KR101274365B1 - Method for manufacturing manganese carbonate - Google Patents

Method for manufacturing manganese carbonate Download PDF

Info

Publication number
KR101274365B1
KR101274365B1 KR20100063328A KR20100063328A KR101274365B1 KR 101274365 B1 KR101274365 B1 KR 101274365B1 KR 20100063328 A KR20100063328 A KR 20100063328A KR 20100063328 A KR20100063328 A KR 20100063328A KR 101274365 B1 KR101274365 B1 KR 101274365B1
Authority
KR
South Korea
Prior art keywords
manganese
manganese carbonate
carbonate
carbon dioxide
ammonia water
Prior art date
Application number
KR20100063328A
Other languages
Korean (ko)
Other versions
KR20110004288A (en
Inventor
도시유끼 야마오까
나오끼 히구찌
마꼬또 나리사꼬
다이스께 고바야시
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20110004288A publication Critical patent/KR20110004288A/en
Application granted granted Critical
Publication of KR101274365B1 publication Critical patent/KR101274365B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

본 발명은 추출후액과 같이 산성이 강한 망간 수용액을 원료로 하여, 나트륨 등의 불순물이 적은 고순도의 탄산망간을 용이하게 얻는 것을 목적으로 한다.
산성 망간 용액을 암모니아수로 pH를 7 내지 8로 조정하고, 상기 액에 탄산 가스를 블로잉하여, 불순물이 적은 탄산망간을 얻는 탄산망간의 제조 방법이다.
An object of the present invention is to easily obtain high-purity manganese carbonate with little impurities such as sodium, using an aqueous solution of manganese having a strong acidity, such as an extract aftertaste.
It is a manufacturing method of manganese carbonate in which the acidic manganese solution is adjusted to pH 7-8 with ammonia water, and a carbon dioxide gas is blown into the liquid to obtain manganese carbonate with less impurities.

Description

탄산망간의 제조 방법{METHOD FOR MANUFACTURING MANGANESE CARBONATE}Method of producing manganese carbonate {METHOD FOR MANUFACTURING MANGANESE CARBONATE}

본 발명은 산성의 망간 용액으로부터 망간을 탄산망간으로서 회수하는 데 있어서, 특히 나트륨에 주목하여 고순도의 탄산망간을 고회수율로 회수하는 것을 목적으로 한 발명이다.The present invention aims to recover high purity manganese carbonate at high recovery rate, particularly with respect to sodium, in recovering manganese as acidic manganese from an acidic manganese solution.

최근, 전자 기기나 리튬 이온 2차 전지와 같은 전지 재료뿐만 아니라 합금, 그 밖의 다양한 재료에 있어서 망간의 사용량이 증가하고 있다. 이들 기기ㆍ전지ㆍ재료 등에 있어서, 망간은 망간뿐만 아니라 다른 금속 성분이 조합되어 사용되고 있다. 이로 인해, 기기ㆍ전지 등에 사용되고 있던 망간을 리사이클하는 데 있어서는, 이들 금속 성분으로부터 망간만을 분리하는 것이 필요하다. 이 분리를 위한 방법 중 하나로서 산성 추출제를 사용하는 방법이 있고, 일본 특허 출원 공개 제2008-231522(특허 문헌 1)에 개시되어 있는 바와 같이 일반적으로 사용되고 있다. 그러나 산성 추출제를 사용하면, 추출제로부터 수상(水相)으로 금속 성분을 취출하기 위해 산과 접촉시킬 필요가 있다. 여기서 추출제에 포함되는 망간의 대부분을 수상으로 이행시키기 위해서는, 추출제에 접촉하는 수상을 강산성으로 바꾸어 두어야만 한다. 이와 같은 추출 공정을 통해 얻어진 망간 수용액은 강산성이다.In recent years, the amount of use of manganese is increasing in not only battery materials such as electronic devices and lithium ion secondary batteries but also alloys and various other materials. In these devices, batteries, materials and the like, manganese is used in combination with not only manganese but also other metal components. For this reason, when recycling manganese used for an apparatus, a battery, etc., it is necessary to isolate only manganese from these metal components. As one of the methods for this separation, there is a method using an acidic extractant, and is generally used as disclosed in Japanese Patent Application Laid-Open No. 2008-231522 (Patent Document 1). However, if an acidic extractant is used, it is necessary to contact with an acid in order to extract the metal component from the extractant into the water phase. In order to transfer most of the manganese contained in the extractant to the water phase, the water phase in contact with the extractant must be changed to a strong acidity. The aqueous solution of manganese obtained through such extraction process is strongly acidic.

