carried out after the single electrolytic cell electrodeposition. 제 1 항에 있어서, 상기 반도체는 Cu-In-S, Cu-In-Se, Cu-In-Se-S, Cu-Ga-S, Cu-Ga-Se, Cu-In-Ga-S, Cu-In-Ga-Se 및 Cu-In-Ga-Se-S와 같은 원소조성 중 하나인 것을 특징으로 하는 태양전지전구체의 제조방법.The method of claim 1, wherein the semiconductor is Cu-In-S, Cu-In-Se, Cu-In-Se-S, Cu-Ga-S, Cu-Ga-Se, Cu-In-Ga-S, Cu -In-Ga-Se and Cu-In-Ga-Se-S manufacturing method of a solar cell precursor, characterized in that one of the composition. 제 1 항에 있어서, 상기 다중전해조전착은 ⅠB족 원소를 포함하는 전해조와, ⅢB족 원소를 포함하는 전해조를 사용함을 특징으로 하는 태양전지전구체의 제조방법.The method of claim 1, wherein the multi-electrolyzer electrodeposition uses an electrolytic cell containing a group IB element and an electrolytic cell containing a group IIIB element. 제 1 항에 있어서, 상기 단일전해조전착공정에서의 작업전극은 Mo를 작업전극으로 사용하고, 전해조의 용액 조성은 CuCl2 , InCl3 , GaCl3 , H2SeO3 및 LiCl로 구성됨을 특징으로 하는 태양전지전구체의 제조방법.The method of claim 1, wherein the working electrode in the single electrolytic cell electrodeposition process using Mo as the working electrode, the solution composition of the electrolytic cell is characterized in that consisting of CuCl 2 , InCl 3 , GaCl 3 , H 2 SeO 3 and LiCl Method for manufacturing a solar cell precursor. 제 5 항에 있어서, 상기 다중전해조전착공정에서의 전해조는 구리 전해조와 인듐 전해조, 또는 구리 전해조, 인듐 전해조와 갈륨 전해조임을 특징으로 하는 태양전지전구체의 제조방법.The method of claim 5, wherein the electrolytic cell in the multi-electrolyzer electrodeposition process is a copper electrolytic cell and an indium electrolytic cell, or a copper electrolytic cell, an indium electrolytic cell and a gallium electrolytic cell. 제 7 항에 있어서, 구리 전해조의 용액조성은 CuSO4, Na2SO4 및 H2SO4 를 포함하고, 인듐 전해조의 용액조성은 InCl3 및 NaCl을, 인듐과 갈륨 전해조의 용액조성은 InCl3, GaCl3 및 NaCl를 포함하고, 갈륨 전해조의 용액조성을 GaCl3 및 NaCl로 구성됨을 특징으로 하는 태양전지전구체의 제조방법.The solution composition of claim 7, wherein the solution composition of the copper electrolyzer comprises CuSO 4 , Na 2 SO 4, and H 2 SO 4 , wherein the solution composition of the indium electrolyzer is InCl 3 and NaCl, and the solution composition of the indium and gallium electrolyzer is InCl 3. A method of manufacturing a solar cell precursor comprising GaCl 3 and NaCl, and the solution composition of the gallium electrolyzer consists of GaCl 3 and NaCl. 제 6 항에 있어서, 상기 단일전해조전착공정후 Cu, In, Ga, Se 의 네 성분이 포함된 Mo/CIGS층이 형성됨을 특징으로하는 태양전지전구체의 제조방법.The method of manufacturing a solar cell precursor according to claim 6, wherein a Mo / CIGS layer including four components of Cu, In, Ga, and Se is formed after the single electrolytic cell electrodeposition process. 제 7 항에 있어서, 상기 다중전해조전착공정후 Mo/CIGS/Cu/In 또는 Mo/CIGS/Cu/(In, Ga) 또는 Mo/CIGS/Cu/In/Ga 또는 Mo/CIGS/Cu/Ga/In구조의 전구체가 형성됨을 특징으로 하는 태양전지전구체의 제조방법.8. The method of claim 7, wherein the Mo / CIGS / Cu / In or Mo / CIGS / Cu / (In, Ga) or Mo / CIGS / Cu / In / Ga or Mo / CIGS / Cu / Ga / Method of manufacturing a solar cell precursor, characterized in that the precursor of In structure is formed.
KR1020120032246A 2012-03-29 2012-03-29 Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions KR101289246B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120032246A KR101289246B1 (en) 2012-03-29 2012-03-29 Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120032246A KR101289246B1 (en) 2012-03-29 2012-03-29 Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions

Publications (1)

Publication Number Publication Date
KR101289246B1 true KR101289246B1 (en) 2013-07-26

Family

ID=48997948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120032246A KR101289246B1 (en) 2012-03-29 2012-03-29 Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions

Country Status (1)

Country Link
KR (1) KR101289246B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120374A (en) * 2006-06-19 2007-12-24 (주)인솔라텍 Manufacturing method of the optical absorber layer for solar cells
KR20110085721A (en) * 2010-01-21 2011-07-27 전남대학교산학협력단 Method for manufacturing czts film by one step electrodeposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120374A (en) * 2006-06-19 2007-12-24 (주)인솔라텍 Manufacturing method of the optical absorber layer for solar cells
KR20110085721A (en) * 2010-01-21 2011-07-27 전남대학교산학협력단 Method for manufacturing czts film by one step electrodeposition

Similar Documents

Publication Publication Date Title
Manivannan et al. Preparation of chalcogenide thin films using electrodeposition method for solar cell applications–A review
US5871630A (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
Wang Progress in thin film solar cells based on
US9401443B2 (en) Electrodeposition methods of gallium and gallium alloy films and related photovoltaic structures
US7560641B2 (en) Thin film solar cell configuration and fabrication method
EP2393964B1 (en) Electroplating methods and chemistries for deposition of copper-indium-gallium containing thin films
US20120214293A1 (en) Electrodepositing doped cigs thin films for photovoltaic devices
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
US20090283411A1 (en) Selenium electroplating chemistries and methods
US8444842B2 (en) Electroplating methods and chemistries for deposition of group IIIA-group via thin films
Pawar et al. Fabrication of Cu2ZnSnS4 thin film solar cell using single step electrodeposition method
Aksu et al. Recent advances in electroplating based CIGS solar cell fabrication
US20070151862A1 (en) Post deposition treatments of electrodeposited cuinse2-based thin films
Sene et al. Electrodeposition of CuInSe2 absorber layers from pH buffered and non-buffered sulfate-based solutions
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
Sawant et al. Copper indium disulfide thin films: electrochemical deposition and properties
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
WO2013033729A1 (en) Electrodepostion of gallium for photovoltaics
KR101289246B1 (en) Preparation method for i b iii b vi b compound solar cell precursor via successive applications of one-bath and multi-bath electrodepositions
US20110005586A1 (en) Electrochemical Deposition Methods for Fabricating Group IBIIIAVIA Compound Absorber Based Solar Cells
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
KR101063748B1 (en) Method for fabricating cis type solar cell with ultra thin flexible glass substrate
Calixto et al. Electrodeposited CuInSe2-based thin films and post-deposition treatments for solar cells: feasibility to use them in space applications
Al-Bat’hi Electrodeposition of Zn based nanostructure thin films for photovoltaic applications
Huang et al. Characteristics of copper indium diselenide thin films formed on flexible substrates by electrodeposition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180510

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 7