KR101281949B1 - Optimum palladium content in enepig surface treatment for enhancing mechanical properties - Google Patents

Optimum palladium content in enepig surface treatment for enhancing mechanical properties Download PDF

Info

Publication number
KR101281949B1
KR101281949B1 KR1020110078897A KR20110078897A KR101281949B1 KR 101281949 B1 KR101281949 B1 KR 101281949B1 KR 1020110078897 A KR1020110078897 A KR 1020110078897A KR 20110078897 A KR20110078897 A KR 20110078897A KR 101281949 B1 KR101281949 B1 KR 101281949B1
Authority
KR
South Korea
Prior art keywords
surface treatment
palladium
enepig
reliability
content
Prior art date
Application number
KR1020110078897A
Other languages
Korean (ko)
Other versions
KR20130016784A (en
Inventor
정승부
김용일
윤재현
최돈현
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020110078897A priority Critical patent/KR101281949B1/en
Publication of KR20130016784A publication Critical patent/KR20130016784A/en
Application granted granted Critical
Publication of KR101281949B1 publication Critical patent/KR101281949B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

본 발명은 ENEPIG 표면 처리에 있어서 팔라듐 함유량에 따른 신뢰성의 변화에 관한 것으로서, 더욱 구체적으로는 ENEPIG 표면 처리시 최적의 팔라듐 함유량에 관한 것이다. 본 발명에 따르면, 상기 팔라듐의 함유량이 솔더 볼의 중량 대비 0.04wt% 이하인 경우에 최고의 신뢰성을 나타내었다.The present invention relates to a change in reliability according to palladium content in ENEPIG surface treatment, and more particularly to an optimum palladium content in ENEPIG surface treatment. According to the present invention, the best reliability was obtained when the palladium content was 0.04 wt% or less relative to the weight of the solder ball.

Description

기계적 특성의 향상을 위한 ENEPIG 표면 처리에서의 최적의 팔라듐 함유량 {OPTIMUM PALLADIUM CONTENT IN ENEPIG SURFACE TREATMENT FOR ENHANCING MECHANICAL PROPERTIES}OPTIMUM PALLADIUM CONTENT IN ENEPIG SURFACE TREATMENT FOR ENHANCING MECHANICAL PROPERTIES}

본 발명은 ENEPIG 표면 처리에 있어서 팔라듐 함유량에 따른 신뢰성의 변화에 관한 것으로서, 더욱 구체적으로는 ENEPIG 표면 처리시 최적의 팔라듐 함유량에 관한 것이다.
The present invention relates to a change in reliability according to palladium content in ENEPIG surface treatment, and more particularly to an optimum palladium content in ENEPIG surface treatment.

현대에 들어와 사회는 컴퓨터나 휴대폰 등과 같은 제품들의 크기는 줄어들고 있고 동시에 기능은 더욱 향상된 고성능 다기능화 및 소형 경량화된 전자제품들의 개발이 주를 이루고 있다. 이러한 요구에 대응할 수 있도록 대용량 매체를 더욱 작은 공간에 집적시키려는 노력이 이루어지고 있다. 이를 가능하게 하기 위해서 새로운 시스템 설계 기술과 더불어 완성된 마이크로 칩의 성능을 극대화할 수 있는 전자 패키징 기술의 개발이 필수적으로 요구되고 있다. In modern times, society is focusing on the development of high-performance multifunctional and small and light-weight electronic products, which have reduced the size of products such as computers and mobile phones. Efforts are being made to integrate large media into smaller spaces to meet these demands. In order to make this possible, it is essential to develop a new system design technology and an electronic packaging technology that can maximize the performance of the completed microchip.

기존에 사용되어온 와이어 본딩과 TAB기술은 Chip의 집적도가 높지 않고 신뢰성이 떨어지는 등의 다양한 문제점을 드러내었고 그로 인하여 새롭게 솔더 범프를 이용한 flip chip 기술이 개발되어 전 세계적으로 많은 연구가 진행되고 있다. 그러한 연구의 일환으로 BGA(Ball Grid Array)패키지가 급속도로 발전하고 있다. 이러한 패키지는 상호연결부(interconnection)인 솔더에 대한 비중이 높아 솔더의 접합 특성, 하부 금속 층과의 계면 반응 솔더 조인트의 변형 거동 솔더 조인트의 신뢰성 등에 대한 많은 연구를 불러 일으켜 왔다.The wire bonding and TAB technologies used in the past have revealed various problems such as low chip integration and low reliability. Therefore, a new flip chip technology using solder bumps has been developed and many studies are being conducted worldwide. As part of such research, the Ball Grid Array (BGA) package is rapidly developing. Such a package has a great deal of research on solder bonding properties, deformation behavior of the solder joint at the interface reaction with the lower metal layer, and a great deal of research on solders as interconnects.

