KR101271534B1 - Porphyrins conjugated polymers and method for preparing thereof - Google Patents

Porphyrins conjugated polymers and method for preparing thereof Download PDF

Info

Publication number
KR101271534B1
KR101271534B1 KR1020110004897A KR20110004897A KR101271534B1 KR 101271534 B1 KR101271534 B1 KR 101271534B1 KR 1020110004897 A KR1020110004897 A KR 1020110004897A KR 20110004897 A KR20110004897 A KR 20110004897A KR 101271534 B1 KR101271534 B1 KR 101271534B1
Authority
KR
South Korea
Prior art keywords
porphyrin
compound
preparing
scheme
reacting
Prior art date
Application number
KR1020110004897A
Other languages
Korean (ko)
Other versions
KR20120099308A (en
Inventor
김희준
박부배
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020110004897A priority Critical patent/KR101271534B1/en
Publication of KR20120099308A publication Critical patent/KR20120099308A/en
Application granted granted Critical
Publication of KR101271534B1 publication Critical patent/KR101271534B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 태양 빛을 적외선 영역까지 활용하여 에너지변환 효율을 증대시킬 수 있는 포르피린계 공액 고분자 유도체 및 이의 제조방법에 관한 것이다. 보다 구체적으로 태양전지의 염료로서 사용될 수 있는 포르피린계 공액 고분자 및 이의 제조방법에 관한 것이다.
본 발명에 의한 포르피린계 공액 고분자는 태양전지에 있어서, low band gap을 가지는 염료로서 사용이 가능하여 태양의 빛을 적외선 영역까지 활용할 수 있는 바, 태양전지의 에너지변환 효율을 증대시킬 수 있다.
The present invention relates to a porphyrin-based conjugated polymer derivative capable of increasing energy conversion efficiency by utilizing solar light up to an infrared region, and a preparation method thereof. More specifically, the present invention relates to a porphyrin-based conjugated polymer that can be used as a dye of a solar cell, and a method of manufacturing the same.
The porphyrin-based conjugated polymer according to the present invention can be used as a dye having a low band gap in a solar cell and thus can utilize the sun's light to the infrared region, thereby increasing the energy conversion efficiency of the solar cell.

Description

태양전지용 포르피린계 공액 고분자 및 이의 제조방법 {Porphyrins conjugated polymers and method for preparing thereof} Porphyrin-based conjugated polymers for solar cells and preparation method thereof

본 발명은 태양 빛을 적외선 영역까지 활용하여 에너지변환 효율을 증대시킬 수 있는 포르피린계 공액 고분자 및 이의 제조방법에 관한 것이다. 보다 구체적으로 태양전지의 염료로서 사용될 수 있는 포르피린계 공액 고분자 및 이의 제조방법에 관한 것이다.The present invention relates to a porphyrin-based conjugated polymer capable of increasing energy conversion efficiency by utilizing solar light up to an infrared region, and a manufacturing method thereof. More specifically, the present invention relates to a porphyrin-based conjugated polymer that can be used as a dye of a solar cell, and a method of manufacturing the same.

자연계의 광합성 시스템은 매우 정교한 나노미터크기의 생체 공장이라 할 수 있다. 광합성 시스템은 지구상에 모든 생명체에 없어서는 안 될 화학에너지를 태양에너지로부터 전환하여 만들어 내고 있다. 이러한 생체공장의 핵심은 안테나 복합체 (집광 및 에너지 전달)와 반응센터 (전자 전달) 사이의 광으로부터 생성된 에너지와 전자의 단계적인 이동으로 설명할 수 있다.Nature's photosynthesis system is a very sophisticated nanometer-sized biological plant. Photosynthesis systems produce chemical energy from the sun that is indispensable to all living things on Earth. The core of this biofactory can be explained by the stepwise movement of energy and electrons generated from light between the antenna complex (condensing and energy transfer) and the reaction center (electron transfer).

자연계의 생체공장에서 이러한 다단계적인 에너지/전자이동으로 얻어지는 양자 수득률은 거의 100에 가깝다. 이러한 고효율을 갖는 광합성계를 인공적으로 합성하려는 시도가 최근 과학적, 기술적 측면에서 관심이 증폭되고 있다.Quantum yields obtained from such multi-step energy / electron transfer in natural biofactories are close to 100. Attempts to artificially synthesize photosynthetic systems having such high efficiency have recently been gaining attention in terms of science and technology.

광합성을 모방한 광촉매나 태양전지 등은 환경문제와 에너지문제를 풀어줄 해결책으로 여겨지고 있으며, 많은 연구자들이 인공광합성을 이용해 광 분자소자를 제조하고 특성을 파악하는 연구를 진행하고 있다.Photocatalysts and solar cells that mimic photosynthesis are considered as solutions to solve environmental and energy problems, and many researchers are conducting research to manufacture and characterize photomolecular devices using artificial photosynthesis.

인공광합성을 이용한 분자소자에서 태양에너지의 효과적인 전환을 위해선 자연계와 유사한 전자주개-전자받개가 포함되어 있는 분자가 합성되어야 한다.For the efficient conversion of solar energy in molecular devices using artificial photosynthesis, molecules containing electron donor-electron acceptors similar to the natural world must be synthesized.

포르피린은 생체 내에서 산화환원반응에 중요한 역할을 하는 색소성분을 구성하는 화합물의 일종으로 4개의 피롤 고리를 포함하는 거대 고리 화합물이다. 상기 포르피린은 장파장의 빛을 흡수하므로 레이저를 이용한 광역학 치료에 사용되고 있으며, 특히 최근의 유기 일렉트로닉스 분야의 눈부신 발전과 함께 유기트랜지스터, 유기태양전지와 같은 유기디바이스의 반도체재료로서의 응용연구가 활발히 진행되고 있다.Porphyrin is a type of compound that constitutes a pigment component that plays an important role in redox reactions in vivo and is a macrocyclic compound including four pyrrole rings. The porphyrin absorbs long wavelengths of light, and is therefore used for photodynamic therapy using laser. In particular, with recent remarkable developments in the field of organic electronics, research into applied organic devices such as organic transistors and organic solar cells as semiconductor materials has been actively conducted. have.

염료응답 태양전지는 광합성 원리를 이용한 고효율의 광전기화학적 태양전지로서 1991년 스위스 그라첼 그룹에 의해 최초 개발되었다. 루테늄계 착화합물을 염료로서 사용한 이 태양전지는 10%를 상회하는 에너지 변환 효율을 나타냄으로써 학계의 주목을 받았으나 착화합물계 염료의 가장 큰 문제점인 안정성이 떨어지는 한계점으로 인해 아직 상용화 되지 못 하고 있는 실정이다.Dye-response solar cells are high efficiency photoelectrochemical solar cells using the photosynthesis principle and were first developed by the Swiss Grachel Group in 1991. This solar cell using ruthenium-based complexes as dyes has attracted the attention of academics by exhibiting energy conversion efficiencies of more than 10%, but has not yet been commercialized due to the limitation of stability, the biggest problem of complex-based dyes.

이러한 문제점을 극복하기 위하여 새로운 유기 화합물들이 염료로서 연구되고 있으며, 그 중 광합성 물질로 잘 알려진 포르피린 화합물을 염료로서 사용하는 많은 연구가 있었으나 효율은 1~3% 정도로 높지 않았다. 이에 대해 영국의 임페리얼 (imperial) 대학의 듀런트 (Durrant) 연구팀은 루테늄계 착화합물에 비해 포르피린 염료가 효율이 낮은 이유는 인접한 포르피린 화합물 간의 쌍극자 쌍극자 인력에 의해 여기상태의 포르피린 염료가 바닥상태로 전환됨에 있다고 보고하였다.In order to overcome this problem, new organic compounds have been studied as dyes, and many studies using porphyrin compounds known as photosynthetic materials as dyes have been made, but the efficiency was not as high as 1 to 3%. Durrant and his colleagues at Imperial University in the UK say that porphyrin dyes are less efficient than ruthenium complexes because the dipole dipole attraction between adjacent porphyrin compounds converts the excited porphyrin dyes to the ground state. Reported.

상기 포르피린과 관련된 종래기술로는 일본공개공보 제2002-63949호에는 광전변환 특성을 갖는 포르피린계 공액 고분자로서 포르피린의 5, 10, 15, 20 위치에 페닐기가 치환된 포르피린계 공액 고분자를 개시하고 있다.Japanese Patent Laid-Open Publication No. 2002-63949 discloses porphyrin-based conjugated polymers having a phenyl group substituted at positions 5, 10, 15, and 20 of porphyrin as porphyrin-based conjugated polymers having photoelectric conversion characteristics. .

그러나, 하기의 포르피린 화합물은 포르피린 염료간의 여기전자의 재결합으로 인하여 낮은 에너지 변환 효율을 보이는 단점이 있다.However, the following porphyrin compounds have a disadvantage of showing low energy conversion efficiency due to recombination of exciton electrons between porphyrin dyes.

Figure 112011004064145-pat00001
Figure 112011004064145-pat00001

또한, 태양전지에서 에너지변환 효율을 높이기 위해서는 태양으로부터 들어오는 빛 에너지를 전기에너지로 바꾸어야 한다. 빛 에너지를 받아서 전기적으로 변환시키는 역할은 염료가 하기 때문에 태양의 모든 빛을 받는 염료의 개발이 시급하다. 즉, 현재 에너지변환 효율이 높은 염료들을 보면 흡수 영역이 가시광선 영역에 국한되어 있다. 이를 개선하기 위해서 다른 유기 물질에서는 가지지 않은 흡수 파장을 가진 포르피린계 공액 고분자를 이용한 염료를 개발한다면 고효율의 태양전지 개발이 가능할 것이다.
In addition, in order to increase the energy conversion efficiency in the solar cell, the light energy coming from the sun must be converted into electrical energy. Since dyes play a role in receiving and converting light energy, it is urgent to develop dyes that receive all the sun's light. In other words, when the dyes with high energy conversion efficiency are present, the absorption region is limited to the visible light region. In order to improve this problem, if a dye using porphyrin-based conjugated polymer having an absorption wavelength that other organic materials do not have, a high efficiency solar cell may be developed.

본 발명은 상기와 같은 문제점을 극복하기 위해서, 태양 빛을 적외선 영역까지 활용하여 에너지변환 효율을 증대시킬 수 있는 포르피린계 공액 고분자 및 이의 제조방법을 개발하기에 이르렀다.The present invention has led to the development of a porphyrin-based conjugated polymer and a method for producing the same, which can increase energy conversion efficiency by utilizing solar light in the infrared region.

본 발명의 목적은 태양전지의 염료로 사용하기 위한 포르피린계 공액 고분자 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a porphyrin-based conjugated polymer and its preparation method for use as a dye of a solar cell.

또한, 본 발명의 목적은 상기 포르피린계 공액 고분자를 포함하는 태양전지소자를 제공하는 것이다.It is also an object of the present invention to provide a solar cell device comprising the porphyrin-based conjugated polymer.

본 발명은 하기 화학식 1 내지 화학식 5로 표시되는, 포르피린계 공액 고분자를 제공한다.
[화학식 1]

Figure 112012081438393-pat00065


[화학식 2]


[화학식 3]
Figure 112012081438393-pat00067


[화학식 4]
Figure 112012081438393-pat00068


[화학식 5]
Figure 112012081438393-pat00069
The present invention provides a porphyrin-based conjugated polymer represented by the following Chemical Formulas 1 to 5.
[Formula 1]
Figure 112012081438393-pat00065


(2)


(3)
Figure 112012081438393-pat00067


[Chemical Formula 4]
Figure 112012081438393-pat00068


[Chemical Formula 5]
Figure 112012081438393-pat00069

상기 화학식 1 내지 5에서, n은 5~50의 정수이며,

Figure 112012081438393-pat00070
이다.In Chemical Formulas 1 to 5, n is an integer of 5 to 50,
Figure 112012081438393-pat00070
to be.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 1)의 제조방법은 하기 반응식 1이 바람직하다.
[반응식 1]

Figure 112012081438393-pat00071
The method of preparing the porphyrin-based conjugated polymer (Formula 1) is preferably the following Scheme 1.
[Reaction Scheme 1]
Figure 112012081438393-pat00071

상기 반응식 1에서, A)는 MgBr2; B)는 BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2, 3-트리메틸실릴프로피날(3-trimethylsilylpropynal); C)는 TBAF(Tetra-n-butylammonium fluoride), CaCl22H2O, THF(Tetrahydrofuran); D)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2이다.In Scheme 1, A) is MgBr 2; B) is BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2, 3-trimethylsilylpropynal ); C) is Tetra-n-butylammonium fluoride (TBAF), CaCl 2 2H 2 O, Tetrahydrofuran (THF); D) is CuCl, TMEDA (Tetramethylethylenediamine), CH 2 Cl 2 .

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 2)의 제조방법은 하기 반응식 2, 3이 순차적으로 수행되는 것이 바람직하다.
[반응식 2]

Figure 112012081438393-pat00072

상기 반응식 2에서 a)는 1-bromohexadecane, K2CO3, KI, DMF(Dimethylformamide); b)는 LiAlH4, THF(Tetrahydrofuran); c)는 PCC(pyridiniumchlorochromate), CH2Cl2; d)는 pyrrole, CH2Cl2; f)는 3-trimethylpropynal, BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2이다.

[반응식 3]
Figure 112012081438393-pat00073
In the method for preparing the porphyrin-based conjugated polymer (Formula 2), the following Schemes 2 and 3 are preferably performed sequentially.
[Reaction Scheme 2]
Figure 112012081438393-pat00072

A) in Scheme 2 is 1-bromohexadecane, K 2 CO 3 , KI, DMF (Dimethylformamide); b) is LiAlH 4 , THF (Tetrahydrofuran); c) is pyridinium chlorochromate (PCC), CH 2 Cl 2 ; d) is pyrrole, CH 2 Cl 2 ; f) is 3-trimethylpropynal, BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2 .