이와 같이 하여 얻어진 산성 망간 용액으로부터 산화망간이나 탄산망간을 얻기 위해 pH 조정을 실시하는 경우, 예를 들어 가성 소다나 가성 칼리와 같은 수산화물을 사용하면 수상의 나트륨이나 칼륨 이온 농도가 상승하여, 불순물의 혼입을 방지한 상태로 목적물인 망간을 회수하는 것, 즉 고순도의 망간화합물을 얻는 것은 곤란했다.When pH adjustment is carried out to obtain manganese oxide or manganese carbonate from the acidic manganese solution obtained in this way, for example, using a hydroxide such as caustic soda or caustic caliber increases the concentration of sodium and potassium ions in the aqueous phase, It was difficult to recover manganese which is a target object in the state which prevented mixing, ie, to obtain a high purity manganese compound.

일본 특허 출원 공개 제2008-231522Japanese Patent Application Publication No. 2008-231522

또한, 망간 용액으로부터 탄산염으로서 망간을 분리할 때에, pH 조정제ㆍ탄산 공급제로서 탄산나트륨 등의 탄산염을 직접 사용하거나 그 수용액을 사용하여, 탄산망간의 침전을 생성시켜 여과에 의해 분리하는 것도 고려된다. 그러나 이 방법에서는 액 중의 나트륨 성분이 여과액 중에 혼재하여, 여과, 건조 후에 나트륨분이 혼입될 우려가 있다. 또한, 전술한 바와 같이 pH 조정에 의해 용액에 이미 나트륨이 증가되어 있는 경우에는, 보다 더 나트륨이 석출되기 쉬운 조건이 되어 버려, 탄산망간 중에 나트륨이 혼입될 우려가 더욱 높아진다. 이러한 나트륨의 혼입을 피하기 위해 다량의 세정수를 사용하면, 탄산망간을 여과액에 유출시켜 버리게 될 것이다. 이와 같이, 유가 금속을 리사이클하는 공정에 있어서 산성 추출제를 사용한 추출 공정에 의해 망간만을 취출한 후 고순도의 탄산망간을 얻는 방법이 요구되었다. 본 발명은 간편한 방법에 의해, 고순도의 탄산망간을 얻는 방법을 과제로 한다.In addition, when separating manganese as a carbonate from a manganese solution, it is also considered to produce a precipitate of manganese carbonate by using carbonates, such as sodium carbonate, directly as a pH adjuster and a carbonate feed agent, or using an aqueous solution, and to isolate | separate by filtration. However, in this method, the sodium component in the liquid is mixed in the filtrate, and there is a fear that the sodium component is mixed after filtration and drying. In addition, as described above, when sodium is already increased in the solution by adjusting the pH, it becomes a condition in which sodium is more likely to precipitate, and there is a high possibility that sodium is mixed in manganese carbonate. If a large amount of washing water is used to avoid the incorporation of sodium, manganese carbonate will spill into the filtrate. Thus, in the process of recycling a valuable metal, the method of extracting only manganese by the extraction process using an acidic extractant, and obtaining a high purity manganese carbonate was calculated | required. An object of the present invention is to obtain a high-purity manganese carbonate by a simple method.

따라서, 상기 문제점을 해결하여, 이하의 발명을 달성하였다. (1) 산성 망간 용액을 암모니아수로 pH를 7-8로 조정하고, 상기 액에 탄산 가스를 블로잉(blowing)하여, 불순물이 적은 탄산망간을 얻는 탄산망간의 제조 방법. (2) 상기 (1)에 기재된 탄산망간 중의 Na가 100mass ppm 이하인 탄산망간의 제조 방법. (3) 상기 (1) 혹은 (2) 중 어느 하나에 있어서, 탄산 가스 블로잉 중에, 계속해서 암모니아수를 첨가하여, pH를 7-8로 계속해서 유지하여, 불순물이 적은 탄산망간을 얻는 탄산망간의 제조 방법. (4) 상기 (3)에 기재된 탄산망간 중의 Na가 100mass ppm 이하인 탄산망간의 제조 방법.Thus, the above problems have been solved, and the following inventions have been achieved. (1) A method for producing manganese carbonate in which the acidic manganese solution is adjusted to pH 7-8 with ammonia water, and a carbon dioxide gas is blown into the liquid to obtain manganese carbonate with less impurities. (2) The manufacturing method of manganese carbonate whose Na in manganese carbonate as described in said (1) is 100 mass ppm or less. (3) The manganese carbonate according to any one of the above (1) or (2), wherein during the carbon dioxide gas blowing, ammonia water is continuously added, the pH is continuously maintained at 7-8 to obtain manganese carbonate with less impurities. Manufacturing method. (4) The manufacturing method of manganese carbonate whose Na in manganese carbonate as described in said (3) is 100 mass ppm or less.