이러한 BGA 패키지에서 Sn-37Pb 합금을 비롯해 Sn-Pb 계열의 솔더가 고밀도, 저융점, 연납땜성 등의 우수한 성능을 보임으로서 가장 오랜 시간 사용되어 왔다. 그러나 Pb 및 Pb 계열의 솔더가 인체와 환경에 유해한 물질로 판명되면서 EU와 일본을 중심으로 규제되기 시작했다. 2007년 6월부터 시행된 RoHS (The Restriction Of the use of certain Hazardous Substances in electrical and electronic equipment)법은 Pb를 포함하여 전자 제품내 6대 유해 물질의 사용을 금지시켰으며 이로 인하여 전 세계적으로 Pb 사용을 중지해 나가고 있다. Pb 사용 금지에 따라 Pb 솔더를 대체할 새로운 조성의 필요성이 대두되면서 새롭게 등장한 솔더가 바로 무연 솔더인 Sn-Ag, Sn-Bi, Sn-In Sn-Ag-Cu계열이다. Sn-52In의 경우 낮은 녹는점과 우수한 유연성(ductility)를 가지고 있으나 In의 높은 가격이 문제가 되고 Sn-57Bi의 경우 저온에서 솔더링(Soldering)이 가능하나 불량한 접촉 특성을 가진다는 단점이 있다. 반면에 Sn-3.5Ag 솔더는 우수한 기계적 특성과 향상된 크리프(creep) 특성을 가지고 있다. 그러나 이러한 Sn-3.5Ag 솔더는 용융점이 높고 나쁜 웨팅(wetting) 특성을 가지고 있다. 이에 Sn-Ag에 새롭게 Cu를 첨가하여 용융점을 낮추고 우수한 기계적 특성을 가지는 Sn-Ag-Cu계열이 새롭게 Sn-Pb를 대체할 조성으로 대두되고 있다.In these BGA packages, Sn-Pb-based solders, including Sn-37Pb alloys, have been used for the longest time because of their high density, low melting point, and solderability. However, as Pb and Pb-based solders proved to be harmful to humans and the environment, they began to be regulated around the EU and Japan. The Restriction Of the use of certain Hazardous Substances in electrical and electronic equipment (RoHS) law, which began in June 2007, banned the use of six hazardous substances in electronic products, including Pb, which led to worldwide use of Pb. Is going to stop. With the prohibition of the use of Pb, the need for new compositions to replace Pb solder has emerged. The new solders are lead-free solders such as Sn-Ag, Sn-Bi, and Sn-In Sn-Ag-Cu. Sn-52In has low melting point and excellent ductility, but high price of In is a problem, and Sn-57Bi has soldering at low temperature but has poor contact characteristics. Sn-3.5Ag solder, on the other hand, has excellent mechanical properties and improved creep properties. However, these Sn-3.5Ag solders have high melting points and poor wetting properties. Accordingly, Sn-Ag-Cu series, which has new melting point and lowered melting point by adding Cu to Sn-Ag, has emerged as a composition to replace Sn-Pb.

무연 솔더를 사용하게 되면서 많은 문제점들이 발생하게 되었는데 그 중 가장 문제가 된 것은 낮은 웨팅 특성이었다. 이러한 낮은 웨팅 특성을 해결하기 위해서 표면처리를 이용하기 시작하였다. 현재 가장 널리 사용되는 표면처리 방식으로는 OSP(organic solderability preservative)와 ENIG(electroless nickel immersion gold) 표면처리 방식이나 OSP의 경우 낮은 신뢰성, ENIG의 경우 높은 가격과 Black Pad 현상으로 인하여 새로운 표면처리 방식인 ENEPIG(electroless nickel electroless palladium immersion gold) 표면처리 방식이 연구되고 있다.The use of lead-free solder has caused many problems, the most problematic of which was low wetting. In order to solve these low wetting characteristics, surface treatment was started. The most widely used surface treatment methods are OSP (organic solderability preservative) and ENIG (electroless nickel immersion gold) surface treatment method, OSP (low reliability), high price for ENIG and Black Pad phenomenon. ENEPIG (electroless nickel electroless palladium immersion gold) surface treatment method has been studied.

ENEPIG 표면처리 방식은 ENIG 공정에 Pd 층을 첨가하여 접합 성질을 향상시킨 방법인데, 이 경우 Pd는 매우 가격이 비싸며, 또한, Pd의 함유량이 얼마일 때 최고의 신뢰성을 나타내는지에 대한 연구는 이루어지지 아니한 상태이므로, 이에 대한 요구가 존재한다. 종래 기술로서 대한민국 특허출원 공개공보 제 10-2008-0093366호를 살펴보면, ENEPIG 표면 처리 방식을 이용하고 있지만, 최고의 기계적 성질을 나타내는 최적의 Pd 함유량에 대한 언급은 없는 상태이다.
The ENEPIG surface treatment method is a method in which the Pd layer is added to the ENIG process to improve the bonding properties. In this case, Pd is very expensive and there is no research on the highest reliability when the Pd content is high. State, there is a need for this. Looking at the Republic of Korea Patent Application Publication No. 10-2008-0093366 as a prior art, using the ENEPIG surface treatment method, there is no mention of the optimum Pd content showing the best mechanical properties.

ENEPIG 표면처리는 ENIG공정 중에 Pd 층을 첨가해서 접합성질을 향상시킨 방식으로 Pd을 얼마만큼 적용하는 것이 최적의 효과를 나타내는지를 파악한 것이 본 발명의 요지이고, 이러한 ENENPIG 표면처리 중 가장 좋은 신뢰성을 나타낼 수 있는 최적의 팔라듐의 함유량을 양산 공정에 적용함으로써, 더 좋은 신뢰성의 제품을 만들어 낼 수 있다.ENEPIG surface treatment is the point of the present invention to understand how to apply the Pd in the way to improve the bonding properties by adding the Pd layer during the ENIG process, the best reliability among these ENENPIG surface treatment By applying the optimum content of palladium to the mass production process, it is possible to produce a more reliable product.

본 발명의 일 실시예에 따르면, 인쇄 회로 기판 상에 무전해 니켈을 도금하는 단계; 상기 무전해 니켈 도금 위에 팔라듐을 도금하는 단계; 상기 팔라듐 도금 위에 금을 도금하는 단계; 및 상기 금 도금 위에 솔더 볼을 접합하는 단계를 포함하고, 상기 팔라듐의 함유량은 상기 솔더 볼의 중량 대비 0.04wt% 이하인, ENEPIG 표면 처리 방법이 제공된다.According to an embodiment of the present invention, there is provided a method of plating electroless nickel on a printed circuit board; Plating palladium over the electroless nickel plating; Plating gold over the palladium plating; And bonding a solder ball onto the gold plating, wherein the content of the palladium is 0.04 wt% or less relative to the weight of the solder ball.

본 발명의 추가적인 실시예에 따르면, 팔라듐의 함유량은 상기 솔더 볼의 중량 대비 0.04wt%이다.
According to a further embodiment of the invention, the content of palladium is 0.04 wt% relative to the weight of the solder balls.

도 1은 ENEPIG 표면 처리된 기판의 단면 모식도이다.
도 2는 본 발명에 따른 실험에 사용된 기판의 모습이다.
도 3은 본 발명에 따라 ENEPIG 표면 처리된 기판의 낙하 충격 실험 결과를 나타내는 도면이다.
도 4는 본 발명에 따라 ENEPIG 표면 처리된 기판의 고속 전단 실험 결과를 나타내는 도면이다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
1 is a schematic cross-sectional view of a substrate treated with ENEPIG surface.
2 is a view of the substrate used in the experiment according to the present invention.
3 is a view showing the drop impact test results of the ENEPIG surface treated substrate according to the present invention.
4 is a view showing the results of the high-speed shear test of the ENEPIG surface treated substrate in accordance with the present invention.
Various embodiments are now described with reference to the drawings, wherein like reference numerals are used throughout the drawings to refer to like elements. For purposes of explanation, various descriptions are set forth herein to provide an understanding of the present invention. It is evident, however, that such embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the embodiments.

