KR101264078B1 - Sintered zinc oxide and method of manufacturing the same - Google Patents

Sintered zinc oxide and method of manufacturing the same Download PDF

Info

Publication number
KR101264078B1
KR101264078B1 KR1020060138687A KR20060138687A KR101264078B1 KR 101264078 B1 KR101264078 B1 KR 101264078B1 KR 1020060138687 A KR1020060138687 A KR 1020060138687A KR 20060138687 A KR20060138687 A KR 20060138687A KR 101264078 B1 KR101264078 B1 KR 101264078B1
Authority
KR
South Korea
Prior art keywords
zinc oxide
sintered body
slurry
doped material
oxide sintered
Prior art date
Application number
KR1020060138687A
Other languages
Korean (ko)
Other versions
KR20080062648A (en
Inventor
이진호
이윤규
김상욱
성연규
Original Assignee
삼성코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝정밀소재 주식회사 filed Critical 삼성코닝정밀소재 주식회사
Priority to KR1020060138687A priority Critical patent/KR101264078B1/en
Publication of KR20080062648A publication Critical patent/KR20080062648A/en
Application granted granted Critical
Publication of KR101264078B1 publication Critical patent/KR101264078B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 제1 도핑 물질 및 제2 도핑물질의 입경이 산화아연 분말의 평균 입경 대비 0.1 내지 0.5배가 되도록 상기 제1 도핑 물질 및 제2 도핑물질의 입경을 조절하는 단계, 상기 산화아연 분말, 및 입경이 조절된 제1 도핑 물질 및 제2 도핑 물질을 혼합하여 혼합액을 준비하는 혼합 단계, 상기 혼합액을 밀링하여 혼합액 슬러리를 준비하는 습식밀링 단계, 상기 슬러리를 건조 및 분말화 하여 과립 분말을 준비하는 분말 준비단계, 및 상기 슬러리 분말을 성형 및 소결하는 단계를 포함하는 산화아연 소결체의 제조 방법을 제공한다. 상기 방법에 의하면 산화아연 소결체 제조 과정 중 도핑 물질의 응집을 최소화하여 도핑물질로 인해 스퍼터링 하는 동안 발생하는 노쥴 및 아킹 현상을 감소시킬 수 있고, 제조되는 소결체 및 박막의 비저항을 감소시킬 수 있다. The present invention provides a method for controlling the particle size of the first doped material and the second doped material such that the particle diameter of the first doped material and the second doped material is 0.1 to 0.5 times the average particle diameter of the zinc oxide powder, the zinc oxide powder, and A mixing step of preparing a mixed solution by mixing the first doped material and the second doped material whose particle size is controlled, a wet milling step of preparing the mixed solution slurry by milling the mixed solution, and drying and powdering the slurry to prepare granulated powder It provides a powder preparation step, and a method for producing a zinc oxide sintered body comprising the step of molding and sintering the slurry powder. According to the method it is possible to minimize the aggregation of the doping material during the zinc oxide sintered body manufacturing process to reduce the nodule and arcing phenomenon during the sputtering due to the doping material, it is possible to reduce the resistivity of the sintered body and the thin film produced.

Description

산화아연 소결체 및 이의 제조 방법{Sintered zinc oxide and method of manufacturing the same}Sintered zinc oxide and method of manufacturing the same

본 발명은 산화아연 소결체 및 이의 제조 방법에 관한 것으로서, 상대적으로 제조 단가가 낮고 전기 전도성이 우수한 스퍼터링 타켓용 산화아연 소결체 및 도핑 물질들에 의해 스퍼터링 동안 발생하는 노쥴 및 아킹 현상을 감소시킬 수 있는 산화아연 소결체의 제조 방법에 관한 것이다. The present invention relates to a zinc oxide sintered body and a method for manufacturing the same, wherein the zinc oxide sintered body and the doping materials for sputtering targets having a relatively low production cost and excellent electrical conductivity can reduce oxidation and arcing phenomena generated during sputtering. A method for producing a zinc sintered body.

액정 표시장치 또는 전자발광 표시장치는 표시 성능이 우수하고 또한 소비 전력이 적기 때문에, 휴대 전화 또는 퍼스널 컴퓨터, 워드 프로세서, 텔레비전 등의 표시기기에 널리 이용되고 있다. 그리고 이들 표시기기는 어느 기기에 있어서도 표시 소자를 투명 전극에 의해 협지한 샌드위치 구조를 가지고 있다.BACKGROUND ART Liquid crystal displays or electroluminescent displays have excellent display performance and low power consumption, and thus are widely used in display devices such as mobile phones or personal computers, word processors, televisions, and the like. And these display apparatuses have the sandwich structure which sandwiched a display element by the transparent electrode in any apparatus.