본 발명에 의해, 이하의 효과가 얻어진다. (1) 나트륨이 적은 탄산망간이 용이하게 얻어진다. (2) 추출후액으로부터 망간을 회수함에 있어서, 산성이 강한 액으로부터 나트륨 등의 불순물이 적은 탄산망간이 용이하게 얻어진다.By the present invention, the following effects are obtained. (1) Manganese carbonate with little sodium is easily obtained. (2) In recovering manganese from the extraction liquid, manganese carbonate with less impurities such as sodium is easily obtained from the acidic liquid.

도 1은 본 발명의 일 형태의 처리 플로우를 도시하는 도면.
도 2는 본 발명의 일 형태의 탄산망간의 침전의 XRD 패턴을 도시하는 도면.
1 is a diagram illustrating a processing flow of one embodiment of the present invention.
FIG. 2 is a diagram showing an XRD pattern of precipitation of manganese carbonate of one embodiment of the present invention. FIG.

본 발명에 있어서, 원료로 하는 산성 망간액의 망간 농도는 임의의 것을 사용할 수 있다. 탄산화 후의 망간 농도가 5ppm 정도로 저감될 때까지 탄산망간으로서 회수할 수 있으므로, 비용이 적합하다면 희박 용액으로부터 탄산망간을 회수하는 것도 가능하다. 반대로 고농도의 수용액이라도 용해도를 초과하여 석출이 나타날 것 같지 않으면, 원료로서 사용하는 것이 가능하다.In this invention, the manganese concentration of the acidic manganese liquid used as a raw material can use arbitrary things. Since manganese carbonate can be recovered until the manganese concentration after carbonation is reduced to about 5 ppm, it is also possible to recover manganese carbonate from the lean solution if the cost is suitable. On the contrary, even if it is a high concentration aqueous solution, if it does not appear to precipitate more than solubility, it can be used as a raw material.

산성의 망간액을 탄산화하기 전에 pH를 조정한다. 본 발명에서는 암모니아수를 사용한다. 암모니아수라면, 망간 이외의 금속 성분의 오염을 피할 수 있다. pH는 이산화탄소가 용해되는 pH이면 좋다. 암모니아수는, 예를 들어 20 내지 40mass% 정도로 조정하여 사용하는 것이 바람직하다.The pH is adjusted before carbonizing the acidic manganese solution. In the present invention, ammonia water is used. With ammonia water, contamination of metal components other than manganese can be avoided. The pH may be a pH at which carbon dioxide is dissolved. Ammonia water is preferably adjusted to, for example, about 20 to 40 mass%.

pH 5에 있어서도 탄산화는 행해지지만, 반응 속도와 수율을 고려하면 pH 7 내지 pH 8이 바람직하다. pH 조정 후의 망간 용액을, 이산화탄소를 사용하여 탄산화한다. 블로잉(blowing) 속도는 제조의 규모에 따라서 조정하면 된다.Carbonation is also performed at pH 5, but pH 7 to pH 8 are preferred in view of the reaction rate and yield. The manganese solution after pH adjustment is carbonated using carbon dioxide. The blowing speed may be adjusted according to the scale of manufacture.

