KR101284744B1 - 대포병탐지레이더 - Google Patents

대포병탐지레이더 Download PDF

Info

Publication number
KR101284744B1
KR101284744B1 KR1020120004001A KR20120004001A KR101284744B1 KR 101284744 B1 KR101284744 B1 KR 101284744B1 KR 1020120004001 A KR1020120004001 A KR 1020120004001A KR 20120004001 A KR20120004001 A KR 20120004001A KR 101284744 B1 KR101284744 B1 KR 101284744B1
Authority
KR
South Korea
Prior art keywords
traveling wave
wave antenna
artillery
lower traveling
angle
Prior art date
Application number
KR1020120004001A
Other languages
English (en)
Inventor
허문만
손재현
Original Assignee
삼성탈레스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성탈레스 주식회사 filed Critical 삼성탈레스 주식회사
Priority to KR1020120004001A priority Critical patent/KR101284744B1/ko
Application granted granted Critical
Publication of KR101284744B1 publication Critical patent/KR101284744B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

본 발명은 대포병탐지레이더에 관한 것으로서, 넓은 조향빔 범위를 가지도록 배치 설계되는 진행파 안테나를 적용한 대포병탐지레이더이다. 본 발명의 실시 형태인 대포병 탐지 레이더는 다수의 슬롯 도파관이 배열된 하부 진행파 안테나와, 상기 하부 진행파 안테나에 서로 인접하여 배치되며, 다수의 슬롯 도파관이 배열된 상부 진행파 안테나를 포함하고, 상기 하부 진행파 안테나의 배열면이 향하는 방향과 상기 상부 진행파 안테나의 배열면이 향하는 방향이 서로 다른 방향을 갖도록 배치한다.