[Reaction Scheme 3]
Figure 112012081438393-pat00073

상기 반응식 3에서 a)는 Zn(OAc)2, CHCl3/MeOH; b)는 TBAF(Tetra-n-butylammonium fluoride), CH2Cl2; c)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2/pyridine이다.A) in Scheme 3 is Zn (OAc) 2 , CHCl 3 / MeOH; b) is Tetra-n-butylammonium fluoride (TBAF), CH 2 Cl 2 ; c) is CuCl, Tetramethylethylenediamine (TMEDA), CH 2 Cl 2 / pyridine.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 3)의 제조방법은 하기 반응식 4가 바람직하다.
[반응식 4]
The method of preparing the porphyrin-based conjugated polymer (Formula 3) is preferably the following Scheme 4.
[Reaction Scheme 4]

Figure 112012081438393-pat00074
Figure 112012081438393-pat00074

삭제delete

상기 포르피린계 공액 고분자 (화학식 4)의 제조방법은 하기 반응식 5가 바람직하다.
[반응식 5]

Figure 112012081438393-pat00075
The preparation method of the porphyrin-based conjugated polymer (Formula 4) is preferably the following Scheme 5.
Scheme 5
Figure 112012081438393-pat00075

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 5)의 제조방법은 하기 반응식 6이 바람직하다.
[반응식 6]
The method of preparing the porphyrin-based conjugated polymer (Formula 5) is preferably the following Scheme 6.
[Reaction Scheme 6]

Figure 112012081438393-pat00076
Figure 112012081438393-pat00076

삭제delete

본 발명은 또한 상기 화학식 1 내지 화학식 5로 표시되는 포르피린계 공액 고분자를 포함하는 태양전지 소자를 제공한다.The present invention also provides a solar cell device comprising a porphyrin-based conjugated polymer represented by Formula 1 to Formula 5.

상기 태양전지는 유기 태양전지 또는 염료감응형 태양전지인 것을 포함할 수 있다.The solar cell may include an organic solar cell or a dye-sensitized solar cell.

본 발명에 의한 포르피린계 공액 고분자는 태양전지에 있어서, low band gap을 가지는 염료로서 사용이 가능하여 태양의 빛을 적외선 영역까지 활용할 수 있는 바, 태양전지의 에너지변환 효율을 증대시킬 수 있다.The porphyrin-based conjugated polymer according to the present invention can be used as a dye having a low band gap in a solar cell and thus can utilize the sun's light to the infrared region, thereby increasing the energy conversion efficiency of the solar cell.

도 1은 Porphyrin의 구조 및 UV-vis 흡수 스펙트럼을 나타낸다.
도 2는 5,15-Bis-(2,4,6-trimethylphenyl)-10,20-bis-[(trimethylsilyl)] ethynyl porphyrin 1H NMR 스펙트럼에 관한 것이다.
도 3은 5,15-Bis-(2,4,6-trimethylphenyl)-10,20-bis(ethynyl) porphyrin
1H NMR 스펙트럼에 관한 것이다.
도 4는 UV-vis spectrum 에 관한 것이다 ((a) Monomer (용매 : THF)-5,15-Bis-(2,4,6-trimethylphenyl)-10,20-bis-[(trimethylsilyl)]ethynyl porphyrin (b) Polymer (용매 :THF)-5,15-Bis-(2,4,6-trimethylphenyl) -10,20-bis(ethynyl) porphyrin).
도 5는 Methyl 3,4,5-Tris(hexadecyloxy)benzoate 1H NMR 스펙트럼이다.
도 6은 3,4,5-Tris(hexadecyloxy)benzyl alcohol 1H NMR 스펙트럼이다.
도 7은 3,4,5-Tris(hexadecyloxy)benzaldehyde 1H NMR 스펙트럼이다.
도 8은 2,2'-{[3,4,5-Tris(hexadecyloxy)phenyl]methylene}bis(1H-pyrrole) 1H NMR 스펙트럼이다.
도 9는 긴 사슬 포르피린 단량체의 1H NMR speactrum이다.
도 10은 긴 사슬 포르피린 고분자의 1H NMR speactrum이다.
도 11은 UV-vis spectrum (용매 : CH2Cl2) : (a) Monomer (b) Polymer이다.
도 12는 Fluorescence spectra이다 (용매 : CH2Cl2 , λexc = 426 nm)((a) 포르피린 단량체 (b) 포르피린 고분자).
도 13은 Copolymer 1의 분광학적 특징을 나타낸다 ((a) Anthracene의 UV-vis spectrum (용매 : CH2Cl2) (b) Copolymer 1의 UV-vis spectrum (용매 : CH2Cl2) (c) Fluorescence spectrum (용매 : CH2Cl2 , λexc = 426 nm)).
도 14는 Copolymer 2의 분광학적 특징을 나타낸다 ((a) Phenothiazinebenzothiadiazol의 UV-vis spectrum (용매 : CH2Cl2) (b) Copolymer 2의 UV-vis spectrum (용매 : CH2Cl2) (c) Fluorescence spectrum (용매 : CH2Cl2 , λexc = 426 nm).
도 15는 Copolymer 3의 분광학적 특징을 나타낸다 ((a) Phenothiazine의 UV-vis spectrum (용매 : CH2Cl2) (b) Copolymer 3의 UV-vis spectrum (용매 : CH2Cl2) (c) Fluorescence spectrum (용매 : CH2Cl2 , λexc = 426 nm)).
도 16은 Copolymer 1 1H NMR 스펙트럼을 나타낸다.
도 17은 Copolymer 2 1H NMR 스펙트럼을 나타낸다.
도 18은 Copolymer 3 1H NMR 스펙트럼을 나타낸다.
도 19는 TGA 그래프 (20℃/min)이다 ((a) Zn-polymer (b) Copolymer 1).
도 20은 Cyclic voltammograms이다 ((a) Zn-polymer (b) Copolymer 1).
도 21은 Photocurrent action spectra이다 ((a) Zn-polymer (b) Copolymer).
도 22는 J-V 곡선이다 (Copolymer 1+PC70BM(1:5), AM 1.5, 100 mW/cm2).
도 23은 본 발명의 일실시예에 의한 포르피린계 공액 고분자이다.
1 shows the structure and UV-vis absorption spectrum of Porphyrin.
Figure 2 relates to 5,15-Bis- (2,4,6-trimethylphenyl) -10,20-bis-[(trimethylsilyl)] ethynyl porphyrin 1 H NMR spectra.
3 is 5,15-Bis- (2,4,6-trimethylphenyl) -10,20-bis (ethynyl) porphyrin
Relates to a 1 H NMR spectrum.
Figure 4 relates to the UV-vis spectrum ((a) Monomer (solvent: THF) -5,15-Bis- (2,4,6-trimethylphenyl) -10,20-bis-[(trimethylsilyl)] ethynyl porphyrin (b) Polymer (solvent: THF) -5,15-Bis- (2,4,6-trimethylphenyl) -10,20-bis (ethynyl) porphyrin).
5 is Methyl 3,4,5-Tris (hexadecyloxy) benzoate 1 H NMR spectrum.
Figure 6 is a 3,4,5-Tris (hexadecyloxy) benzyl alcohol 1 H NMR spectrum.
7 is a 3,4,5-Tris (hexadecyloxy) benzaldehyde 1 H NMR spectrum.
FIG. 8 is a 2,2 ′-{[3,4,5-Tris (hexadecyloxy) phenyl] methylene} bis ( 1H- pyrrole) 1 H NMR spectrum.
9 is a 1 H NMR speactrum of long chain porphyrin monomers.
10 is a 1 H NMR speactrum of long chain porphyrin polymers.
11 is a UV-vis spectrum (solvent: CH 2 Cl 2 ): (a) Monomer (b) Polymer.
12 is a Fluorescence spectra (solvent: CH 2 Cl 2 , λ exc = 426 nm) ((a) porphyrin monomer (b) porphyrin polymer).
Figure 13 shows the spectroscopic characteristics of Copolymer 1 ((a) UV-vis spectrum of Anthracene (solvent: CH 2 Cl 2 ) (b) UV-vis spectrum of Copolymer 1 (solvent: CH 2 Cl 2 ) (c) Fluorescence spectrum (solvent: CH 2 Cl 2 , λ exc = 426 nm).
14 shows the spectroscopic characteristics of Copolymer 2 ((a) UV-vis spectrum of Phenothiazinebenzothiadiazol (solvent: CH 2 Cl 2 ) (b) UV-vis spectrum of Copolymer 2 (solvent: CH 2 Cl 2 ) (c) Fluorescence spectrum (solvent: CH 2 Cl 2 , λ exc = 426 nm).
15 shows the spectroscopic characteristics of Copolymer 3 ((a) UV-vis spectrum of Phenothiazine (solvent: CH 2 Cl 2 ) (b) UV-vis spectrum of Copolymer 3 (solvent: CH 2 Cl 2 ) (c) Fluorescence spectrum (solvent: CH 2 Cl 2 , λ exc = 426 nm).
16 shows Copolymer 1 1 H NMR spectrum.
17 shows Copolymer 2 1 H NMR spectrum.
18 shows Copolymer 3 1 H NMR spectrum.
19 is a TGA graph (20 ° C./min) ((a) Zn-polymer (b) Copolymer 1).
20 is Cyclic voltammograms ((a) Zn-polymer (b) Copolymer 1).
21 is a photocurrent action spectra ((a) Zn-polymer (b) Copolymer).
22 is JV curve (Copolymer 1 + PC 70 BM (1: 5), AM 1.5, 100 mW / cm 2 ).
23 is a porphyrin-based conjugated polymer according to one embodiment of the present invention.

본 발명은 태양전지의 염료로 사용하기 위한 포르피린계 공액 고분자를 제공한다. 태양전지에서 에너지변환 효율을 높이기 위해서는 태양으로부터 들어오는 빛 에너지를 전기에너지로 바꾸어야 한다. 즉, 현재 에너지변환 효율이 높은 염료들을 보면 흡수 영역이 가시광선 영역에 국한되어 있으나, 다른 유기 물질에서는 가지지 않은 흡수 파장을 가진 포르피린계 공액 고분자를 이용한 염료를 제공하고자 하는 것이다.The present invention provides a porphyrin-based conjugated polymer for use as a dye of a solar cell. In order to improve energy conversion efficiency in solar cells, light energy coming from the sun must be converted into electric energy. In other words, the dyes with high energy conversion efficiency currently provide a dye using a porphyrin-based conjugated polymer having an absorption wavelength that is limited to the visible light region but is not included in other organic materials.

포르피린은 4개의 피롤 (pyrrole) 단위들이 메틴 (methine) 기들로 연결되어 있는 거대 고리 화합물의 총칭이다. 이 거대 고리 화합물은 도 1에서 나타낸 것과 같은 포르핀 (porphin)을 모체로 한다. 포르피린 거대 고리는 11개의 이중결합이 conjugation되어 있고, Huckel의 "4n + 2"의 방향족성 (aromaticity)을 만족하는 평면 구조를 가진다. Porphin의 meso와 β-pyrrole 위치에 여러 작용기들을 도입하여 다양한 porphyrins 화합물들을 합성할 수 있다.Porphyrin is a generic term for macrocyclic compounds in which four pyrrole units are connected by methine groups. This macrocyclic compound is based on porphin as shown in FIG. 1. Porphyrinic macrocycles are conjugated with 11 double bonds and have a planar structure that satisfies the aromaticity of Huckel's "4n + 2". Various porphyrins compounds can be synthesized by introducing several functional groups at the meso and β-pyrrole positions of porphin.

또한, porphin 내부의 수소이온 2개를 잃어 2가 음이온이 되어 중심의 빈 공간에 금속이온을 결합하여 metalloporphyrins을 형성한다. 이때 porphyrin은 보통 네 자리 주개 리간드로 작용하고, 중심 금속이온은 축 방향으로 다른 리간드와 결합할 수 있다. 자외선-가시광선 영역에서 빛을 흡수하여 400 nm 근처에서 "Soret" 이라 불리 우는 강한 흡수 띠를 나타내고, 500~600 nm 사이에서 "Q"라 불리 우는 약한 흡수 띠를 나타낸다. 또한 높은 conjugation으로 인해서 전기 화학적인 특성도 뛰어나 광전자 물질로 주목 되고 있다.
In addition, two hydrogen ions inside porphin are lost and become divalent anions to form metalloporphyrins by binding metal ions to the empty space in the center. Porphyrin usually acts as a four-digit donor ligand, and central metal ions can bind to other ligands in the axial direction. It absorbs light in the ultraviolet-visible region and exhibits a strong absorption band called "Soret" near 400 nm and a weak absorption band called "Q" between 500 and 600 nm. In addition, due to its high conjugation, it is attracting attention as an optoelectronic material due to its excellent electrochemical properties.

보다 구체적으로, 본 발명은 하기 화학식 1 내지 화학식 5로 표시되는, 포르피린계 공액 고분자를 제공한다.
[화학식 1]

Figure 112012081438393-pat00077


[화학식 2]
Figure 112012081438393-pat00078


[화학식 3]
Figure 112012081438393-pat00079


[화학식 4]
Figure 112012081438393-pat00080


[화학식 5]
Figure 112012081438393-pat00081
More specifically, the present invention provides a porphyrin-based conjugated polymer represented by the following Chemical Formulas 1 to 5.
[Formula 1]
Figure 112012081438393-pat00077


(2)
Figure 112012081438393-pat00078


(3)
Figure 112012081438393-pat00079


[Chemical Formula 4]
Figure 112012081438393-pat00080


[Chemical Formula 5]
Figure 112012081438393-pat00081

상기 화학식 1 내지 5에서, n은 5~50의 정수이며,

Figure 112012081438393-pat00082
이다.In Chemical Formulas 1 to 5, n is an integer of 5 to 50,
Figure 112012081438393-pat00082
to be.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

또한 본 발명은 상기 화학식 1 내지 화학식 5로 표시되는, 포르피린계 공액 고분자의 제조방법을 제공한다.In another aspect, the present invention provides a method for preparing a porphyrin-based conjugated polymer represented by Formula 1 to Formula 5.

상기 포르피린계 공액 고분자 (화학식 1)의 제조방법은 하기 반응식 1이 바람직하다.
[반응식 1]

Figure 112012081438393-pat00083
The method of preparing the porphyrin-based conjugated polymer (Formula 1) is preferably the following Scheme 1.
[Reaction Scheme 1]
Figure 112012081438393-pat00083

상기 반응식 1에서, A)는 MgBr2; B)는 BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2, 3-트리메틸실릴프로피날(3-trimethylsilylpropynal); C)는 TBAF(Tetra-n-butylammonium fluoride), CaCl22H2O, THF(Tetrahydrofuran); D)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2이다.In Scheme 1, A) is MgBr 2; B) is BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2, 3-trimethylsilylpropynal ); C) is Tetra-n-butylammonium fluoride (TBAF), CaCl 2 2H 2 O, Tetrahydrofuran (THF); D) is CuCl, TMEDA (Tetramethylethylenediamine), CH 2 Cl 2 .