상기 투명 전극은 투명 도전막이라고도 하는데, 높은 도전성을 가지며, 가시광 영역에서 높은 투과율을 나타낸다. 투명 전극에는 안티몬이나 불소를 소량의 불순물(dopant)로 함유하는 산화주석(SnO2)이나, 주석을 소량의 불순물로 함유하는 산화인듐(In2O3) 등이 광범위하게 이용되고 있다. 특히 주석을 소량의 불순물로 함 유하는 산화인듐막, 즉 In2O3-SnO2계의 막은 산화인듐주석(Indium tin oxide, ITO) 막이라고 알려져 있으며, 비저항이 2×10-4Ω·㎝ 정도로 저저항의 막을 쉽게 얻을 뿐만 아니라 에칭 가공이 가능하고, 게다가 기판과의 밀착성도 우수하기 때문에 현재까지 많이 쓰여지고 있다.The transparent electrode, also called a transparent conductive film, has high conductivity and exhibits high transmittance in the visible light region. Tin oxides (SnO 2 ) containing a small amount of antimony and fluorine as dopants, indium oxide (In 2 O 3 ) containing tin as a small amount of impurities, and the like are widely used in the transparent electrode. In particular, an indium oxide film containing tin as a small amount of impurities, that is, an In 2 O 3 -SnO 2 -based film, is known as an indium tin oxide (ITO) film, and has a resistivity of 2 × 10 -4 Ω · cm It has been widely used until now because it is not only easy to obtain a low-resistance film to an extent, but also can be etched and has excellent adhesion to a substrate.

이들 투명 전극의 제조 방법으로는 스퍼터링법이나 증착법, 이온프레이팅법, 투명 도전층 형성용 도포액을 도포하는 방법 등이 주로 사용되고 있는데, 이중 스퍼터링법이 많이 이용되고 있다. 스퍼터링법은 증기압이 낮은 재료의 성막시 정밀한 막 두께를 제어할 필요가 있을 경우에 적합한 방법으로 그 조작이 아주 간편하여 막 두께를 제어할 필요가 있을 경우에 광범위하게 이용되고 있다. As a manufacturing method of these transparent electrodes, the sputtering method, the vapor deposition method, the ion plating method, the method of apply | coating the coating liquid for transparent conductive layer formation, etc. are mainly used, The double sputtering method is used a lot. The sputtering method is a suitable method when it is necessary to control precise film thickness during the film formation of a material having low vapor pressure, and is widely used when the operation is very simple and the film thickness needs to be controlled.

구체적으로 스퍼터링법은 일반적으로 약 10pa 이하의 가스압력 하에서 기판을 양극으로 하고, 성막된 산화물 투명 전도막의 스퍼터링 타겟을 음극으로 하여, 이들 사이에서 글로우 방전을 일으키게 된다. 이 때 아르곤 플라즈마가 발생하여 플라즈마 중의 아르곤 양이온이 음극의 스퍼터링 타겟에 충돌하게 되고, 이로 인하여 서로 잡아당기는 힘을 가지는 입자들이 기판 위에 쌓이게 되어 막을 형성하게 된다. 스퍼터링법에 의한 성막은 시간과 전압 등의 변수를 조절하여 수 옹스트롱(Å)의 박막으로부터 수십 마이크로미터(㎛)의 후막까지 매우 안정되게 막을 형성시킬 수 있는 특징을 가지고 있다. 또한, 스퍼터링법은 타겟의 조성과 생성된 막의 조성이 동일한 것이 큰 장점이다.Specifically, the sputtering method generally causes a glow discharge therebetween by using the substrate as the anode under a gas pressure of about 10 pa or less, and the sputtering target of the formed oxide transparent conductive film as the cathode. At this time, an argon plasma is generated and the argon cations in the plasma collide with the sputtering target of the cathode, whereby particles having a pulling force are stacked on the substrate to form a film. The film formation by the sputtering method has a characteristic that a film can be formed very stably from a thin film of several angstroms to a thick film of several tens of micrometers by controlling variables such as time and voltage. Further, the sputtering method is advantageous in that the composition of the target and the composition of the film formed are the same.

상기와 같이 ITO는 현재까지 많은 연구를 통해 투명 전극막으로써 많은 장점 을 가지고 있지만, 산화인듐의 수급이 불안정하고 매우 고가의 재료이다. 또한 상기 표시 소자에서 폴리머와 같은 기판을 사용할 경우, 표시소자 및 기판에 열적 영향을 미치지 않기 위해서 낮은 온도에서 투명 전극막을 형성하여야 하는데, 낮은 온도에서 성막된 ITO 투명 전극막은 전기 전도도와 광투과율이 현저히 떨어지는 문제를 가지고 있기 때문에, 보다 신뢰성이 뛰어나고 저가인 대체 소재의 개발이 요구되고 있다.As mentioned above, ITO has many advantages as a transparent electrode film through many studies to date, but supply of indium oxide is unstable and very expensive material. In addition, when a substrate such as a polymer is used in the display device, a transparent electrode film must be formed at a low temperature so as not to have a thermal effect on the display device and the substrate. The ITO transparent electrode film formed at a low temperature has a significantly high electrical conductivity and light transmittance. Because of the problem of falling, the development of a more reliable and low-cost alternative material is required.

이러한 대체 소재 중 산화아연계 산화물에 알루미늄이 도핑된 물질이 가장 각광을 받고 있는데, 이는 산화아연계 산화물이 일반적으로 반도체 특성을 가져 태양전지의 윈도우 물질(window materials), 음성 어쿠스틱 파장 소자(sound acoustic wave device) 및 베리스타 소자(varistor device) 등의 많은 광전 소자에 응용되고 있을 뿐만 아니라, 산화아연이 넓은 밴드갭과 자외선에서 가시광 영역까지 높은 투과율을 가지고 있기 때문이다.Among these alternative materials, zinc oxide oxide doped with aluminum is most popular. Zinc oxide oxide generally has semiconducting properties, so that window materials and sound acoustic wave elements of solar cells It is not only applied to many photoelectric devices such as wave devices and varistor devices, but also because zinc oxide has a wide bandgap and high transmittance from ultraviolet to visible region.