예를 들어, 비이커 레벨이면 100ml/분 정도가 적절하고, 스케일업하는 경우에는 보다 다량으로 블로잉할 수 있다. 블로잉된 이산화탄소가 액 중에 용해되도록, 블로잉 입구는 보다 미세하게 나뉘어져 있는 편이 좋다. 또한, 탄산 가스를 블로잉하는 중에는 pH가 저하되지만, 그 조정도 암모니아수로 행하는 것이 바람직하다. 이 경우에도 pH는 7 내지 8로 유지하는 것이 바람직하다. 탄산망간을 얻는 데 적절하기 때문이다. 충분히 반응한 후, 여과ㆍ세정ㆍ건조함으로써, 고순도의 탄산망간을 얻을 수 있다.For example, at the beaker level, about 100 ml / min is appropriate, and when it scales up, it can blow in large quantities. Blowing inlets are more finely divided so that the blown carbon dioxide is dissolved in the liquid. In addition, while blowing carbonic acid gas, although pH falls, it is preferable to perform the adjustment also with ammonia water. Also in this case, it is preferable to maintain pH at 7-8. This is because it is suitable for obtaining manganese carbonate. After sufficiently reacting, high purity manganese carbonate can be obtained by filtration, washing and drying.

(제1 실시예)(First embodiment)

도 1에 도시된 처리 플로우에 따라서, 이하 본 발명의 일 형태를 설명한다. 망간 수용액(pH 0, 망간 농도 75g/L)을 250ml 준비하고, 28mass% 암모니아수를 50ml 추가하였다. 첨가 후 pH는 7.1이다. 이 망간액에 100ml/분의 유량으로 이산화탄소를 블로잉하였다. 이산화탄소의 블로잉을 계속하면 반응에 의해 pH가 내려가기 시작한다. 따라서, pH를 7 내지 8로 유지하도록 암모니아수를 천천히 첨가해 갔다. 액 중의 망간이 충분히 반응하도록, 이산화탄소의 블로잉은 3hr 행하였다. 이산화탄소 블로잉 중의 암모니아수의 첨가량은 50ml에 달하였다.According to the processing flow shown in FIG. 1, one embodiment of the present invention will be described below. 250 ml of aqueous manganese solution (pH 0, manganese concentration 75 g / L) was prepared, and 50 ml of 28 mass% ammonia water was added. The pH after addition is 7.1. Carbon dioxide was blown into this manganese liquid at a flow rate of 100 ml / min. If you continue to blow carbon dioxide, the reaction starts to lower the pH. Therefore, ammonia water was added slowly to maintain pH at 7-8. Blowing of carbon dioxide was performed for 3hr so that manganese in liquid might fully react. The amount of ammonia water added in the carbon dioxide blowing amounted to 50 ml.

이산화탄소 블로잉 후에 생성된 침전물을 여과하여 액상으로부터 분리하였다. 침전물은 건조 후, X선 회절(이하 XRD라고 칭함)을 행하였다. 실시예에 의해 얻어진 침전의 XRD 패턴을 도 2에 도시한다. XRD를 행한 바, 도 2에 나타내는 화살표와 같이, 탄산망간의 피크와 일치했다. 여과액을 ICP 발광에 의해 농도를 측정한 바, 망간 농도는 6ppm이었다. 이 결과로부터, 당초의 망간 수용액에 포함되는 망간의 거의 100%를 탄산망간으로서 회수할 수 있었던 것을 알 수 있었다. 탄산망간 중의 나트륨 불순물 농도를 측정한 바, 98mass ppm이었다.The precipitate formed after the carbon dioxide blowing was filtered off from the liquid phase. The precipitate was dried and then subjected to X-ray diffraction (hereinafter referred to as XRD). The XRD pattern of the precipitate obtained by the Example is shown in FIG. When XRD was performed, it matched with the peak of manganese carbonate like the arrow shown in FIG. The concentration of the filtrate was measured by ICP emission, and the manganese concentration was 6 ppm. From this result, it turned out that almost 100% of the manganese contained in original manganese aqueous solution was recoverable as manganese carbonate. The sodium impurity concentration in the manganese carbonate was measured and found to be 98 mass ppm.

(제1 비교예)(Comparative Example 1)

망간 수용액(pH 0, 망간 농도 75g/L)을 250ml 준비하고, 28mass% 암모니아수를 50ml 추가하였다. 첨가 후의 pH는 7.1이다. 이 망간액에 100ml/분의 유량으로 이산화탄소를 블로잉하였다. 이산화탄소의 블로잉을 계속하면 반응에 의해 pH가 내려가기 시작했다. 액 중의 망간이 충분히 반응하도록, 이산화탄소의 블로잉은 3hr 행하였다. pH는 6으로 저하되었다. 이산화탄소 블로잉 후에 생성된 침전물을 여과하여 액상으로부터 분리하였다. 침전물을 건조시킨 후 XRD를 행한 바, 탄산망간의 피크와 일치했다. 여과액을 ICP 발광에 의해 농도를 측정한 바, 망간 농도는 50g/L이었다. 이들의 결과로부터, 당초의 망간 수용액에 포함되는 망간의 약 33%를 탄산망간으로서 회수할 수 있었던 것을 알 수 있었다.250 ml of aqueous manganese solution (pH 0, manganese concentration 75 g / L) was prepared, and 50 ml of 28 mass% ammonia water was added. PH after addition is 7.1. Carbon dioxide was blown into this manganese liquid at a flow rate of 100 ml / min. As the carbon dioxide continued to blow, the pH began to drop by the reaction. Blowing of carbon dioxide was performed for 3hr so that manganese in liquid might fully react. pH dropped to 6. The precipitate formed after the carbon dioxide blowing was filtered off from the liquid phase. XRD was carried out after drying the precipitate, which coincided with the peak of manganese carbonate. The concentration of the filtrate was measured by ICP emission, and the manganese concentration was 50 g / L. From these results, it turned out that about 33% of manganese contained in the original aqueous solution of manganese was recoverable as manganese carbonate.

(제2 비교예)(Comparative Example 2)

망간 수용액(pH 0, 망간 농도 75g/L)을 250ml 준비하고, 28mass% 암모니아수를 50ml 추가하였다. 첨가 후의 pH는 7.1이다. 이 망간액에 탄산나트륨을 50g 추가하여 침전을 생성시켰다. 생성된 침전물을 여과하여 액상으로부터 분리하였다. 침전물을 건조시킨 후 XRD를 행한 바, 탄산망간의 피크와 일치했다. 여과액을 ICP 발광에 의해 농도를 측정한 바, 망간 농도는 5ppm 이하였다. 이들의 결과로부터, 당초의 망간 수용액에 포함되는 망간의 거의 100%를 탄산망간으로서 회수할 수 있었던 것을 알 수 있었다. 탄산망간 중의 나트륨 불순물 농도를 측정한 바, 5000ppm이었다.250 ml of aqueous manganese solution (pH 0, manganese concentration 75 g / L) was prepared, and 50 ml of 28 mass% ammonia water was added. PH after addition is 7.1. 50 g of sodium carbonate was added to this manganese solution to generate a precipitate. The resulting precipitate was separated from the liquid phase by filtration. XRD was carried out after drying the precipitate, which coincided with the peak of manganese carbonate. The concentration of the filtrate was measured by ICP emission, and the manganese concentration was 5 ppm or less. From these results, it turned out that almost 100% of the manganese contained in the original aqueous solution of manganese was recoverable as manganese carbonate. It was 5000 ppm when the sodium impurity concentration in manganese carbonate was measured.

(제3 비교예)(Third comparative example)

망간 수용액(pH 0, 망간 농도 75g/L)을 250ml 준비하였다. 이 망간액에 100ml/분의 유량으로 이산화탄소를 블로잉하였다. pH는 변화되지 않았다. 침전물의 생성은 관찰할 수 없었다. 여과액을 ICP 발광에 의해 농도를 측정한 바, 망간 농도는 75g/L이었다.
250 ml of an aqueous solution of manganese (pH 0, manganese concentration 75 g / L) was prepared. Carbon dioxide was blown into this manganese liquid at a flow rate of 100 ml / min. The pH did not change. The formation of precipitates could not be observed. The concentration of the filtrate was measured by ICP emission, and the concentration of manganese was 75 g / L.

Claims (4)

산성 망간 용액을 암모니아수로 pH를 7 내지 8로 조정하고, 상기 액에 탄산 가스를 블로잉하여, 탄산망간 중의 Na가 100mass ppm 이하인 탄산망간을 얻는 것을 특징으로 하는, 탄산망간의 제조 방법.A method of producing manganese carbonate, wherein the acidic manganese solution is adjusted to pH 7 to 8 with ammonia water, and carbon dioxide is blown into the liquid to obtain manganese carbonate having Na of 100 mass ppm or less in manganese carbonate. 삭제delete 제1항에 있어서, 탄산 가스 블로잉 중에 계속해서 암모니아수를 첨가하여 pH를 7 내지 8로 계속해서 유지하여, 탄산망간 중의 Na가 100mass ppm 이하인 탄산망간을 얻는 것을 특징으로 하는, 탄산망간의 제조 방법.The method for producing manganese carbonate according to claim 1, wherein ammonia water is continuously added during carbonic acid gas blowing to maintain the pH at 7 to 8 to obtain manganese carbonate having Na of 100 mass ppm or less. 삭제delete
KR20100063328A 2009-07-07 2010-07-01 Method for manufacturing manganese carbonate KR101274365B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-160300 2009-07-07
JP2009160300A JP5106488B2 (en) 2009-07-07 2009-07-07 Manufacturing method of manganese carbonate

Publications (2)

Publication Number Publication Date
KR20110004288A KR20110004288A (en) 2011-01-13
KR101274365B1 true KR101274365B1 (en) 2013-06-13

Family

ID=43594769

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100063328A KR101274365B1 (en) 2009-07-07 2010-07-01 Method for manufacturing manganese carbonate

Country Status (3)

Country Link
JP (1) JP5106488B2 (en)
KR (1) KR101274365B1 (en)
CN (1) CN101985365A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738956B1 (en) * 2015-10-23 2017-05-23 전남대학교산학협력단 Method for manufacturing electrolyte manganese metal from solution comprising manganese
FR3083701B1 (en) 2018-07-13 2020-08-14 Gifrer Barbezat OLEO-ALKALINE LINIMENT
CN109019694B (en) * 2018-10-25 2020-10-23 中国科学院青海盐湖研究所 Micro-nano structure spherical MnCO3Preparation method of (1)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011867A (en) * 1956-07-09 1961-12-05 Manganese Chemicals Corp Precipitation of manganese carbonate
JP2000191327A (en) 1998-12-25 2000-07-11 Japan Energy Corp Production of manganese carbonate
JP2000281347A (en) 1999-03-29 2000-10-10 Japan Energy Corp Fine particulate manganese carbonate and its production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626721A (en) * 1979-08-07 1981-03-14 Nippon Steel Corp Manufacture of manganese carbonate
JPH04108614A (en) * 1990-08-30 1992-04-09 Japan Metals & Chem Co Ltd Production of high purity manganese carbonate
JPH0760120A (en) * 1993-08-20 1995-03-07 Nippon Steel Corp Method for regenerating stack gas purifying catalyst
CN1159425A (en) * 1996-03-11 1997-09-17 长沙市环境保护研究所 Clean production technology for manganese carbonate
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
KR100688732B1 (en) * 2005-03-30 2007-03-02 에스케이 주식회사 Process of Precipitation for Spheric Manganese Carbonate and the products produced thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011867A (en) * 1956-07-09 1961-12-05 Manganese Chemicals Corp Precipitation of manganese carbonate
JP2000191327A (en) 1998-12-25 2000-07-11 Japan Energy Corp Production of manganese carbonate
JP2000281347A (en) 1999-03-29 2000-10-10 Japan Energy Corp Fine particulate manganese carbonate and its production

Also Published As

Publication number Publication date
CN101985365A (en) 2011-03-16
JP5106488B2 (en) 2012-12-26
JP2011016668A (en) 2011-01-27
KR20110004288A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
AU2011236094B2 (en) Production of high purity lithium compounds directly from lithium containing brines
US7157065B2 (en) Production of lithium compounds directly from lithium containing brines
US8057764B2 (en) Production of lithium compounds directly from lithium containing brines
US6921522B2 (en) Production of lithium compounds directly from lithium containing brines
US6936229B1 (en) Recovery of lithium compounds from brines
CN110785503B (en) Method for extracting lithium compound
CN115323196A (en) Processing of lithium-containing materials including HCl blasting
CA2868086C (en) Method for producing high-purity nickel sulfate
JP2019153562A (en) Lithium carbonate production method and lithium carbonate
KR101274365B1 (en) Method for manufacturing manganese carbonate
JP6656709B2 (en) Manufacturing method of zinc ingot
AU2014360655B2 (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
JP2009215623A (en) Method for recovering indium
CA3027979C (en) Method for recovering valuable metal sulfides
EA024717B1 (en) Process for zinc oxide production from ore
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
US20230365421A1 (en) Lithium carbonate recovery process
KR20150076274A (en) Method for removing magnesium impurities in a manganese compound manufacturing process
CN117897853A (en) Method for preparing secondary battery material from black material

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 7