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 2)의 제조방법은 하기 반응식 2, 3이 순차적으로 수행되는 것이 바람직하다.
[반응식 2]

Figure 112012081438393-pat00084

상기 반응식 2에서 a)는 1-bromohexadecane, K2CO3, KI, DMF(Dimethylformamide); b)는 LiAlH4, THF(Tetrahydrofuran); c)는 PCC(pyridiniumchlorochromate), CH2Cl2; d)는 pyrrole, CH2Cl2; f)는 3-trimethylpropynal, BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2이다.

[반응식 3]
Figure 112012081438393-pat00085
In the method for preparing the porphyrin-based conjugated polymer (Formula 2), the following Schemes 2 and 3 are preferably performed sequentially.
[Reaction Scheme 2]
Figure 112012081438393-pat00084

A) in Scheme 2 is 1-bromohexadecane, K 2 CO 3 , KI, DMF (Dimethylformamide); b) is LiAlH 4 , THF (Tetrahydrofuran); c) is pyridinium chlorochromate (PCC), CH 2 Cl 2 ; d) is pyrrole, CH 2 Cl 2 ; f) is 3-trimethylpropynal, BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2 .

[Reaction Scheme 3]
Figure 112012081438393-pat00085

상기 반응식 3에서 a)는 Zn(OAc)2, CHCl3/MeOH; b)는 TBAF(Tetra-n-butylammonium fluoride), CH2Cl2; c)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2/pyridine이다.A) in Scheme 3 is Zn (OAc) 2 , CHCl 3 / MeOH; b) is Tetra-n-butylammonium fluoride (TBAF), CH 2 Cl 2 ; c) is CuCl, Tetramethylethylenediamine (TMEDA), CH 2 Cl 2 / pyridine.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 3)의 제조방법은 하기 반응식 4가 바람직하다.
[반응식 4]
The method of preparing the porphyrin-based conjugated polymer (Formula 3) is preferably the following Scheme 4.
[Reaction Scheme 4]

Figure 112012081438393-pat00086
Figure 112012081438393-pat00086

삭제delete

상기 포르피린계 공액 고분자 (화학식 4)의 제조방법은 하기 반응식 5이 바람직하다.
[반응식 5]

Figure 112012081438393-pat00087
The preparation method of the porphyrin-based conjugated polymer (Formula 4) is preferably the following Scheme 5.
Scheme 5
Figure 112012081438393-pat00087

삭제delete

삭제delete

상기 포르피린계 공액 고분자 (화학식 5)의 제조방법은 하기 반응식 6이 바람직하다.
[반응식 6]
The method of preparing the porphyrin-based conjugated polymer (Formula 5) is preferably the following Scheme 6.
[Reaction Scheme 6]

Figure 112012081438393-pat00088

Figure 112012081438393-pat00088

삭제delete

또한, 본 발명은 또한 상기 화학식 1 내지 화학식 5 로 표시되는 포르피린계 공액 고분자를 포함하는 태양전지 소자를 제공한다.In addition, the present invention also provides a solar cell device comprising a porphyrin-based conjugated polymer represented by Formula 1 to Formula 5.

상기 태양전지는 유기 태양전지 또는 염료감응형 태양전지인 것을 포함할 수 있다. The solar cell may include an organic solar cell or a dye-sensitized solar cell.

본 발명에서의 태양전지 (太陽電池) 또는 광전지란 태양 에너지를 전기 에너지로 변환할 수 있는 장치를 말한다. PN 접합면을 가지는 반도체 접합 영역에 금지대폭보다 큰 에너지의 빛이 조사되면 전자와 정공이 발생하여 접합영역에 형성된 내부전장이 전자는 N형 반도체로, 정공은 P형 반도체로 이동시켜 기전력이 발생한다. N형 반도체, P형 반도체 각각 부착된 전극이 부극과 정극이 되어 직류전류를 취하는 것이 가능해진다.The solar cell or photovoltaic cell in this invention means the apparatus which can convert solar energy into electrical energy. When the semiconductor junction region having the PN junction surface is irradiated with energy of greater than the prohibition band, electrons and holes are generated, and the internal electric field formed in the junction region moves electrons to N-type semiconductor and holes to P-type semiconductor to generate electromotive force. do. The electrodes to which the N-type semiconductor and the P-type semiconductor are respectively attached become the negative electrode and the positive electrode, so that the direct current can be taken.

본 발명에서의 유기 태양전지란 전자주개 (electron donner, D) 특성과 전자 받개 (electron acceptor, A) 특성을 갖는 유기물로 구성되어 있어, 빛을 흡수하면 전자-정공쌍을 생성하고 전자-정공쌍은 D-A계면으로 이동하여 전하가 분리되고 전자는 전자받개로, 정공은 전자주개로 이동하여 전류를 발생시키는 것을 말한다.The organic solar cell of the present invention is composed of an organic material having an electron donor (D) and an electron acceptor (A) characteristic, and when absorbing light, an electron-hole pair is generated and an electron-hole pair Is moved to the DA interface to separate charges, electrons to electron acceptors, and holes to electron donors to generate current.

본 발명에서의 염료감응형 태양전지란 표면에 염료 분자가 화학적으로 흡착된 n 형 나노입자 반도체 산화물 전극이 빛을 흡수하면 염료 분자는 전자-정공쌍을 생성하고, 전자는 반도체 산화물의 전도띠로 주입되며, 반도체 산화물 전극으로 주입된 전자는 나노 입자간 계면을 통하여 투명 전도성 막으로 전달되어 전류를 발생시키게 되는 것을 말한다. 염료 분자에 생성된 정공은 산화-환원 전해질에 의해서 전자를 받아 다시 환원된다.
Dye-sensitized solar cell in the present invention, when the n-type nanoparticle semiconductor oxide electrode with dye molecules chemically adsorbed on the surface absorbs light, the dye molecules produce electron-hole pairs, and electrons are injected into the conduction band of the semiconductor oxide The electrons injected into the semiconductor oxide electrode are transferred to the transparent conductive film through the nanoparticle interface to generate a current. Holes generated in the dye molecule are electrons are reduced by the redox electrolyte and reduced again.

이하, 본 발명을 실시예를 통하여 상세히 설명하도록 한다. 하기 실시예는 본 발명을 설명하기 위한 일 예에 지나지 않으며, 이에 의하여 본 발명의 범위가 제한되는 것은 아니다.
Hereinafter, the present invention will be described in detail through examples. The following examples are only illustrative of the present invention, and the scope of the present invention is not limited thereby.

<< 실시예Example 1> 1>

1. 실험재료 및 측정기기1. Experimental materials and measuring equipment

마그네슘 브로마이드 (Magnesium bromide(98%)), N,N,N‘,N'-테트라메틸에틸렌 다이 아민 (N,N,N‘,N'- tetramethylethylene diamine(99%)), 2,4,6- 트리메틸벤즈알데하이드 (2,4,6-Trimthylbenzaldehyde(98%)), 테트라부틸-암모늄 플루오라이드 (tetrabutyl-ammonium fluoride), 염화 구리 (copper chloride(99.995%)), 9,10-디브로모-안트라센 (9,10-Dibromo-anthracene(98%))은 Aldrich 사에서 구매하였으며, pyridium chlorochromate (98%), 피롤 (pyrrole (98%)), LiAlH4 (97%), 3-trimethylsilylpropynal (97%) 과 1-bromohexadecane (97%)은 Alfa Aesar 사에서 구매하였다. 건조 DMF, THF 및 chloroform을 CaH2 으로 증류에 의해 수득하였다. 또한 건조 피롤을 calcium hydride (CaH2)으로 진공 증류에 의해 수득하였다. Magnesium bromide (98%), N , N , N ' , N' -tetramethylethylene diamine ( N , N , N' , N'- tetramethylethylene diamine (99%)), 2,4,6 Trimethylbenzaldehyde (2,4,6-Trimthylbenzaldehyde (98%)), tetrabutyl-ammonium fluoride, copper chloride (99.995%), 9,10-dibromo- Anthracene (9,10-Dibromo-anthracene (98%)) was purchased from Aldrich, pyridium chlorochromate (98%), pyrrole (98%), LiAlH 4 (97%), 3-trimethylsilylpropynal (97% ) And 1-bromohexadecane (97%) were purchased from Alfa Aesar. Dry DMF, THF and chloroform were obtained by distillation with CaH 2 . Dry pyrrole was also obtained by vacuum distillation with calcium hydride (CaH 2 ).

UV-vis 흡광 스펙트럼은 SHIMADZU 사의 UV-VIS-NIR spectrophotometer UV-3600을 사용하여 얻었다. 1H NMR 스펙트럼은 Bruker 사의 AVANCE III 400 Micro Bay 분광기를 사용하여 얻었다. Fluorescence 스펙트럼은 SHIMADZU 사의 RF-5301PC spectrofluorophotometer를 사용하여 얻었다. 고분자의 분자량 측정은 Waters사의 Alliance e2695를 사용하였고, TGA분석은 TA Instruments사의 Auto-TGA Q500으로 측정하였다.
UV-vis absorption spectra were obtained using a UV-VIS-NIR spectrophotometer UV-3600 manufactured by SHIMADZU. 1 H NMR spectra were obtained using an AVANCE III 400 Micro Bay spectrometer from Bruker. Fluorescence spectra were obtained using an RF-5301PC spectrofluorophotometer from SHIMADZU. Molecular weight of the polymer was measured by Alliance e2695 of Waters, and TGA analysis was performed by Auto-TGA Q500 of TA Instruments.

2. 2. FreeFree basebase -- PorphyrinPorphyrin PolymerPolymer 합성synthesis

5-5- MesityldipyrromethaneMesityldipyrromethane (1)의 합성(1) Synthesis of

500-mL의 single-neck round-bottomed 플라스크 안의 mesitaldehyde (3.71 g, 2.5 mmol) 및 피롤 (173.5 mL, 25.0 mmol)의 혼합물을 10분 동안 아르곤을 사용하여 진공으로 만들었다.A mixture of mesitaldehyde (3.71 g, 2.5 mmol) and pyrrole (173.5 mL, 25.0 mmol) in a 500-mL single-neck round-bottomed flask was vacuumed with argon for 10 minutes.

MgBr2 (2.3 g, 12.5 mmol)이 첨가되었고, 혼합물을 상온에서 1.5시간 동안 교반하였다. 황갈색 혼합물을 분말 NaOH (5g, 0.125 mol)로 처리하였다. 혼합물을 1시간 동안 교반한 후 여과하였다. 여과액을 농축하여 피롤을 회수하였다. 피롤을 제거함으로써 수득한 정제되지 않은 고체를 20% 에틸 아세테이트/헥산 (7×100mL) 으로 추출하였다. 추출물을 실리카 패드 (pad of silica (80g))를 통해 중력 여과 하였다. 용리된 용액을 노란 고체를 수득하기 위해서 농축하였다. 결정체[ethanol/water(4:1)]는 엷은 황색 결정(3.79g, 57%)으로 수득되었다.MgBr 2 (2.3 g, 12.5 mmol) was added and the mixture was stirred at ambient temperature for 1.5 hours. The tan mixture was treated with powdered NaOH (5 g, 0.125 mol). The mixture was stirred for 1 hour and then filtered. The filtrate was concentrated to recover pyrrole. The crude solid obtained by removing pyrrole was extracted with 20% ethyl acetate / hexanes (7 × 100 mL). The extract was gravity filtered through a pad of silica (80 g). The eluted solution was concentrated to yield a yellow solid. Crystals [ethanol / water (4: 1)] were obtained as pale yellow crystals (3.79 g, 57%).

1H NMR (CDCl3, 400 MHz) d 7.90 (br s, 2H, NH), 6.8(s, 2H, m-Ph), 6.68 (br dd, 2H, pyrrole H), 6.14 (dd, 2H, pyrrole H), 5.98 (dd, 2H, pyrrole H), 5.90 (s, 1H, benzyl H), 2.26(s, 3H, p-ph), 2.0(s, 6H, o-ph)
1 H NMR (CDCl 3 , 400 MHz) d 7.90 (br s, 2H, NH), 6.8 (s, 2H, m -Ph), 6.68 (br dd, 2H, pyrrole H), 6.14 (dd, 2H, pyrrole H), 5.98 (dd, 2H, pyrrole H), 5.90 (s, 1H, benzyl H), 2.26 (s, 3H, p -ph), 2.0 (s, 6H, o -ph)

5,15-5,15- BisBis (2,4,6-(2,4,6- trimethylphenyltrimethylphenyl )-10,20-Bis[() -10,20-Bis [( trimethylsilyltrimethylsilyl )])] ethynylethynyl porphyrinporphyrin (2)의 합성Synthesis of (2)

아르곤 하에, BF3OEt2 (25 ㎕, 0.2 mmol)를 5-Mesityldipyrromethane (1) (529 mg, 2.0mmol)) 및 3-trimethylsilylpropynal (275 ㎕, 2.0 mmol)가 용해된 CHCl3 (200 mL) 용액 내로 첨가하였고 상기 용액을 상온에서 1분 동안 교반하였다. 또한, DDQ (340 mg, 0.15 mmol)를 첨가하였고 5분간 더 지속적으로 교반하였다. 용액을 short plug of silica를 통해 여과하였고, 용매는 환산 압력 하에서 보라색 결정 고체 (168 mg, 11%)를 산출하기 위해 제거되었다. Under argon, a solution of CHCl 3 (200 mL) in which BF 3 OEt 2 (25 μl, 0.2 mmol) was dissolved in 5-Mesityldipyrromethane (1) (529 mg, 2.0 mmol)) and 3-trimethylsilylpropynal (275 μl, 2.0 mmol) Was added and the solution was stirred at room temperature for 1 minute. In addition, DDQ (340 mg, 0.15 mmol) was added and stirring was continued for 5 more minutes. The solution was filtered through a short plug of silica and the solvent was removed to yield a purple crystalline solid (168 mg, 11%) under reduced pressure.

1H NMR (CDCl3, 400 MHz) d 9.51~9.50 (d, 4H, b-pyrrolic H), 8.63~8.62 (d, 4H, b-pyrrolic H), 7.26 (s, 4H, m-Ph), 2.61(s, 6H, p-ph), 1.81(s, 12H, o-ph), -2.16 (s, 2H, NH).
1 H NMR (CDCl 3, 400 MHz) d 9.51 ~ 9.50 (d, 4H, b -pyrrolic H), 8.63 ~ 8.62 (d, 4H, b -pyrrolic H), 7.26 (s, 4H, m -Ph), 2.61 (s, 6H, p -ph), 1.81 (s, 12H, o -ph), -2.16 (s, 2H, NH).