그러나 산화아연 박막의 경우 막의 형성시에 ITO 막과 같은 수준의 전기 전도도를 갖는 막을 형성하기 어렵고 선택적 에칭 특성이 좋지 않기 때문에 아직까지 활발한 상용화 단계에 이르지 못하고 있다.However, in the case of the zinc oxide thin film, it is difficult to form a film having the same level of electrical conductivity as that of the ITO film and the selective etching characteristics are poor, and thus the active commercialization stage has not been reached.

본 발명의 목적은 이러한 문제점을 감안한 것으로서, 산화아연 제조 공정 중 도핑 물질에 의해 스퍼터링 동안 발생하는 노쥴 및 아킹 현상을 방지할 수 있는 산화아연 소결체의 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a zinc oxide sintered body which can prevent nodules and arcing occurring during sputtering by a doping material during a zinc oxide manufacturing process.

본 발명의 다른 목적은 상기 제조 방법에 의하여 제조되고, 기존의 인듐 틴 옥사이드(ITO) 박막과 동등 수준의 전기 전도도를 갖는 산화아연 소결체를 제공하는 것이다. Another object of the present invention is to provide a zinc oxide sintered body manufactured by the above production method and having an electrical conductivity equivalent to that of a conventional indium tin oxide (ITO) thin film.

본 발명의 일 특징에 따라, 산화아연 소결체를 제조하기 위해서는 우선, 제1 도핑 물질 및 제2 도핑물질의 입경이 산화아연 분말의 평균 입경 대비 0.1 내지 0.5배가 되도록 상기 제1 도핑 물질 및 제2 도핑물질의 입경을 조절한다. 상기 산화아연 분말, 및 입경이 조절된 제1 도핑 물질 및 제2 도핑 물질을 혼합하여 혼합액을 준비한다. 상기 혼합액을 밀링하여 혼합액 슬러리를 준비한다. 상기 슬러리는 건조 및 분말화 되어 과립 분말로 준비된다. 상기 과립 분말을 성형 및 소결함으로써, 산화아연 소결체를 제조할 수 있다. According to one aspect of the present invention, in order to manufacture a zinc oxide sintered body, first, the first doped material and the second doped so that the particle diameter of the first doped material and the second doped material is 0.1 to 0.5 times the average particle diameter of the zinc oxide powder. Adjust the particle size of the material. The zinc oxide powder and the first doped material and the second doped material whose particle diameters are controlled are mixed to prepare a mixed liquid. The mixed liquid is milled to prepare a mixed liquid slurry. The slurry is dried and powdered to prepare granular powder. A zinc oxide sintered compact can be manufactured by shape | molding and sintering the said granulated powder.

상기 제1 도핑 물질로는 알루미늄 소스, 갈륨 소스 및 인듐 소스 등이 사용될 수 있다. 특히, 제1 도핑 물질로 알루미나(Al2O3)를 필수로 포함하는 것이 바람직하다. An aluminum source, a gallium source, an indium source, and the like may be used as the first doping material. In particular, it is preferred to include alumina (Al 2 O 3 ) as the first dopant.

본 발명의 일 특징에 따른 산화아연 소결체는 상기 고용된 제1 도핑 물질 및 제2 도핑 물질을 포함한다. 상기 제1 도핑 물질 및 제2 도핑 물질의 입경은 상기 산화아연 평균 입경 대비 0.1 내지 0.5배이다. The zinc oxide sintered body according to one feature of the present invention includes the first doped material and the second doped material. The particle diameter of the first doped material and the second doped material is 0.1 to 0.5 times the average particle diameter of the zinc oxide.

상기 산화아연 소결체의 박막 비저항은 2 × 10-4 내지 5 × 10-4 Ωㆍcm의 범위를 갖고, 상기 제1 도핑 물질 및 제2 도핑 물질의 응집 입경은 2 ㎛ 이하이다. The thin film specific resistance of the zinc oxide sintered body has a range of 2 × 10 −4 to 5 × 10 −4 Ω · cm, and the aggregated particle diameter of the first doped material and the second doped material is 2 μm or less.

이하 본 발명을 상세하게 설명하도록 한다. Hereinafter, the present invention will be described in detail.

본 발명에 따른 산화아연 소결체를 제조하기 위해서는, 투입되는 산화아연 분말, 도핑 물질들의 입경이 엄격하게 조절 되어야 한다. 따라서 산화아연의 본격적인 제조 공정에 앞서, 상기 산화아연 분말 및 도핑 물질들의 입경을 조절하는 단계를 수행한다. In order to manufacture the zinc oxide sintered body according to the present invention, the particle diameter of the zinc oxide powder and the doping materials to be introduced should be strictly controlled. Therefore, prior to the full-scale production process of zinc oxide, the step of adjusting the particle diameter of the zinc oxide powder and the doping materials.

또한, 본 발명에서 도핑 물질로서, 서로 다른 제1 도핑 물질 및 제2 도핑 물질이 사용된다. Also, as the doping material in the present invention, different first and second doping materials are used.