Description

대포병탐지레이더{Weapon location radar}
본 발명은 대포병탐지레이더에 관한 것으로서, 넓은 조향빔 범위를 가지도록 배치 설계되는 진행파 안테나를 적용한 대포병탐지레이더이다.
대포병탐지레이더는 레이더 전파를 이용하여 적으로부터 발사된 포탄을 탐지하고 일정시간 동안 포탄을 추적함으로써 그 탄도를 계산하여, 궁극적으로는 적 화포의 위치를 산출하여 아군의 공격을 지원하는 레이더이다. 그러므로 대포병탐지레이더는 탐지와 추적 기능을 동시에 수행하는 다기능레이더(multi-function radar)의 일종이다.
도 1은 대포병탐지레이더의 운용을 나타낸 개념도이다. 일반적인 화력전의 개념에서, 화포는 그 위치를 적에게 노출되지 않기 위해서 산의 능선 또는 공제선(101) 뒤에서 위치하게 되며, 그에 따라 적의 포탄(102)은 능선 또는 공제선 위로 갑자기 떠오르게 된다. 그러므로 대포병탐지레이더는 평상시에는 정해진 범위내의 공제선 위를 방위각(가로)방향으로 조향 하면서 적의 포탄을 탐지하는 기능(103)을 하며, 이 때의 레이더 복사전파(빔)을 탐지빔이라고 한다. 이 탐지 기능 동안에 적의 포탄(일반적으로 세로방향으로 상승)으로 추정되는 물체가 탐지되면, 고각(세로)방향으로 빔을 1~2회 더 복사하여 진짜 포탄인지를 확인하는 기능(104)을 수행한다. 이 때의 레이더 복사전파(빔)을 확인빔이라고 한다. 그 후에 최종적으로 적의 포탄임이 판별되면, 포탄의 궤적을 추적하면서 탄도를 계산하는 기능(105)을 수행하며, 이 때의 레이더 복사전파(빔)을 추적빔이라고 한다.
이러한 일련의 기능을 수행하여 산출된 탄도의 계산결과를 토대로, 적 화포의 위치를 산출하여 그 위치를 아군의 포병부대에 전달하게 된다. 따라서 상기된 탐지, 확인, 추적 기능을 수행하기 위해서는 대포병탐지레이더의 복사전파(빔)는 일정 범위의 방위각방향 빔조향(106)과 고각방향 빔조향(107)이 가능하도록 자유롭게 움직일 수 있어야 한다. 다시 말해서, 평면 영역의 빔조향(108)이 가능한 2차원 스캔 레이더(2D scanning radar)이어야 한다.
일반적으로 대포병탐지레이더를 위한 2차원 스캔 레이더는 평면형 능동위상배열 구조 또는 진행파 안테나의 선형 능동위상배열 구조로서 구현된다.
평면 능동위상배열의 레이더는 n×m 평면배열 안테나의 각 소자에 위상천이기(phase shifter)와 증폭기를 포함하는 송수신모듈(transmit receive module, TRM) n×m개를 연결하는 구조를 가진다. 도 2는 n×m 평면형 능동위상배열 구조의 안테나를 사용하는 대포병탐지레이더의 개념도이다. 대포병탐지레이더가 평면 영역을 자유롭게 빔조향 하기 위해서는 n×m 평면배열 안테나(201)에 위상천이기와 증폭기를 포함하는 송수신모듈(202) n×m개를 연결하는 평면 능동위상배열레이더의 형태가 되어야 한다. 이 때, 레이더의 복사전파(빔)는 각 안테나 소자에 연결되어 있는 위상천이기로 각 소자에 공급되는 신호의 위상을 변화하여 평면 영역(203)의 원하는 방향으로 조향 된다. 도 2의 평면형 능동위상배열안테나를 적용한 대포병탐지레이더는 각 소자마다 송수신모듈이 연결되기 때문에, 무게가 무겁고 가격이 비싸며 소모전력이 크다는 단점이 있다. 특히, 무게와 소모전력은 어떠한 작전지역이든지 이동해야 하는 차량 탑재용 레이더로는 중요한 제한요건이 될 수 있다.
한편, 진행파 안테나의 선형 능동위상배열로 구현될 경우, 범위가 넓은 방향(일반적으로 방위각방향)은 송수신모듈이 연결된 선형 능동위상배열을 사용하고 범위가 좁은 방향(일반적으로 고각방향)은 진행파 안테나의 주파수 빔조향 방법을 이용하여, 평면 영역을 빔조향한다.
도 3은 진행파 안테나를 선형 능동위상배열 구조로 사용하는 대포병탐지레이더의 개념도이다. 이 대포병탐지레이더는 범위가 넓은 방향(일반적으로 방위각방향)은 송수신모듈이 연결된 선형 능동위상배열(301)을 이용하여 공급되는 신호의 위상을 변화하여 빔조향하고, 범위가 좁은 방향(일반적으로 고각방향)은 진행파 안테나(302)의 주파수 빔조향 방법을 이용하여, 평면 영역(303)을 빔조향한다.
이러한 선형 능동위상배열된 안테나를 통한 주파수 빔조향 방법을 적용한 대포병탐지레이더는 동작 주파수대역이 한정되어 있기 때문에, 빔을 조향 할 수 있는 범위가 한정되게 된다. 그러므로 일반적으로 고각방향으로 주파수 빔조향 방법을 적용하면, 포탄을 추적할 수 있는 영역이 짧아지기 때문에 탄도 계산의 정확도가 떨어지고 화포 위치의 산출오차가 커지게 된다. 그리고 적의 전파교란(jamming) 시, 사용할 수 있는 주파수대역이 더 한정되기 때문에 빔의 조향 범위가 더 감소하게 되며, 산봉우리와 골짜기의 변화가 심한 능선을 탐지하는 경우에는, 고각방향의 조향 범위를 벗어나는 특정 구역은 탐지할 수 없게 된다.
도 4, 도 5, 도 6은 주파수 빔조향 방법을 이용하는 선형 능동위상배열로 구현된 대포병탐지레이더가 갖는 단점들을 도시한 것이다. 상기한 바와 같이 방위각방향으로는 진행파 안테나의 선형 능동위상배열에 의해 조향(401)되고 고각 방향으로는 주파수 빔조향 방법이 적용(402)되기 때문에, 방위각 방향으로는 원하는 범위에서 빔조향이 가능하지만 고각 방향으로 빔조향 범위가 상당히 제한된다. 대포병탐지레이더의 운용개념(도 1)에서 빔조향 영역 중 하단 부분의 일정영역은 탐지영역(403)이고 그 윗부분의 일정영역은 확인영역(404), 그리고 상단부분이 추적영역(405)이 된다.
일반적으로 포탄은 능선 또는 공제선으로부터 고각방향으로 상승(406)하기 때문에, 탄도를 계산할 수 있는 범위(407)는 추적영역(405)으로 작은 범위가 된다. 대포병탐지레이더의 궁극적인 목적은 적 화포의 위치를 계산하는 것으로써, 그 위치 정확도는 탄도계산의 정확도와 바로 연관되어 있으며, 탄도계산의 정확도는 탄도를 추적하는 시간과 연관되어 있다. 그러므로 추적영역이 넓으면 넓을수록 위치 정확도는 증가하게 된다. 따라서 주파수 빔조향 방법을 적용한 대포병탐지레이더는 고각방향의 빔조향 범위의 제한으로 인해, 적 화포의 위치를 산출하는 정확도가 감소하게 된다.
도 5는 주파수 빔조향 방법을 적용한 대포병탐지레이더가 실제 환경에서 운용되는 예를 나타낸 것이다. 우리나라의 대부분 지역은 산봉우리와 골짜기의 변화가 심한 능선으로 이와 같은 지역을 탐지하는 경우에, 포탄을 확인하고 추적하기 위해서는 어느 범위 이상의 확인 및 추적영역이 설정(501)되어야 한다. 따라서 대포병탐지레이더의 평면 빔조향 영역(502)은 능선 위쪽으로 올라가도록 설정된다. 이 경우, 심한 능선 차이로 인하여 아래쪽에 탐지 불가능한 영역(503)이 발생하게 되며, 최악의 경우에는 그 영역을 통과해서 근접하는 포탄은 탐지할 수 없게 된다. 상기한 도 4와 도 5의 주파수 빔조향 방법을 적용한 대포병탐지레이더의 단점은 적의 전파교란에 더욱 심해진다.
도 6은 주파수 빔조향 방법을 적용한 대포병탐지레이더가 적의 전파교란 시, 발행하는 현상을 도시한 것이다. 상기한 바와 같이, 주파수 빔조향 방법은 진행파 안테나에서 동작 주파수를 변화(601)하여 빔의 방향을 조향 하는 것이다. 그러므로 적의 전파교란 시, 특정 주파수대역(602)은 사용할 수 없으며, 이에 따라 고각방향의 특정 범위(603)도 사용할 수 없다. 따라서 고각방향으로 주파수 빔조향 범위가 더욱 줄어들기 때문에, 상기한 도 4와 도 5의 단점은 더욱 심해지게 된다.
결국, 평면형 능동위상배열 구조의 대포병탐지레이더는 무게가 무겁고 가격이 비싸며 소모전력이 크다는 단점이 있다. 특히, 무게와 소모전력은 어떠한 작전지역이든지 이동해야 하는 차량 탑재용 레이더로는 중요한 제한요건이 될 수 있다. 그리고 진행파 안테나의 선형 능동위상배열 구조의 대포병탐지레이더는 상기의 평면형 능동위상배열 구조에 비해서 상대적으로 무게가 가볍고 가격이 싸며 소모전력을 저감시킬 수 있으나, 고각방향으로 주파수 빔조향 방법을 사용하기 때문에 빔 조향 범위가 좁다는 단점을 가지고 있다.
한국특허공개 10-1994-0026511
본 발명의 기술적 과제는 고각방향으로의 넓은 빔조향이 가능하도록 하는 대포병탐지레이더를 제공하는데 있다. 또한 본 발명의 기술적 과제는 무게 및 소모전력을 최소로 하면서 고각방향으로 넓은 빔조향할 수 있는 대포병탐지레이더를 제공하는데 있다. 또한 본 발명의 기술적 과제는 어떠한 작전 지역에서도 고각방향으로의 넓은 빔조향이 가능하도록 하는데 있다.
본 발명의 실시 형태인 대포병 탐지 레이더는 다수의 슬롯 도파관이 배열된 하부 진행파 안테나와, 상기 하부 진행파 안테나에 서로 인접하여 배치되며, 다수의 슬롯 도파관이 배열된 상부 진행파 안테나를 포함하고, 상기 하부 진행파 안테나의 배열면이 향하는 방향과 상기 상부 진행파 안테나의 배열면이 향하는 방향이 서로 다른 방향을 갖도록 배치한다.
하부 진행파 안테나의 슬롯 도파관의 배열면에 직각된 방향을 기준 방향이라 하고, 상기 하부 진행파 안테나의 슬롯 도파관 사이에서 복사되는 전파들의 동위상을 연결한 동위상 파면에 직각된 방향을 사시 방향이라 하고, 상기 기준 방향과 사시 방향의 차이각을 사시각도라 할 때, 상기 상부 진행파 안테나는 상기 하부 진행파 안테나의 배열면의 직각 방향에서 상기 사시각도 범위의 크기로 기울어진 경사로서 상기 하부 진행파 안테나에 인접 배치된다.
상기 사시각도는, 하부 진행파 안테나의 동작 주파수 대역내에서 동일한 주파수 간격으로 증가시킬 때, 상기 하부 진행파 안테나로부터 복사되는 에너지의 최대크기 방향의 최소각도부터 최대각도까지의 범위임을 특징으로 한다. 상기 사시각도 범위는 30°임을 특징으로 한다.
본 발명의 실시 형태에 따르면 본 발명에서는 두 개의 진행파 안테나를 사용하여 이중으로 사시각 효과를 발생함으로써, 주파수 빔조향 범위를 2배로 확장할 수 있다. 두 개의 진행파 안테나를 효과적으로 배치함으로써, 최소의 안테나로서 최대 성능을 발휘할 수 있다. 또한 대포병탐지레이더의 무게 및 소모전력을 최소로 할 수 있다.
도 1은 대포병탐지레이더의 운용을 나타낸 개념도이다.
도 2는 n×m 평면형 능동위상배열 구조의 안테나를 사용하는 대포병탐지레이더의 개념도이다.
도 3의 진행파 안테나의 선형 능동위상배열 구조를 적용한 대포병탐지레이더이다.
도 4는 주파수 빔조향 방법을 이용하는 선형 능동위상배열로 구현된 대포병탐지레이더가 갖는 단점을 도시한 그림이다.
도 5는 주파수 빔조향 방법을 적용한 대포병탐지레이더가 실제 환경에서 운용되는 예를 도시한 그림이다.
도 6은 주파수 빔조향 방법을 적용한 대포병탐지레이더가 적의 전파교란 시, 발행하는 현상을 도시한 그림이다.
도 7은 진행파 안테나를 적용한 대포병탐지레이더의 주파수 빔조향 방법을 설명한 개념도이다.
도 8은 본 발명의 실시예에 따라 이중사시각 효과를 이용하여 주파수 빔조향 범위를 2배로 확장한 대포병탐지레이더를 도시한 그림이다.
도 9는 본 발명의 실시예에 따른 대포병 탐지 레이더가 차량에 장착된 모습을 도시한 그림이다.
도 10은 진행파 안테나의 사시각 효과를 나타낸 그림이다.
도 11은 진행파 안테나를 수직으로 세우고 고각방향으로 30°의 주파수 빔조향이 가능한 대포병탐지레이더의 개념도이다.
도 12는 본 발명의 실시예에 따른 2개의 진행파 안테나를 기울어지게 배치하여 고각방향으로 2배의 주파수 빔조향 범위를 갖는 대포병탐지레이더의 개념도이다.
도 13은 본 발명에 따른 대포병탐지레이더의 시스템 블록도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
본 발명의 실시예에 따른 대포병탐지레이더의 설명에 앞서서 이해를 돕기 위하여 진행파 안테나를 적용한 주파수 빔조향 방법을 설명한다.
도 7은 진행파 안테나를 적용한 대포병탐지레이더의 주파수 빔조향 방법을 설명한 개념도이다. 이 주파수 빔조향 방법을 설명하기 위해서, 진행파 안테나는 가장 대표적인 슬롯 도파관 안테나(slotted waveguide antenna)(701)로 예시하였다. 진행파 안테나의 주파수 빔조향 방법은 진행파 안테나에 고유특성인 사시각 효과를 이용한 것이다. 도파관(701)은 전파를 유도하는 전송선로로서, 도파관 내의 파장(702)은 자유공간의 파장(703)보다 길다. 그리고 배열소자인 슬롯(704)간의 간격은 일반적으로 복사패턴에 그레이팅 로브(grating-lobe)가 생기지 않도록, 자유공간 파장의 1/2 이하(705)로 설정한다.
정합 부하로 종단된 슬롯 도파관 안테나에서, 도파관 내를 진행하는 전파(706)는 자유공간보다 긴 파장을 갖기 때문에, 자유공간 파장의 1/2 이하의 간격으로 배열된 슬롯에 서로 다른 위상(707a, 707b, 707c, 707d, 707e)으로 에너지를 공급한다. 이렇게 서로 다른 위상으로 공급된 에너지는 슬롯을 통해서 자유공간으로 복사하게 되고, 이 때, 복사 에너지의 동위상 파면(708)은 슬롯 배열면의 수직방향(boresight 방향)(709)과 다른 각도(710)를 갖게 된다. 이 각도를 사시각도(squint angle)라고 하고, 이러한 현상을 사시각 현상이라고 한다.
이러한 사시각 현상은 슬롯 도파관 안테나가 동작하는 주파수대역 내에서 주파수를 일정하게 변화하면, 슬롯 배열의 물리적 간격은 고정되어 있지만 도파관 내 유도파장의 길이가 일정하게 변화하기 때문에, 동위상 파면이 바뀌어서 복사패턴의 최대 크기방향도 일정하게 변화하게 된다.
배경기술에서 설명한 도 3의 진행파 안테나의 선형 능동위상배열 구조를 적용한 대포병탐지레이더는 도 2의 평면 능동위상배열레이더에 비해서 송수신모듈의 개수를 획기적으로 줄일 수 있기 때문에, 무게가 가볍고 가격이 싸며 소모전력이 적다는 장점을 가지고 있다.
선형 능동위상배열된 진행파 안테나를 통한 주파수 빔조향 방법을 적용한 대포병탐지레이더는 동작 주파수대역이 한정되어 있기 때문에, 빔을 조향 할 수 있는 범위가 한정되게 된다. 그러므로 일반적으로 고각방향으로 주파수 빔조향 방법을 적용하면, 포탄을 추적할 수 있는 영역이 짧아지기 때문에 탄도 계산의 정확도가 떨어지고 화포 위치의 산출오차가 커지게 된다. 그리고 적의 전파교란(jamming) 시, 사용할 수 있는 주파수대역이 더 한정되기 때문에 빔의 조향 범위가 더 감소하게 되며, 산봉우리와 골짜기의 변화가 심한 능선을 탐지하는 경우에는, 고각방향의 조향 범위를 벗어나는 특정 구역은 탐지할 수 없게 된다.
이러한 단점을 개선하기 위하여 본 발명의 실시예는 2개의 진행파 안테나를 사용하여 이중으로 사시각 효과를 발생함으로써, 주파수 빔조향 범위를 2배로 확장할 수 있는 대포병탐지레이더를 제시한다.
도 8은 본 발명의 실시예에 따라 이중사시각 효과를 이용하여 주파수 빔조향 범위를 2배로 확장한 대포병탐지레이더를 도시한 그림이며, 도 9는 본 발명의 실시예에 따른 대포병 탐지 레이더가 차량에 장착된 모습을 도시한 도면이다.
본 발명의 실시예에 따른 대포병탐지레이더는 주파수 빔조향 방법이 적용되는 진행파 안테나를 두 개 설치한다. 이때, 두 개의 진행파 안테나(902,903)를 서로 인접하여 배치하며, 각 진행파 안테나의 배열면이 향하는 방향이 서로 다른 방향을 향하도록 배치하여 주파수 빔조향 범위를 2배로 확장한다. 따라서 본 발명의 실시예는 두 개의 진행파 안테나(902,903)를 사용하여 이중으로 사시각 효과를 발생함으로써, 주파수 빔조향 범위를 2배로 확장할 수 있게 된다.
각 진행파 안테나(902,903)의 배열면이 향하는 방향이 서로 다른 방향을 향하도록 배치하는 것은, 슬롯 도파관의 배열면이 직각되도록 상기 하부 진행파 안테나(903)를 배치하고, 상기 하부 진행파 안테나의 배열면과 다른 각도로 기울어진 배열면을 갖도록 상기 상부 진행파 안테나(902)를 배치한다.
하부 진행파 안테나(903)의 배열면과 다른 각도로 기울어진 배열면을 갖도록 상부 진행파 안테나(902)를 배치시키는 것은, 상기 하부 진행파 안테나(903)의 배열면의 직각 방향에서 사시각도 범위의 크기로 기울어진 경사로서 상기 하부 진행파 안테나(903)에 상기 상부 진행파 안테나(902)를 인접 배치시킨다.
상기에서 사시각도는 하부 진행파 안테나(903)의 슬롯 도파관의 배열면에 직각된 방향과 슬롯 도파관 사이의 틈에서 방사되는 전자파의 동위상을 잇는 동위상 파면에 직각된 방향간의 차이를 말한다. 즉, 하부 진행파 안테나(903)의 슬롯 도파관의 배열면에 직각된 방향을 기준 방향이라 하고, 상기 하부 진행파 안테나의 슬롯 도파관 사이에서 복사되는 전파들의 동위상을 연결한 동위상 파면에 직각된 방향을 사시 방향이라 하고, 상기 기준 방향과 사시 방향의 차이각을 사시각도라 할 때, 상기 사시각도는, 하부 진행파 안테나(903)의 동작 주파수 대역내에서 동일한 주파수 간격으로 증가시킬 때, 상기 하부 진행파 안테나(903)로부터 복사되는 에너지의 최대크기 방향의 최소각도부터 최대각도까지의 범위를 가진다.