5,15-5,15- BisBis (2,4,6-(2,4,6- trimethylphenyltrimethylphenyl )-10,20-) -10,20- BisBis (( ethylnylethylnyl )) porphyrinporphyrin (3)의 합성 Synthesis of (3)

TBAF (tetrabutyl-ammonium fluoride, 0.136 mL, 0.47 mmol)을 30분 동안 THF 용액 (100 mg, 0.135 mmol) 으로 한 방울씩 첨가하였다. 그 후 CaCl2·2H2O를 첨가하였고, 30분 동안 더 지속적으로 교반하였다. 용매가 제거된 이후에, 생성물을 CH2Cl2 H2O로 추출하였다. 유기층을 수득하였고, 무수의 Na2SO4로 건조하였다. 여과액을 자줏빛 고체 (68 mg, 84%)(5)를 산출하기 위해 증발시켰다.TBAF (tetrabutyl-ammonium fluoride, 0.136 mL, 0.47 mmol) was added dropwise with THF solution (100 mg, 0.135 mmol) for 30 minutes. Then CaCl 2 · 2H 2 O was added and stirring was continued for 30 minutes more. After the solvent was removed, the product was CH 2 Cl 2 And Extracted with H 2 O. An organic layer was obtained and dried over anhydrous Na 2 SO 4 . The filtrate was evaporated to yield a purple solid (68 mg, 84%) (5) .

1H NMR (CDCl3, 400 MHz) d 9.56~9.55 (d, 4H, b-pyrrolic H), 8.66~8.67 (d, 4H, b-pyrrolic H), 7.26 (s, 4H, m-Ph), 4.14(s, 2H, ethynyl), 2.61(s, 6H, p-ph), 1.81(s, 12H, o-ph), -2.16 (s, 2H, NH).
1 H NMR (CDCl 3, 400 MHz) d 9.56 ~ 9.55 (d, 4H, b -pyrrolic H), 8.66 ~ 8.67 (d, 4H, b -pyrrolic H), 7.26 (s, 4H, m -Ph), 4.14 (s, 2H, ethynyl), 2.61 (s, 6H, p -ph), 1.81 (s, 12H, o -ph), -2.16 (s, 2H, NH).

PorphyrinsPorphyrins PolymerPolymer (4)의 합성Synthesis of 4

CuCl (27 mg, 0.28 mmol) 및 TMEDA (N,N,N‘,N' -tetramethylethylenediamine, 0.042 ml, 0.28 mmol) 을 (3)(20 mg, 0.034 mmol)이 용해된 CH2Cl2 용액 내로 첨가하자 거품이 일어났다. 30분 이후에, 반응 혼합물을 CH2Cl2 및 H2O로 추출하였다. 유기층 (blue color)을 수득하였고 무수의 Na2SO4로 건조하였다. 여과액을 브라운 고체를 수득하기 위해 증발하였다.
CuCl (27 mg, 0.28 mmol) and TMEDA ( N , N , N ' , N'- tetramethylethylenediamine, 0.042 ml, 0.28 mmol) (3) CH 2 Cl 2 dissolved in (20 mg, 0.034 mmol) Foaming occurred when added into solution. After 30 minutes, the reaction mixture was extracted with CH 2 Cl 2 and H 2 O. An organic layer (blue color) was obtained and dried over anhydrous Na 2 SO 4 . The filtrate was evaporated to yield a brown solid.

3. 3. ZincZinc (Ⅱ) (II) PorphyrinPorphyrin PolymerPolymer 의 합성Synthesis of

MethylMethyl 3,4,5- 3,4,5- tristris (( hexadecyloxyhexadecyloxy )) benzoatebenzoate (5)(5) 의 합성Synthesis of

dry DMF (300 ml) 내의 trihydroxylbenzoate methylester (3.0 g, 16.2mmol), 1-bromohexadecane (30.0 g, 98.4 mmol), K2CO3 (26.7 g, 194.4 mmol), 및 KI (16.2 g, 98.4 mmol)의 혼합물을 아르곤 분위기 하에서 24시간 동안 환류 가열하였다. DMF을 진공 하에 증발시키고 정제되지 않은 생성물은 CH2Cl2 (1 L)에 용해되었고 물로 씻어 내었다. 용매는 진공 하에 증발되었다. 잔류물은 CH2Cl2 의 최소량에 용해되었고, MeOH로 주입시킴으로써 침전시켰다. 여과시키고 MeOH로 씻어 내고, 건조시킴으로써 하얀 분말(10.8 g, 77 %)을 수득하였다. of trihydroxylbenzoate methylester (3.0 g, 16.2 mmol), 1-bromohexadecane (30.0 g, 98.4 mmol), K 2 CO 3 (26.7 g, 194.4 mmol), and KI (16.2 g, 98.4 mmol) in dry DMF (300 ml) The mixture was heated to reflux for 24 h under argon atmosphere. DMF was evaporated in vacuo and the crude product was dissolved in CH 2 Cl 2 (1 L) and washed with water. The solvent was evaporated in vacuo. The residue was dissolved in a minimum amount of CH 2 Cl 2 , Precipitate by injecting with MeOH. Filtration, washing with MeOH and drying gave a white powder (10.8 g, 77%).

1H NMR (CDCl3, 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9 H), 1.25-1.30 (m, 72H), 1.40-1.55 (m, 6H), 1.65-1.85 (m, 6H), 3.88 (s, 3H), 4.00 (t, J = 6.36 Hz, 6 H), 7.24 ppm (s, 2H)
1 H NMR (CDCl 3 , 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9 H), 1.25-1.30 (m, 72H), 1.40-1.55 (m, 6H), 1.65-1.85 (m, 6H ), 3.88 (s, 3H), 4.00 (t, J = 6.36 Hz, 6 H), 7.24 ppm (s, 2H)

3,4,5-3,4,5- TrisTris (( hexadecyloxyhexadecyloxy )benzyl benzyl alcoholalcohol (6)의 합성Synthesis of 6

무수의 THF(200 ml) 용액 내의 Methyl 3,4,5-tris(hexadecyloxy) benzoate(5)(33.0 g, 38.5 mmol)를 0℃에서 무수의 THF (100 ml) 용액 내 LiAlH4 (3.66 g, 96.2 mmol) 부유물에 한 방울씩 첨가하였다. 그 다음 결과물 혼합물을 상온으로 데우고, 2시간 동안 교반하고, 초과의 LiAlH4 식히기 위해서 물을 첨가하기 전에 0℃로 다시 냉각시켰다. CH2Cl2 (100 ml)로 혼합물을 추출하고 이어 CH2Cl2 를 첨가하였다. 혼합된 추출물은 H2O로 씻어내고 Na2SO4 로 건조시키고 여과하였다. 여과액을 증발시켜 건조 시키고 하얀 고체인 3,4,5-Tris(hexadecyloxy) benzyl alcohol(6)(28 g, 88 %)을 수득하였다. Methyl 3,4,5-tris (hexadecyloxy) benzoate (5) (33.0 g, 38.5 mmol) in anhydrous THF (200 ml) solution was added to LiAlH 4 in anhydrous THF (100 ml) solution at 0 ° C. (3.66 g, 96.2 mmol) was added dropwise to the suspension. The resulting mixture is then warmed to room temperature, stirred for 2 hours, excess LiAlH 4 of Cooled back to 0 ° C. before adding water to cool. CH 2 Cl 2 The mixture was extracted with (100 ml) and then CH 2 Cl 2 was added. Mixed extracts Washed with H 2 O, dried over Na 2 SO 4 and filtered. The filtrate was evaporated to dryness to afford 3,4,5-Tris (hexadecyloxy) benzyl alcohol (6) (28 g, 88%) as a white solid.

1H NMR (CDCl3, 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9H), 1.25-1.30 (m, 72H), 1.46-1.50 (m. 6H), 1.67-1.82 (m, 6H), 3.89-3.99 (m, 6H), 4.58 (d, J = 5.51 Hz, 2H), 6.55 ppm (s, 2H)
1 H NMR (CDCl 3 , 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9H), 1.25-1.30 (m, 72H), 1.46-1.50 (m. 6H), 1.67-1.82 (m, 6H) , 3.89-3.99 (m, 6H), 4.58 (d, J = 5.51 Hz, 2H), 6.55 ppm (s, 2H)

3,4,5-3,4,5- TrisTris (( hexadecyloxyhexadecyloxy )) benzaldehydebenzaldehyde (7)의 합성(7) Synthesis of

3,4,5-Tris(hexadecyloxy)benzyl alcohol(6)(20 g, 24.0 mol)이 용해된 methylene chloride (200 ml) 용액을 10℃에서 pyridine chlorochromate (10.4 g, 48.0 mol) 부유물 및 sodium acetate이 혼합된 methylene chloride (100 ml) 내로 한 방울씩 첨가하였다. 4시간 동안 교반한 후에, diethyl ether (100 ml)를 첨가하였고 다음에 1시간 동안 교반하였다. 고체를 여과시키고 diethyl ether로 씻어 내었다. 혼합된 여과액을 SiO2 크로마토그래피 (methylene chloride)하였고, 다음에 용매는 진공 증류(20.0 g, 99 %) 하에 제거되었다.Methylene chloride (200 ml) solution of 3,4,5-Tris (hexadecyloxy) benzyl alcohol (6) (20 g, 24.0 mol) was dissolved in pyridine chlorochromate (10.4 g, 48.0 mol) suspension and sodium acetate at 10 ℃. Dropwise was added into the mixed methylene chloride (100 ml). After stirring for 4 hours, diethyl ether (100 ml) was added followed by stirring for 1 hour. The solid was filtered off and washed with diethyl ether. The mixed filtrate was purified by SiO 2 Chromatography (methylene chloride), and then the solvent was removed under vacuum distillation (20.0 g, 99%).

1H NMR (CDCl3, 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9H), 1.25-1.30 (m, 72H), 1.46-1.50 (m, 6H), 1.67-1.82 (m, 6H), 4.08-3.99 (m, 6H), 7.08 (s, 2H), 9.83 ppm (s, 1H)
1 H NMR (CDCl 3 , 400 MHz): δ 0.87 (t, J = 6.71 Hz, 9H), 1.25-1.30 (m, 72H), 1.46-1.50 (m, 6H), 1.67-1.82 (m, 6H) , 4.08-3.99 (m, 6H), 7.08 (s, 2H), 9.83 ppm (s, 1H)

2,2?-{[3,4,5-Tris(2,2?-{[3,4,5-Tris ( hexadecyloxyhexadecyloxy )) phenylphenyl ]] methylenemethylene }} bisbis (1(One HH -- pyrrolepyrrole )(8)의 합성Synthesis of 8

dry pyrrole (200 mL, 3.08 mmol) 내에 용해된 3,4,5-tris(hexadecyloxy)benzaldehyde 7 (10 g, 12.0 mmol) 용액을 진공상태가 되도록 하였고 10분 동안 아르곤으로 3차례 가스를 제거하였다. Trifluoroacetic acid (0.6 mL, 7.7 mmol)을 첨가하였고, 오렌지 용액을 수득하기 위해 반응을 20분 동안 교반하였다. dichloromethane로 용액을 희석하였고, NaOH 수용액과 물로 씻어 내었다. 유기층은 무수의 Na2SO4 로 건조되었고, 여과되었다. low-boiling 용매 제거 후에, 초과 pyrrole를 진공 하에서 증류에 의해 회수하였다. 잔류물은 CH2Cl2 (100 ml)에 용해되었고 MeOH 첨가에 의해 침전시켰다. 부유물은 여과되었고 진공 하에 건조 되어 하얀 분말(11.0 g, 97 %)을 수득하였다.A solution of 3,4,5-tris (hexadecyloxy) benzaldehyde 7 (10 g, 12.0 mmol) dissolved in dry pyrrole (200 mL, 3.08 mmol) was evacuated and degassed three times with argon for 10 minutes. Trifluoroacetic acid (0.6 mL, 7.7 mmol) was added and the reaction stirred for 20 minutes to obtain an orange solution. The solution was diluted with dichloromethane and washed with aqueous NaOH solution and water. The organic layer was dried over anhydrous Na 2 SO 4 and filtered. After removal of the low-boiling solvent, excess pyrrole was recovered by distillation under vacuum. The residue is CH 2 Cl 2 (100 ml) and precipitated by addition of MeOH. The suspension was filtered and dried under vacuum to give a white powder (11.0 g, 97%).

1H NMR (CDCl3, 400 MHz) δ 0.87 (t, J = 6.71 Hz, 9H), 1.24-1.32 (m, 72H), 1.46-1.50 (m, 6H), 1.68-1.86 (m, 6H), 3.81-3.90 (m, 6H), 5.41 (s, 1H), 5.90 (m, 2H), 6.16 (m, 2H), 6.71 (m, 2H), 6.80 (s, 2H), 8.15 ppm (brs, 2H)
1 H NMR (CDCl 3 , 400 MHz) δ 0.87 (t, J = 6.71 Hz, 9H), 1.24-1.32 (m, 72H), 1.46-1.50 (m, 6H), 1.68-1.86 (m, 6H), 3.81-3.90 (m, 6H), 5.41 (s, 1H), 5.90 (m, 2H), 6.16 (m, 2H), 6.71 (m, 2H), 6.80 (s, 2H), 8.15 ppm (brs, 2H )

5,15-5,15- BisBis -[3,4,5-tris(-[3,4,5-tris ( hexadecyloxyhexadecyloxy )) phenylphenyl ]-10,20-bis[2-(trimethylsilyl)ethynyl]porphyrin(9)의 합성] -10,20-bis [2- (trimethylsilyl) ethynyl] porphyrin (9) Synthesis

BF3·OEt2 (0.39 mL)을 0℃에서 dipyrromethane (8) (13.4 g, 14.2 mmol) 및 trimethylsilylpropynal (3.1 mL, 22.1 mmol)이 혼합되고 가스가 제거된 CH2Cl2 (1.4 L) 용액으로 첨가하였다. 0℃에서 1시간 동안 교반한 후에, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ; 5.5 g, 24.2 mmol)을 첨가하였고 상온에서 30분 동안 교반을 계속하였다. 반응 혼합물을 농축하였고 생성물은 용리액으로서 CH2Cl2/hexane (1:1)을 사용한 실리카겔 크로마토그래피를 사용함으로써, 정제하였다. 자주색 고체 (6.5 g, 43 %)인 순수 생성물을 수득하였다. BF 3 · OEt 2 (0.39 mL) was mixed with dipyrromethane (8) (13.4 g, 14.2 mmol) and trimethylsilylpropynal (3.1 mL, 22.1 mmol) and degassed CH 2 Cl 2 (1.4 L) at 0 ° C. Added. After stirring for 1 hour at 0 ° C., 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ; 5.5 g, 24.2 mmol) was added and stirring was continued at room temperature for 30 minutes. The reaction mixture was concentrated and the product was purified by using silica gel chromatography using CH 2 Cl 2 / hexane (1: 1) as eluent. Pure product was obtained which was a purple solid (6.5 g, 43%).