투입되는 상기 제1 도핑 물질 및 제2 도핑 물질의 입경은 상기 산화아연 분말의 입경 대비 0.1 내지 0.5배가 되도록 조절된다. 상기 입경 비율은 엄격하게 통제되는 것이 바람직하다.Particle diameters of the first doped material and the second doped material introduced are adjusted to be 0.1 to 0.5 times the particle diameter of the zinc oxide powder. It is preferable that the said particle diameter ratio is strictly controlled.

상기 제1 도핑 물질 및 제2 도핑 물질의 산화아연에 대한 입경 비율은 산화아연 소결체 내에서 도핑 물질들의 고용 정도에 큰 영향을 미치며, 나아가 상기 산화아연 소결체의 비저항에 중요한 요인으로 작용한다. The particle size ratio of the first doped material and the second doped material to zinc oxide has a great influence on the degree of solid solution of the doped materials in the zinc oxide sintered body, and furthermore, it plays an important factor in the specific resistance of the zinc oxide sintered body.

사용되는 산화아연 분말의 평균 입경은 0.05 내지 1 ㎛이고, 바람직하게는 0.1 내지 0.5 ㎛이다. The average particle diameter of the zinc oxide powder used is 0.05-1 micrometer, Preferably it is 0.1-0.5 micrometer.

상기 제1 도핑 물질로서는, 알루미늄 소스, 갈륨 소스 및 인듐 소스 등이 사용될 수 있고, 상기 제1 도핑 물질들은 단독으로 또는 둘 이상의 조합으로 사용될 수 있다. 특히, 상기 제1 도핑 물질은 산화 알루미늄(Al2O3)를 포함하는 것이 바람직하다. 상기 산화 알루미늄으로는, 고온(α) 상 및 저온상(γ,θ,κ,δ,χ)을 갖는 산화알루미늄을 사용할 수 있으나, 특히 고온상을 갖는 산화알루미늄을 사용하 는 것이 바람직하다. As the first doping material, an aluminum source, a gallium source, an indium source, or the like may be used, and the first doping materials may be used alone or in combination of two or more. In particular, the first doping material preferably includes aluminum oxide (Al 2 O 3 ). As the aluminum oxide, aluminum oxide having a high temperature (α) phase and a low temperature phase (γ, θ, κ, δ, χ) can be used, but aluminum oxide having a high temperature phase is particularly preferable.

상기 산화 알루미늄은 상기 산화아연 100 중량부 대비 0.1 내지 3 중량부가 되도록 상기 산화아연에 도핑된다. The aluminum oxide is doped into the zinc oxide so that 0.1 to 3 parts by weight based on 100 parts by weight of zinc oxide.

상기 제2 도핑 물질로서는, 인듐, 갈륨, 붕소, 주석, 티타늄, 게르마늄, 바나듐, 니오븀, 탄탈륨 등의 원소를 포함하는 물질을 사용한다. 예를 들면, 상기 원소들의 산화물들을 사용할 수 있다. As the second doping material, a material containing an element such as indium, gallium, boron, tin, titanium, germanium, vanadium, niobium, tantalum or the like is used. For example, oxides of the above elements can be used.

상기 제2 도핑 불질은 상기 산화아연 100 중량부 대비 0.05 내지 5 중량부가 되도록 상기 산화아연에 도핑된다. The second doping impurity is doped into the zinc oxide so that 0.05 to 5 parts by weight relative to 100 parts by weight of zinc oxide.

상기 산화아연 분말, 제1 도핑 물질 및 제2 도핑 물질은 용매와 혼합되어 액체 상태의 혼합액이 준비된다. The zinc oxide powder, the first doped material and the second doped material are mixed with a solvent to prepare a liquid mixture.

상기 산화아연 분말, 제1 도핑 물질 및 제2 도핑 물질은 혼합되기 전에 각각 습식 밀링에 의하여 슬러리화 될 수 있다. 따라서, 상기 산화아연 분말, 제1 도핑 물질 및 제2 도핑 물질은 각각 슬러리 상태로 혼합될 수 있다. The zinc oxide powder, the first doped material and the second doped material may be slurried by wet milling, respectively, before they are mixed. Therefore, the zinc oxide powder, the first doped material and the second doped material may be mixed in a slurry state, respectively.

상기 혼합액은 습식 밀링법에 의하여 밀링됨으로써, 분쇄 및 슬러리화가 진행된다. 상기 습식 밀링에 의하여 상기 혼합액은 슬러리 상태의 슬러리 혼합액이 된다. The mixed liquid is milled by a wet milling method, thereby grinding and slurrying. By the wet milling, the mixed liquid becomes a slurry mixed liquid in a slurry state.

상기 혼합액 또는 슬러리 상태의 혼합액 내에는, 시트르산(CA), 카르복실기 함유 유기산, 폴리 아크릴산(PAA), 이들의 염, 이들의 공중합체 등이 첨가될 수 있다. Citric acid (CA), a carboxyl group-containing organic acid, polyacrylic acid (PAA), salts thereof, copolymers thereof, and the like may be added to the mixed liquid or the mixed liquid in a slurry state.

상기 첨가물들은 상기 산화아연 분말, 제1 및 제2 도핑 물질들이 용매 내에 안정적으로 분산될 수 있도록 하는 분산제 역할 및 분쇄 성능을 향상시키기 위하여 첨가된다. 상기 첨가물들은 상기 산화아연 분말 등의 입자 표면에 흡착되어 상기 산화아연 분말 등의 균일한 분산을 유도할 수 있다. The additives are added to improve the grinding performance and the role of dispersant to allow the zinc oxide powder, the first and second doping materials to be stably dispersed in the solvent. The additives may be adsorbed on the surface of particles such as zinc oxide powder to induce uniform dispersion of the zinc oxide powder.

상기 첨가물은 상기 혼합액 또는 혼합액 슬러리 고형분 100 중량부 대비 0.01 내지 20 중량부로 첨가되는 것이 바람직하다. The additive is preferably added in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the mixed liquid or mixed liquid slurry.

상기 슬러리를 준비하기 전 또는 상기 슬러리 준비가 완료된 시점에, 상기 혼합액 또는 상기 혼합액 슬러리 내에 바인더 수지를 첨가할 수 있다. Before the slurry is prepared or when the slurry preparation is completed, a binder resin may be added to the mixed liquid or the mixed liquid slurry.

상기 바인더 수지는 슬러리를 분말로 건조시킨 후 성형하는 과정에서 성형체의 성형강도를 유지하기 위하여 첨가되는 것으로서, 상기 바인더 수지로는 폴리비닐알콜, 폴리에틸렌글리콜 등이 사용될 수 있다. The binder resin is added to maintain the molding strength of the molded body in the process of molding the slurry after drying the powder, polyvinyl alcohol, polyethylene glycol, etc. may be used as the binder resin.

상기 바인더 수지는 상기 혼합액 또는 슬러리 고형분 100 중량부 대비 0.01 내지 5 중량부가 되도록 상기 혼합액 또는 혼합액 슬러리 내에 첨가되는 것이 바람직하다. The binder resin is preferably added in the mixed liquid or mixed liquid slurry so as to be 0.01 to 5 parts by weight based on 100 parts by weight of the mixed liquid or slurry solids.

상기 제조된 슬러리는 건조 및 분말화 하여 과립 분말로 변화되고, 상기 과립 분말은 성형 및 소결하는 단계를 거쳐 산화아연 소결체로 제조될 수 있다. 상기 성형 및 소결 단계는 당업자라면 적절한 공정으로 용이하게 수행할 수 있기에 자세한 설명은 생략하도록 한다.The prepared slurry is dried and powdered into granular powder, and the granular powder may be manufactured into a zinc oxide sintered body through a step of forming and sintering. Since the molding and sintering steps can be easily performed by those skilled in the art in a suitable process, a detailed description thereof will be omitted.

상기와 같이, 입경 분포를 엄격하게 규제하여 제조된 산화아연 소결체는 그 박막특성이 2 × 10-4 내지 5 × 10-4 Ωㆍcm의 비저항을 갖는다. 따라서, ITO와 동 등 수준의 전기 전도도를 가질 수 있다. As described above, the zinc oxide sintered body produced by strictly restricting the particle size distribution has a specific resistance of 2 × 10 -4 to 5 × 10 -4 Ω · cm. Therefore, it can have the same level of electrical conductivity as ITO.

상기 산화아연 소결체는 전술한 바와 같이 제1 도핑 물질 및 제2 도핑 물질을 포함한다. The zinc oxide sintered body includes a first doped material and a second doped material as described above.

상기 소결체 내에서, 제1 도핑 물질 및 제2 도핑 물질은 상기 산화아연 평균 입경 대비 0.1 내지 0.5배의 입경을 갖는다.In the sintered body, the first doped material and the second doped material have a particle size of 0.1 to 0.5 times the average particle diameter of the zinc oxide.

한편, 상술한 바에 의하여 제조된 상기 산화아연 소결체 내의 도핑 물질들은 응집 입경이 2㎛ 이하인 2차 상을 갖는다. 즉, 본 발명에 따른 방법에 의하여 제조된 산화아연 소결체는 제조 공정 중 응집 현상이 현저히 감소하여 최종 결과물 내의 응집 입경을 최소화할 수 있다. On the other hand, the doped materials in the zinc oxide sintered body prepared as described above have a secondary phase having a cohesive particle diameter of 2 μm or less. That is, the zinc oxide sintered body produced by the method according to the present invention can significantly reduce the aggregation phenomenon during the manufacturing process to minimize the aggregate particle size in the final result.

특히, 상기 산화아연 소결체는 제1 도핑 물질로서, 산화 알루미늄을 포함하는 것이 바람직하다. In particular, the zinc oxide sintered body preferably includes aluminum oxide as the first doping material.

이하 구체적인 실시예들을 들어, 본 발명을 더욱 자세하게 설명하도록 한다. 그러나, 하기 실시예들에 의하여 본 발명의 기술적 사상이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to specific embodiments. However, the technical spirit of the present invention is not limited by the following examples.

[실시예 1] Example 1

산화아연 소결체를 제조하기 위하여 1㎛의 평균입경을 갖는 α-Al2O3 및 상기 α-Al2O3 중량대비 5wt%의 분산제를 증류수에 첨가하였다. 상기 α-Al2O3는 산화아연 중량대비 2wt%가 되도록 첨가되었다. 상기 제1도핑물질로서의 산화알루미늄은 그 평균입경이 0.1㎛가 되도록 습식밀링법에 분쇄 및 분산되었다. α-Al2O3의 분쇄와 마찬가지로 제 2 도핑물질로써 Ga2O3를 평균입경이 0.05㎛가 되도록 분쇄하였다. 또한, 상기 산화아연을 상기 산화아연이 전체 슬러리 중량 대비 60%가 되도록 증류수와 혼합하고, 여기에 상기 산화아연 100중량부 대비 2중량부의 분산제를 첨가하였다. 그리고 나서, 상기 산화아연의 평균입경이 0.5㎛가 되도록 분쇄 및 분산시켰다. 이들 세 종류의 슬러리가 만들어진 후, 이들을 모두 섞고 골고루 분산시키기 위하여 교반 하면서 습식 밀링을 1회 더 실시하였다. 세 종류의 슬러리가 균일하게 혼합되었으면 바인더 수지로서 PVA 1wt%, PEG 0.2wt%를 첨가하여 1회 더 밀링하여 균일한 슬러리로 제조하였다. Α-Al 2 O 3 having an average particle diameter of 1 μm to prepare a zinc oxide sintered body And the α-Al 2 O 3 5 wt% of dispersant by weight was added to the distilled water. The α-Al 2 O 3 was added to 2wt% of the weight of zinc oxide. Aluminum oxide as the first doping material was pulverized and dispersed in the wet milling method so that the average particle diameter thereof was 0.1 탆. As in the pulverization of α-Al 2 O 3 , Ga 2 O 3 was pulverized so as to have an average particle diameter of 0.05 μm as the second doping material. In addition, the zinc oxide was mixed with distilled water so that the zinc oxide is 60% of the total weight of the slurry, and 2 parts by weight of a dispersant based on 100 parts by weight of zinc oxide was added thereto. Thereafter, the zinc oxide was pulverized and dispersed to have an average particle diameter of 0.5 mu m. After these three kinds of slurries were made, wet milling was performed once more with stirring to mix and evenly disperse all of them. When three kinds of slurry were uniformly mixed, 1 wt% of PVA and 0.2 wt% of PEG were added as binder resins, and the mixture was further milled to prepare a uniform slurry.

  

 [실시예 2][Example 2]

실시예 1에서 제조한 최종 슬러리를 과립분말로 제조하기 위한 방법으로 분무건조법을 사용하였다. 분무 건조법에 의해 과립분말을 제조하고 산화아연 소결체를 얻기 위하여 성형을 실시하였다. 성형은 우선 과립분말을 유압 프레스에 의해 일차 성형을 하고 소결밀도를 높이기 위하여 냉간 등방압 성형을 실시하였다. 제조된 성형체는 산소가스 분위기에서 1400℃에서 2시간 동안 소결시켰다. 이로써, 산화아연 소결체를 제조하였다. Spray drying was used as a method for preparing the final slurry prepared in Example 1 to granule powder. Granule powder was prepared by the spray drying method, and shaping | molding was performed in order to obtain the zinc oxide sintered compact. In the molding, first, the granule powder was first molded by a hydraulic press, and cold isostatic molding was performed to increase the sintered density. The formed article was sintered at 1400 ° C. for 2 hours in an oxygen gas atmosphere. As a result, a zinc oxide sintered body was produced.

상술한 바와 같이 본 발명에 따르면, 산화아연 소결체의 제조시 도핑 물질들의 응집을 최소화하여 노쥴 및 아킹 현상을 최소화할 수 있다. As described above, according to the present invention, it is possible to minimize the aggregation and the arcing phenomenon by minimizing the aggregation of the doping materials in the production of the zinc oxide sintered body.

또한, 본 발명에 따른 산화아연 소결체는 ITO 소결체에 비하여 제조 단가가 낮은 반면, ITO와 동등한 수준의 전기 전도도를 나타낼 수 있다. In addition, the zinc oxide sintered body according to the present invention has a lower manufacturing cost than the ITO sintered body, and may exhibit an electrical conductivity equivalent to that of ITO.

이상과 같이 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, the present invention has been described by way of a limited embodiment, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains may make various modifications and variations from this description. Do. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined by the equivalents of the claims, as well as the claims.

Claims (17)

제1 도핑 물질 및 제2 도핑물질의 입경이 산화아연 분말의 평균 입경 대비 0.1 내지 0.5배가 되도록 상기 제1 도핑 물질 및 제2 도핑물질의 입경을 조절하는 단계; Adjusting particle sizes of the first and second doping materials so that particle sizes of the first and second doping materials are 0.1 to 0.5 times the average particle diameter of the zinc oxide powder; 상기 산화아연 분말, 및 입경이 조절된 제1 도핑 물질 및 제2 도핑 물질을 혼합하여 혼합액을 준비하는 혼합 단계;A mixing step of preparing a mixed liquid by mixing the zinc oxide powder and the first doped material and the second doped material whose particle diameter is controlled; 상기 혼합액을 밀링하여 혼합액 슬러리를 준비하는 슬러리 단계; A slurry step of preparing a mixed liquid slurry by milling the mixed liquid; 상기 슬러리를 건조 및 분말화 하여 과립 분말을 준비하는 분말 단계; 및A powder step of preparing granule powder by drying and powdering the slurry; And 상기 과립 분말을 성형 및 소결하는 단계를 포함하는 산화아연 소결체의 제조 방법.Method for producing a zinc oxide sintered body comprising the step of molding and sintering the granulated powder. 제1항에 있어서,The method of claim 1, 상기 제1 도핑 물질은 알루미늄 소스, 갈륨 소스 및 인듐 소스로 이루어진 군으로부터 선택된 적어도 하나의 물질을 포함하는 것을 특징으로 하는 산화아연 소결체의 제조 방법.And the first doped material comprises at least one material selected from the group consisting of aluminum source, gallium source and indium source. 제1항에 있어서, The method of claim 1, 상기 제1 도핑 물질은 산화 알루미늄(Al2O3)인 것을 특징으로 하는 산화아연 소결체의 제조 방법. The first doping material is aluminum oxide (Al 2 O 3 ) characterized in that the manufacturing method of the zinc oxide sintered body. 제3항에 있어서, The method of claim 3, 상기 산화 알루미늄은 고온상(α)을 갖는 것을 특징으로 하는 산화아연 소결체의 제조 방법. The said aluminum oxide has a high temperature phase (alpha), The manufacturing method of the zinc oxide sintered compact. 제3항에 있어서,The method of claim 3, 상기 산화 알루미늄은 상기 산화아연 100 중량부 대비 0.1 내지 3 중량부가 되도록 상기 산화아연에 도핑되는 것을 특징으로 하는 산화아연 소결체의 제조 방법. And the aluminum oxide is doped into the zinc oxide so as to be 0.1 to 3 parts by weight based on 100 parts by weight of the zinc oxide. 제1항에 있어서,The method of claim 1, 상기 제2 도핑 물질은 인듐, 갈륨, 붕소, 주석, 티타늄, 게르마늄, 바나듐, 니오븀 및 탄탈륨으로 이루어진 군으로부터 선택된 어느 하나의 원소를 포함하는 물질들 중 적어도 하나의 물질을 포함하는 것을 특징으로 하는 산화아연 소결체의 제조 방법. The second doping material comprises at least one of materials comprising any one element selected from the group consisting of indium, gallium, boron, tin, titanium, germanium, vanadium, niobium and tantalum Method for producing zinc sintered body. 제6항에 있어서,The method of claim 6, 상기 제2 도핑 물질은 상기 산화아연 100 중량부 대비 0.05 내지 5 중량부가 되도록 상기 산화아연에 도핑되는 것을 특징으로 하는 산화아연 소결체의 제조 방 법. The second doping material is a method of producing a zinc oxide sintered body, characterized in that the zinc oxide is doped so that 0.05 to 5 parts by weight relative to 100 parts by weight of zinc oxide. 제1항에 있어서,The method of claim 1, 상기 산화아연의 평균 입경은 0.05 내지 1 ㎛인 것을 특징으로 하는 산화아연 소결체의 제조 방법. The average particle diameter of the zinc oxide is 0.05 to 1 ㎛ production method of the zinc oxide sintered body. 제1항에 있어서,The method of claim 1, 상기 혼합 단계 또는 슬러리 단계에서 시트르산(CA), 카르복실기 함유 유기산, 폴리 아크릴산(PAA), 이들의 염 및 이들의 공중합체로 이루어진 군으로부터 선택된 적어도 하나의 화합물을 첨가하는 것을 특징으로 하는 산화아연 소결체의 제조 방법. At least one compound selected from the group consisting of citric acid (CA), carboxyl group-containing organic acid, polyacrylic acid (PAA), salts thereof and copolymers thereof is added in the mixing step or the slurry step. Manufacturing method. 제9항에 있어서,10. The method of claim 9, 상기 화합물은 상기 혼합액 또는 슬러리 고형분 100 중량부 대비 0.01 내지 20 중량부로 첨가되는 것을 특징으로 하는 산화아연 소결체의 제조 방법. The compound is a method for producing a zinc oxide sintered body, characterized in that added to 0.01 to 20 parts by weight based on 100 parts by weight of the mixed solution or slurry solids. 제1항에 있어서,The method of claim 1, 상기 슬러리 전 단계 또는 슬러리 단계 후에, 혼합액 또는 슬러리 내에 바인더 수지를 첨가하는 것을 특징으로 하는 산화아연 소결체의 제조 방법.A method of producing a zinc oxide sintered compact, wherein a binder resin is added to the mixed liquid or slurry after the slurry pre-stage step or the slurry step. 제11항에 있어서,12. The method of claim 11, 상기 바인더 수지는 폴리비닐알콜 및 폴리에틸렌글리콜 중 적어도 하나의 수지 성분을 포함하는 것을 특징으로 하는 산화아연 소결체의 제조 방법. The binder resin is a method for producing a zinc oxide sintered body comprising at least one resin component of polyvinyl alcohol and polyethylene glycol. 제11항에 있어서,12. The method of claim 11, 상기 바인더 수지는 상기 혼합액 또는 슬러리 고형분 100 중량부 대비 0.01 내지 5 중량부로 첨가되는 것을 특징으로 하는 산화아연 소결체의 제조 방법. The binder resin is a method for producing a zinc oxide sintered body, characterized in that added to 0.01 to 5 parts by weight based on 100 parts by weight of the mixed solution or slurry solids. 제1 도핑 물질 및 제2 도핑 물질이 고용되어 있는 산화아연 소결체로서,A zinc oxide sintered body in which a first doping material and a second doping material are dissolved, 상기 제1 도핑 물질 및 제2 도핑 물질의 입경은 상기 산화아연 평균 입경 대비 0.1 내지 0.5배이고,The particle diameter of the first doped material and the second doped material is 0.1 to 0.5 times the average particle diameter of the zinc oxide, 소결체의 박막 비저항이 2 × 10-4 내지 5 × 10-4 Ωㆍcm인 것을 특징으로 하는 산화아연 소결체.The thin film specific resistance of a sintered compact is 2 * 10 <-4> -5 * 10 <-4> ( ohm) * cm, The zinc oxide sintered compact characterized by the above-mentioned. 상기 제14항에 있어서, The method of claim 14, 상기 제1 도핑 물질은 산화 알루미늄이고,The first doping material is aluminum oxide, 제2 도핑 물질은 인듐, 갈륨, 붕소, 주석, 티타늄, 게르마늄, 바나듐, 니오븀 및 탄탈륨으로 이루어진 군으로부터 선택된 어느 하나의 원소를 포함하는 물질들 중 적어도 하나 이상의 물질인 것을 특징으로 하는 산화아연 소결체.The second doped material is a zinc oxide sintered body, characterized in that at least one or more of the materials comprising any one element selected from the group consisting of indium, gallium, boron, tin, titanium, germanium, vanadium, niobium and tantalum. 삭제delete 제14항에 있어서,The method of claim 14, 상기 제1 도핑 물질 및 제2 도핑 물질의 응집 입경이 2 ㎛ 이하인 것을 특징으로 하는 산화아연 소결체.A zinc oxide sintered compact, wherein the aggregated particle diameter of the first doped material and the second doped material is 2 μm or less.
KR1020060138687A 2006-12-29 2006-12-29 Sintered zinc oxide and method of manufacturing the same KR101264078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060138687A KR101264078B1 (en) 2006-12-29 2006-12-29 Sintered zinc oxide and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060138687A KR101264078B1 (en) 2006-12-29 2006-12-29 Sintered zinc oxide and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20080062648A KR20080062648A (en) 2008-07-03
KR101264078B1 true KR101264078B1 (en) 2013-05-14

Family

ID=39814758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060138687A KR101264078B1 (en) 2006-12-29 2006-12-29 Sintered zinc oxide and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101264078B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013533378A (en) * 2010-06-04 2013-08-22 アドヴァンスド・ナノ・プロダクツ・カンパニー・リミテッド Transparent conductive film, target for transparent conductive film, and method for producing target for transparent conductive film
KR101239356B1 (en) * 2010-12-21 2013-03-05 한국원자력연구원 Fabrication method of hydrophobic polymer coated ceramic nano powder and ceramic nano powder thereby
KR101718158B1 (en) * 2016-03-10 2017-03-21 마이크로컴퍼지트 주식회사 Low specific gravity conductive particle, method for producing the particle, and composite structure comprising the particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171539A (en) * 1997-12-08 1999-06-29 Sumitomo Metal Mining Co Ltd Zno-base sintered compact and its production

Also Published As

Publication number Publication date
KR20080062648A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP5109418B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming ZnO film
KR101349676B1 (en) Indium zinc oxide based sputtering target and manufacturing method of the same
JP2008088544A5 (en)
WO2011052375A1 (en) Indium oxide sintered body and indium oxide transparent conductive film
JP4233641B2 (en) Target for transparent conductive film, transparent conductive glass and transparent conductive film
KR100960222B1 (en) Zinc oxide based sputtering target, method for mamufacturing the same and zinc oxide based thin film manufactured by using the same
KR101264078B1 (en) Sintered zinc oxide and method of manufacturing the same
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JP2008255477A (en) ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
KR20080110174A (en) Gallium doped zinc oxide target, manufacturing method of producing the same and zinc oxide thin film manufactured by the same
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
KR101404404B1 (en) Method for manufacturing zinc oxide target and zinc oxide target by using the same
JP2008255476A (en) ZnO VAPOR DEPOSITION MATERIAL AND ZnO FILM FORMED THEREFROM
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
KR101302975B1 (en) MANUFACTORING METHOD OF SPUTTERING TARGET OF Aluminium doped ZnO USING SPRAY PYROLYSIS
KR20080058106A (en) Method of manufacturing indium tin oxide target
KR20090052008A (en) Zinc oxide target and manufacturing method of producing the same
KR101349675B1 (en) Zinc oxide based sputtering target
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
KR101302680B1 (en) Indium tin oxide target and manufacturing method of producing the same
JP2014162998A (en) Zinc oxide-based sputtering target, production method thereof, and thin film transistor having cut-off film vapor-deposited by using the same
KR20080056975A (en) Manufacturing method of producing aluminium doped metal oxide target
KR101302679B1 (en) Aluminium doped zinc oxide target and manufacturing method of producing the same
JPH04341707A (en) Transparent conductive film
KR101177491B1 (en) Cylindrical oxide article and method of manufacturing cylindrical oxide target using the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 7