사시각도에 대해서 도 10과 함께 상술하면, 도 10은 진행파 안테나의 사시각 효과를 나타낸 그림이다. 진행파 안테나는 가장 대표적인 슬롯 도파관 안테나로 예시하였다. 진행파 안테나의 동작 주파수대역내에서 주파수를 일정하게 변화(1001)하면 복사패턴의 최대크기 방향이 일정하게 변화(1002)한다. 도 10의 예시에서는 진행파 안테나의 동작 주파수가 fc로부터 일정한 주파수간격(△f)으로 증가하면, 사시각도가 28°로부터 -2°까지 변화한다. 따라서 주파수 빔조향 범위는 30°까지 가능(1003)하게 된다.
도10에 예시한 진행파 안테나를 주파수 빔조향 방법을 적용한 대포병탐지레이더에 사용하면, 도 11의 개념도와 같이 진행파 안테나를 수직으로 세우고(1101) 고각방향으로 30°의 주파수 빔조향(1102)이 가능한 대포병탐지레이더가 된다. 그러나 상기한 바와 같이, 고각방향으로의 제한된 빔조향 범위로 인해서 여러 문제점을 갖게 된다. 따라서 본 발명의 실시예와 같이 하부 진행파 안테나를 직각으로 세운채로, 하부 진행파 안테나의 배열면에서 사시각도만큼 기울어진 채로 상부 진행파 안테나를 인접 배치시켜 주파수 빔조향 범위를 확대시킨다. 도 12는 본 발명의 실시예에 따른 2개의 진행파 안테나를 기울어지게 배치하여 고각방향으로 2배의 주파수 빔조향 범위를 갖는 대포병탐지레이더의 개념도를 나타낸 것이다. 도 12에 예시한 주파수 빔조향 범위가 30°인 진행파 안테나를 적용하면, 하나의 진행파 안테나인 하부 진행파 안테나(903)는 수직으로 배치하고 다른 하나의 진행파 안테나인 상부 진행파 안테나(902)는 수직면에서 30°(1203)가 기울어지게 배치한다. 이렇게 배치함으로써 대포병탐지레이더가 고각방향으로 주파수 빔조향을 하는데, -2°부터 28도까지 고각방향 30°(1204)는 첫번째 진행파 안테나에 의해 빔조향하고 계속해서 28°부터 58°까지 30°(1205)는 두번째 진행파 안테나에 의해 빔조향 한다. 두번째 진행파 안테나도 수직면 기준으로는 -2°부터 28°까지 주파수 빔조향 되지만, 설치 각도가 30°이기 때문에 28°부터 58°까지 주파수 빔조향 한다. 따라서, 고각방향의 주파수 빔조향 범위를 2배로 확장할 수 있다.
한편, 도 9는 본 발명의 실시예에 따른 대포병탐지레이더가 차량에 탑재된 전체 형상을 나타낸 것으로서, 대포병탐지레이더의 기본 운용개념에 맞도록, 전체 시스템은 트럭(901)에 탑재되어 어느 작전지역이든지 이동이 가능하도록 되어 있다. 그리고 본 발명에 따른 이중 주파수 빔조향이 가능하도록, 상부 진행파 안테나(902)와 하부 진행파 안테나(903)가 사시각도(904) 만큼 기울어져 설치된다. 기타 부수적으로 운용자들이 위치하여 레이더를 운용하는 쉘터(905)와 레이더 장치 및 발전기가 설치되는 공간(906)으로 구성된다.
한편, 도 13은 본 발명에 따른 대포병탐지레이더의 시스템 블록도이다. 기본적인 구성품은 일반적인 대포병탐지레이더와 같지만, 송수신모듈(Transmit-receive module, TRM) 내부의 가장 끝단에 RF 스위치(1301)를 구성하여, 이중 주파수 빔조향을 수행하기 위해서 상부 진행파 안테나와 하부 진행파 안테나 중에 적어도 하나를 선택하여 레이더(RF 신호)를 송신하거나 수신한다.
한편, 상기에서 설명한 본 발명의 실시예에 따른 대포병탐지레이더는 하부 진행파 안테나에 인접하여 배치한 상부 진행파 안테나를 구비하여, 넓은 빔조향을 할 수 있다. 본 발명은 이에 한정되지 않고 하부 진행파 안테나 및 상부 진행파 안테나가 복수개 구비할 수 있음은 자명할 것이다. 예를 들어, 진행파 제1안테나->진행파 제2안테나->진행파 제3안테나와 같이 3개의 진행파 안테나를 각각 사시각도 범위 내에서 인접 배치하여 넓은 빔조향을 이룰 수 있으며, 나아가, 진행파 제1안테나->진행파 제2안테나->진행파 제3안테나->진행파 제4안테나와 같이 4개의 진행파 안테나를 각각 사시각도 범위 내에서 인접 배치하여 더 넓은 빔조향을 이룰 수 있음은 자명할 것이다.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.
902: 상부 진행파 안테나 903: 하부 진행파 안테나
904: 사시각도

Claims (7)

  1. 다수의 슬롯 도파관이 배열되어 슬롯 도파관의 배열면이 직각되도록 배치된 하부 진행파 안테나;
    상기 하부 진행파 안테나에 서로 인접하여 배치되며, 다수의 슬롯 도파관이 배열되어 상기 하부 진행파 안테나의 배열면과 다른 각도로 기울어진 배열면을 갖도록 배치된 상부 진행파 안테나;를 포함하고,
    상기 하부 진행파 안테나의 슬롯 도파관의 배열면에 직각된 방향을 기준 방향이라 하고, 상기 하부 진행파 안테나의 슬롯 도파관 사이에서 복사되는 전파들의 동위상을 연결한 동위상 파면에 직각된 방향을 사시 방향이라 하고, 상기 기준 방향과 사시 방향의 차이각을 사시각도라 할 때,
    상기 상부 진행파 안테나는 상기 하부 진행파 안테나의 배열면의 직각 방향에서 상기 사시각도 범위의 크기로 기울어진 경사로서 상기 하부 진행파 안테나에 인접 배치되는 대포병탐지레이더.
  2. 삭제
  3. 삭제
  4. 청구항 1에 있어서, 상기 사시각도 범위는, 하부 진행파 안테나의 동작 주파수 대역내에서 동일한 주파수 간격으로 증가시킬 때, 상기 하부 진행파 안테나로부터 복사되는 에너지의 최대크기 방향의 최소각도부터 최대각도까지의 범위임을 특징으로 하는 대포병탐지레이더.
  5. 청구항 4에 있어서, 상기 사시각도는 30°임을 특징으로 하는 대포병탐지레이더.
  6. 청구항 1에 있어서, 상기 상부 진행파 안테나와 하부 진행파 안테나 중에서 적어도 하나를 선택하여 레이더를 송수신하는 대포병탐지레이더.
  7. 청구항 1,4,5,6 중 어느 하나의 항에 있어서, 상기 하부 진행파 안테나 및 상부 진행파 안테나가 복수개 구비된 대포병탐지레이더.

KR1020120004001A 2012-01-12 2012-01-12 대포병탐지레이더 KR101284744B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120004001A KR101284744B1 (ko) 2012-01-12 2012-01-12 대포병탐지레이더

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120004001A KR101284744B1 (ko) 2012-01-12 2012-01-12 대포병탐지레이더

Publications (1)

Publication Number Publication Date
KR101284744B1 true KR101284744B1 (ko) 2013-07-17

Family

ID=48997066

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120004001A KR101284744B1 (ko) 2012-01-12 2012-01-12 대포병탐지레이더

Country Status (1)

Country Link
KR (1) KR101284744B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887589B1 (ko) * 2018-01-16 2018-08-10 엘아이지넥스원 주식회사 탐지 성능이 개선된 장거리 레이더의 안테나 장치 및 이에 적용되는 전기적 특성을 개선하는 접속 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082850A (ko) * 1998-04-02 1999-11-25 와다 아끼히로 레이더장치
KR20030062129A (ko) * 2002-01-16 2003-07-23 엘지이노텍 주식회사 레이더 안테나를 이용한 표적 탐지방법
JP2007529743A (ja) 2004-03-15 2007-10-25 シラキュース リサーチ コーポレーション 人員携行型対迫レーダシステム
KR100969688B1 (ko) * 2008-04-03 2010-07-14 (주)밀리시스 밀리미터파 대역 항공용 레이더

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082850A (ko) * 1998-04-02 1999-11-25 와다 아끼히로 레이더장치
KR20030062129A (ko) * 2002-01-16 2003-07-23 엘지이노텍 주식회사 레이더 안테나를 이용한 표적 탐지방법
JP2007529743A (ja) 2004-03-15 2007-10-25 シラキュース リサーチ コーポレーション 人員携行型対迫レーダシステム
KR100969688B1 (ko) * 2008-04-03 2010-07-14 (주)밀리시스 밀리미터파 대역 항공용 레이더

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887589B1 (ko) * 2018-01-16 2018-08-10 엘아이지넥스원 주식회사 탐지 성능이 개선된 장거리 레이더의 안테나 장치 및 이에 적용되는 전기적 특성을 개선하는 접속 모듈

Similar Documents

Publication Publication Date Title
US8854257B2 (en) Conformal array, luneburg lens antenna system
US8344943B2 (en) Low-profile omnidirectional retrodirective antennas
RU2658671C2 (ru) Бистатическая радиолокационная станция
US10761184B2 (en) Polarimetric phased array radar system and method for operating thereof
US7865152B2 (en) RF waveform modulation apparatus and method
US7961133B2 (en) System and method for diverting a guided missile
US10838059B2 (en) Acoustic phased array antenna with isotropic and non-isotropic radiating elements
US11411324B2 (en) Phased array antenna with isotropic and non-isotropic radiating and omnidirectional and non-omnidirectional receiving elements
US8134510B2 (en) Coherent near-field array
US20160047907A1 (en) Modular Planar Multi-Sector 90 Degrees FOV Radar Antenna Architecture
US11749909B2 (en) Phased array antenna with isotropic and non-isotropic radiating and omnidirectional and non-omnidirectional receiving elements
EP3221921B1 (en) Wideband antenna structure with optics reflector as ground plane for missile applications
US9806430B2 (en) Phase-conjugate configuration of high-gain, dual-polarized sector antennas for a repeater
US10777883B2 (en) Phase-conjugate antenna system
KR101284744B1 (ko) 대포병탐지레이더
US10381743B2 (en) Curved sensor array for improved angular resolution
KR100985048B1 (ko) 원통형 배열의 안테나 장치
WO2018096307A1 (en) A frequency scanned array antenna
US20090201204A1 (en) Modal beam positioning
RU2479897C2 (ru) Антенный пост радиолокационный станции
US11699851B2 (en) Beam spoiling
US6507313B1 (en) Reflector radar antenna using flanking-beam array switching technique
RU2611890C1 (ru) Антенный пост автономной радиолокационной системы управления
KR102224381B1 (ko) 위상배열 iff 안테나와 전송선로 가변형 고각제어장치를 구비하는 차기 구축함용 피아식별장치
US11943047B2 (en) Apparatus and method of CRPA neutralization for illegal unmanned aerial vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170628

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 7