1H NMR (CDCl3, 400 MHz): δ 2.20 (s, 2H), 0.60 (s, 18H), 0.85-0.88 (m, 18H), 1.88-1.21 (m, 144H), 4.11 (m, 8H), 4.30 (m, 4H), 7.38 (s, 4H), 8.92 (d, J = 4.4 Hz, 4H), 9.58 ppm (d, J = 4.4 Hz, 4H)
1 H NMR (CDCl 3 , 400 MHz): δ 2.20 (s, 2H), 0.60 (s, 18H), 0.85-0.88 (m, 18H), 1.88-1.21 (m, 144H), 4.11 (m, 8H) , 4.30 (m, 4H), 7.38 (s, 4H), 8.92 (d, J = 4.4 Hz, 4H), 9.58 ppm (d, J = 4.4 Hz, 4H)

{5,15-{5,15- BisBis -[3,4,5-tris(-[3,4,5-tris ( hexadecyloxyhexadecyloxy )) phenylphenyl ]-10,20-bis[2-(trimethylsilyl)ethynyl]porphinato}-zinc(Ⅱ)(10)의 합성 Synthesis of] -10,20-bis [2- (trimethylsilyl) ethynyl] porphinato} -zinc (II) (10)

Zn(OAc)2·2H2O (1.32 g, 7.2 mmol)이 용해된 MeOH (50 mL) 용액을 (9) (5.0 g, 2.4 mmol)이 용해된 CHCl3 (250 mL)로 첨가시켰고 혼합물을 상온에서 4시간 동안 교반시켰다. 용매는 진공에서 제거되었다. 잔류물은 CH2Cl2에 용해되었고 셀라이트를 통해 여과하였다. 여과액의 용매는 정제되지 않은 생성물을 수득하기 위해서 환산 압력하에서 증발되었다. 이후에 생성물 결정체 고체 (4.9 g, 95 %)를 수득하기 위해서 CH2Cl2/MeOH 용액으로부터 재결정화되었다. A solution of MeOH (50 mL) in Zn (OAc) 2 H 2 O (1.32 g, 7.2 mmol) was added with CHCl 3 (250 mL) in (9) (5.0 g, 2.4 mmol) and the mixture was Stir at room temperature for 4 hours. The solvent was removed in vacuo. The residue was dissolved in CH 2 Cl 2 and filtered through celite. The solvent of the filtrate was evaporated under reduced pressure to yield the crude product. It was then recrystallized from CH 2 Cl 2 / MeOH solution to yield product crystalline solid (4.9 g, 95%).

1H NMR (CDCl3, 400 MHz): δ 0.60 (s, 18H), 0.85-0.88 (m, 18H), 2.00-1.21 (m, 144H), 4.11-4.07 (m, 8H), 4.26-4.30 (m, 4H), 7.38 (s, 4H), 8.97 (d, J = 4.4 Hz, 4H), 9.64 ppm (d, J = 4.4 Hz, 4H)
1 H NMR (CDCl 3 , 400 MHz): δ 0.60 (s, 18H), 0.85-0.88 (m, 18H), 2.00-1.21 (m, 144H), 4.11-4.07 (m, 8H), 4.26-4.30 ( m, 4H), 7.38 (s, 4H), 8.97 (d, J = 4.4 Hz, 4H), 9.64 ppm (d, J = 4.4 Hz, 4H)

{5,15-Bis[3,4,5-tris({5,15-Bis [3,4,5-tris ( hexadecyloxyhexadecyloxy )) phenylphenyl ]-10,20-bis(] -10,20-bis ( ethynylethynyl )) porphinatoporphinato }-zinc(Ⅱ)(11)의 합성}-Synthesis of zinc (II) (11)

TBAF (98 mL, 1.0 m in THF, 0.098 mmol)는 (10) (1.0 g, 0.46 mmol)이 용해된 CH2Cl2 (150 mL) 용액 내로 첨가되었다. 30분 후에, CaCl2·2H2O 은 첨가되었고 혼합물은 건조하기 위해 증발되었다. 반응 혼합물은 물로 씻어냈고, 유기 층은 무수의 magnesium sulfate로 건조되었고, 용매는 환산 압력 하에 제거되었다. CH2Cl2/MeOH로 재결정화 후에 생성물(910 mg, 95 %)은 수득되었다.TBAF (98 mL, 1.0 m in THF, 0.098 mmol) was added into a solution of CH 2 Cl 2 (150 mL) in which (10) (1.0 g, 0.46 mmol) was dissolved. After 30 minutes, CaCl 2 · 2H 2 O was added and the mixture was evaporated to dry. The reaction mixture was washed with water, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. After recrystallization with CH 2 Cl 2 / MeOH the product (910 mg, 95%) was obtained.

1H NMR (CDCl3, 400 MHz): δ 0.85-0.88 (m, 18H), 2.00-1.21 (m, 144H), 4.11-3.95 (m, 8H), 4.16 (s, 2H), 4.30-4.20 (m, 4H), 7.35 (s, 4H), 9.05 (d, J = 4.4 Hz, 4 H), 9.72 ppm (d, J = 4.4 Hz, 4H)
1 H NMR (CDCl 3 , 400 MHz): δ 0.85-0.88 (m, 18H), 2.00-1.21 (m, 144H), 4.11-3.95 (m, 8H), 4.16 (s, 2H), 4.30-4.20 ( m, 4H), 7.35 (s , 4H), 9.05 (d, J = 4.4 Hz, 4 H), 9.72 ppm (d, J = 4.4 Hz, 4H)

PolymerPolymer -- zinczinc (Ⅱ)(12)의 합성Synthesis of (II) (12)

CuCl (1.02 g, 10.27 mmol) 및 TMEDA (1.55 mL, 10.27 mmol)을 (11) (0.25 g, 0.12 mmol)이 용해된 CH2Cl2 (200 mL) 및 피리딘 (1.9 mL) 혼합용액 내로 첨가하여 격렬하게 교반 하였고, 건조 공기를 통과시켰다. 30분 후에, 반응 혼합물은 물로 반복적으로 씻어내고 용매를 증발시켰다. 잔류물을 chloroform/1% pyridine 최소량에 용해 시켰고 메탄올의 첨가에 의해 침전시켰다. 침전물을 메탄올 (2×50 mL)로 두 번 씻어냈고, 고분자를 산출하기 위해 진공으로 건조시켰다.CuCl (1.02 g, 10.27 mmol) and TMEDA (1.55 mL, 10.27 mmol) were added into a mixture of CH 2 Cl 2 (200 mL) and pyridine (1.9 mL) in which (11) (0.25 g, 0.12 mmol) was dissolved. The mixture was stirred vigorously and passed through dry air. After 30 minutes, the reaction mixture was washed repeatedly with water and the solvent was evaporated. The residue was dissolved in a minimum amount of chloroform / 1% pyridine and precipitated by the addition of methanol. The precipitate was washed twice with methanol (2 × 50 mL) and dried in vacuo to yield a polymer.

1H NMR (CDCl3/1% [D5]pyridine, 400 MHz): δ 0.86-0.81 (m,18 H), 2.00-1.19 (m, 144H), 4.19 (brs, 8H), 4.35 (brs, 4H), 7.42 (s, 4H), 9.08 (brs, 4H), 9.90 ppm (brs, 4H)
1 H NMR (CDCl 3 /1% [D 5 ] pyridine, 400 MHz): δ 0.86-0.81 (m, 18 H), 2.00-1.19 (m, 144H), 4.19 (brs, 8H), 4.35 (brs, 4H), 7.42 (s, 4H), 9.08 (brs, 4H), 9.90 ppm (brs, 4H)

4. 4. CopolymerCopolymer 의 합성Synthesis of

Poly[Poly [ porphyrinporphyrin -- altbottom -- anthraceneanthracene ](13)의 합성(] (13) CopolymerCopolymer 1) One)

아르곤 하에 무수의 toluene/triethylamine (1:1, 10 mL) 용액 내 혼합물 (7) (500mg, 0.25mmol), 9,10-dibromoanthracene (73mg, 0.25mmol), tri(dibenzyldeneacetone)dipalladium (23mg, 0.025mmol), 및 triphenylarsine (38mg, 0.125mmol)를 50 mL round-bottom flask에 넣었고, 반응 혼합물을 2일 동안 환류 시켰다. 용매를 환산 압력 하에서 건조시키기 위해서 증발시켰다. 정제되지 않은 잔류물은 CH2Cl2 을 용리액으로 실리카 겔을 사용하여 크로마토크래피하였다. 용매는 증발되었고 잔류물은 클로로포름의 최소량으로 용해되었고 메탄올으로 침전시켰다. 침전물을 methanol (2×50 mL)로 두 번 씻어내고 고분자를 수득하기 위해서 진공으로 건조시켰다.
Mixture in anhydrous toluene / triethylamine (1: 1, 10 mL) solution under argon (7) (500 mg, 0.25 mmol), 9,10-dibromoanthracene (73 mg, 0.25 mmol), tri (dibenzyldeneacetone) dipalladium (23 mg, 0.025 mmol ), And triphenylarsine (38 mg, 0.125 mmol) were placed in a 50 mL round-bottom flask, and the reaction mixture was refluxed for 2 days. The solvent was evaporated to dry under reduced pressure. The crude residue was CH 2 Cl 2 Was chromatographed using silica gel as eluent. The solvent was evaporated and the residue was dissolved to a minimum amount of chloroform and precipitated with methanol. The precipitate was washed twice with methanol (2 × 50 mL) and dried in vacuo to yield a polymer.

Poly[Poly [ porphyrinporphyrin -- altbottom -- phenothiazinephenothiazine ](14)의 합성((14) CopolymerCopolymer 2) 2)

Poly[porphyrin-alt-phenothiazine]를 상기 방법 (Poly[porphyrin-alt- anthracene] 제조 방법)과 동일한 방법으로 합성하였다.
Poly [porphyrin- alt- phenothiazine] was synthesized in the same manner as the above method (Poly [porphyrin- alt -anthracene] production method).

Poly[Poly [ porphyrinporphyrin -- altbottom -- benzothiadiazolebenzothiadiazole ](15)의 합성(Of (15) CopolymerCopolymer 3) 3)

Poly[porphyrin-alt-benzothiadiazole]를 상기 방법 (Poly[porphyrin-alt- anthracene] 제조 방법)과 동일한 방법으로 합성하였다.
Poly [porphyrin- alt- benzothiadiazole] was synthesized in the same manner as the above method (Poly [porphyrin- alt -anthracene] production method).

5. 결과5. Results

FreeFree basebase -- PorphyrinPorphyrin PolymerPolymer

포르피린 단위체들의 중합반응을 통하여 고분자를 합성, 공액화를 확장하였다. 포르피린계 공액 고분자를 이용하여 포르피린 고분자 Free base-Porphyrin Polymer을 하기 반응식 1을 따라 합성하였다.
[반응식 1]

Figure 112012081438393-pat00089
Polymerization of porphyrin units resulted in the synthesis and conjugation of polymers. Porphyrin-based free polymers were synthesized according to Scheme 1 using porphyrin-based conjugated polymers.
[Reaction Scheme 1]
Figure 112012081438393-pat00089

상기 반응식 1에서, A)는 MgBr2; B)는 BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2, 3-트리메틸실릴프로피날(3-trimethylsilylpropynal); C)는 TBAF(Tetra-n-butylammonium fluoride), CaCl22H2O, THF(Tetrahydrofuran); D)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2이다.In Scheme 1, A) is MgBr 2; B) is BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2, 3-trimethylsilylpropynal ); C) is Tetra-n-butylammonium fluoride (TBAF), CaCl 2 2H 2 O, Tetrahydrofuran (THF); D) is CuCl, TMEDA (Tetramethylethylenediamine), CH 2 Cl 2 .

삭제delete

삭제delete

포르피린 고분자를 합성하기 위하여 2,4,6-trimethylbenzaldehyde와 과량의 pyrrole을 이용하여 5-mesityldipyrromethane을 합성하였다. dipyrromethane의 경우 합성 촉매를 TFA, InCl3 등을 사용하지만 aldehyde의 종류에 따라서 수득율이 차이가 났다. 원하는 물질이 아닌 다른 물질이 생성됨을 확인하였고, 이 물질은 tripyrromethane으로 판단되었다. 또한 과량의 pyrrole을 사용함으로 distillation을 하여 dipyrromethane과 pyrrole을 분리하였다. 이때 외부 온도를 40-50℃를 유지하여 분리하였고, 이보다 고온에서 증류를 시킬 경우 dipyrromethane과 pyrrole이 함께 증류되어 수득율이 낮아지게 된다.To synthesize the porphyrin polymer, 5-mesityldipyrromethane was synthesized using 2,4,6-trimethylbenzaldehyde and excess pyrrole. In the case of dipyrromethane, the synthesis catalyst used TFA, InCl 3, etc., but the yield was different depending on the type of aldehyde. It was confirmed that a substance other than the desired substance was produced, which was determined as tripyrromethane. In addition, distillation was performed by using excess pyrrole to separate dipyrromethane and pyrrole. At this time, the external temperature was maintained by maintaining 40-50 ℃, when distillation at a higher temperature than the dipyrromethane and pyrrole is distilled together and the yield is lowered.

합성된 5-mesityldipyrromethane 과 3-trimethylsilylpropynal을 사용하여 Lindsey's method 반응으로 진행하였다. 이렇게 합성된 5,15-bis-[3,4,5-tris(hexadecyloxy)phenyl]-10,20-bis[2-(trimethylsilyl)ethynyl]porphyrin을 고분자의 단량체로 사용하기 위하여 보호 그룹인 TMS 그룹을 TBAF을 사용하여 제거 하였다. 반응 여부 확인은 TLC를 이용하여 확인하고 반응을 종료하였다. 도 3 1H-NMR 을 통하여 알 수 있듯이 보호기가 제거되면서 도 2에서 나타나는 0.6 ppm peak가 도 3에서는 4.1 ppm 정도에서 나타났다.The synthesized 5-mesityldipyrromethane and 3-trimethylsilylpropynal were used for the Lindsey's method. TMS group which is a protecting group to use 5,15-bis- [3,4,5-tris (hexadecyloxy) phenyl] -10,20-bis [2- (trimethylsilyl) ethynyl] porphyrin synthesized as a monomer of a polymer Was removed using TBAF. The reaction was confirmed using TLC and the reaction was terminated. As can be seen from 1 H-NMR, the protecting group was removed and the 0.6 ppm peak shown in FIG. 2 appeared at about 4.1 ppm in FIG. 3.

이렇게 합성된 포르피린 단량체를 Glaser-Hay coupling을 통해 포르피린 고분자를 합성하였다. 고분자 합성 과정에서 TLC를 이용하여 포르피린 단량체가 없을 확인하고 반응을 종료하였다. 반응종료 후 UV-vis spectrum과 1H-NMR을 이용하여 합성 여부를 확인하였다. The porphyrin monomer thus synthesized was a porphyrin polymer through Glaser-Hay coupling. In the process of polymer synthesis, TLC was used to confirm that no porphyrin monomer was present and the reaction was terminated. After completion of the reaction was confirmed whether the synthesis using UV-vis spectrum and 1 H-NMR.

도 4에서 보면 monomer의 경우 400nm 근처에 강한 흡수 (Soret band)가 나타나는 것을 볼 수 있으며, 500~700 nm 사이에서 약한 흡수 (Q band)가 나타났다. 하지만 포르피린 고분자의 경우 ‘Soret band’와 ‘Q band’가 red shift하고 영역이 넓어진 것을 확인할 수 있었다. 그리고 ‘Q band’의 경우 흡수 강도를 ‘Soret band’와 비교하여 볼 때, momomer에 비하여 polymer가 높아진 것을 알 수 있다. red shift한 것은 분자의 conjugation이 확장된 것을 의미하고, 고분자의 분자량이 증가 할수록 즉, 분자의 conjugation이 확장될수록 ‘Q band’의 흡수 강도는 ‘Soret band’와 비교하여 증가함을 알 수 있었다.In Figure 4 it can be seen that the strong absorption (Soret band) appears in the vicinity of 400nm monomer, the weak absorption (Q band) appeared between 500 ~ 700 nm. However, in the case of porphyrin polymer, 'Soret band' and 'Q band' red shifted and the area was widened. In the case of the 'Q band', the absorption intensity is compared with the 'Soret band', indicating that the polymer is higher than the momomer. The red shift means that the conjugation of the molecule is extended, and the absorption intensity of the 'Q band' increases as the molecular weight of the polymer increases, that is, the conjugation of the molecule increases.

하지만 이 포르피린 polymer의 경우 용해도가 좋지 않아 고분자의 분자량 증가에 용이하지 않았다. 반응 시간이 길어질수록 분자량은 증가하고 이에 따라 일정 분자량 이상이 되면 용해도가 떨어져 고체 형태로 침전이 일어남을 알게 되었다.
However, the porphyrin polymer had poor solubility, which was not easy to increase the molecular weight of the polymer. The longer the reaction time was, the higher the molecular weight, and thus, when the molecular weight was higher than a certain molecular weight, the solubility was found to be precipitated as a solid.

ZincZinc (Ⅱ) (II) PorphyrinPorphyrin PolymerPolymer

앞의 free base 포르피린 고분자의 단점을 보안하기 위하여 용해도 증가를 위해서 긴 사슬을 도입하기로 하였다. 긴 사슬을 이용하여 포르피린 고분자를 합성하여 용해도를 증가시킨 논문을 참고하여 합성을 시작하였다.
[반응식 2]
In order to secure the shortcomings of the free base porphyrin polymer, a long chain was introduced to increase the solubility. The synthesis was started by referring to a paper that increased the solubility by synthesizing the porphyrin polymer using a long chain.
[Reaction Scheme 2]

Figure 112012081438393-pat00090
Figure 112012081438393-pat00090

삭제delete

상기 반응식 2에서 a)는 1-bromohexadecane, K2CO3, KI, DMF(Dimethylformamide); b)는 LiAlH4, THF(Tetrahydrofuran); c)는 PCC(pyridiniumchlorochromate), CH2Cl2; d)는 pyrrole, CH2Cl2; f)는 3-trimethylpropynal, BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2이다.A) in Scheme 2 is 1-bromohexadecane, K 2 CO 3 , KI, DMF (Dimethylformamide); b) is LiAlH 4 , THF (Tetrahydrofuran); c) is pyridinium chlorochromate (PCC), CH 2 Cl 2 ; d) is pyrrole, CH 2 Cl 2 ; f) is 3-trimethylpropynal, BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2 .

먼저 긴 사슬이 치환된 aldehyde를 만들기 위해서 alkylation 반응을 진행하였다. 생성물을 1H-NMR을 측정하여 보면 2 ~ 0.8 ppm에서 긴 사슬기가 나타났다 (도 5). First, an alkylation reaction was performed to make aldehyde substituted with a long chain. 1 H-NMR measurement of the product showed a long chain at 2 ~ 0.8 ppm (Fig. 5).

그 다음 benzoate를 alcohol로 만드는 반응을 진행하였다. 여기서 주의해야 할 것은 Lithium aluminium hydride (LiAlH4)는 수분에 민감하기 때문에 조심해야 하며, 반응 종료를 위해서 quenching을 할 때 소량씩 장시간에 걸쳐서 처리해야 한다. 그리고 추출과정에서 water와 층 분리가 잘되지 않기 때문에 NaCl 또는 NaHCO3를 사용하면 편리하게 얻을 수 있다. 이 또한 1H-NMR을 측정하여보면 benzoate에서 나타난 3.8ppm에서 -OCH3 peak가 사라지고, 4.5ppm 영역에서 새로운 peak가 나타났다 (도 6). Then the reaction was made to make benzoate alcohol. It should be noted that Lithium aluminum hydride (LiAlH 4 ) is sensitive to moisture and should be treated with care for a long time in small amounts when quenching to complete the reaction. In addition, NaCl or NaHCO 3 can be conveniently used because the separation of water and layers is difficult during the extraction process. In addition, when measured by 1 H-NMR, -OCH 3 at 3.8 ppm shown in benzoate The peak disappeared and a new peak appeared in the 4.5 ppm region (FIG. 6).

Benzaldehyde는 pyridium chlorochromate (PCC)를 사용하여 쉽게 합성을 할 수있었다. 위의 과정을 거쳐 합성한 물질들은 1H-NMR을 통하여 합성 여부를 확인하였다. 4.5ppm 영역의 peak가 사라지고, 9.8ppm 영역에서 aldehyde peak가 나타났다 (도 7). Benzaldehyde could be easily synthesized using pyridium chlorochromate (PCC). The materials synthesized through the above process were confirmed by 1 H-NMR. The peak in the 4.5 ppm region disappeared, and the aldehyde peak appeared in the 9.8 ppm region (FIG. 7).

이렇게 만들어진 aldehyde와 pyrrole을 사용하여 dipyrromethane을 만들었다. 과량의 pyrrole을 사용하기 때문에 1H-NMR의 aldehyde peak를 보고 합성 여부를 판단 할 수 있었다 (도 8). Dipyrromethane was made using aldehyde and pyrrole. Since excess pyrrole was used, the synthesis of the aldehyde peak of 1 H-NMR could be determined (FIG. 8).

합성 된 dipyrromethane 과 3-trimethylsilylpropynal을 사용하여 Lindsey?s method 반응으로 진행하였다.
[반응식 3]

Figure 112012081438393-pat00091
The synthesized dipyrromethane and 3-trimethylsilylpropynal were used for the Lindsey? S method.
[Reaction Scheme 3]
Figure 112012081438393-pat00091

상기 반응식 3에서 a)는 Zn(OAc)2, CHCl3/MeOH; b)는 TBAF(Tetra-n-butylammonium fluoride), CH2Cl2; c)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2/pyridine이다.
A) in Scheme 3 is Zn (OAc) 2 , CHCl 3 / MeOH; b) is Tetra-n-butylammonium fluoride (TBAF), CH 2 Cl 2 ; c) is CuCl, Tetramethylethylenediamine (TMEDA), CH 2 Cl 2 / pyridine.

삭제delete

삭제delete

고분자의 단량체로 사용하기 위하여 보호 그룹인 TMS를 TBAF을 사용하여 보호그룹을 제거하였다 (반응식 3-Zn(Ⅱ)-Porphyrin Polymer 합성). In order to use the monomer as a polymer, the protecting group TMS was removed using TBAF (Scheme 3-Zn (II) -Porphyrin Polymer synthesis).

도 9에서 보면 0.6 ppm의 1H NMR peak가 보호기를 제거함으로 인하여 4.1 ppm에서 새로운 peak가 나타나게 된다. 합성된 고분자 단량체를 이용하여 Glaser-Hay coupling으로 포르피린 고분자를 합성하였다. TLC를 이용하여 포르피린 단량체가 없을 확인하고 반응을 종료하였다. 단량체가 없어지기까지는 반응시간이 길었다.In FIG. 9, a new peak appears at 4.1 ppm due to removal of the protecting group from 0.6 ppm of 1 H NMR peak. Porphyrin polymer was synthesized by Glaser-Hay coupling using the synthesized polymer monomer. TLC was used to confirm the absence of porphyrin monomer and the reaction was terminated. The reaction time was long until the monomer disappeared.

고분자 중합반응의 반응 시간이 길어져도 분자량 증가에는 크게 관여하지 않음을 실험결과 알게 되었다.
Experimental results show that even if the reaction time of the polymer polymerization reaction is prolonged, it does not significantly influence molecular weight increase.

도 10에서 1H NMR에서 보면 peak가 전체적으로 폭이 넓게 나타남을 볼 수 있다. 이것은 중합반응 전의 포르피린 단위체 하나하나의 환경이 동일하여 공명신호가 일정하게 나오지만 중합반응을 통하여 고분자가 합성되면 포르피린 단위체들의 하나하나의 주위환경이 다르게 된다. 이것으로 고분자의 중합반응이 이루어졌음을 알 수 있었다. As shown in 1 H NMR in Figure 10 it can be seen that the peak is wide overall. This is because the environment of each porphyrin unit before the polymerization reaction is the same, the resonance signal is constant, but when the polymer is synthesized through the polymerization reaction, the surrounding environment of each porphyrin unit is different. It was found that the polymerization of the polymer was carried out.

Porphyrin monomers의 흡광 스펙트럼으로 포르피린의 특징적인 흡수 띠를 관찰할 수 있다. 400~460 nm에서 강한 Soret 흡수 띠와 550~650 nm에서 약한 Q 흡수 띠가 그것이다. 하지만 포르피린 monomer들의 중합 반응을 통하여 흡광도의 파장이 매우 확장됨을 볼 수 있었다. 도 11에서처럼 400~550 nm에서 매우 강한 Soret 흡수 띠와 650~900 nm에서의 길고 넓은 Q 흡수 띠가 생겨나는 것이다. 공액화의 확장으로 인하여 고분자의 흡수 능력이 향상되었다. 이러한 흡수 특징은 태양전지의 물질로 장점이 있다. 흡수 영역이 기존의 유기 물질보다 넓기 때문에 빛을 많이 받을 수 있기 때문이다. 빛을 많이 받는 만큼 태양전지의 효율 또한 증가할 수 있는 가능성이 있다.The absorption spectrum of porphyrin monomers shows the characteristic absorption bands of porphyrin. Strong Soret absorption bands at 400-460 nm and weak Q absorption bands at 550-650 nm. However, it was found that the wavelength of absorbance was greatly extended through the polymerization of porphyrin monomers. As shown in Fig. 11, a very strong Soret absorption band at 400-550 nm and a long and wide Q absorption band at 650-900 nm are generated. Due to the expansion of conjugation, the absorption capacity of the polymer is improved. This absorption feature is advantageous as a solar cell material. This is because the absorption area is wider than conventional organic materials, and thus can receive a lot of light. There is a possibility that the efficiency of solar cells can also increase as much light is received.

합성된 포르피린 고분자의 fluorcence spectra를 보면 포르피린 단량체의 경우 nm에서 peak가 나타나지만 포르피린 고분자의 경우 peak가 나타나지 않았다. 850 nm 정도에서 나타나는 peak는 fluorescence spectra라 의심되어 순수 용매를 측정결과 동일한 peak가 나타나 fluorescence는 아니라고 판단되었다.The fluorcence spectra of the synthesized porphyrin polymer showed peaks at nm for porphyrin monomers but no peak for porphyrin polymers. The peak appearing at about 850 nm was suspected to be a fluorescence spectra.

참고 문헌에서는 800 nm 정도에서 fluorescence spectra이 나타나지만, 문헌에서 용매를 THF를 사용하고 exitation은 468 nm로 실험한 조건은 다소 차이가 있다. 이로 인하여 porphyrin 하나하나의 단위체에서 빛을 흡수하여 여기 된 전자는 공액화된 이웃한 porphyrin 단위체로 electron transfer가 일어난다.Although the fluorescence spectra is shown in the reference literature at about 800 nm, the conditions of the experiment using THF and exitation at 468 nm are slightly different. As a result, electrons are absorbed from each unit of porphyrin, and electrons are excited to conjugated neighboring porphyrin units.

이렇게 생긴 전자 전이를 받을 electron acceptor의 역할을 하는 다른 포르피린 단위체로 전달됨으로써 생성물 자체의 fluorescence quenching이 일어나는 것으로 판단되었다. 혹은 emission 신호가 900 nm이상의 파장에서 생성되어 측정할 수 없었던 것으로 판단되었다.
It was judged that the fluorescence quenching of the product itself occurred by being transferred to another porphyrin unit serving as an electron acceptor to receive the electron transfer. Or it was determined that the emission signal was generated at a wavelength of more than 900 nm and could not be measured.

CopolymerCopolymer

앞에서 중합반응을 하여 결과 확인 후, porphyrin polymer의 흡수 spectrum에서 550~750 nm의 영역에 흡수 능력이 부족함을 확인하였다. 그래서 이번 실험에서는 550~750 nm의 흡수 영역을 porphyrin이 아닌 다른 유기 물질을 첨가하여 conjugation을 확장하여 보았다. porphyrin와 유기 물질을 중합한 문헌을 참고하여[9(a)], sonogashira-cross coupling 반응을 진행하였다 (반응식 7).After confirming the results by the polymerization reaction, it was confirmed that the absorption capacity is insufficient in the region of 550 ~ 750 nm in the absorption spectrum of porphyrin polymer. Thus, in this experiment, the absorption region of 550-750 nm was expanded by adding organic materials other than porphyrin. Referring to the literature on the polymerization of porphyrin and organic materials [9 (a)], the sonogashira-cross coupling reaction was carried out (Scheme 7).