하기 설명은 본 발명의 실시예에 대한 기본적인 이해를 제공하기 위해서 하나 이상의 실시예들의 간략화된 설명을 제공한다. 본 섹션은 모든 가능한 실시예들에 대한 포괄적인 개요는 아니며, 모든 엘리먼트들 중 핵심 엘리먼트를 식별하거나, 모든 실시예의 범위를 커버하고자 할 의도도 아니다. 그 유일한 목적은 후에 제시되는 상세한 설명에 대한 도입부로서 간략화된 형태로 하나 이상의 실시예들의 개념을 제공하기 위함이다.The following description provides a simplified description of one or more embodiments in order to provide a basic understanding of embodiments of the invention. This section is not intended to be a comprehensive overview of all possible embodiments, nor is it intended to identify key elements of all elements or to cover the scope of all embodiments. Its sole purpose is to present the concept of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later.

도 1은 실험에 사용된 ENEPIG 표면처리의 단면을 도시한 것이다. 도 1에서 보는 것처럼 구리로 된 인쇄회로기판(PCB) 위에 Ni / Pd / Au 순으로 도금을 한 이후, 그 위에 솔더볼을 접합시킨다. 이러한 솔더볼 위에 기판이 올려져서 접합되게 된다.Figure 1 shows a cross section of the ENEPIG surface treatment used in the experiment. As shown in FIG. 1, after plating on a printed circuit board (PCB) made of copper in the order of Ni / Pd / Au, solder balls are bonded thereon. The substrate is placed on the solder ball to be bonded.

ENEPIG의 표면 처리 방법은 도 5에서와 같은 단계로 진행된다. 먼저, 단계(510)에서 인쇄 회로 기판 상에 무전해 니켈을 도금되고, 이후 단계(520)에서 무전해 니켈 도금 위에 무전해 팔라듐을 도금되며, 이후 단계(530)에서 무전해 팔라듐 도금 위에 금을 도금하게 된다. 이후 단계(540)에서 솔더볼이 접합될 수 있다.The surface treatment method of ENEPIG proceeds to the same steps as in FIG. 5. First, electroless nickel is plated on the printed circuit board in step 510, and then electroless palladium is plated on the electroless nickel plating in step 520, and then gold is deposited on the electroless palladium plating in step 530. It will be plated. Thereafter, the solder balls may be bonded in step 540.

도 2는 본 발명에 따른 기계적 특성의 신뢰성 평가에 사용된 기판의 형상으로서, 콤포넌트(componenet) 쪽에 솔더볼을 올려 리플로우(reflow)를 통해 접합시킨 이후 다시 기판을 보드 쪽 기판에 올려놓고 다시 리플로우를 통해 접합을 시켰다.Figure 2 is a shape of the substrate used in the reliability evaluation of the mechanical properties according to the present invention, the solder ball on the component (componenet) side through the reflow (bonding) through the reflow (reflow) and then again put the substrate on the board side board and reflow again Bonding was performed through.

ENEPIG 표면 처리에 따르면, 팔라듐이 포함될 경우 그 함유량이 증가할수록 기계적 특성과 같은 신뢰성이 증가할 것이라고 예측된다. 그러나, 이하에서 설명하는 것처럼, 본 발명에 따르면, 팔라듐 함유량이 증가할수록 신뢰성이 계속 증가하는 것이 아니고 일정 함유량까지는 신뢰성이 증가하다가 다시 감소하는 모습을 보였다.According to the ENEPIG surface treatment, the inclusion of palladium is expected to increase reliability, such as mechanical properties, as its content increases. However, as will be described below, according to the present invention, as the palladium content increases, the reliability does not continue to increase, but the reliability increases to a certain content and then decreases again.

따라서, 기판을 완성한 이후 신뢰성을 높이기 위한 최적의 팔라듐 함유량이 본 발명에 의해 개시된다.Therefore, the optimum palladium content for increasing the reliability after completing the substrate is disclosed by the present invention.

본 발명에 따르면, ENEPIG 표면 처리에 있어서 팔라듐의 함유량이 0.04wt% 이하일 때 낙하 충격 실험 및 고속 전단 실험의 신뢰성 실험에서 최적의 접합 강도를 보이고 있음을 확인하였다. 아래의 실험에서 사용된 표본은 4개의 Pd 함유량이 다른 견본을 나타내고, 이 경우 Ni 층의 두께는 5μm이고, Au 층의 두께는 0.08μm이며, Pd 층의 두께는 각각 0μm, 0.05μm, 0.10μm, 0.15μm 이다.According to the present invention, when the palladium content is 0.04 wt% or less in the ENEPIG surface treatment, it was confirmed that the optimum bond strength was shown in the reliability test of the drop impact test and the high-speed shear test. The samples used in the experiments below represent samples with four different Pd contents, in which case the Ni layer thickness is 5 μm, the Au layer thickness is 0.08 μm, and the Pd layer thicknesses are 0 μm, 0.05 μm and 0.10 μm, respectively. , 0.15 μm.

아래 실험 결과에서 보는 것처럼, 팔라듐 함유량이 증가할수록 기계적인 신뢰성이 향상되다가, 0.04wt%를 넘어서는 오히려 신뢰도가 감소함을 확인하였다. 이를 통해 본 발명에서는 최적의 팔라듐 함유량을 찾아내었다.As shown in the experimental results below, as the palladium content is increased, the mechanical reliability is improved, but the reliability decreases rather than 0.04 wt%. Through this, in the present invention, the optimum palladium content was found.

도 3은 신뢰성 실험 중 낙하 충격 실험에 대한 결과값이다. 낙하 충격 실험은 도 1과 같이 ENEPIG로 표면 처리된 기판을 접합하여 JEDEC Standard F 조건에 나와 있는 900G-0.7ms의 조건으로 낙하 충격 실험을 실시하였다. 15 x 15mm Solder Mask Defined(SMD) type FR4 기판과 솔더볼의 직경이 450μm인 Sn-3.0Ag-0.5Cu(wt%) 솔더볼이 이용되었다. 60초 동안 260℃의 피크 온도에서 리플로우되었다(Model: RF-430-M2, Japan Pulse Lab).3 shows the results of the drop impact test during the reliability test. In the drop impact test, as shown in FIG. 1, a drop-impact test was conducted under the conditions of 900 G-0.7 ms shown in JEDEC Standard F conditions by bonding a substrate treated with ENEPIG. A 15 x 15mm Solder Mask Defined (SMD) type FR4 substrate and a solder ball with a solder diameter of 450μm and Sn-3.0Ag-0.5Cu (wt%) solder ball were used. Reflow was carried out at a peak temperature of 260 ° C. for 60 seconds (Model: RF-430-M2, Japan Pulse Lab).

도 3의 x축은 Pd의 함유량(0.00, 0.05, 0.10, 0.15는 예를 들어 450μm의 솔더볼을 이용할 경우에 Pd의 두께를 예시적으로 나타낸 것이다)을 나타내고, y축은 낙하 충격 실험의 낙하 횟수를 나타내며 몇 회 낙하시 솔더볼이 분리되는지(disconnect)를 나타낸다. 도 3에서 보는 것처럼, Pd 함유량이 없는 경우(x축에서 0.00 부분)는 ENIG 표면처리의 경우로서 가장 낮은 신뢰성을 보임을 확인하였다. 이후 Pd가 첨가됨에 따라 예상대로 신뢰성이 증가하였고, 신뢰성은 0.04wt%에서 최고의 신뢰도를 보였고, 그 이후에는 오히려 신뢰도가 떨어짐을 알 수 있었다.The x-axis of Fig. 3 represents the content of Pd (0.00, 0.05, 0.10, 0.15 is an example of the thickness of Pd when using a solder ball of 450μm, for example), and the y-axis represents the number of drops of the drop impact experiment It shows how many times the solder ball is disconnected when falling. As shown in FIG. 3, it was confirmed that the case where there was no Pd content (0.00 part on the x-axis) showed the lowest reliability as the case of ENIG surface treatment. Since Pd was added, the reliability increased as expected, and the reliability showed the highest reliability at 0.04 wt%, after which the reliability was rather low.

도 4는 신뢰성 실험 중 고속 전단 실험에 대한 결과값이다. 도 1과 같이 ENEPIG 표면 처리된 기판에 솔더볼을 접합한 이후 고속 전단 실험을 실시하였다. 실험 조건은 전단 속도는 1000mm/s이고, 전단 높이는 10μm이며, 솔더볼은 Sn0.3Ag0.5C인 450μm 직경의 솔더볼이 이용되었다. 실험은 high speed ball shear tester(model: Dage 4000HS, Japan)를 이용하여 수행되었다.4 is a result of the high speed shear test during the reliability test. After bonding the solder ball to the ENEPIG surface-treated substrate as shown in Figure 1 was carried out a high-speed shear experiment. Experimental conditions were a shear rate of 1000mm / s, a shear height of 10μm, a solder ball of 450μm diameter solder ball Sn0.3Ag0.5C was used. Experiments were performed using a high speed ball shear tester (model: Dage 4000HS, Japan).

도 4의 x축은 Pd의 함유량(0.00, 0.05, 0.10, 0.15는 예를 들어 450μm의 솔더볼을 이용할 경우에 Pd의 두께를 예시적으로 나타낸 것이다)을 나타내고, y축은 인가된 전단 응력의 크기를 나타내며 어느 크기의 전단 응력에서 솔더볼이 분리되는지(disconnect)를 나타낸다. 도 3에서 보는 것처럼, Pd 함유량이 없는 경우(x축에서 0.00 부분)는 ENIG 표면처리의 경우로서 가장 낮은 신뢰성을 보임을 확인하였다. 이후 Pd가 첨가됨에 따라 예상대로 신뢰성이 증가하였고, 신뢰성은 0.04wt%에서 최고의 신뢰도를 보였고, 그 이후에는 오히려 신뢰도가 떨어짐을 알 수 있었다.The x-axis of Figure 4 represents the content of Pd (0.00, 0.05, 0.10, 0.15 is an example showing the thickness of Pd when using a solder ball of 450μm for example), the y-axis represents the magnitude of the applied shear stress The size of the shear stress indicates which solder balls are disconnected. As shown in FIG. 3, it was confirmed that the case where there was no Pd content (0.00 part on the x-axis) showed the lowest reliability as the case of ENIG surface treatment. Since Pd was added, the reliability increased as expected, and the reliability showed the highest reliability at 0.04 wt%, after which the reliability was rather low.

이상에서 살펴본 것처럼, 본 발명은 ENENPIG 표면처리 중 가장 좋은 신뢰성을 나타낼 수 있는 최적의 팔라듐의 함유량을 알아내었고, 이러한 최적의 팔라듐 함유량을 양산 공정에 적용함으로써, 더 좋은 신뢰성의 제품을 만들어 낼 수 있으며, 또한 값비싼 팔라듐의 함유량을 최적으로 포함시킴으로써 경제적으로도 큰 이익을 얻을 수 있게 될 것이다.As described above, the present invention has found the optimum content of palladium that can exhibit the best reliability among the ENENPIG surface treatment, and by applying this optimum palladium content to the mass production process, it is possible to produce a product of better reliability In addition, the optimal inclusion of the expensive content of palladium will be a great economic benefit.

제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features presented herein.

Claims (3)

ENEPIG(electroless nickel electroless palladium immersion gold) 표면 처리 방법으로서,
인쇄 회로 기판 상에 무전해 니켈을 도금하는 단계;
상기 무전해 니켈 도금 위에 팔라듐을 도금하는 단계;
상기 팔라듐 도금 위에 금을 도금하는 단계; 및
상기 금 도금 위에 솔더 볼(solder ball)을 접합하는 단계를 포함하고,
상기 팔라듐의 함유량은 상기 솔더 볼의 중량 대비 0.04wt% 이하인,
ENEPIG 표면 처리 방법.
ENEPIG (electroless nickel electroless palladium immersion gold) surface treatment method,
Plating electroless nickel on a printed circuit board;
Plating palladium over the electroless nickel plating;
Plating gold over the palladium plating; And
Bonding a solder ball onto the gold plating;
The content of the palladium is 0.04wt% or less relative to the weight of the solder ball,
ENEPIG surface treatment method.
제 1 항에 있어서,
상기 팔라듐의 함유량은 상기 솔더 볼의 중량 대비 0.04wt%인,
ENEPIG 표면 처리 방법.
The method of claim 1,
The content of the palladium is 0.04wt% relative to the weight of the solder ball,
ENEPIG surface treatment method.
제 1 항 또는 제 2 항의 방법에 따라 ENEPIG 표면 처리된 인쇄 회로 기판.Printed circuit board with ENEPIG surface treatment according to the method of claim 1.
KR1020110078897A 2011-08-09 2011-08-09 Optimum palladium content in enepig surface treatment for enhancing mechanical properties KR101281949B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110078897A KR101281949B1 (en) 2011-08-09 2011-08-09 Optimum palladium content in enepig surface treatment for enhancing mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110078897A KR101281949B1 (en) 2011-08-09 2011-08-09 Optimum palladium content in enepig surface treatment for enhancing mechanical properties

Publications (2)

Publication Number Publication Date
KR20130016784A KR20130016784A (en) 2013-02-19
KR101281949B1 true KR101281949B1 (en) 2013-07-03

Family

ID=47896062

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110078897A KR101281949B1 (en) 2011-08-09 2011-08-09 Optimum palladium content in enepig surface treatment for enhancing mechanical properties

Country Status (1)

Country Link
KR (1) KR101281949B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093366A (en) * 2007-04-16 2008-10-21 우에무라 고교 가부시키가이샤 Electroless gold plating method and electronic parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093366A (en) * 2007-04-16 2008-10-21 우에무라 고교 가부시키가이샤 Electroless gold plating method and electronic parts

Also Published As

Publication number Publication date
KR20130016784A (en) 2013-02-19

Similar Documents

Publication Publication Date Title
US9527167B2 (en) Lead-free solder ball
KR100718169B1 (en) A prevention method of brittle fracture for a package fabricated by joining an electronic component finished with nickel and another electronic component finished with electroless ni(p) metallization
US20180005970A1 (en) Lead-Free Solder Ball
JP4719766B2 (en) Method of joining electronic parts surface-treated with electroless NiXP to prevent brittle fracture
KR100902163B1 (en) A method of joining lead-free solders and metallization with alloy elements for prevention of brittle fracture
KR20080007272A (en) Lead-free solder alloy
KR101345940B1 (en) Solder, soldering method, and semiconductor device
KR101085525B1 (en) core solder balls, method of manufacturing core solder balls and electronic parts including the same
JP5030442B2 (en) Lead-free solder alloys, solder balls and electronic components
EP2926940B1 (en) A pair of bonded electrodes and method for bonding two electrodes in an electronic component
KR101049520B1 (en) Core solder balls, method of manufacturing core solder balls and electronic parts using the same
KR101281949B1 (en) Optimum palladium content in enepig surface treatment for enhancing mechanical properties
Jeong et al. Effect of PCB surface finishs on intermetallic compound growth kinetics of Sn-3.0 Ag-0.5 Cu solder bump
Kim et al. Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB
KR100922891B1 (en) Method for preventing Kirkendall void formation for packages fabricated by joining an electronic component finished with electroplated Cu containing sulfur to solder and electronic packages fabricated by using the same
US9741676B1 (en) Tin-indium based low temperature solder alloy
Ahn et al. Properties of lead-free solder joints on flexible substrate for automotive electronics
Wei et al. Influence of multiple reflows and thermal shock on interfacial IMC of solder joints between Sn0. 3Ag0. 7Cu solder/pads (HASL, OSP, electrolytic Ni/Au and ENIG PCB finishes)
Hanim et al. Intermetallic evolution for isothermal aging up to 2000 hours on sn-4ag-0.5 cu and sn-37pb solders with ni/au layers
Kim et al. A new Cu-Zn solder wetting layer for improved impact reliability
Yoon et al. Thermo-compression bonding of electrodes between FPCB and RPCB
Nadhirah et al. Isothermal Aging of Low-Ag SAC with Al addition
Kim et al. An eco-friendly Cu-Zn wetting layer for highly reliable solder joints
Kwon et al. Solder joint properties of Sn-Ag-Cu solders on environmental-friendly plasma surface finish
Xia et al. A Comparative Study of Failure Mechanisms of Sn-Ag-Cu Assemblies under Temperature Cycling and Board Level Drop Test

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee