KR101265876B1 - Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same - Google Patents

Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same Download PDF

Info

Publication number
KR101265876B1
KR101265876B1 KR1020100128072A KR20100128072A KR101265876B1 KR 101265876 B1 KR101265876 B1 KR 101265876B1 KR 1020100128072 A KR1020100128072 A KR 1020100128072A KR 20100128072 A KR20100128072 A KR 20100128072A KR 101265876 B1 KR101265876 B1 KR 101265876B1
Authority
KR
South Korea
Prior art keywords
lacquer
extract
urushiol
treated
water
Prior art date
Application number
KR1020100128072A
Other languages
Korean (ko)
Other versions
KR20120066796A (en
Inventor
김명곤
전태욱
김보현
최한석
김태영
박효숙
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020100128072A priority Critical patent/KR101265876B1/en
Publication of KR20120066796A publication Critical patent/KR20120066796A/en
Application granted granted Critical
Publication of KR101265876B1 publication Critical patent/KR101265876B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/23Removal of unwanted matter, e.g. deodorisation or detoxification by extraction with solvents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/30Ion-exchange

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 우루시올 저감화 처리된 옻엽, 이를 이용한 옻엽 추출물 및 이들의 제조방법에 관한 것으로서, 구체적으로는 옻엽을 전자이온화에너지로 처리하여 옻의 우루시올의 저감화시킨 옻엽 및 상기 옻엽의 추출물에 관한 것으로서, 본 발명의 옻엽 추출물은 알러지(allergy)반응을 일으키는 우루시올을 저감시켰기 때문에, 약학적 성분의 조성물로 이용이 가능하며, 특히, 항암물질로 알려진 체내 아질산염에 대한 소거능이 우수한 바, 항암제 성분으로 사용할 수 있으며, 또한, 산화질소 소거능이 우수하기 때문에 항염제 성분 등의 약학적 조성물로 응용이 가능하다. 그리고, 본 발명의 옻엽 추출물의 제조방법은 대량생산이 가능한 장점이 있다.The present invention relates to a urushiol-reduced lacquer leaf, a lacquer leaf extract using the same, and a method for preparing the same, and specifically, to a lacquer leaf and an extract of the lacquer leaf reduced by urushiol by treating the lacquer with electron ionization energy. Since the lacquer extract of the present invention reduces urushiol causing allergy reactions, it can be used as a composition of pharmaceutical components, and in particular, it can be used as an anticancer component as it has excellent scavenging ability against nitrite in the body, known as an anticancer substance. Moreover, since it is excellent in nitric oxide scavenging ability, it is applicable to pharmaceutical compositions, such as an anti-inflammatory component. And, the manufacturing method of the lacquer extract of the present invention has the advantage that can be mass-produced.

Description

우루시올 저감화 처리된 옻, 이의 추출물 및 이들의 제조방법{Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same} Urushiol-reduced lacquer, extracts thereof, and preparation method thereof {Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same}

본 발명은 전자이온화에너지를 이용하여 우루시올을 효과적으로 저감화시킨 옻, 상기 옻의 추출물 및 이들의 제조방법에 관한 것이다.The present invention relates to a lacquer that effectively reduces urushiol by using electron ionization energy, an extract of the lacquer, and a preparation method thereof.

일반적으로 옻은 옻나무과에 속하는 나무에 상처를 냈을 때 옻나무로부터 나오는 수액을 지칭한다. 옻나무과에는 아열대 또는 열대에 분포하는 60속 400종의 나무가 있고, 한국에는 이 중 옻나무속에 속하는 옻나무, 개옻나무, 붉나무 등 5종이 서식하고 있다.In general, lacquer refers to the sap coming from the lacquer tree when the tree of the lacquer family is wounded. The lacquer family includes 60 genera and 400 species distributed in subtropical or tropical regions, and in Korea, there are 5 species of lacquer trees, lacquer trees, and rhododendrons.

이러한 옻은 한국, 중국, 일본 등에서는 오래 전부터 금속이나 목공의 도장용 도료로서 사용되어 왔을 뿐만 아니라, 인체의 기혈 순환을 촉진하는 효과, 강장효과, 통경, 진해 등의 효과가 있어서 약재로서도 사용되어 왔다. 또한, 최근에는 옻에서 항암효과를 가진 물질(MU2)을 추출했다는 보고도 있었다. Such lacquer has been used in Korea, China, Japan, etc. for a long time as a coating material for metal and woodworking, and it is also used as a medicinal herb because it has the effect of promoting blood circulation in the human body, tonic effect, pain resistance, and Jinhae. come. In addition, recently, there have been reports of extracting an anticancer substance (MU2) from lacquer.

이와 같은 다양한 약리 효과를 가지고 있는 옻을 수액상태로 직접 섭취하는 경우에는 우루시올(urshiol)이라는 독성 물질에 의해 발진, 가려움증 등 부작용을 나타나는 문제가 있다.In case of directly ingesting lacquer having various pharmacological effects in the sap state, there is a problem in that side effects such as rash and itching are caused by a toxic substance called urushiol (urshiol).

옻의 부작용을 감소시키면서 섭취할 수 있는 방법으로는 닭, 대추, 밤, 황기 등과 옻을 함께 넣고 조리하는 방법과 버섯균을 이용한 옻의 무독화 방법은 있으나 이러한 방법은 대량생산에 적합하지 않는 문제가 있다.Reducing the side effects of lacquer can be ingested with chicken, jujube, chestnut, astragalus, etc. with lacquer and detoxification of lacquer using mushrooms, but these methods are not suitable for mass production. There is.

이에 본 발명자는 옻으로부터 우루시올을 효과적으로 저감처리하고, 우루시올이 저감된 옻 및 이의 추출물을 대량생산하여 상업적으로 이용하는 방법에 대하여 연구한 결과, 전자이온화에너지로 옻을 처리하면 효과적으로 우루시올을 저감처리할 수 있음을 알게 되어 본 발명을 완성하게 되었다. 따라서, 본 발명은 신규한 우루시올 저감화 처리된 옻, 이의 추출물 및 이들의 제조방법을 제공하는데 목적이 있다.Therefore, the present inventors have studied the method of effectively reducing urushiol from lacquer, and using the uricol-reduced lacquer and its extracts in mass production and commercially using it, and treating the lacquer with electron ionization energy can effectively reduce urushiol. It was found that the present invention was completed. Accordingly, an object of the present invention is to provide a novel urushiol reduced lacquer, extracts thereof and a method for producing the same.

상기의 과제를 해결하기 위한 본 발명은 우루시올 저감화 처리된 옻의 제조방법에 관한 것으로서, 옻을 수분처리하는 단계; 및 상기 수분 처리된 옻을 전자이온화에너지로 처리하는 단계;를 포함하는 것을 특징으로 한다.The present invention for solving the above problems relates to a method for producing urushiol reduced lacquer, the step of water treatment of the lacquer; And treating the water-treated lacquer with electron ionization energy.

또한, 본 발명은 상기 제조방법으로 제조된 우루시올 저감화된 옻에 관한 것이다.The present invention also relates to urushiol reduced lacquer prepared by the above production method.

또한, 본 발명은 옻 추출물의 제조방법에 관한 것으로서, 옻을 수분 처리하는 단계; 상기 수분 처리된 옻을 전자이온화에너지로 처리하는 단계; 및 상기 전자이온화에너지가 처리된 옻과 용매의 혼합물을 끓인 다음, 불용성 물질을 걸러내어 추출물을 생성하는 단계;를 포함하는 것을 또 다른 특징으로 한다.In addition, the present invention relates to a method for producing a lacquer extract, the step of water treatment of the lacquer; Treating the water-treated lacquer with electron ionization energy; And boiling the mixture of lacquer and solvent treated with the electron ionization energy, and filtering the insoluble material to generate an extract.

또한, 본 발명은 상기 제조방법으로 제조된 우루시올 저감화된 옻 추출물을 다른 특징으로 한다.In addition, the present invention is characterized by another urushiol reduced lacquer extract prepared by the above production method.

또한, 본 발명은 약학적 조성물에 관한 것으로서, 상기 옻 추출물을 포함하는 것을 특징으로 한다.In addition, the present invention relates to a pharmaceutical composition, characterized in that it comprises the lacquer extract.

본 발명의 옻의 제조방법은 우루시올을 효과적으로 저감 처리할 수 있으며, 이를 이용하여 우루시올이 저감된 옻, 옻 추출물을 대량생산할 수 있다. 또한, 본 발명의 옻 추출물은 알레르기 반응을 일으키지 않고, 독성이 거의 없으며, 항암 및 항염 효과가 있는 바, 다양한 약학적 조성물, 식품 조성물 등으로 응용할 수 있다.The manufacturing method of the lacquer of the present invention can effectively reduce the urushiol, by using this can be mass-produced lacquer, lacquer extract with reduced urushiol. In addition, the lacquer extract of the present invention does not cause an allergic reaction, has little toxicity, and has anti-cancer and anti-inflammatory effects, and can be applied to various pharmaceutical compositions, food compositions, and the like.

도 1은 본 발명에 따른 우루시올 저감화된 옻의 제조과정의 개략도이다.
도 2는 실험예 1에서 실시한 감마선 처리한 옻엽의 HLPC 측정 결과이다.
도 3은 실험예 1에서 실시한 감마선 처리한 옻엽의 우루시올 함량 측정 결과이다.
도 4는 실험예 1에서 실시한 전자선 처리한 옻엽의 HLPC 측정 결과이다.
도 5는 실험예 1에서 실시한 전자선 처리한 옻엽의 우루시올 함량 측정 결과이다.
도 6은 실험예 7에서 실시한 감마선 조사 처리한 옻엽 추출물의 세포독성측정 결과이다.
도 7은 실험예 7에서 실시한 전자선 조사 처리한 옻엽 추출물의 세포독성측정 결과이다.
도 8은 실험예 8에서 실시한 감마선 조사 처리한 옻엽 추출물의 항암활성 측정 결과이다.
도 9는 실험예 8에서 실시한 전자선 조사 처리한 옻엽 추출물의 항암활성 측정 결과이다
도 10의 A, B는 실험예 9에서 실시한 항염 활성 실험을 위한 세포독성 측정 결과로서, A는 감마선 조사 처리한 옻엽 추출물의 세포독성 측정 결과이며, B는 전자선 조사 처리한 옻엽 추출물의 세포독성 측정 결과이다.
도 11은 실험예 9에서 실시한 감마선 조사 처리한 옻엽 추출물의 항염 활성 실험 결과로서, A는 산화질소 생산량을 측정한 그래프이고, B는 산화질소 제거율을 측정한 그래프이다.
도 12는 실험예 9에서 실시한 전자선 조사 처리한 옻엽 추출물의 항염 활성 실험 결과로서, A는 산화질소 생산량을 측정한 그래프이고, B는 산화질소 제거율을 측정한 그래프이다.
1 is a schematic diagram of a manufacturing process of urushiol reduced lacquer according to the present invention.
2 is a HLPC measurement result of the gamma ray-treated lacquer was carried out in Experimental Example 1.
3 is a measurement result of the urushiol content of the gamma ray-treated lacquer conducted in Experimental Example 1.
4 is a HLPC measurement result of the electron beam-treated lacquer carried out in Experimental Example 1.
5 is a measurement result of the urushiol content of the lacquer treated with electron beams carried out in Experimental Example 1.
6 is a cytotoxicity measurement results of the gamma-irradiated lacquer leaf extract performed in Experimental Example 7.
7 is a cytotoxicity measurement results of the lacquer extract treated with electron beam irradiation performed in Experimental Example 7.
8 is a result of measuring anticancer activity of the gamma-ray irradiation-treated lacquer extract performed in Experimental Example 8.
9 shows the results of anticancer activity of the lacquer extract treated with electron beams in Experiment 8
10A and 10B are cytotoxicity measurement results for the anti-inflammatory activity test conducted in Experimental Example 9, A is a cytotoxicity measurement result of gamma-irradiated lacquer leaf extract, and B is a cytotoxicity measurement of the lacquer leaf extract treated with electron beam irradiation. The result is.
11 is an anti-inflammatory activity test result of the gamma-irradiated lacquer leaf extract performed in Experimental Example 9, A is a graph measuring the nitric oxide production, B is a graph measuring the nitric oxide removal rate.
12 is an anti-inflammatory activity test result of the electron beam irradiation treated lacquer extract performed in Experiment 9, A is a graph measuring the nitric oxide production, B is a graph measuring the nitric oxide removal rate.

본 발명에서 사용하는 용어인, ‘옻피’는 옻 나무껍질을 말린 것을 의미하며, ‘옻엽’은 옻 잎사귀를 말린 것을 의미한다. 또한, 본 발명에서 사용하는 용어인 ‘옻’은 옻피 및 옻엽 중에서 선택된 1종 이상을 포함하는 의미이며, ‘옻 추출물’은 ‘옻피 추출물 및 옻엽 추출물 중에서 선택된 1종 이상을 포함하는 의미이다.The term used in the present invention, 'lacpi' means dried lacquer bark, 'lacquer' means dried lacquer leaves. In addition, the term "lacquer" used in the present invention is meant to include at least one selected from lacquer and lacquer, and the "lacquer extract" is meant to include at least one selected from the lacquer extract and lacquer extract.

이하, 본 발명에 대하여 상세하게 설명을 하겠다.Hereinafter, the present invention will be described in detail.

전자선, 감마선 등의 방사선은 각종 생물체 세포에서 매우 다양한 화학적 변화를 유발시킬 수 있데, 생체 주변환경을 이루는 물분자를 수소분자(H·), 수산화 라디칼(OH·), 수용성 전자(es -)와 같은 1차 라디칼(radical)로 전환시키는 작용에 의하여 이루어진다. 이러한 전환작용을 응용한 본 발명은 저온·단시간 내에 옻에 포함된 우루시올을 라디칼화함으로서 불안정한 라디칼들의 중합반응으로 더 이상 옻이 생체에 알레르기(allergy) 반응을 일으키지 않게 된다. 그리고, 본 반응은 라디칼 전환 반응을 극대화시키기 위하여, 옻을 수분처리한 후, 전자이온화에너지(방사선) 처리를 한다. Radiation such as electron beams and gamma rays can cause a wide variety of chemical changes in various biological cells. Water molecules forming the environment around the living body are hydrogen molecules (H ·), hydroxyl radicals (OH ·), and water-soluble electrons (e s ). By the action of converting into a primary radical, such as The present invention applying such a conversion action by the radicalization of the urushiol contained in the lacquer in low temperature, short time, the polymerization of unstable radicals so that the lacquer no longer causes an allergy reaction to the living body. And, in order to maximize the radical conversion reaction, the present reaction is subjected to electron ionization energy (radiation) treatment after lacquer moisture treatment.

이와 같은 본 발명의 옻의 제조방법은 옻을 수분처리하는 단계; 및 상기 수분 처리된 옻을 전자이온화에너지로 처리하는 단계;를 거쳐서 옻에 존재하는 우루시올 저감화 처리시키는 것을 특징으로 한다.Such a method of manufacturing lacquer of the present invention comprises the steps of treating the lacquer with moisture; And treating the water-treated lacquer with electron ionization energy; reducing urushiol present in the lacquer.

상기 옻을 수분처리하는 단계에 있어서, 수분처리방법은 특별히 한정하지는 않으며, 예컨대, 옻에 물을 분사시키거나, 물에 옻을 함침시킬 수 있으며, 옻이 물을 충분히 흡수시킬 수 있도록 하면 된다.In the step of water treatment of the lacquer, the water treatment method is not particularly limited, for example, by spraying water on the lacquer, or impregnated the lacquer in water, it is sufficient that the lacquer can sufficiently absorb the water.

상기 전자이온화에너지 처리하는 단계는 감마선 조사 및 전자선 조사 중에서 선택된 1종 이상의 전자이온화에너지를 옻에 조사함으로써, 옻에 포함된 물을 라디칼화시키게 되고, 이의 라디칼 생성물이 옻의 우루시올을 라디칼화시켜서 옻에 포함된 우루시올을 저감시킬 수 있는 것이다.The electron ionization energy treatment may be performed by irradiating the lacquer with at least one electron ionization energy selected from gamma ray irradiation and electron beam irradiation, thereby radicalizing the water contained in the lacquer, and a radical product thereof radicalizes the urushiol of the lacquer. It is possible to reduce the urushiol contained in.

상기 감마선 조사는 시간당 1 kGy, 2 kGy, 5 kGy 또는 10kGy의 선량율로 감마선을 조사할 수 있으며, 바람직하게는 수분처리된 옻에 총 흡수선량이 1 kGy, 2 kGy, 5 kGy 또는 10 kGy이 되도록 시간당 10kGy의 선량율로 감마선을 조사할 수 있고, 더욱 바람직하게는 총 흡수선량이 5 kGy 또는 10 kGy이 되도록 시간당 10kGy의 선량율로 감마선을 조사하는 것이 좋다. 그리고, 상기 감마선 조사 방법은 상기 선량율 및 총 흡수선량으로 감마선을 조사시킬 수 있는 모든 방법을 사용할 수 있으며, 본 발명에서 특별히 한정하지 않으나, 구체적인 예를 들면, 선원 30만 Ci, Co-60 감마선 조사시설로 감마선을 조사할 수 있다.The gamma-irradiation may irradiate gamma-rays at a dose rate of 1 kGy, 2 kGy, 5 kGy or 10 kGy per hour, preferably so that the total absorbed dose is 1 kGy, 2 kGy, 5 kGy or 10 kGy in the water-treated lacquer. Gamma rays can be irradiated at a dose rate of 10 kGy per hour, and more preferably gamma rays are irradiated at a dose rate of 10 kGy per hour such that the total absorbed dose is 5 kGy or 10 kGy. In addition, the gamma irradiation method may be any method capable of irradiating gamma rays at the dose rate and the total absorbed dose, and is not particularly limited in the present invention, for example, source 300,000 Ci, Co-60 gamma irradiation We can check gamma ray with facility.

상기 전자선 조사는 시간당 1 kGy, 2 kGy, 5 kGy 또는 10kGy의 선량율로 전자선을 조사할 수 있으며, 바람직하게는 수분처리된 옻에 총 흡수선량이 1 kGy, 2 kGy, 5 kGy 또는 10 kGy이 되도록 시간당 10kGy의 선량율로 전자선을 조사할 수 있고, 더욱 바람직하게는 총 흡수선량이 5 kGy 또는 10 kGy이 되도록 시간당 10kGy의 선량율로 전자선을 조사하는 것이 좋다. 그리고, 상기 전자선 조사 방법은 상기 선량율 및 총 흡수선량으로 전자선을 조사시킬 수 있는 모든 방법을 사용할 수 있으며, 본 발명에서 특별히 한정하지 않으나, 구체적인 예를 들면, 2.5MeV 변압형 전자가속기를 이용하여 14.5mA의 빔전류로 전자선을 조사할 수 있다.The electron beam irradiation may be irradiated with an electron beam at a dose rate of 1 kGy, 2 kGy, 5 kGy or 10 kGy per hour, preferably so that the total absorbed dose to 1 kGy, 2 kGy, 5 kGy or 10 kGy The electron beam can be irradiated at a dose rate of 10 kGy per hour, and more preferably, the electron beam is irradiated at a dose rate of 10 kGy per hour such that the total absorbed dose is 5 kGy or 10 kGy. The electron beam irradiation method may use any method capable of irradiating an electron beam with the dose rate and the total absorbed dose, and is not particularly limited in the present invention. For example, 14.5 using a 2.5MeV transformer electron accelerator may be used. The electron beam can be irradiated with a beam current of mA.

그리고, 본 발명에 있어서, 상기 옻은 옻엽 및 옻피 중에서 선택된 1종 이상을 포함할 수 있다.And, in the present invention, the lacquer may include at least one selected from lacquer and lacquer.

또한, 본 발명은 옻의 제조방법으로 제조한 옻을 이용하여 우루시올이 저감화된 옻 추출물을 제조할 수 있으며, 이에 대해 설명을 하면 다음과 같다.In addition, the present invention can be used to prepare a lacquer extract with reduced urushiol using the lacquer prepared by the manufacturing method of the lacquer, it will be described below.

본 발명의 우루시올 저감화된 옻 추출물의 제조방법은 Method for producing urushiol reduced lacquer extract of the present invention

옻을 수분 처리하는 단계; 상기 수분 처리된 옻을 전자이온화에너지로 처리하는 단계; 및 상기 전자이온화에너지가 처리된 옻과 용매의 혼합물을 끓인 다음, 불용성 물질을 걸러내어 추출물을 생성하는 단계;를 포함하는 것을 특징으로 하며, 상기 추출물을 농축시키는 단계;를 추가적으로 더 포함할 수 있다.Water treatment of lacquer; Treating the water-treated lacquer with electron ionization energy; And boiling the mixture of lacquer and solvent treated with the ionization energy, and filtering the insoluble material to produce an extract. The method may further include concentrating the extract. .

상기 옻을 수분 처리하는 단계 및 상기 전자이온화에너지로 처리하는 단계는 앞서 설명한 바와 동일하다.The step of treating the lacquer with water and the step of treating with the electron ionization energy are the same as described above.

추출물을 생성하는 단계에 있어서, 상기 용매는 물 및 에탄올 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 에탄올을 사용하는 것이 좋다. 그리고, 상기 물은 증류수, 이온화수(DI water) 등을 불순물이 없는 식용가능한 물이면 어떤 것이든지 사용할 수 있다. In the step of producing the extract, the solvent may be used at least one selected from water and ethanol, preferably ethanol. The water may be any distilled water, ionized water (DI water), etc., as long as it is edible water without impurities.

그리고, 상기 혼합물은 전자이온화에너지가 처리된 옻과 용매를 1:5 내지 1:15 중량비로 혼합하는 것이, 바람직하게는 1:5 내지 1:12 중량비로 혼합하는 것이 좋으며, 1:5 중량비로 사용하면 용매량이 너무 적어서 열수반응 등의 열을 가하여 추출물을 제조시, 용매의 증발로 인하여 추출이 잘 안 될 수 있으며, 1:15 중량비를 초과하여 용매를 사용하면, 추출시간이 너무 길어지는 문제가 있다.In addition, the mixture is a mixture of the lacquer treated with the electron ionization energy and the solvent in a weight ratio of 1: 5 to 1:15, preferably in a 1: 5 to 1:12 weight ratio, and 1: 5 weight ratio When used, the amount of solvent is so small that the extraction may not be possible due to the evaporation of the solvent when the extract is prepared by applying heat such as hydrothermal reaction, and when the solvent is used in excess of 1:15 weight ratio, the extraction time is too long. There is.

그리고, 상기 추출물을 생성하는 단계에서 있어서, 상기 혼합물을 끓이는 방법은 용매를 포함하는 혼합물의 끓는점 온도 이상으로 가열시킬 수 있는 방법을 사용하면 되며, 특별히 한정하지는 않는다. 다만, 열수 추출물은 95 ~ 110℃에서 3 ~ 5시간 동안 그리고, 에탄올(95%) 추출물은 75 ~ 90℃에서 2 ~ 3 시간 동안 상압 하에서 환류냉각장치를 부착하여 열을 가하는 것이 바람직하다.In the step of producing the extract, the method of boiling the mixture may be a method of heating above the boiling point temperature of the mixture including the solvent, and is not particularly limited. However, hot water extract is preferably applied for 3 to 5 hours at 95 ~ 110 ℃, and ethanol (95%) extract is attached to the reflux cooling device at atmospheric pressure for 2 to 3 hours at 75 ~ 90 ℃ to heat.

상기 제조방법으로 제조된 본 발명의 옻 추출물은 알레르기 반응을 유발하는 우루시올이 저감되어 알레르기 반응을 일으키지 않으며, 독성이 없는 바, 옻 추출물을 생약 등의 약학적 조성물, 식품 조성물 등으로 다양하게 응용하여 사용할 수 있다.The lacquer extract of the present invention prepared by the above manufacturing method is reduced in urushiol causing an allergic reaction and does not cause an allergic reaction.There is no toxicity, and the lacquer extract is variously applied to pharmaceutical compositions such as herbal medicines, food compositions, etc. Can be used.

염증은 물리적 화학적 자극에 의해서 발생하는 피해에 반응하는 생체반응으로 관절염, 천식, 다발성 신경경화증 및 대장염 등 여러 가지 질환의 원인에 중요한 인자이다. 대식세포는 선천면역과 획득면역반응에서 중요한 역할을 하며 산화질소(nitric oxide, NO), 염증성 시토카인(pro-inflammatory cytokine)들을 포함한 다양한 염증 매개 물질들을 조절한다. 그리고, 내독소로 잘 알려진 지질다당류(lipopolysaccharide, LPS)는 그람음성균의 세포외막에 존재하며, RAW 264.7과 같은 대식세포 또는 단핵세포에서 염증성 시토카인을 증가시키는 것으로 알려져 있다. 또한, NO의 형성은 박테리아를 죽이거나 종양을 제거시키는 중요한 역할을 하기도 하지만, iNOS(inducible nitric oxide synthase)에 의해 과도하게 생성된 NO는 염증을 유발시키게 되며 조직을 손상, 유전자 변이 및 신경손상 등을 유발한다. 본 발명의 옻 추출물은 산화질소의 생성을 억제시킴으로써, 함염증 효과가 있는 바, 항염제 등의 약학적 조성물로 응용할 수 있다.Inflammation is a biological response in response to damage caused by physical and chemical stimuli, and is an important factor in the causes of various diseases such as arthritis, asthma, multiple sclerosis and colitis. Macrophages play an important role in innate and acquired immune responses and regulate various inflammatory mediators, including nitric oxide (NO) and inflammatory cytokines. In addition, lipopolysaccharide (LPS), known as endotoxin, is present in the extracellular membrane of Gram-negative bacteria and is known to increase inflammatory cytokines in macrophages or monocytes such as RAW 264.7. In addition, NO formation plays an important role in killing bacteria or removing tumors, but NO produced excessively by inducible nitric oxide synthase (iNOS) causes inflammation and damages tissues, genetic mutations, and nerve damage. Cause. The lacquer extract of the present invention can be applied to pharmaceutical compositions such as anti-inflammatory agents by inhibiting the production of nitric oxide and having an anti-inflammatory effect.

또한, 생체 내에서 아민류와 아질산염이 반응하여 발암성 물질인 니트로사민(nitrosamine)을 생성하는데, 본 발명의 옻 추출물은 아질산염을 소거하는 효과가 우수한 바, 이를 항암 치료제 등의 약학적 조성물로 응용할 수 있다.
In addition, amines and nitrites react in vivo to produce nitrosamines, which are carcinogenic substances. The lacquer extract of the present invention has an excellent effect of eliminating nitrites, which can be applied to pharmaceutical compositions such as anticancer drugs. .

이하, 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to a preferred embodiment so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.

실시예Example 1 : 감마선 조사 처리한  1: gamma irradiation treatment 옻엽의Lacquer 제조 Produce

옻엽 1㎏을 20℃의 증류수에 1시간 함침시켜서, 옻엽을 충분하게 수분을 머금도록 처리한 후, 상기 수분처리한 옻엽을 30만 Ci, Co-60 감마선 조사시설(point source AECL, IR-79)를 이용하여 시간당 10kGy의 선량율로 하기 표 1과 같이 감마선 총 흡수선량이 1kGy과 되도록 감마선을 조사하였다. 다음으로, 감마선 처리된 옻엽을 동결건조하여 분쇄한 후, -80℃에서 초저온냉동보관하였다.After 1 kg of lacquer leaves were impregnated with distilled water at 20 ° C. for 1 hour, the lacquer leaves were treated with sufficient moisture, and the water-treated lacquers were 300,000 Ci, Co-60 gamma-irradiating facilities (point source AECL, IR-79 Gamma rays were irradiated so that the total absorbed dose of gamma rays was 1 kGy as shown in Table 1 at a dose rate of 10 kGy per hour. Next, the gamma-ray treated lacquer was lyophilized and ground, and then cryogenically stored at -80 ° C.

실시예Example 2 ~ 4 2 to 4

상기 실시예 1과 동일하게 실시하되, 시간당 2kGy, 5kGy 및 10kGy가 되도록 실시예 2 ~ 4를 각각 실시하였다.     The same procedure as in Example 1, except that Examples 2 to 4 were performed so that 2kGy, 5kGy and 10kGy per hour.

구분
(단위:kGy)
division
(Unit: kGy)
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
감마선
총 흡수선량
Gamma rays
Total absorbed dose
1One 22 55 1010

실시예Example 5 : 전자선 조사 처리한  5: electron beam irradiation treatment 옻엽의Lacquer 제조 Produce

옻엽 1㎏을 20℃의 증류수에 1시간 함침시켜서, 옻엽을 충분하게 수분을 머금도록 처리한 후, 상기 수분처리한 옻엽을 2.5 MeV 변압형 전자가속기(ELV-8 모델, EB Tech사)를 이용하여 14.5 mA의 빔전류로 전자선을 조사하여, 시간당 10kGy의 선량율로 하기 표 2와 같이 총 흡수선량이 1kGy과 되도록 감마선을 조사하였다. 다음으로, 전자선 처리된 옻엽을 동결건조하여 분쇄한 후, -80℃에서 초저온냉동보관하였다.After 1 kg of lacquer leaves were impregnated with distilled water at 20 ° C. for 1 hour, the lacquer leaves were treated with sufficient moisture, and the water-treated lacquer leaves were then subjected to a 2.5 MeV transformer type electron accelerator (ELV-8 model, EB Tech Co., Ltd.). The electron beam was irradiated with a beam current of 14.5 mA, and gamma rays were irradiated such that the total absorbed dose was 1 kGy as shown in Table 2 at a dose rate of 10 kGy per hour. Next, the electron beam treated lacquer was lyophilized and ground, and then cryogenically stored at -80 ° C.

실시예Example 6 ~ 8 6 to 8

상기 실시예 1과 동일하게 실시하되, 시간당 2kGy, 5kGy 및 10kGy가 되도록 실시예 2 ~ 4를 각각 실시하였다.The same procedure as in Example 1, except that Examples 2 to 4 were performed so that 2kGy, 5kGy and 10kGy per hour.

구분
(단위:kGy)
division
(Unit: kGy)
실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8
전자선
총 흡수선량
Electron beam
Total absorbed dose
1One 22 55 1010

실험예Experimental Example 1 : 전자이온화에너지 처리된  1: Electron ionized energy treated 옻엽의Lacquer 우루시올Urushiol 함량 측정 실험 Content measurement experiment

(1) 감마선 처리한 (1) gamma-rayed 옻엽의Lacquer 우루시올Urushiol 함량 측정 실험 Content measurement experiment

상기 실시예 1 ~ 4에서 제조한 감마선 처리된 옻엽 각각으로부터 처리되고 남은 우루시올 함량을 측정하기 위하여 HLPC 분석을 실시하였다. 또한, 감마선 처리하지 않은 옻엽 또한 HLPC 분석을 실시하였다. HLPC analysis was performed to determine the amount of urushiol remaining after treatment from each of the gamma-rayed lacquers prepared in Examples 1 to 4 above. In addition, lacquer leaves without gamma ray treatment were also subjected to HLPC analysis.

이를 위하여, 상기 실시예에서 제조한 각각의 전자이온화에너지를 처리된 옻엽 10g을 n-헥산(n-hexane) 50㎖와 혼합한 후, 혼합액을 진탕하면서, 25℃에서 3 시간 동안 수피내 옻산(crude urushiol)을 상기 옻엽으로부터 추출하였다. To this end, 10 g of the lacquered leaves treated with each of the electron ionization energy prepared in the above example was mixed with 50 ml of n -hexane ( n -hexane), and then shaken with the mixed solution, and the lacquer in the bark at 25 ° C. for 3 hours. crude urushiol) was extracted from the lacquer.

다음으로, 추출물을 회전진공농축기(rotary vaccum evaporator)로 농축한 후, n-헥산이 완전히 증발된 농축물을 85% 메탄올 용액 10㎖에 용해시킨 후, 이를 멤브레인 필터(0.45㎛, Chrom Tech사 제품)로 여과한 후, 셉-팩(Sep-pak, C18 type, Waters)에 통과시켜 HLPC 분석용 시료로 사용하였다.Next, the extract was concentrated with a rotary vaccum evaporator, and then the concentrate, in which n-hexane was completely evaporated, was dissolved in 10 ml of a 85% methanol solution, followed by a membrane filter (0.45 µm, manufactured by Chrom Tech). ), And then passed through a Sep-Pak (Sep-pak, C 18 type, Waters) was used as a sample for HLPC analysis.

HLPC 분석조건은 Sycam(Germany)사의 펌프(pump, S2100), 오토샘플러(autosampler, S5200), 컬럼오븐(Column oven, S4011), 광 다이오드 어레이 UV 검출기(S3210)를 사용하였다. 그리고, 컬럼(Column)은 GROM사의 Grom-SIL 120 ODS-4 HE(4×250mm, i.d. 5㎛)를 사용하였으며, C18 가드 컬럼(C18 guard column)을 부착하여 사용하였다. 그리고, 분석온도는 25℃에서 실시하였고, 85% 메탄올을 용리제로 사용하였으며, 용리제의 유속은 1㎖/분으로 하였고, 주입부피(Injection volumn)는 20㎕로 272㎚에서 검출하였고 그 결과는 하기 표 3, 도 2 및 도 3에 나타내었다. 도 2에 있어서, 1은 감마선 처리를 하지 않은 것이며, 2~5 각각은 실시예 1 ~ 실시예 4를 의미한다. 도 2, 도 3 및 상기 표 3을 통해 알 수 있듯이 감마선의 총 흡수선량이 증가할수록 우루시올의 함량이 감소됨을 확인할 수 있다.The HLPC analysis conditions were used by Sycam (Germany) pump (pump, S2100), autosampler (autosampler, S5200), column oven (Column oven, S4011), photodiode array UV detector (S3210). Then, the column (Column) was done using GROM's Grom-SIL 120 ODS-4 HE (4 × 250mm, id 5㎛), was used to attach the C 18 guard column (C 18 guard column). The analysis temperature was performed at 25 ° C., 85% methanol was used as the eluent, the flow rate of the eluent was 1 ml / min, and the injection volume was detected at 272 nm with 20 μl. Table 3, Figure 2 and shown in FIG. In FIG. 2, 1 is not gamma-ray-processed, and 2-5 each means Example 1-4. As can be seen from Figure 2, 3 and Table 3 it can be seen that the content of urushiol decreases as the total absorbed dose of gamma rays increases.

구분division 감마선
총 흡수선량
Gamma rays
Total absorbed dose
추출물의
우루시올 함량(mg%)
Of extract
Urushiol Content (mg%)
옻엽으로부터
우루시올 제거율(%)
From lacquer
Urushiol removal rate (%)
-- 0kGy0kGy 176.12176.12 -- 실시예1Example 1 1kGy1kGy 19.1119.11 89.289.2 실시예2Example 2 2kGy2kGy 17.5817.58 90.090.0 실시예3Example 3 5kGy5kGy 15.9615.96 90.990.9 실시예4Example 4 10kGy10kGy 7.837.83 95.695.6

(2) 전자선 처리한 (2) electron beam treatment 옻엽의Lacquer 우루시올Urushiol 함량 측정 실험 Content measurement experiment

상기 실시예 5 ~ 8에서 제조한 전자선 처리된 옻엽 각각으로부터 처리되고 남은 우루시올 함량을 측정하기 위하여 상기 (1)과 동일한 방법으로 HLPC 분석을 실시하였으며, 그 결과를 하기 표 4, 도 4 및 도 5에 나타내었다. 도 4에 있어서, 1은 전자선 처리를 하지 않은 것이며, 2~5 각각은 실시예 5 ~ 실시예 8를 의미한다. 도 4, 도 5 및 상기 표 4를 통해 알 수 있듯이 전자선의 총 흡수선량이 증가할수록 우루시올의 함량이 감소됨을 확인할 수 있다. The HLPC analysis was performed in the same manner as in (1) to determine the remaining urushiol content from each of the electron beam treated lacquer leaves prepared in Examples 5 to 8, and the results are shown in Tables 4, 4 and 5 below. Shown in In FIG. 4, 1 has not carried out the electron beam processing, and 2-5 each means Example 5-8. As can be seen from Figure 4, Figure 5 and Table 4 it can be seen that the content of urushiol decreases as the total absorbed dose of the electron beam increases.

구분division 전자선
총 흡수선량
Electron beam
Total absorbed dose
추출물의
우루시올 함량(mg%)
Of extract
Urushiol Content (mg%)
옻엽으로부터
우루시올 제거율(%)
From lacquer
Urushiol removal rate (%)
-- 0kGy0kGy 176.12176.12 -- 실시예5Example 5 1kGy1kGy 48.7248.72 70.370.3 실시예6Example 6 2kGy2kGy 45.4945.49 74.274.2 실시예7Example 7 5kGy5kGy 27.1827.18 84.684.6 실시예8Example 8 10kGy10kGy 19.9519.95 88.788.7

상기 HLPC 분석 실험의 결과인 표 3 및 표 4를 비교해보면, 똑같은 선량을 조사했을 때, 감마선과 전자선의 우루시올 제거율을 비교해보면 조사선량이 10kGy에서 전자빔은 89%의 제거율을 보였으나, 감마선을 조사했을 때는 제거율이 96%로 감마선을 처리하였을 때 좀 더 높은 제거율을 보였다. 이것은 전자선의 투과도가 감마선의 투과도 보다 약하기 때문이라 생각된다. 저선량인 1kGy와 2kGy의 전자선과 감마선을 각각 조사했을 때 우루시올 제거율은 처리구간의 차이가 15% 이상 났지만, 고선량인 5kGy와 10kGy를 각각 조사했을 때는 전자선과 감마선의 우루시올 함량변화의 차이가 7% 이하로 고선량으로 조사했을 경우 전자선과 감마선 처리구간의 차이가 적었다. Comparing Table 3 and Table 4, which are the results of the HLPC analysis experiment, when the same dose was irradiated, when comparing the removal rate of the urushiol of the gamma ray and the electron beam, the electron beam showed 89% of the removal rate at 10kGy, but the gamma ray was irradiated. When the gamma ray was treated with the removal rate of 96%, the removal rate was higher. This is considered to be because the transmittance of the electron beam is weaker than that of the gamma ray. The removal rate of urushiol was more than 15% when the low dose of 1kGy and 2kGy electrons and gamma rays were irradiated, respectively. When irradiated with high doses below, there was little difference between the electron beam and gamma ray treatment.

그러나, 감마선 및 전자선 처리 모두 70% 이상의 매우 높은 우루시올 제거 효율을 보였으며, 특히, 총 흡수선량이 증가할수록, 우루시올 제거율도 크게 증가함을 확인할 수 있는 바, 본 발명의 전자이온화에너지를 이용한 옻 처리가 매우 효율적임을 확인할 수 있다.
However, both gamma ray and electron beam treatment showed a very high urushiol removal efficiency of 70% or more, and in particular, as the total absorbed dose increased, the urushiol removal rate also increased significantly, and lacquer treatment using the electron ionization energy of the present invention. We can see that is very efficient.

제조예Manufacturing example 1: 감마선 처리된  1: gamma-irradiated 옻엽Lacquer 추출물의 제조 Preparation of extract

(1) 용매로서 물을 사용하여 추출물 제조(1) Preparation of Extract Using Water as Solvent

상기 실시예 1 ~ 4에서 제조한 감마선 처리된 옻엽 5g에 물 50㎖를 환류냉각장치가 부착된 플라스크에서 혼합한 후, 이를 100℃에서 5 시간 동안 열수처리하여 추출한 후, 추출액을 여과하여 옻엽 추출물 각각을 제조하였다.5 g of the gamma-rayed lacquer leaves prepared in Examples 1 to 4 were mixed in a flask equipped with a reflux condenser, and then extracted by hot water treatment at 100 ° C. for 5 hours, followed by filtering the extract to extract lacquer leaves. Each was prepared.

(2) 용매로서 에탄올을 사용하여 추출물 제조(2) Preparation of Extract Using Ethanol as Solvent

상기 실시예 1 ~ 4에서 제조한 감마선 처리된 옻엽 10 ㎎와 에탄올(95%) 100㎖를 이를 환류냉각장치가 부착된 플라스크에서 혼합한 후, 이를 80℃에서 3 시간 동안 열을 가하여 추출한 후, 추출액을 여과하여 옻엽 추출물 각각을 제조하였다.
10 mg of gamma-rayed lacquer prepared in Examples 1 to 4 and 100 ml of ethanol (95%) were mixed in a flask equipped with a reflux condenser, and then extracted by applying heat at 80 ° C. for 3 hours. The extract was filtered to prepare lacquer extract.

제조예Manufacturing example 2: 전자선 처리된  2: electron beam treated 옻엽Lacquer 추출물의 제조 Preparation of extract

(1) 용매로서 물을 사용하여 추출물 제조(1) Preparation of Extract Using Water as Solvent

상기 실시예 5 ~ 8에서 제조한 전자선 처리된 옻엽 10 ㎎와 물 100㎖를 환류냉각장치가 부착된 플라스크에서 혼합한 후, 이를 100℃에서 5 시간 동안 열수처리하여 추출한 후, 추출액을 여과하여 옻엽 추출물 각각을 제조하였다.10 mg of the electron beam-treated lacquer leaves prepared in Examples 5 to 8 and 100 ml of water were mixed in a flask equipped with a reflux condenser, and then extracted by hot water treatment at 100 ° C. for 5 hours, followed by filtering the extracts. Each extract was prepared.

(2) 용매로서 에탄올을 사용하여 추출물 제조(2) Preparation of Extract Using Ethanol as Solvent

상기 실시예 5 ~ 8에서 제조한 전자선 처리된 옻엽 10 ㎎와 에탄올(95%) 100㎖를 이를 환류냉각장치가 부착된 플라스크에서 혼합한 후, 이를 80℃에서 3 시간 동안 열을 가하여 추출한 후, 추출액을 여과하여 옻엽 추출물 각각을 제조하였다.
10 mg of the electron beam treated lacquer leaves prepared in Examples 5 to 8 and 100 ml of ethanol (95%) were mixed in a flask equipped with a reflux condenser, and then extracted by applying heat at 80 ° C. for 3 hours. The extract was filtered to prepare lacquer extract.

실험예Experimental Example 2 :  2 : 옻엽Lacquer 추출물의 총 폴리페놀 함량 측정 Determination of Total Polyphenol Content in Extracts

제조예 1에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 폴리페놀 함량 측정은 각각의 추출물 0.5㎖에 탄산나트륨(Na2CO3, 2%)5㎖을 넣고 충분히 혼합한 후 2분간 방치한 뒤, 50% 폴린-키오칼토스 시약(Folin-Ciocalteu's reagent) 0.5㎖을 넣고 30분간 방치한 다음 750nm에서 흡광도를 측정하였다. 이때 표준곡선 작성에는 카테콜(catechol)을 사용하였고 폴리페놀 함량은 카테콜(㎎/100㎖, %)양으로 환산하였다. 그 결과를 하기 표 5에 나타내었다. 또한, 제조예 2에서 물 또는 에탄올을 사용하여 제조한 전자선 처리한 옻엽 추출물 각각의 폴리페놀 함량을 측정하였으며, 그 결과를 하기 표 6에 나타내었다. Polyphenol content of each gamma ray-treated lacquer extract prepared in Preparation Example 1 using water or ethanol was measured by adding 5 ml of sodium carbonate (Na 2 CO 3 , 2%) to 0.5 ml of each extract, followed by 2 minutes of mixing. After standing, 0.5 ml of 50% Folin-Ciocalteu's reagent was added thereto and left for 30 minutes, and then absorbance was measured at 750 nm. At this time, catechol was used to prepare the standard curve, and the polyphenol content was converted into the amount of catechol (mg / 100ml,%). The results are shown in Table 5 below. In addition, the polyphenol content of each of the electron beam treated lacquer extract prepared using Preparation Example 2 using water or ethanol was measured, and the results are shown in Table 6 below.

감마선 총 흡수선량
(kGy)
Gamma-ray total absorbed dose
(kGy)
총 폴리페놀 함량 (㎎%)Total Polyphenol Content (mg%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 63.5663.56 78.578.5 1One 21.4721.47 44.4344.43 22 18.4118.41 44.2044.20 55 22.1022.10 39.6739.67 1010 20.4220.42 26.1726.17

전자선 총 흡수선량
(kGy)
Electron beam total absorbed dose
(kGy)
총 폴리페놀 함량 (㎎%)Total Polyphenol Content (mg%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 63.5663.56 78.578.5 1One 17.5617.56 17.6517.65 22 17.7317.73 18.4718.47 55 19.8019.80 17.1117.11 1010 23.6023.60 21.3321.33

표 5 및 표 6을 살펴보면, 전자이온화에너지를 무처리한 옻엽 추출물의 총 폴리페놀 함량은 열수 추출물 보다 에탄올 추출물에서 더 높은 폴리페놀 함량을 나타내었다. Looking at Table 5 and Table 6, the total polyphenol content of the lacquer extract without treatment with electron ionization energy showed a higher polyphenol content in the ethanol extract than the hydrothermal extract.

표 5의 감마선 조사 처리한 옻엽 추출물의 경우, 총 폴리페놀 함량이 50% 이상 감소함을 확인할 수 있으며, 표 6의 전자선 조사 처리한 옻엽 추출물의 경우, 전자선 총 흡수선량이 증가할수록 총 폴리페놀 함량이 약간씩 증가함을 보였으나, 총 폴리페놀 함량이 70% 이상 감소함을 확인할 수 있다.       In the case of the gamma-ray irradiated lacquer extract of Table 5, the total polyphenol content was reduced by more than 50%, and in the case of the lacquered extract treated with the electron beam of Table 6, the total polyphenol content was increased as the total electron beam absorbed dose was increased. Although this showed a slight increase, it can be seen that the total polyphenol content is reduced by more than 70%.

감마선 또는 전자선을 조사했을 경우 열수추출물에서 총 폴리페놀 함량은 차이를 보이지 않았으나, 에탄올추출물에서는 감마선을 조사한 옻엽 추출물이 전자선을 조사한 옻엽 추출물 보다 상대적으로 높은 폴리페놀 함량을 나타냈다. 그러나, 전자이온화에너지 조사선량과 폴리페놀 함량 간의 비례관계는 없었다.
There was no difference in the total polyphenol contents in the hot water extracts when irradiated with gamma rays or electron beams. However, in the ethanol extracts, the lacquer leaves irradiated with gamma rays showed a higher polyphenol content than the lacquer leaves irradiated with electron beams. However, there was no proportional relationship between the electron ionization energy dose and the polyphenol content.

실험예Experimental Example 3 :  3: 옻엽Lacquer 추출물의 총 플라보노이드( Total flavonoids in the extract ( flavonoidflavonoid ) 함량 측정) Content measurement

제조예 1에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 총 플라보노이드 함량을 측정하였다. 즉, 배양물 추출액 1㎖에 diethyleneglycol 10㎖를 가하여 잘 혼합한 후 여기에 1N 수산화나트륨(NaOH, w/v) 0.1㎖을 잘 혼합 하여 37℃의 수욕 상에서 1시간 동안 반응시킨 후 420㎚에서 흡광도를 측정하였다. 바탕실험은 시료용액 대신에 각각의 추출용매로 하였고 이때 표준곡선 작성에는 루틴을 사용하였으며 총 플라보노이드 함량은 루틴(Rutin, ㎎/100㎖, %)양으로 환산하였으며, 그 결과를 하기 표 7에 나타내었다. In Preparation Example 1, the total flavonoid content of each gamma ray-treated lacquer extract prepared using water or ethanol was measured. That is, 10 ml of diethyleneglycol was added to 1 ml of the culture extract and mixed well, and 0.1 ml of 1N sodium hydroxide (NaOH, w / v) was mixed well and reacted in a water bath at 37 ° C. for 1 hour, followed by absorbance at 420 nm. Was measured. For the background experiment, instead of the sample solution, each extraction solvent was used. At this time, the routine was used to prepare the standard curve, and the total flavonoid content was converted into the amount of rutin (Rutin, mg / 100mL,%), and the results are shown in Table 7 below. It was.

또한, 제조예 2에서 물 또는 에탄올을 사용하여 제조한 전자선 처리한 옻엽 추출물 각각의 총 플라보노이드 함량을 측정하였으며, 그 결과를 하기 표 8에 나타내었다. In addition, the total flavonoid content of each of the electron beam treated lacquer extract prepared using Preparation Example 2 using water or ethanol was measured, and the results are shown in Table 8 below.

감마선 총 흡수선량
(kGy)
Gamma-ray total absorbed dose
(kGy)
총 플라보노이드함량 (㎎%)Total flavonoid content (mg%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 330.1330.1 807.5807.5 1One 205.5205.5 513.3513.3 22 228.7228.7 584.6584.6 55 216.6216.6 577.2577.2 1010 204.5204.5 538.2538.2

전자선 총 흡수선량
(kGy)
Electron beam total absorbed dose
(kGy)
총 플라보노이드함량 (㎎%)Total flavonoid content (mg%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 330.1330.1 807.5807.5 1One 180.3180.3 306.9306.9 22 186.4186.4 432.6432.6 55 206.9206.9 370.1370.1 1010 229.4229.4 378.8378.8

표 7 및 표 8을 살펴보면, 전자이온화에너지를 무처리한 옻엽 추출물 및 처리한 옻엽 추출물의 총 플라보노이드 함량은 열수추출물 보다 에탄올추출물에서 더 높은 플라보노이드 함량을 나타내었다. Looking at Table 7 and Table 8, the total flavonoid content of the lacquer leaf extract and the treated lacquer extract untreated with ionization energy showed a higher flavonoid content in the ethanol extract than the hot water extract.

옻엽에는 많은 플라보노이드가 함유되어 있다고 알려져 있고, 전자이온화에너지를 무처리한 옻엽 추출물은 감마선과 전자선을 조사한 옻엽 추출물과 비교하였을 때 총 플라보노이드의 함량은 열수 추출물에서 46%, 에탄올 추출물에서 62% 감소했다. 그리고, 감마선과 전자선을 조사한 옻엽 추출물에서 촐 폴리페놀의 감소와 비슷한 경향을 보였다. It is known that lacquer leaves contain a lot of flavonoids, and the total content of flavonoids was reduced by 46% in hot water extracts and 62% in ethanol extracts when compared with lacquer extracts irradiated with gamma and electron beams. . In addition, the lacquer extracts irradiated with gamma rays and electron beams showed a similar tendency to decrease of polyphenols.

실험예Experimental Example 4 :  4 : 옻엽Lacquer 추출물의 항산화활성 측정 Antioxidant Activity of Extracts

제조예 1에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 항산화활성을 측정하였다. 즉, 각 추출물 200㎕에 100mM Tris-HCl(pH 7.4)완충용액 800㎕를 잘 혼합한 다음, 0.5 mM DPPH(2, 2-Diphenyl-1-picryhy- drazyl) 메탄올 용액 1㎖를 넣고 혼합하였다. 다음으로, 반응물을 25℃에서 20분간 방치하고 여과(0.45 ㎛)하여 517㎚에서 흡광도를 측정하였다. 이때, 바탕실험은 시료용액 대신 순수한 각 용매를 사용하였으며 항산화 활성은 바탕실험에 대한 50% 흡광도의 감소를 나타내는 검체의 농도(50% inhibition concentration, IC50)로 표시하였으며, 그 결과를 하기 표 9에 나타내었다. 또한, 제조예 2에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 항산화활성을 측정하였으며, 그 결과를 하기 표 10에 나타내었다. In Preparation Example 1, the antioxidant activity of each gamma ray-treated lacquer extract prepared using water or ethanol was measured. That is, 800 μl of 100 mM Tris-HCl (pH 7.4) buffer solution was well mixed into 200 μl of each extract, and then 1 ml of 0.5 mM DPPH (2, 2-Diphenyl-1-picryhydrazyl) methanol solution was added thereto and mixed. Next, the reaction was left at 25 ° C. for 20 minutes, filtered (0.45 μm), and the absorbance was measured at 517 nm. At this time, the pure experiment was used for each solvent instead of the sample solution, and the antioxidant activity was expressed as the concentration of the sample (50% inhibition concentration, IC 50 ) showing a 50% absorbance reduction for the blank experiment, the results are shown in Table 9 Shown in In addition, the antioxidant activity of each of gamma-ray-treated lacquer extracts prepared using water or ethanol in Preparation Example 2 was measured, and the results are shown in Table 10 below.

감마선 총 흡수선량
(kGy)
Gamma-ray total absorbed dose
(kGy)
IC50(㎍/㎖)IC 50 (μg / ml)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 26.8926.89 13.3413.34 1One 45.0745.07 23.7523.75 22 50.9950.99 24.2924.29 55 43.9043.90 26.9326.93 1010 64.2764.27 32.0132.01 BHABHA 14.0914.09 BHTBHT 83.6283.62

전자선 총 흡수선량
(kGy)
Electron beam total absorbed dose
(kGy)
IC50(㎍/㎖)IC 50 (μg / ml)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 26.8926.89 13.3413.34 1One 80.8980.89 27.7227.72 22 70.2670.26 33.5133.51 55 84.2484.24 32.7832.78 1010 95.5995.59 32.4932.49 BHABHA 14.0914.09 BHTBHT 83.6283.62

표 9 및 표 10의 항산화 활성 측정 결과를 살펴보면, 전자이온화에너지 처리한 옻엽 추출물이 무처리한 옻엽 추출물에 비해 항산화 활성이 많이 떨어지는 것을 확인할 수 있다. 그리고, 열수추출물 보다 에탄올추출물에서의 항산화활성이 좋았고, 전자선을 조사한 것보다는 감마선을 조사했을 때, 라디칼 소거능이 높은 결과를 나타냈다.
Looking at the antioxidant activity measurement results of Table 9 and Table 10, it can be seen that the antioxidant activity is much lower than the lacquer extract treated with electron ionization energy compared to the untreated lacquer extract. In addition, the antioxidant activity of the ethanol extract was better than that of the hot water extract, and when the gamma ray was irradiated rather than the electron beam irradiation, the radical scavenging ability was high.

실험예Experimental Example 5 :  5: 옻엽Lacquer 추출물의 아질산염 소거활성 측정 Measurement of Nitrite Scavenging Activity of Extracts

제조예 1에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 아질산염 소거활성을 측정하였으며, 그 결과를 하기 표 11에 나타내었다. 또한, 제조예 2에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 아질산염 소거활성을 측정하였으며, 그 결과를 하기 표 12에 나타내었다. Nitrite scavenging activity of each gamma ray-treated lacquer extract prepared in Preparation Example 1 using water or ethanol was measured, and the results are shown in Table 11 below. In addition, the nitrite scavenging activity of each gamma ray-treated lacquer extract prepared in Preparation Example 2 using water or ethanol was measured, and the results are shown in Table 12 below.

측정방법은 1mM 질산나트륨(NaNO2)용액 2㎖에 추출물을 1㎖ 씩 가하고 여기에 0.1N HCl, 0.2M 시트릭산(citric acid) 완충액을 사용하여 반응용액의 pH를 각각 1.2, 3.0 및 5.0으로 조절하여 반응용액을 10㎖로 하였다. 다음으로, 이 용액을 37℃에서 1시간 반응시킨 후 각 반응액을 1㎖씩 취하여 2% 초산용액 5㎖, 30% 초산으로 각각 조제한 1% 설파닐산(sulfanilic acid)과 1% 나프틸아민(naphthylamine)을 1:1 부피비로 혼합한 Griess 시약을 사용 직전에 제조하여 0.4㎖를 가하여 잘 혼합한 다음 실온에서 15분간 방치시킨 후 520㎚에서 흡광도를 측정하여 잔존하는 아질산양을 산출하였다. 이때 대조구는 Griess시약 대신 증류수를 0.4㎖ 가하여 상기와 같은 방법으로 실시하였으며, 아질산염 소거작용은 화합물을 첨가한 경우와 첨가하지 않은 경우의 아질산염 백분율(%)로 나타내었다.The measuring method was to add 1 ml of extract to 2 ml of 1 mM sodium nitrate (NaNO 2 ) solution, and then add pH of the reaction solution to 1.2, 3.0 and 5.0 using 0.1 N HCl and 0.2 M citric acid buffer, respectively. The reaction solution was adjusted to 10 ml. Next, the solution was reacted at 37 ° C. for 1 hour, and then 1 ml of each reaction solution was prepared, which was prepared with 5 ml of 2% acetic acid solution and 30% acetic acid, respectively, 1% sulfanilic acid and 1% naphthylamine ( Griess reagent prepared by mixing Naphthylamine in a 1: 1 volume ratio was prepared immediately before use, 0.4 ml was added and mixed well, and the mixture was left at room temperature for 15 minutes and absorbance was measured at 520 nm to calculate the amount of residual nitrite. In this case, 0.4 ml of distilled water was added instead of the Griess reagent, and the nitrite scavenging activity was expressed as the percentage of nitrite (%) when the compound was added or not.

용매menstruum 감마선 총 흡수선량 (kGy)Gamma-ray total absorbed dose (kGy) 아질산염 소거능 (%)Nitrite scavenging activity (%) pH1.2pH1.2 pH3.0pH3.0 pH5.0pH5.0 water 00 99.799.7 99.699.6 17.517.5 1One 99.499.4 71.971.9 11.311.3 22 97.397.3 70.470.4 10.010.0 55 97.497.4 68.168.1 6.56.5 1010 85.285.2 54.554.5 11.411.4 에탄올ethanol 00 100.3100.3 N.D.N.D. 30.830.8 1One 98.598.5 99.899.8 43.743.7 22 99.199.1 71.471.4 38.338.3 55 98.598.5 171.8171.8 57.357.3 1010 81.381.3 N.D.N.D. 55.255.2

용매menstruum 전자선 총 흡수선량 (kGy)Total absorbed dose of electron beam (kGy) 아질산염 소거능 (%)Nitrite scavenging activity (%) pH1.2pH1.2 pH3.0pH3.0 pH5.0pH5.0 water 00 99.799.7 99.699.6 17.517.5 1One 97.397.3 60.560.5 11.811.8 22 99.899.8 73.673.6 10.210.2 55 99.799.7 74.074.0 16.916.9 1010 99.199.1 76.876.8 13.513.5 에탄올ethanol 00 100.3100.3 N.D.N.D. 30.830.8 1One 88.388.3 N.D.N.D. 30.430.4 22 48.548.5 N.D.N.D. N.D.N.D. 55 43.943.9 N.D.N.D. N.D.N.D. 1010 73.473.4 N.D.N.D. 17.317.3

전자이온화에너지 처리한 옻엽 추출물에서 아질산염 소거능은 pH 1.2에서 열수추출물에서 에탄올추출물보다 약간 높았고, 열수추출물에서는 감마선을 10kGy 조사한 시료를 제외하고는 모든 시료가 90% 이상의 높은 수준의 소거능을 보여주었다. 그리고, pH 3.0 일 때 열수추출물에서는 54% ~ 76%, 에탄올추출물에서는 거의 검출이 되지 않았으며, pH 5.0 에서는 열수추출물에서 15% 정도의 아질산염 소거능을 보였고, 에탄올추출물은 30% 전후의 소거능을 나타냈다. 옻엽에 전자빔과 감마선을 조사했을 때 무조사처리한 추출물과의 차이는 보이지 않았다. The nitrite scavenging ability of the lacquer extract treated with electron ionization energy was slightly higher than that of ethanol extract in the hot water extract at pH 1.2, and all the samples showed high scavenging ability over 90% except the sample irradiated with gamma rays at 10 kGy. At pH 3.0, 54% to 76% of hot water extracts and almost no ethanol extracts were detected. At pH 5.0, nitrite scavenging activity was about 15% in hot water extracts, and ethanol extracts exhibited about 30% scavenging activity. . Irradiation of electron beams and gamma rays on lacquer leaves did not show any difference from irradiated extracts.

각각의 추출물에서 약간의 차이가 있지만 대부분 pH가 증가하면 아질산염 소거능이 감소하는 것을 보여 pH에 의존적임을 확인할 수 있다.      Although there is a slight difference in each extract, it can be confirmed that most of the pH increases as the nitrite scavenging ability decreases as the pH is increased.

식품의 가공 및 저장, 특히 수산물이나 식육제품에 첨가하여 독소 생성억제와 발색, 산패방지제로 널리 이용되고 있는 아질산염은 그 자체가 독성을 나타내어 일정농도 이상 섭취하게 되면 혈액 중의 헤모글로빈(hemoglobin)이 산화되어 메트헤모글로빈(methemoglobin)을 형성하여 메트헤모글로빈증을 유발시키며, 단백질 식품, 의약품 및 잔류농약 등에 존재하는 제 2급 및 3급 아민 등의 아민류와 아질산염이 반응하여 발암성 물질일 니트로사민(nitrosamine)을 생성하는 것으로 보고되어 있다. 또한 니트로사민 생성 과정은 pH가 낮은 조건에서 쉽게 일어나는 것으로 알려져 있는데 전자이온화에너지를 처리한 옻의 물추출물이 인체의 위내 pH 조건과 비슷한 pH 1.2에서 90% 이상의 제거능을 보여 생체내에서 효과적인 아질산염 소거작용을 통해 니트로사민의 생성을 억제할 것으로 사료된다.
Nitrite, which is widely used for processing and storage of foods, especially as aquatic products or meat products, is used as a toxin production inhibitor, color developing agent, and anti-scattering agent itself.It is toxic and consumes more than a certain concentration, so that hemoglobin in blood is oxidized. Methemoglobin is formed to induce methemoglobinosis, and nitrites react with amines such as secondary and tertiary amines present in protein foods, pharmaceuticals and pesticides to produce nitrosamines (nitrosamines). It is reported. In addition, nitrosamine formation process is known to occur easily at low pH. The water extract of lacquer treated with electron ionization energy shows more than 90% removal at pH 1.2, similar to the pH condition in the stomach of the human body, thus providing effective nitrite scavenging activity in vivo. It is thought to inhibit the production of nitrosamine.

실험예Experimental Example 6 :  6: 옻엽Lacquer 추출물의 티로시나아제( Tyrosinase of extracts ( tyrosinasetyrosinase ) 저해활성 측정) Inhibitory activity measurement

제조예 1에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 티로시나아제 저해활성을 측정하였으며, 그 결과를 하기 표 13에 나타내었다. 또한, 제조예 2에서 물 또는 에탄올을 사용하여 제조한 감마선 처리한 옻엽 추출물 각각의 티로시나아제 저해활성을 측정하였으며, 그 결과를 하기 표 14에 나타내었다.Tyrosinase inhibitory activity of each gamma ray-treated lacquer extract prepared using Preparation Example 1 using water or ethanol was measured, and the results are shown in Table 13 below. In addition, the tyrosinase inhibitory activity of each gamma ray-treated lacquer extract prepared using Preparation Example 2 using water or ethanol was measured, and the results are shown in Table 14 below.

측정방법은 35℃ 수조에서 온도를 미리 조정한 0.175M 인산 완충용액 (pH 6.8) 0.2㎖, 5mM L-DOPA 용액 0.2㎖ 및 추출시료 용액 0.5㎖의 혼합액에 머쉬룸 티로시나제(mushroom tyrosinase, 110 units/㎖, Sigma사) 0.1㎖를 첨가하여 35℃에서 2분간 반응시킨 다음 475㎚에서 흡광도를 측정한 값(S abs )과 효소액 대신에 증류수 0.1㎖를 첨가하여 흡광도를 측정한 값(B abs ), 추출시료 용액 대신에 증류수 0.5㎖를 첨가하여 흡광도를 측정한 값(C abs )을 이용하여 하기 수학식 1에 의해 계산하였다.The measurement method was a mushroom tyrosinase (110 units / ml) in a mixture of 0.2 ml of 0.175 M phosphate buffer (pH 6.8), 0.2 ml of 5 mM L-DOPA solution and 0.5 ml of extract sample solution, which had been pre-adjusted in a 35 ° C. water bath. , Sigma) 0.1 ml of the solution was added and reacted at 35 ° C. for 2 minutes, and the absorbance at 475 nm was measured (S abs ), and the absorbance was measured by adding 0.1 ml of distilled water instead of the enzyme solution (B abs ). Instead of the sample solution, 0.5 ml of distilled water was added, and the absorbance was measured using the value (C abs ).

Figure 112010082531240-pat00001
Figure 112010082531240-pat00001

감마선 총 흡수선량
(kGy)
Gamma-ray total absorbed dose
(kGy)
티로시나아제 저해활성효율 (%)Tyrosinase inhibitory activity efficiency (%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 91.491.4 46.146.1 1One 53.653.6 90.690.6 22 56.956.9 67.267.2 55 58.258.2 64.864.8 1010 66.666.6 62.562.5

전자선 총 흡수선량
(kGy)
Electron beam total absorbed dose
(kGy)
티로시나아제 저해활성효율 (%)Tyrosinase inhibitory activity efficiency (%)
용매(물)Solvent (water) 용매(에탄올)Solvent (ethanol) 00 91.491.4 46.146.1 1One 64.764.7 34.434.4 22 58.158.1 60.260.2 55 83.983.9 83.683.6 1010 85.085.0 71.971.9

표 13 및 표 14를 살펴보면, 전자선 또는 감마선 조사 처리한 옻엽의 열수추출물에서는 무조사처리한 추출물보다 티로시나아제 저해활성효율이 떨어졌다. 그렇지만 50% 이상의 티로시나아제 저해활성을 나타냈다. 이를 통하여 본 발명의 옻엽 추출물 제조과정에서 티로시나아제 저해 활성 물질이 일부 제거되나, 유효한 범위의 티로시나아제 저해 활성 물질이 남아 있음을 확인할 수 있다. 그리고, 전자선 또는 감마선의 흡수선량이 증가할수록 티로시나아제 저해 활성이 높아지는 것을 확인했다. 이를 통하여, 본 발명의 옻잎 추출물이 티로시나아제 활성 저해능이 우수한 바, 식품의 갈변화를 방지하는 제품이나 미백제품으로 활용이 가능함을 확인할 수 있다.
Looking at Table 13 and Table 14, the hydrothermal extract of lacquer leaves treated with electron beam or gamma-ray irradiation showed lower efficiency of tyrosinase inhibitory activity than the irradiated extract. However, it showed more than 50% tyrosinase inhibitory activity. Through this process, some of the tyrosinase inhibitory active substances are removed in the manufacturing process of the lacquer extract of the present invention, it can be confirmed that the effective range of tyrosinase inhibitory substances remain. In addition, it was confirmed that the tyrosinase inhibitory activity increased as the absorbed dose of the electron beam or gamma ray increased. Through this, it can be confirmed that the lacquer extract of the present invention has excellent tyrosinase activity inhibiting ability, and can be used as a product or a whitening product for preventing browning of food.

실험예Experimental Example 7 :  7: 옻엽Lacquer 추출물의 세포독성 측정 Cytotoxicity of Extracts

전자이온화에너지 처리한 옻의 열수 추출물에서의 세포독성을 검증하기 위해 정상세포주인 NIH3T3에 50㎍/well의 농도로 처리하여 48hr 배양한 후, 상기 제조예 1 및 제조예 2에서 제조한 감마선 또는 전자선 조사 처리한 옻엽 추출물을 접종시켜서, 세포독성을 측정하였으며, 그 결과를 도 6 및 도 7에 각각 나타내었다.       In order to verify the cytotoxicity of the hot water extract of lacquer treated with electron ionization energy, the cells were treated with a concentration of 50 µg / well in a normal cell line NIH3T3 for 48 hr, and then gamma or electron beams prepared in Preparation Examples 1 and 2, respectively. The cytotoxicity was measured by inoculating the lacquer extract treated with irradiation, and the results are shown in FIGS. 6 and 7, respectively.

전자선(도 7)과 감마선(도 6) 무조사구에서는 50㎍/well에서 세포독성이 나타나지 않았지만, 전자이온화에너지 처리한 옻엽 추출물은 약 10% 정도의 세포독성을 확인하였다. 전자이온화에너지를 조사하지 않은 옻엽 추출물에서의 세포독성이 나타나지 않은 것으로 보아 감마선과 전자선 조사에 의한 세포독성의 영향이 있을 것으로 추측된다.
Although no cytotoxicity was observed at 50 μg / well in the no-irradiation region of the electron beam (FIG. 7) and gamma ray (FIG. 6), the lactose extract treated with electron ionization energy confirmed about 10% cytotoxicity. Cytotoxicity was not observed in the lacquer leaf extracts irradiated with electron ionization energy, which may have the effect of cytotoxicity by gamma and electron beam irradiation.

실험예Experimental Example 8 :  8 : 옻엽Lacquer 추출물의 항암활성 측정 Anticancer Activity of Extracts

제조예 1의 (2) 및 제조예 2의 (2)의 에탄올 용매를 사용하여 제조한 우루시올 저감화한 옻엽 추출물의 항암활성을 검토하기 위하여 A549(폐암), AGS(위암), HT-29(대장암), HepG2(간암) 세포를 이용하여, 항암활성 측정 실험을 실시하였다. 그리고, 대조구(도 8 및 도 9에 C로 표시)로는 정상세포인 NIH3T3 세포를 사용하였으며, WST 분석기(Enhanced Cell viability Assay Kit, Daeil사, 한국)를 사용하여 항암활성을 측정하였으며, 그 결과는 도 8 및 도 9에 나타내었다. A549 (lung cancer), AGS (stomach cancer), HT-29 (colon Cancer), HepG2 (liver cancer) cells were used for anticancer activity measurement experiments. In addition, as a control (labeled C in FIGS. 8 and 9), NIH3T3 cells, which are normal cells, were used, and anticancer activity was measured using a WST analyzer (Enhanced Cell viability Assay Kit, Daeil, Korea). 8 and 9 are shown.

전자선 조사 처리한 옻엽을 에탄올 용매를 이용하여 제조한 옻엽 추출물의 항암활성 측정 결과인 도 9를 살펴보면, 전자선을 조사하지 않은 옻엽 추출물에서는 폐암세포(A549)에서 20% 저해를 보였고 나머지 3종의 암세포의 성장에 전혀 영향을 미치지 않았다. 이것은 무처리한 옻엽 추출물이 암세포 성장률에 영향을 주지 않는다는 것을 알 수 있다. 도 8과 도 9를 비교해볼때, 폐암세포(A549)에서는 감마선이 더 좋은 성장 억제율을 보였지만, 위암세포(AGS), 간암세포(HepG2), 대장암세포(HT-29)는 전자빔 조사가 암세포 성장을 억제시키는데 더 효과가 있었다. Looking at the anti-cancer activity of the lacquer leaf extract prepared by using an ethanol solvent in the lacquer treated with electron beam irradiation as shown in FIG. Had no effect on growth. It can be seen that the untreated lacquer extract does not affect the growth rate of cancer cells. 8 and 9, gamma rays showed better growth inhibition rate in lung cancer cells (A549), but gastric cancer cells (AGS), liver cancer cells (HepG2), and colon cancer cells (HT-29) showed that cancer cell growth was observed. It was more effective at suppressing it.

감마선(도 8)과 전자선(도 9) 조사 처리한 옻엽 추출물은 폐암세포를 제외한 3종의 암세포에서 전자이온에너지 처리하지 않은 옻엽 추출물 보다 우수한 항암활성 결과를 보였다. 본 실험을 통하여 본 발명의 옻엽 추출물의 항암제 등의 약학 조성물로서 사용할 수 있음을 확인할 수 있다.
The lacquer leaf extracts treated with gamma rays (FIG. 8) and electron beams (FIG. 9) showed superior anticancer activity in the three types of cancer cells except lung cancer cells, compared with the lacquer leaf extracts without electron ion energy treatment. Through this experiment, it can be seen that it can be used as a pharmaceutical composition such as anticancer agent of the lacquer extract of the present invention.

실험예Experimental Example 9 :  9: 옻엽Lacquer 추출물의 항염 활성 측정 Determination of Anti-inflammatory Activity of Extracts

제조예 1의 (1) 및 제조예 2의 (1)의 물(H2O) 용매를 사용하여 제조한 우루시올 저감화한 옻엽 추출물의 항염 활성을 측정하기 위하여 염증 유발에 중요한 역할을 하는 것으로 알려진 산화질소(nitric oxide, NO)의 생성 억제 효과 측정하기 위하여, 마우스(mouse) 대식세포인 RAW 264.7에 대한 세포독성을 알아보기 위해 WST assay를 수행하였으며, 그 결과는 도 10의 A 및 B에 각각 나타내었다. Oxidation known to play an important role in inducing inflammation in order to measure the anti-inflammatory activity of urushiol-reduced lacquer extracts prepared using water (H 2 O) solvents of Preparation Example 1 (1) and Preparation Example 2 (1) In order to measure the inhibitory effect of the production of nitrogen (nitric oxide, NO), WST assay was carried out to determine the cytotoxicity of RAW 264.7 mouse macrophage cells, the results are shown in Figs. It was.

옻엽 추출물을 50 ㎍/well로 처리하였을 때 세포생존율은 무처리구와 유사하여 세포독성을 보이지 않았으며, 실험결과 우루시올 저감화 처리를 한 시료군이 RAW 264.7에 대해 세포독성을 나타나지 않았으므로 산화질소의 생성량 변화가 세포독성에 의한 영향과는 무관함을 확인할 수 있었다.        The cell viability of the lacquer leaf extract at 50 ㎍ / well was similar to that of the non-treated group, which did not show cytotoxicity. Was found to be independent of cytotoxic effects.

다음으로, LPS로 활성화된 RAW 264.7이 분비하는 산화질소에 대한 본 발명의 옻엽 추출물의 영향을 그리스(Griess) 시약을 사용하여 실험하였으며, 그 결과는 도 12 및 도 13에 나타내었다.      Next, the effect of the lacquer extract of the present invention on the nitric oxide secreted by LPS-activated RAW 264.7 was tested using a Greries reagent, and the results are shown in FIGS. 12 and 13.

감마선(도 12)과 전자선(도 13) 처리한 옻엽 추출물의 NO 억제율의 차이는 없었고, 감마선 또는 전자선의 흡수선량이 증가할수록 NO 저해활성이 증가하는 경향을 보였다. There was no difference in the NO inhibition rate of the lacquer extract treated with gamma rays (FIG. 12) and electron beams (FIG. 13). As the absorbed dose of gamma rays or electron beams increased, the NO inhibitory activity tended to increase.

그리고, 감마선과 전자선을 조사한 옻엽의 추출물은 50㎍/well의 농도에서 54~66%의 50% 이상의 NO 저해활성을 보여주었으며, 이것은 무처리구가 68%의 NO 저해활성을 보인 것과 비교해서 약간 낮았으나, 우루시올을 저감시키기 위한 전자이온화에너지 처리 과정에서 유효한 항염활성 물질이 약간 감소함으로써 이러한 결과를 보인 것으로 판단된다. 즉, 본 발명의 옻엽 추출물이 전자이온화에너지 무처리한 추출물 보다는 약간의 항염 효과가 감소하였으나, 무처리 추출물은 다량의 우루시올을 함유하기 때문에 이로인한 부작용으로 항염제 성분으로 사용할 수 없으나, 본 발명의 옻엽 추출물은 우루시올 함량이 매우 낮아서 이로 인한 부작용 발생이 없는 바, 항염제 성분으로 사용을 도모할 수 있다.The extracts of lacquer leaves irradiated with gamma rays and electron beams showed more than 50% NO inhibitory activity of 54-66% at a concentration of 50㎍ / well, which was slightly lower than that of 68% NO inhibitory activity. The results showed that the anti-inflammatory active substances were slightly reduced during the electron ionization energy treatment to reduce urushiol. In other words, the lacquer leaf extract of the present invention reduced the anti-inflammatory effect slightly than the non-electron ionized energy extract, but because the untreated extract contains a large amount of urushiol can not be used as an anti-inflammatory ingredient due to this side effect, the lacquer leaf of the present invention The extract has a very low urushiol content, so there are no side effects caused by this, and can be used as an anti-inflammatory ingredient.

앞서 실시한 실시예 및 실험예를 통하여 옻을 본 발명이 제시하는 전자이온화에너지 처리함으로써, 알레르기 반응 등의 부작용을 유발하는 우루시올을 옻엽으로부터 효과적으로 제거 또는 저감할 수 있음을 확인할 수 있었다. 또한, 상기 전자이온화 처리한 옻 추출물이 항산화활성 효과, 항암 효과, 항염 효과 등이 우수한 것을 확인하였으며, 이를 통하여, 본 발명의 옻 추출물은 다양한 약학적 조성물로 사용할 수 있음을 확인할 수 있었다.Through the above examples and experimental examples, it was confirmed that by treating the lacquer with electron ionization energy proposed by the present invention, urushiol causing side effects such as allergic reactions can be effectively removed or reduced from the lacquer leaves. In addition, it was confirmed that the lacquer extract treated with electron ionization is excellent in antioxidant activity, anticancer effect, anti-inflammatory effect, etc. Through this, it was confirmed that the lacquer extract of the present invention can be used in various pharmaceutical compositions.

Claims (16)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 옻엽 또는 옻피를 수분 처리하는 단계; 및
상기 수분 처리된 옻엽 또는 옻피를 감마선 및 전자선 중에서 선택된 1종 이상의 전자이온화에너지로 처리하는 단계; 및
상기 전자이온화에너지가 처리된 옻엽 또는 옻피와 용매의 혼합물을 끓인 다음, 불용성 물질을 걸러내어 추출물을 생성하는 단계;를 포함하는 것을 특징으로 하는 우루시올 저감되고 항염활성이 유지된 옻 추출물의 제조방법으로 제조된 옻 추출물을 포함하는 염증성 질환의 예방 및 치료용 약학적 조성물.
Moisture treatment of the lacquer or lacquer; And
Treating the moisture-treated lacquer or lacquer with at least one electron ionization energy selected from gamma rays and electron beams; And
Boiling the mixture of the lacquer or lacquer and the solvent treated with the ionization energy, and filtering the insoluble material to produce an extract; Urushiol reduced and anti-inflammatory activity of the method Pharmaceutical composition for the prevention and treatment of inflammatory diseases comprising the prepared lacquer extract.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020100128072A 2010-12-15 2010-12-15 Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same KR101265876B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100128072A KR101265876B1 (en) 2010-12-15 2010-12-15 Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100128072A KR101265876B1 (en) 2010-12-15 2010-12-15 Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20120066796A KR20120066796A (en) 2012-06-25
KR101265876B1 true KR101265876B1 (en) 2013-05-20

Family

ID=46686019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100128072A KR101265876B1 (en) 2010-12-15 2010-12-15 Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101265876B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892617B1 (en) 2018-01-30 2018-08-28 임실군 Method for the production of Rhus verniciflura extract with effective polyphenolic components and without toxicity by using low-temperature extraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394089B1 (en) * 2000-06-08 2003-08-06 (주)에이지아이 Allergen-removed-extract of Rush verniciflua
KR100896235B1 (en) 2007-07-16 2009-05-08 한국원자력연구원 A method reducing allergy of rhus veniciflua sap using radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394089B1 (en) * 2000-06-08 2003-08-06 (주)에이지아이 Allergen-removed-extract of Rush verniciflua
KR100896235B1 (en) 2007-07-16 2009-05-08 한국원자력연구원 A method reducing allergy of rhus veniciflua sap using radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892617B1 (en) 2018-01-30 2018-08-28 임실군 Method for the production of Rhus verniciflura extract with effective polyphenolic components and without toxicity by using low-temperature extraction

Also Published As

Publication number Publication date
KR20120066796A (en) 2012-06-25

Similar Documents

Publication Publication Date Title
Song et al. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily
Wintola et al. Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill
Akram et al. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin.
Sheikh et al. HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms
Patel et al. Evaluation of In-vitro Anti-oxidant and Free Radical Scavenging activities of Withania somnifera and Aloe vera
Shettar et al. Evaluation of in vitro antioxidant and anti-inflammatory activities of Ximenia americana extracts
Muchuweti et al. Total phenolic content and antioxidant activity in selected medicinal plants of Zimbabwe
Pereira et al. Infusions from Thymus vulgaris L. treated at different gamma radiation doses: Effects on antioxidant activity and phenolic composition
Rao et al. Invitro antioxidant activity and total phenolic content of Mimusops elengi bark
Kang et al. Use of gold nanoparticle fertilizer enhances the ginsenoside contents and anti-inflammatory effects of red ginseng
Kumar et al. Antioxidant and free radical scavenging activities of edible weeds
KR101967073B1 (en) Composition for enhancing immunity comprising fermented ginger extract and red ginseng extract
Koczka et al. Differences in antioxidant properties of ginkgo leaves collected from male and female trees
KR101265876B1 (en) Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same
Nabavi et al. Antihypoxic, nephroprotective and antioxidant properties of hydro-alcoholic extract of loquat flowers
KR101320149B1 (en) Urushiol reduction disposed lacquer, lacquer extract by using the same and Method of manufacturing the same
Cho et al. Gamma irradiation enhances biological activities of mulberry leaf extract
KR20190136231A (en) Wet tissue composition with antimicrobial and indicator function
Gebrehiwot et al. Phytochemical screening and in vitro antioxidant activities of ethanolic leaf extract of Anogeissus leiocarpa
Mirzaei et al. Radical scavenging potential of Iranian Quercus brantii and Juglans regia
Oyinloye et al. Evaluation of phytochemical constituents, total phenolic contents and in vitro antioxidant activities of Mucuna pruriens fractions leaves
Amnay et al. Antioxidant and Anti-Inflammatory Activities of Saponins Extracted from Marrubium vulgare L. Collected in Fez-Meknes Region in Morocco.
Carole et al. Comparison of phytochemical, iron chelating, and free radical scavenging activity of fresh Ribes nigrum (Black Currant) and nutraceutical C24/7
Mannani et al. In vitro antifungal activity of Iranian propolis against Microsporum canis, M. gypseum and M. nanum
Sonpetkar et al. In vitro antioxidant activity of ethanolic extract of Mucuna pruriens (L.) DC. Seeds

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160426

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170420

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 7