[반응식 7][Reaction Scheme 7]

Figure 112011004064145-pat00027
Figure 112011004064145-pat00027

합성 결과 Copolymer 와 porphyrin polymer의 흡수 spectrum이 차이가 나타났다 (도 13).As a result of synthesis, the absorption spectrum of the copolymer and the porphyrin polymer was different (Fig. 13).

유기 물질의 흡수 스펙트럼을 보면 400 nm의 이상의 영역에서는 흡수 능력이 없다. 포르피린 단량체는 400~450 nm에서 Soret band의 흡수 스펙트럼이 나타났다. 이로써 두 물질을 교대 중합 반응을 conjugation을 확장시키면 500 nm 이상의 영역에서 흡수 능력이 나타날 것을 예상하고 반응을 진행하였다. The absorption spectra of organic materials show no absorption in the region above 400 nm. Porphyrin monomer showed absorption spectrum of Soret band at 400 ~ 450 nm. Thus, the reaction proceeded in anticipation of the absorption capacity in the region of 500 nm or more when the conjugation of the two materials was expanded.

중합반응을 2일 동안 진행하는데 고분자의 분자량이 증가함에 따라서 용해도가 떨어져 RBF에 침전이 생기면 THF를 소량만 첨가해주면서 반응을 진해하였다. 반응 종료 후 column을 할 때 처음 CH2Cl2를 전개액으로 사용하여 생성물을 분리하고, 그리고 column에 남은 잔여물은 분석 결과 다른 생물질이므로 THF나 다른 전개액을 사용하여 같이 섞이지 않게 하여야 한다.As the polymerization proceeded for 2 days, the solubility was decreased as the molecular weight of the polymer increased, and when the precipitate was formed in RBF, the reaction was increased by adding only a small amount of THF. When the column is finished after the reaction, the product is first separated using CH 2 Cl 2 as a developing solution, and the residue remaining in the column is a different biomaterial as a result of analysis. Therefore, THF or other developing solutions should not be mixed together.

Copolymer 마다 다른 흡수 스펙트럼이 나타나서 각각의 유기물질이 들어간 고분자 conjugation효과가 다르게 나타남을 추측할 수 있었다. Different copolymers showed different absorption spectra, suggesting that the polymer conjugation effect of each organic material would be different.

Fluorescence 스펙트럼에서는 세 가지 다른 유기물질을 사용하였지만 비슷한 500~700 nm에서 peak가 나타났고, 800 nm이상에서 Fluorescence 스펙트럼이 나타나지 않는 것을 보아 그림 8에서와 동일하게 전자 전이를 받을 electron acceptor의 역할을 하는 다른 포르피린 단위체로 전달됨으로써 생성물 자체의 fluorescence quenching이 일어나는 것으로 판단되었다.In the fluorescence spectrum, three different organic materials were used, but similar peaks appeared at 500 ~ 700 nm, and the fluorescence spectrum did not appear above 800 nm. It was determined that fluorescence quenching of the product itself occurred by transfer to porphyrin units.

1H NMR 분석 결과 유기 물질의 peak가 나타나지 않아서 교대중합이 이루어졌는지 정확한 분석이 되지 않았다 (도 16, 17). 1 H NMR analysis did not show the peak of the organic material was not accurate analysis whether the shift polymerization was performed (Fig. 16, 17).

Figure 112011004064145-pat00028
Figure 112011004064145-pat00028

<< 실시예Example 2-태양전지 소자로의 활용> Use as a 2-solar cell device>

앞에서 합성한 물질들 중 Zn-polymer와 copolymer 1 불질을 태양전지 소자를 제작하여 특성을 파악하여 보았다. Among the materials synthesized above, Zn-polymer and copolymer 1 impurities were fabricated and analyzed for their characteristics.

태양전지 제작에 앞서 열적 안정성을 TGA를 통하여 분석하였다. Thermal stability was analyzed through TGA prior to solar cell fabrication.

합성된 고분자는 일반적으로 사용하는 유기 용매인 CHCl3, THF 또는 toluene등에서 잘 용해되었고, TGA는 질소 조건하에서 분당 20℃로 온도를 높여 측정하였다. TGA 측정 결과 최초 무게의 5% 손실점을 일반적으로 분해온도 (Decomposition Tempertature) 라고 하는데, 도 3에서처럼 각각 244℃, 326℃로 나타났다.Synthesized polymer was well dissolved in commonly used organic solvents such as CHCl 3 , THF or toluene, TGA was measured by raising the temperature to 20 ℃ per minute under nitrogen conditions. As a result of the TGA measurement, the 5% loss point of the initial weight is generally called a decomposition temperature (Decomposition Tempertature), and as shown in FIG.

유기 태양전지 소자의 광전기력 특성을 알아보고자 Organic solar cells을 제작하였다. 이 소자의 구조는 다음과 같이 [ITO/PEDOT:PSS/Polymer+PC70BM/LiF/Al] 구조를 가지는 소자를 제작하였다.Organic solar cells were fabricated to investigate the photovoltaic characteristics of organic solar cell devices. The device was fabricated as follows: [ITO / PEDOT: PSS / Polymer + PC 70 BM / LiF / Al].

태양전지 소자는 A (acceptor) 의 종류 및 D (donor) : A (acceptor) 의 비율에 따른 광전 효율 특성 영향도 알아보기 위하여 active layer에 Polymer + PC70BM의 소자를 제작하여 광전기적 특성을 알아보았으며, D : A 비율을 1:3, 1:5 로 변경하면서 특성을 알아보았다. 그리고 active layer의 두께에 따라 효율의 차이를 알아보기 위해서 두 종류의 포르피린 고분자를 각각 다른 두께로 효율을 측정해 보았다.The solar cell device is made of polymer + PC 70 BM in the active layer to know the photoelectric characteristics in order to investigate the effect of photoelectric efficiency characteristics according to the type of A (acceptor) and the ratio of D (donor): A (acceptor). The characteristics were examined by changing the D: A ratio to 1: 3 and 1: 5. In order to determine the difference in efficiency according to the thickness of the active layer, two types of porphyrin polymers were measured at different thicknesses.

Figure 112011004064145-pat00029
Figure 112011004064145-pat00029

소자를 제작하여 측정한 결과 copolymer와 PC70BM를 1:5비율로 섞고 active layer의 두께는 43 nm로 얇을수록 효율이 높게 나타남을 확인하였다. 일반적으로 active layer의 두께를 100 nm 정도 일 때 가장 높은 효율을 보이지만 이번에 합성한 Zn-porphyrin polymer는 소자제작에서 PEDOT[Poly(3,4-ethylenedioxy thiophene)]에 코팅이 잘되지 않아서 정확한 소자의 효율을 측정하기 어려웠다. 그리고 copolymer 1의 경우는 100 nm에서 모든 비율을 측정하여 보지는 않았지만 active layer가 두꺼운 것보다는 얇은 것이 에너지변환 효율이 높음을 확인 가능하였다. As a result of fabrication and measurement of the device, the copolymer and PC 70 BM were mixed in a 1: 5 ratio and the thinner the active layer was 43 nm, the higher the efficiency was. In general, Zn-porphyrin polymer shows the highest efficiency when the thickness of active layer is about 100 nm. However, the synthesized Zn-porphyrin polymer is not coated on PEDOT [Poly (3,4-ethylenedioxy thiophene)] in device fabrication. It was difficult to measure. In the case of copolymer 1, all ratios were not measured at 100 nm, but the thinner than the thicker active layer showed higher energy conversion efficiency.

Figure 112011004064145-pat00030
Figure 112011004064145-pat00030

표 2는 태양전지 소자를 만든 다음, 열처리 과정인 포스트 어닐링 (post annealing) 방법을 도입하여 에너지변환 효율을 측정한 것이다. 포스트 어닐링 결과 에너지변환 효율이 소폭 상승하였음을 확인할 수 있었다. Table 2 shows the energy conversion efficiency by introducing a post annealing method, which is a heat treatment process after making a solar cell device. As a result of the post annealing, the energy conversion efficiency was slightly increased.

도 20은 합성한 고분자의 band gap을 파악하기 위하여 측정한 자료이다.20 is data measured to determine the band gap of the synthesized polymer.

먼저, Zn-polymer의 경우 HOMO가 -5.442 eV 이고 LUMO가 -3.642 eV였다. Copolymer 1은 HOMO가 -5.486 eV, LUMO가 -3.648 eV로 측정되었다. 이 두 고분자는 1.78eV, 1.83 eV의 band gap을 Zn-polymer와 copolymer 1이 각각 나타내었다. First, in the case of Zn-polymer, HOMO was -5.442 eV and LUMO was -3.642 eV. Copolymer 1 measured HOMO of -5.486 eV and LUMO of -3.648 eV. Zn-polymer and copolymer 1 showed band gaps of 1.78eV and 1.83eV, respectively.

도 21은 IPCE (Incident photon-to-current efficiency) 데이터이다. 이 데이터는 태양 빛을 흡수하는 특정 파장마다 에너지변환 효율을 나타내는 그래프이다. Zn-porphyrin polymer의 경우 380 nm에서 10 % 정도의 IPCE 효율을 나타낸다. 이는 Zn-porphyrin polymer가 380 nm에서 태양 빛을 100을 받아서 10을 전기적 전자로 변환 시킨다는 것이다. 일반적으로 IPCE 그래프는 흡수 스펙트럼과 비슷한 그래프 양상을 가진다. 태양 빛을 흡수하는 영역에 대한 에너지 변환 효율이기 때문에 태양 빛이 흡수되지 않는 영역에서는 효율이 나타나지 않는 것이다. 하지만 Zn-porphyrin polymer와 copolymer 1의 경우 비슷한 흡수 그래프에 비하여 IPCE 그래프는 차이가 많이 남을 알 수 있다. 또 고분자의 흡수 그래프에서 700~900 nm에서 흡수 영역을 가지지만 IPCE 그래프에서는 peak가 나타나지 않음을 알 수 있다. 21 is Incident photon-to-current efficiency (IPCE) data. This data is a graph showing the energy conversion efficiency for each specific wavelength that absorbs sunlight. Zn-porphyrin polymer shows an IPCE efficiency of about 10% at 380 nm. This means that the Zn-porphyrin polymer receives 100 solar light at 380 nm and converts 10 to electrical electrons. In general, the IPCE graph has a graph pattern similar to the absorption spectrum. Because of the energy conversion efficiency for the area that absorbs sunlight, the efficiency does not appear in areas where sunlight is not absorbed. However, the Zn-porphyrin polymer and copolymer 1 show a large difference in the IPCE graph compared to the similar absorption graph. In addition, the absorption graph of the polymer has an absorption region at 700 ~ 900 nm, it can be seen that the peak does not appear in the IPCE graph.

이는 700~900 nm에서는 에너지변환 효율이 나타나지 않는다는 뜻이다.This means that the energy conversion efficiency does not appear in the 700 ~ 900 nm.

도 22는 copolymer 1을 J-V 곡선을 통하여 에너지변환 효율을 확인할 수 있었다. 아래 곡선은 active layer의 두께가 43 nm이고 120℃에서 10분 동안 포스트 어닐링을 하였다. 도 22는 donor와 acceptor를 혼합하여 active layer을 만드는 bulk heterojuntion 태양전지를 제작하였다. Table 2와 3에서 데이터를 확인할 수 있고, 소자는 ITO/PEDOT:PSS/polymer:PC70BM/LiF/Al 순서로 구성되었다. 도 22를 통하여 개방 전압 (open cicuit voltage), 단락 전류 (short circuit current density)와 FF (fill factor)를 확인하여 에너지변환 효율을 계산할 수 있다.
22 shows the energy conversion efficiency of copolymer 1 through the JV curve. The curve below shows an active layer thickness of 43 nm and post annealing at 120 ° C for 10 minutes. FIG. 22 illustrates a bulk heterojuntion solar cell in which an donor and an acceptor are mixed to form an active layer. The data can be seen in Tables 2 and 3, and the devices consisted of ITO / PEDOT: PSS / polymer: PC 70 BM / LiF / Al. An energy conversion efficiency may be calculated by checking an open cicuit voltage, a short circuit current density and a fill factor through FIG. 22.

이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, You will understand. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (9)

하기 화학식 1, 3 및 5 중 어느 하나로 표시되는, 포르피린계 공액 고분자.
[화학식 1]
Figure 112013030245507-pat00104

[화학식 3]
Figure 112013030245507-pat00105

[화학식 5]
Figure 112013030245507-pat00106

상기 화학식 1, 3 및 5에서, n은 5~50의 정수이며,
Figure 112013030245507-pat00107
이다.
A porphyrin-based conjugated polymer represented by any one of the following Chemical Formulas 1, 3, and 5.
[Formula 1]
Figure 112013030245507-pat00104

(3)
Figure 112013030245507-pat00105

[Chemical Formula 5]
Figure 112013030245507-pat00106

In Chemical Formulas 1, 3, and 5, n is an integer of 5 to 50,
Figure 112013030245507-pat00107
to be.
1)피롤(25mmol), 메시탈데히드(2.5mmol) 및 MgBr2(12.5mmol)을 불활성 기체 하에서 반응시켜 화합물 1-1을 제조하는 단계;
2)상기 화합물 1-1, 3-트리메틸실릴프로피날, BF3OEt2 및 DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone)를 불활성 기체 하에서 반응시켜 화합물 1-2를 제조하는 단계;
3)상기 화합물 1-2와 TBAF(Tetra-n-butylammonium fluoride)를 유기용매 하에서 반응시켜 화합물 1-3을 얻는 단계; 및
4)상기 화합물 1-3을 TMEDA(Tetramethylethylenediamine)와 반응시켜 화학식 1의 화합물을 제조하는 단계; 를 포함하며, 반응식 1로 표시되는 포르피린계 공액 고분자의 제조방법.
[반응식 1]
Figure 112012081438393-pat00098

상기 반응식 1에서, A)는 MgBr2; B)는 BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2, 3-트리메틸실릴프로피날(3-trimethylsilylpropynal); C)는 TBAF(Tetra-n-butylammonium fluoride), CaCl22H2O, THF(Tetrahydrofuran); D)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2이다.
1) preparing compound 1-1 by reacting pyrrole (25 mmol), mestalaldehyde (2.5 mmol) and MgBr 2 (12.5 mmol) under an inert gas;
2) Compound 1-2 by reacting Compound 1-1, 3-trimethylsilylpropynal, BF 3 OEt 2 and DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone) under inert gas Preparing a;
3) obtaining Compound 1-3 by reacting Compound 1-2 with TBAF (Tetra-n-butylammonium fluoride) in an organic solvent; And
4) preparing a compound of Chemical Formula 1 by reacting Compound 1-3 with TMEDA (Tetramethylethylenediamine); To include, a method of producing a porphyrin-based conjugated polymer represented by Scheme 1.
[Reaction Scheme 1]
Figure 112012081438393-pat00098

In Scheme 1, A) is MgBr 2; B) is BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2, 3-trimethylsilylpropynal ); C) is Tetra-n-butylammonium fluoride (TBAF), CaCl 2 2H 2 O, Tetrahydrofuran (THF); D) is CuCl, TMEDA (Tetramethylethylenediamine), CH 2 Cl 2 .
1)트리하이드록시벤조에이트 메틸에스터(16.2mol), 1-브로모헥사데칸(98.4mol), K2CO3(194.4mmol) 및 KI(98.4mmol)을 불활성 기체 하에서 유기 용매 하에서 반응시켜 화합물 2-1을 제조하는 단계;
2)상기 화합물 2-1 및 LiAlH4를 유기 용매 하에서 반응시켜 화합물 2-2를 제조하는 단계;
3)상기 화합물 2-2 및 피리딘 클로로크로메이트(48.0mol)를 유기 용매 하에서 반응시켜 화합물 2-3를 제조하는 단계;
4)상기 화합물 2-3과 피롤을 반응시켜 화합물 2-4를 제조하는 단계;
5)상기 화합물 2-4 및 디피로 메탄을 반응시켜 화합물 2-5를 제조하는 단계;
6)상기 화합물 2-5 및 Zn(OAc)2ㆍ2H2O(7.2mmol)을 반응시켜 화합물 2-6을 제조하는 단계;
7)상기 화합물 2-6 및 TBAF(Tetra-n-butylammonium fluoride)를 반응시켜 화합물 2-7을 제조하는 단계; 및
8)상기 화합물 2-7, CuCl 및 TMEDA(Tetramethylethylenediamine)를 유기용매 하에서 반응시켜 화학식 2의 화합물을 제조하는 단계; 를 포함하며, 반응식 2 및 3으로 표시되는 포르피린계 공액 고분자의 제조방법.
[반응식 2]
Figure 112012081438393-pat00099

상기 반응식 2에서 a)는 1-bromohexadecane, K2CO3, KI, DMF(Dimethylformamide); b)는 LiAlH4, THF(Tetrahydrofuran); c)는 PCC(pyridiniumchlorochromate), CH2Cl2; d)는 pyrrole, CH2Cl2; f)는 3-trimethylpropynal, BF3OEt2(Boron trifluoride diethyl ether), DDQ(2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH2Cl2이다.

[반응식 3]
Figure 112012081438393-pat00100

상기 반응식 3에서 a)는 Zn(OAc)2, CHCl3/MeOH; b)는 TBAF(Tetra-n-butylammonium fluoride), CH2Cl2; c)는 CuCl, TMEDA(Tetramethylethylenediamine), CH2Cl2/pyridine이다.
1) Trihydroxybenzoate methyl ester (16.2 mol), 1-bromohexadecane (98.4 mol), K 2 CO 3 (194.4 mmol) and KI (98.4 mmol) were reacted under an organic solvent under an organic solvent to give a compound 2 Preparing -1;
2) preparing Compound 2-2 by reacting Compound 2-1 and LiAlH 4 in an organic solvent;
3) preparing Compound 2-3 by reacting Compound 2-2 and pyridine chlorochromate (48.0 mol) in an organic solvent;
4) preparing compound 2-4 by reacting compound 2-3 with pyrrole;
5) preparing compound 2-5 by reacting compound 2-4 and dipyro methane;
6) preparing Compound 2-6 by reacting Compound 2-5 and Zn (OAc) 2 .2H 2 O (7.2 mmol);
7) preparing a compound 2-7 by reacting the compound 2-6 and Tetra-n-butylammonium fluoride (TBAF); And
8) preparing a compound of Chemical Formula 2 by reacting Compound 2-7, CuCl, and TMEDA (Tetramethylethylenediamine) under an organic solvent; To include, a method of producing a porphyrin-based conjugated polymer represented by the reaction schemes 2 and 3.
[Reaction Scheme 2]
Figure 112012081438393-pat00099

A) in Scheme 2 is 1-bromohexadecane, K 2 CO 3 , KI, DMF (Dimethylformamide); b) is LiAlH 4 , THF (Tetrahydrofuran); c) is pyridinium chlorochromate (PCC), CH 2 Cl 2 ; d) is pyrrole, CH 2 Cl 2 ; f) is 3-trimethylpropynal, BF 3 OEt 2 (Boron trifluoride diethyl ether), DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone), CH 2 Cl 2 .

[Reaction Scheme 3]
Figure 112012081438393-pat00100

A) in Scheme 3 is Zn (OAc) 2 , CHCl 3 / MeOH; b) is Tetra-n-butylammonium fluoride (TBAF), CH 2 Cl 2 ; c) is CuCl, Tetramethylethylenediamine (TMEDA), CH 2 Cl 2 / pyridine.
3,4,5-트리스(헥사데실옥시)벤즈알데히드(3,4,5-Tris(hexadecyloxy)benzaldehyde), 9,10-디브로모안스라센(9,10-dibromoanthracene), 트리(디벤질덴아세톤)디팔라듐( tri(dibenzyldeneacetone)dipalladium) 및 트리페닐아르신(triphenylarsine)을 유기용매 하에서 반응시켜 화학식 3의 화합물을 제조하는 단계를 포함하며, 반응식 4로 표시되는 포르피린계 공액 고분자의 제조방법.
[반응식 4]
Figure 112012081438393-pat00101
3,4,5-tris (hexadecyloxy) benzaldehyde (3,4,5-Tris (hexadecyloxy) benzaldehyde), 9,10-dibromoanthracene (9,10-dibromoanthracene), tri (dibenzydene A method of preparing a porphyrin-based conjugated polymer represented by Scheme 4, comprising the step of preparing a compound of Formula 3 by reacting acetone) dipalladium (tri (dibenzyldeneacetone) dipalladium) and triphenylarsine in an organic solvent.
[Reaction Scheme 4]
Figure 112012081438393-pat00101
3,4,5-트리스(헥사데실옥시)벤즈알데히드(3,4,5-Tris(hexadecyloxy)benzaldehyde), 9,10-디브로모페노티아진(9,10-dibromophenothiazine), 트리(디벤질덴아세톤)디팔라듐(tri(dibenzyldeneacetone)dipalladium) 및 트리페닐아르신(triphenylarsine)을 유기용매 하에서 반응시켜 화학식 4의 화합물을 제조하는 단계를 포함하며, 반응식 5로 표시되는 포르피린계 공액 고분자의 제조방법.
[반응식 5]
Figure 112012081438393-pat00102
3,4,5-tris (hexadecyloxy) benzaldehyde (3,4,5-Tris (hexadecyloxy) benzaldehyde), 9,10-dibromophenothiazine, tri (dibenzydene A method of preparing a porphyrin-based conjugated polymer represented by Scheme 5, comprising the step of reacting acetone) dipalladium (tri (dibenzyldeneacetone) dipalladium) and triphenylarsine in an organic solvent to produce a compound of Formula 4.
Scheme 5
Figure 112012081438393-pat00102
3,4,5-트리스(헥사데실옥시)벤즈알데히드(3,4,5-Tris(hexadecyloxy)benzaldehyde), 9,10-디브로모벤코티아디아졸(9,10-dibromobenzothiadiazole), 트리(디벤질덴아세톤)디팔라듐(tri(dibenzyldeneacetone)dipalladium) 및 트리페닐아르신(triphenylarsine)을 유기용매 하에서 반응시켜 화학식 5의 화합물을 제조하는 단계를 포함하며, 반응식 6으로 표시되는 포르피린계 공액 고분자 제조방법.
[반응식 6]
Figure 112012081438393-pat00103
3,4,5-tris (hexadecyloxy) benzaldehyde (3,4,5-Tris (hexadecyloxy) benzaldehyde), 9,10-dibromobenzocothiadiazole (9,10-dibromobenzothiadiazole), tri (di Benzydene acetone) dipalladium (tri (dibenzyldeneacetone) dipalladium) and triphenylarsine (triphenylarsine) by reacting under an organic solvent to prepare a compound of formula 5, a porphyrin-based conjugated polymer manufacturing method represented by Scheme 6 .
[Reaction Scheme 6]
Figure 112012081438393-pat00103
제 1항에 따른 포르피린계 공액 고분자를 포함하는 태양전지소자.A solar cell device comprising the porphyrin-based conjugated polymer according to claim 1. 제 7항에 있어서,
상기 태양전지는 유기 태양전지 또는 염료감응형 태양전지인 것을 특징으로 하는 태양전지소자.
8. The method of claim 7,
The solar cell is a solar cell device, characterized in that the organic solar cell or dye-sensitized solar cell.
제2항 내지 제6항 중 어느 한 항에 있어서, 각 단계에서 사용된 유기 용매는 메틸렌클로라이드, 테트라히드로퓨란, 클로로포름, 디메틸포름이미드, 톨루엔, 및 트리에틸아민으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 포르피린계 공액 고분자의 제조방법.The organic solvent according to any one of claims 2 to 6, wherein the organic solvent used in each step is at least one selected from the group consisting of methylene chloride, tetrahydrofuran, chloroform, dimethylformimide, toluene, and triethylamine. Method for producing a porphyrin-based conjugated polymer, characterized in that.
KR1020110004897A 2011-01-18 2011-01-18 Porphyrins conjugated polymers and method for preparing thereof KR101271534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110004897A KR101271534B1 (en) 2011-01-18 2011-01-18 Porphyrins conjugated polymers and method for preparing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110004897A KR101271534B1 (en) 2011-01-18 2011-01-18 Porphyrins conjugated polymers and method for preparing thereof

Publications (2)

Publication Number Publication Date
KR20120099308A KR20120099308A (en) 2012-09-10
KR101271534B1 true KR101271534B1 (en) 2013-06-10

Family

ID=47109582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110004897A KR101271534B1 (en) 2011-01-18 2011-01-18 Porphyrins conjugated polymers and method for preparing thereof

Country Status (1)

Country Link
KR (1) KR101271534B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027643A (en) 2017-09-07 2019-03-15 국민대학교산학협력단 Porphyrin derivatives for organic solar cell and organic solar cell containing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011885A1 (en) * 2013-07-26 2015-01-29 Sharp Kabushiki Kaisha A metalloporphyrin polymer functionalized substrate and method for fabricating a metalloporphyrin polymer on a substrate
CN107759803B (en) * 2017-11-13 2020-07-03 山东师范大学 Tetrasulfhydryl porphyrin compound and preparation method and application thereof
CN114588942B (en) * 2022-02-25 2023-10-13 呼和浩特市联合鼎盛固体废物处理有限公司 Method for producing hydrogen by solar energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493017A (en) 1992-08-14 1996-02-20 The Trustees Of The University Of Pennsylvania Ring-metalated porphyrins
WO2007081991A2 (en) 2006-01-10 2007-07-19 The Trustees Of The University Of Pennsylvania Novel conjugated materials featuring proquinoidal units

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493017A (en) 1992-08-14 1996-02-20 The Trustees Of The University Of Pennsylvania Ring-metalated porphyrins
WO2007081991A2 (en) 2006-01-10 2007-07-19 The Trustees Of The University Of Pennsylvania Novel conjugated materials featuring proquinoidal units

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027643A (en) 2017-09-07 2019-03-15 국민대학교산학협력단 Porphyrin derivatives for organic solar cell and organic solar cell containing same

Also Published As

Publication number Publication date
KR20120099308A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
US9680103B2 (en) Organic photoelectric conversion element composition, thin film and photovoltaic cell each containing the same, organic semiconductor polymer and compound each for use in these, and method of producing the polymer
Lee et al. Synthesis and investigation of photovoltaic properties for polymer semiconductors based on porphyrin compounds as light-harvesting units
EP2573125A1 (en) Conjugated polymer containing dithienopyrrole-quinoxaline, preparation method and uses thereof
Li et al. The effect of thieno [3, 2-b] thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers
JP5425338B2 (en) Copolymer containing anthracene and pearselenol, its production method and its application
EP2578614A1 (en) Quinoxaline conjugated polymer containing fused-ring thiophehe unit, preparation method and uses thereof
Arrechea et al. New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells
WO2018000735A1 (en) Polymer containing 1,2,5-benzoselenadiazole-n-r 1-5,6-dicarboxylic acid imide and preparation and application thereof
EP2530084B1 (en) Copolymer containing fluorenylporphyrin-anthracene, preparation method and use thereof
Cheon et al. DTBDT-TTPD: a new dithienobenzodithiophene-based small molecule for use in efficient photovoltaic devices
WO2018001330A1 (en) Design and synthesis of porphyrin materials for highly efficient organic photovoltaics
KR101271534B1 (en) Porphyrins conjugated polymers and method for preparing thereof
Deng et al. Trifluoromethylated thieno [3, 4-b] thiophene-2-ethyl carboxylate as a building block for conjugated polymers
KR101828012B1 (en) Conjugated polymer for organic solar cell and manufacturing method thereof
CN110600612B (en) P-i-n type perovskite battery hole transport layer based on self-assembly engineering
JP5667693B2 (en) Quinoxaline unit-containing porphyrin copolymer, method for producing the same, and application thereof
Wang et al. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region
KR20150027344A (en) organinc semiconductor compound and organic solar cell having them
Luo et al. Synthesis and photovoltaic properties of the copolymers containing zinc porphyrin derivatives as pendant groups
KR101785697B1 (en) Low molecular weight organic compound having electron donor and acceptor and preparation method of the same, organic photoelectric device comprising the same
Wen et al. Incorporating a vertical BDT unit in conjugated polymers for drastically improving the open-circuit voltage of polymer solar cells
CN113979969A (en) Organic hole transport material, preparation method and application thereof, and perovskite solar cell
Yu et al. Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains
Hong et al. Cyclohexyl-substituted non-fullerene small-molecule acceptors for organic solar cells
JP5443655B2 (en) Porphyrin copolymer containing thienothiadiazole unit, method for producing the copolymer and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee