KR101283878B1 - Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow - Google Patents
Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow Download PDFInfo
- Publication number
- KR101283878B1 KR101283878B1 KR1020110077672A KR20110077672A KR101283878B1 KR 101283878 B1 KR101283878 B1 KR 101283878B1 KR 1020110077672 A KR1020110077672 A KR 1020110077672A KR 20110077672 A KR20110077672 A KR 20110077672A KR 101283878 B1 KR101283878 B1 KR 101283878B1
- Authority
- KR
- South Korea
- Prior art keywords
- cooling water
- efficiency
- coolant
- power generation
- solar
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a facility for improving efficiency of photovoltaic power generation facilities. The efficiency improvement equipment of the photovoltaic power generation equipment according to the present invention, the photovoltaic power generation equipment that maintains or improves the efficiency by spraying cooling water to the photovoltaic power generation equipment comprising a photovoltaic module for collecting electricity to generate electricity In the efficiency improvement apparatus of the storage tank for storing the cooling water: Cooling water injection means for spraying the cooling water to the solar module; And a pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water injection means through a cooling water supply pipe, wherein the cooling water injection means includes a venturi tube generating negative pressure therein to introduce external air. do.
According to the above-described efficiency improving apparatus of the solar power plant according to the present invention, the outside air is injected with the coolant using a venturi tube to improve the cooling and cleaning performance of the solar module through two phase flow. Can reduce the amount of cooling water used.
Description
The present invention relates to a facility for improving efficiency of a photovoltaic power generation facility, and more particularly, to improve the cooling and cleaning performance of a photovoltaic module and to reduce the amount of cooling water by allowing external air to be injected and sprayed with cooling water. The present invention relates to a facility for improving efficiency of photovoltaic facilities.
Generally, the method of using solar energy is divided into a method using solar heat and a method using sunlight. The method of using solar heat is a method of heating and generating electricity by using water heated by the sun, and a method of using sunlight is a method of generating electricity by using sunlight, It is called solar power generation.
Among the above-mentioned methods, photovoltaic power generation is a photovoltaic effect in which a photovoltaic panel having n-type doping on a silicon crystal and pn-junction is irradiated with sunlight to generate an electromotive force due to the photovoltaic energy, To generate electricity.
For this purpose, a solar cell for collecting sunlight, a photovoltaic module as an aggregate of solar cells, and a solar array for uniformly arranging solar cells are required.
For example, when light is incident on the solar module from the outside, electrons in the conduction band of the p-type semiconductor are excited to the valence band by the incident light energy. One electron-hole pair (EHP) is formed inside the p-type semiconductor, and electrons in the electron-hole pair generated are transferred to the n-type semiconductor by an electric field existing between the pn junctions. It passes over and supplies current to the outside.
Unlike existing energy sources such as fossil raw materials, sunlight is a clean energy source that does not have the danger of global warming, such as greenhouse gas emissions, noise, environmental destruction, etc., and there is no fear of depletion. Unlike other types of wind and seawater, solar power generation facilities are free from installation and maintenance costs.
However, in the case of the most widely used silicon solar cell, when the temperature of the photovoltaic module rises, output decrease of 0.5% per 1 ° C occurs. According to these characteristics, the output of solar power peaks in spring and autumn, not in the summer when the sun is the longest. This increase in temperature is a major cause of lowering the power generation efficiency of photovoltaic power generation.
In addition, such a solar module has disadvantages that dust can be easily accumulated on the solar panel due to weather phenomenon such as yellow dust and bad weather. When dirt accumulates on the solar module, the solar module's light absorption rate is significantly lowered, and therefore the power generation efficiency may also be lowered.
In addition, when rain or snow falls on the solar panel in winter, the power generation efficiency may decrease. In order to prevent such deterioration of power generation efficiency due to dirt, snow, and rain, the efficiency improvement equipment (maintenance equipment) of photovoltaic power generation facilities is used.
In order to improve the efficiency of solar power generation facilities, the cooling module which cools the temperature of the solar module and the cleaning and snow removal of the dirt, snow, rain etc. accumulated on the solar panel, It functions to maintain the solar power generation facilities.
Such efficiency improvement equipment of photovoltaic power generation equipment uses enormous amounts of water (functional water, cooling water, snow removal, etc., but may be collectively referred to as cooling water) for cooling and cleaning solar modules. . Depending on the location, groundwater, tap water, and river water are used as cooling water. In many areas, it is difficult to supply sufficient cooling water, and the electricity used for supplying and spraying the cooling water also reduces the efficiency of the photovoltaic plant as a whole. . Therefore, efficient use of cooling water is one of the most important factors in the design of the device for improving the efficiency of photovoltaic power generation facilities.
The present invention is to solve this problem, by allowing the external air to be injected with the coolant in the cooling water injection means to improve the cooling and cleaning performance of the photovoltaic module by two phase flow and to reduce the amount of cooling water used It is an object of the present invention to provide a facility for improving efficiency of photovoltaic power generation facilities.
In order to achieve the above object, the present invention, by increasing the efficiency of the photovoltaic power generation facilities to maintain or improve the efficiency by spraying the cooling water to the photovoltaic power generation facilities comprising a solar module for collecting electricity to generate electricity An apparatus comprising: a storage tank for storing cooling water: cooling water spraying means for spraying cooling water on the solar module; And a pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water injection means through a cooling water supply pipe, wherein the cooling water injection means includes a venturi tube generating negative pressure therein to introduce external air. It provides a facility for improving efficiency of solar power generation facilities.
The venturi tube may include a cooling water moving path through which the cooling water moves, and the cooling water moving path may include an inlet part through which the coolant is introduced and an outlet part which is narrowed and then widened again in the inlet part.
The venturi tube may have an air inlet hole through which external air is introduced, and the air inlet hole may communicate with an outlet of the coolant movement path.
The venturi tube is an inner tube formed with the cooling water movement path and the air inlet hole; And coupled to the inner tube to surround the inner tube from the outside, it may include an appearance that is coupled with the injection cap is formed with an injection hole for cooling water is injected to the outside.
The inner tube may include a fastening part inserted and fastened to a side into which the coolant is introduced, and the fastening part may have the inlet part.
The inlet portion formed in the fastening portion may have a narrower inner diameter than the outlet portion, and may include a transmission portion for delivering cooling water to the outlet portion.
The exterior is formed with a hole through which the outside air is introduced, the air introduced through the hole may be transmitted to the cooling water movement path through the air inlet hole.
A space part communicating with the hole and the air inlet hole may be formed between the inner tube and the outer tube.
The efficiency improving apparatus of the solar power generation facility may further include a valve for controlling the cooling water injection of the cooling water injection means by opening and closing the cooling water supply pipe.
The efficiency improving apparatus of the solar power generation facility may further include a control unit controlling the driving of the pump and the opening and closing of the valve to control the cooling water injection of the cooling water injection means.
The control unit may cause the cooling water spraying unit to spray cooling water for a set driving time.
The control unit may cause the coolant spray means to spray coolant according to the temperature of the solar module.
The control unit may cause the coolant spraying means to spray coolant according to the coolant storage amount of the storage tank.
According to the above-described efficiency improving apparatus of the solar power plant according to the present invention, the outside air is injected with the coolant using a venturi tube to improve the cooling and cleaning performance of the solar module through two phase flow. Can reduce the amount of cooling water used.
1 is a view schematically showing a configuration of an efficiency improving apparatus of a solar power plant according to an embodiment of the present invention.
2 is a perspective view showing a venturi tube according to an embodiment of the present invention.
3 is an exploded view showing a venturi tube according to an embodiment of the present invention.
Figure 4 is a cross-sectional view showing a venturi tube according to an embodiment of the present invention.
5 is a cross-sectional view showing a spray cap according to an embodiment of the present invention.
6 is a view for explaining the principle that the outside air flows through the venturi tube.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the terminology used herein is for the purpose of description and should not be interpreted as limiting the scope of the present invention.
The embodiments described in the present specification and the configurations shown in the drawings are preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention and thus various equivalents and modifications Can be.
1 is a view schematically showing a configuration of an efficiency improving apparatus of a solar power plant according to an embodiment of the present invention.
Referring to FIG. 1,
The
However, since the
The present invention relates to an efficiency improving apparatus capable of maintaining and improving the efficiency of photovoltaic power generation by cooling and washing the
As shown in FIG. 1, the efficiency improving apparatus of the solar power plant according to an embodiment of the present invention includes a storage tank 1, a coolant spray means 6, a
Cooling water injection means (6) is installed to correspond to each of the solar modules (7) is a means for injecting the coolant to spray the coolant to the solar module (7). When cooling water is poured into the
The impingement jet has excellent heat and fluid transfer effects from the fluid to the impingement surface, thereby improving the cooling and cleaning effect and reducing the generation of scale. However, in order to generate a collision jet, the speed of the coolant is 30 m / s or more and the pressure is 1.6 kg / cm 2 or more, based on the inlet of the coolant spray means 6 for injecting the coolant into the
The cooling
The
The
The manner in which the
As a first example, this is a time-based control scheme. Specifically, the
Another example is the temperature control method. Specifically, it is determined whether the measured temperature difference between the temperature of the
Whatever control method is selected, it is preferable to measure the pressure in the cooling
In addition, in consideration of the amount of cooling water stored in the storage tank 1 and the supply speed of the cooling water supplied to the storage tank 1, it is preferable to control the injection amount of the cooling water so that the cooling water is properly distributed during the driving time. In this case, the injection amount of the cooling water may be controlled to be sprayed at the same speed every hour, or may be controlled to be sprayed at different time intervals.
In addition, if it is determined that the rain sensor 43 is on or off and is raining, the operation is terminated, and it is determined whether the temperature of the
Cooling water injection means 6 according to the present invention to increase the injection pressure of the cooling water to generate the two-phase flow by introducing the outside air into the cooling water by using the Venturi effect, for this purpose includes a venturi tube. The impingement flow, that is, the collision jet using a mixture of air and water has a much better heat transfer and momentum transfer effect than the collision jet using only the coolant. Thus, the above configuration can improve the cooling and cleaning efficiency and reduce the amount of cooling water used. have.
Figure 2 is a perspective view showing a venturi tube according to an embodiment of the present invention, Figure 3 is an exploded view showing a venturi tube according to an embodiment of the present invention, Figure 4 is a venturi tube according to an embodiment of the
Venturi tube according to an embodiment of the present invention is composed of an
The cooling water moving path is a path through which the cooling water received from the cooling
The cooling water moving path is composed of an
In order to more easily form the
The
In the exterior 60, a
A
In addition, a thread is formed on the lower outer side of the
Referring to Figure 6 the process of the abnormal flow occurs in the Venturi tube as follows.
The cooling water delivered from the cooling
At this time, the cooling water sprayed to the
As a result, the outside air is introduced through the
The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
Claims (13)
Storage tank to store coolant:
Coolant injection means for injecting coolant into the solar module; And
A pump for pumping the coolant stored in the storage tank to supply the coolant injection means through a coolant supply pipe;
The cooling water injection means includes a venturi tube for introducing a negative pressure inside the inlet air,
The venturi tube,
An inner tube in which a coolant movement path and an air inlet hole are formed; And
It is coupled to the inner tube to surround the inner tube from the outside, and provided with a hole through which the outside air flows, and includes an appearance that is coupled to the injection cap formed with a spray hole for cooling water is injected to the outside,
The cooling water moving path includes an inlet portion through which the coolant flows and an outlet portion in which the inner diameter of the cooling water is narrowed and then widened again.
The air inlet hole is in communication with the outlet of the cooling water movement path in which the negative pressure is generated efficiency improvement equipment of the solar power plant.
The inner tube includes a fastening portion inserted into a side into which the coolant is introduced,
The fastening portion is the efficiency of the solar power plant, characterized in that the inlet is formed.
Inlet portion formed in the fastening portion, the inner diameter is narrower than the outlet portion is formed efficiency improvement equipment of the solar power generation equipment, characterized in that it comprises a transmission unit for spraying the coolant to the outlet.
The exterior is formed with a hole through which outside air is introduced,
The air introduced through the hole is the efficiency improvement equipment of the solar power generation facility, characterized in that it is transferred to the cooling water movement path through the air inlet.
Between the inner tube and the exterior is the efficiency of the solar power plant, characterized in that the space portion is formed in communication with the air inlet hole is formed.
Further comprising: a valve for controlling the cooling water injection of the cooling water injection means by opening and closing the cooling water supply pipe.
Further comprising a control unit for controlling the driving of the pump and the opening and closing of the valve to control the cooling water injection of the cooling water injection means.
The control unit, the efficiency improving equipment of the solar power plant, characterized in that the cooling water spraying means to spray the cooling water for a set driving time.
The control unit, the efficiency of the solar power plant, characterized in that the cooling water spray means for spraying the cooling water in accordance with the temperature of the solar module.
Wherein the control unit, the cooling water injection means for improving the efficiency of the photovoltaic power generation facility, characterized in that for spraying the cooling water in accordance with the amount of cooling water stored in the storage tank.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110077672A KR101283878B1 (en) | 2011-08-04 | 2011-08-04 | Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow |
PCT/KR2012/005708 WO2013019005A2 (en) | 2011-08-04 | 2012-07-17 | Efficiency enhancing system for a photovoltaic power generating facility using a two phase flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110077672A KR101283878B1 (en) | 2011-08-04 | 2011-08-04 | Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130015598A KR20130015598A (en) | 2013-02-14 |
KR101283878B1 true KR101283878B1 (en) | 2013-07-08 |
Family
ID=47895378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110077672A KR101283878B1 (en) | 2011-08-04 | 2011-08-04 | Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101283878B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101702554B1 (en) | 2015-12-24 | 2017-02-23 | (주)하이레벤 | Spraying apparatus for road snow removal using two phase flow and road snow removal system using this |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100725242B1 (en) * | 2004-05-31 | 2007-06-04 | 주식회사 케이씨텍 | Nozzle for Injecting Sublimable Solid Particles Entrained in Gas for Cleaning Surface and Method for Cleaning Surface using the Nozzle |
KR100832673B1 (en) * | 1998-09-25 | 2008-05-27 | 유.에스. 필터 웨이스트워터 그룹, 인크. | Filtration system, membrane module and method for cleaning the module |
KR100986706B1 (en) * | 2010-03-16 | 2010-10-08 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
JP2011100782A (en) * | 2009-11-04 | 2011-05-19 | Toyota Home Kk | Device for cooling solar panel |
-
2011
- 2011-08-04 KR KR1020110077672A patent/KR101283878B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100832673B1 (en) * | 1998-09-25 | 2008-05-27 | 유.에스. 필터 웨이스트워터 그룹, 인크. | Filtration system, membrane module and method for cleaning the module |
KR100725242B1 (en) * | 2004-05-31 | 2007-06-04 | 주식회사 케이씨텍 | Nozzle for Injecting Sublimable Solid Particles Entrained in Gas for Cleaning Surface and Method for Cleaning Surface using the Nozzle |
JP2011100782A (en) * | 2009-11-04 | 2011-05-19 | Toyota Home Kk | Device for cooling solar panel |
KR100986706B1 (en) * | 2010-03-16 | 2010-10-08 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101702554B1 (en) | 2015-12-24 | 2017-02-23 | (주)하이레벤 | Spraying apparatus for road snow removal using two phase flow and road snow removal system using this |
Also Published As
Publication number | Publication date |
---|---|
KR20130015598A (en) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100986706B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR100954530B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101148020B1 (en) | Cooling system of photovoltaic module for efficiency enhancement | |
JP5548824B2 (en) | Equipment for improving the efficiency of solar power generation equipment | |
KR100983783B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101443040B1 (en) | A turbulent flow-type cooling water nozzle of solar power module | |
KR102064707B1 (en) | claening and cooling equipments for solar cell modules of solar power generation system | |
KR101038243B1 (en) | Solar array caring apparatus moving on track with reciprocation | |
KR101381949B1 (en) | cooling method and apparatus of solar module | |
KR101283878B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities using two phase flow | |
KR101326240B1 (en) | Nozzle to generate the two phase flow and efficiency enhancement equipment for solar photovoltaic power facilities using the same | |
KR101107623B1 (en) | Efficiency enhancement equipment for sun location tracking type solar photovoltaic power facilities | |
KR101088773B1 (en) | Cooling equipment for solar photovoltaic power facilities installed in slope | |
KR101243176B1 (en) | A cooling water nozzle of solar power module | |
KR101410909B1 (en) | Rotary nozzle for ejecting coolwater to solar module and efficiency enhancement equipment with the same for solar photovoltaic power facilities | |
KR101044712B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101237903B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101282739B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101353969B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101263243B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101280262B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101148022B1 (en) | System of remotely controlling efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101151734B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities | |
KR101349792B1 (en) | equipment cooling of photovoltaic power generation system using geothermy | |
KR101044713B1 (en) | Efficiency enhancement equipment for solar photovoltaic power facilities by cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160630 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |