KR101261589B1 - RNA Aptamer Targeting RIG-I Protein and Use thereof - Google Patents

RNA Aptamer Targeting RIG-I Protein and Use thereof Download PDF

Info

Publication number
KR101261589B1
KR101261589B1 KR1020100032936A KR20100032936A KR101261589B1 KR 101261589 B1 KR101261589 B1 KR 101261589B1 KR 1020100032936 A KR1020100032936 A KR 1020100032936A KR 20100032936 A KR20100032936 A KR 20100032936A KR 101261589 B1 KR101261589 B1 KR 101261589B1
Authority
KR
South Korea
Prior art keywords
rig
rna
seq
protein
rna aptamer
Prior art date
Application number
KR1020100032936A
Other languages
Korean (ko)
Other versions
KR20110113504A (en
Inventor
유주연
황선영
Original Assignee
주식회사 포스코
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 포항공과대학교 산학협력단 filed Critical 주식회사 포스코
Priority to KR1020100032936A priority Critical patent/KR101261589B1/en
Publication of KR20110113504A publication Critical patent/KR20110113504A/en
Application granted granted Critical
Publication of KR101261589B1 publication Critical patent/KR101261589B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/665Assays involving proteins derived from pro-opiomelanocortin, pro-enkephalin or pro-dynorphin
    • G01N2333/70Enkephalins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

RIG-I 단백질에 특이적인 RNA 앱타머, 및 이를 유효성분으로 포함하는 면역 조절제, 유전자 발현 조절제, 및 항바이러스제가 제공된다.RNA aptamers specific for RIG-I proteins, and immunomodulators, gene expression modulators, and antiviral agents comprising the same as active ingredients are provided.

Description

RIG-I 단백질을 표적으로 하는 RNA 앱타머 및 그의 용도{RNA Aptamer Targeting RIG-I Protein and Use thereof}RNA aptamer targeting RIG-I protein and its use {RNA Aptamer Targeting RIG-I Protein and Use}

본 발명은 RIG-I 단백질을 표적으로 선별된 RNA 앱타머 및 그의 용도에 관한 것이다. 본 발명의 RNA 앱타머는 RIG-I 단백질에 대한 특이적이고 강력한 결합 효능을 보일 뿐 아니라, RIG-I 단백질에 의해 매개되는 면역 반응 및/또는 항바이러스 반응을 조절하는 효과를 보이며, 이에 따라 면역 단백질 발현 증가 및/또는 바이러스 증식의 효과적 억제에 유용하며, 따라서, 면역 조절제 및/또는 항바이러스 치료제의 개발에 유용하게 사용될 수 있다.
The present invention relates to RNA aptamers targeted to RIG-I proteins and uses thereof. RNA aptamers of the present invention not only exhibit specific and potent binding potency to RIG-I protein, but also regulate the immune and / or antiviral response mediated by RIG-I protein, thereby expressing immune protein. It is useful for increasing and / or effectively inhibiting viral proliferation, and thus can be useful for the development of immunomodulators and / or antiviral therapies.

RIG-I (Retinoic-acid inducible gene-I)은 CARD (caspase recruitment) 도메인과 RNA 헬리케이즈(helicase) 도메인으로 구성되고, 세포질 내에 위치하는, 면역 반응의 조절 단백질이다.  RNA 헬리케이즈 도메인을 통해 세포 안에 존재하는 비자아적 RNA (non-self RNA)를 인지한 후 인터페론-알파/베타의 발현을 유도한다.  RIG-I에 의해 인지되는 대표적 위험 신호로는 바이러스의 증식 과정에서 발생하는 이중 나선 RNA (dsRNA), 5'-트리포스페이트 (5'-ppp)를 포함한 단일 나선 RNA (ssRNA), 또는 polyI:C 등이 있다.  Retinoic-acid inducible gene-I (RIG-I) is a regulatory protein of the immune response, which is composed of caspase recruitment (CARD) domain and RNA helicase domain, and is located in the cytoplasm. The RNA helicase domain recognizes non-self RNA (non-self RNA) present in cells and induces expression of interferon-alpha / beta. Representative danger signals recognized by RIG-I include single helix RNA (ssRNA), or polyI: C, including double helix RNA (dsRNA), 5'-triphosphate (5'-ppp), which occur during the process of virus propagation. Etc.

RIG-I은 주로 RNA 바이러스의 감염을 인지하고 인터페론-베타의 발현을 유도한다. RIG-I에 의해 인지되는 대표적인 RNA 바이러스로는 C형 간염 바이러스 (hepatitis C virus, HCV), 급성 호흡기 중후군 (SARS) 바이러스, 인플루엔자 바이러스 (Influenza virus), 웨스트 나일 바이러스 (West Nile Virus), 에볼라 바이러스 (Ebola Virus), 소낭성 구내염 바이러스 (Vesicular Stomatitis Virus), 뉴캐슬병 바이러스 (Newcastle Disease Virus) 등이 있다. RIG-I primarily recognizes infection of RNA viruses and induces expression of interferon-beta. Representative RNA viruses recognized by RIG-I include hepatitis C virus (HCV), acute respiratory syndrome (SARS) virus, influenza virus, West Nile virus, Ebola virus (Ebola Virus), Vesicular Stomatitis Virus, and Newcastle Disease Virus.

RIG-I에 의해 인지된 세포 내 감염 신호는 마이토콘드리아 막에 위치하는 MAVS/IPS-1/VISA/Cardif 단백질을 통하여 IKK (inhibitory kappa B kinase)와 TBK (Tank binding kinase)와 같은 카이네이즈로 전달된다. 활성화된 IKK와 TBK에 의해 IRF3 (interferon regulatory factor 3), IRF7 (interferon regulatory factor 7), NFkB (nuclear factor kappa B) 등과 같은 전사 단백질의 인산화 또는 활성화가 유도되며, 이러한 결과에 의해 인터페론 알파/베타와 같은 사이토카인의 합성이 이루어진다. Intracellular infection signals recognized by RIG-I are directed to kinase such as inhibitor kappa B kinase (IKK) and tank binding kinase (TBK) via MAVS / IPS-1 / VISA / Cardif proteins located on the mitochondrial membrane. Delivered. Activated IKK and TBK induce phosphorylation or activation of transcriptional proteins, such as interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), and nuclear factor kappa B (NFkB). The synthesis of cytokines such as

인터페론 알파/베타는 바이러스나 박테리아의 감염을 인지한 면역 세포로부터 주로 합성된 후 체내로 방출되는 사이토카인으로서, 항 바이러스성 면역 반응에 가장 중요한 역할을 담당하는 생체 물질이다. 인터페론 알파/베타는 인터페론 수용체 단백질에 결합함으로서 2차 신호를 전달한다. 이 결과 발현이 유도되는 다양한 유전자들 (Interferon stimulated genes; ISG)에 의해 바이러스의 제거 및 세포 사멸과 같은 항 바이러스 반응이 이루어지게 된다.Interferon alpha / beta is a cytokine that is mainly synthesized from immune cells that recognize viral or bacterial infections and then released into the body, and is a biomaterial that plays an important role in antiviral immune responses. Interferon alpha / beta transmits secondary signals by binding to interferon receptor proteins. As a result, antiviral reactions such as virus removal and cell death occur by various interferon stimulated genes (ISGs).

 앱타머는 단일 가닥의 RNA 또는 DNA 분자로서 표적 단백질에 대한 강한 결합력 (high binding affinity)과 특이성 (specificity)을 가진다. 이러한 앱타머의 특정은 기존 항체 단백질과 유사하며, 그 결과 항체-항원 반응에 기인한 다양한 진단 및 치료에 응용되고 있다. 앱타머는 선별 과정이 다른 생체 물질에 비해 상대적으로 빠르며, 생체 내에서 높은 안정성 및 낮은 항원성 (immunogenicity)를 보이며, 이러한 성질에 기인하여 기존 항체 단백질을 대체할 수 있는 분자 진단 기술로 여겨지고 있다.Aptamers are single-stranded RNA or DNA molecules that have high binding affinity and specificity for the target protein. The specification of such aptamers is similar to existing antibody proteins, and as a result has been applied to various diagnostics and treatments due to antibody-antigen responses. Aptamers are relatively fast compared to other biomaterials, exhibit high stability and low immunogenicity in vivo, and are believed to be a molecular diagnostic technology that can replace existing antibody proteins due to these properties.

RNA 앱타머 (RNA aptamer)의 선별은 무작위적 염기 서열로 구성된 RNA 라이브러리 (random sequences RNA library)를 이용하여, 선별 (selection) 과 증폭 (amplification) 과정을 반복함으로써 표적 물질에 특이적인 물질을 선별하는 SELEX (Systematic evolution of ligands by exponential enrichment) 기술에 기반을 두고 있다 (Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510; Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822). RNA aptamer screening involves the use of random sequences RNA library to select and target specific materials by repeating the selection and amplification process. Based on SELEX (Systematic evolution of ligands by exponential enrichment) technology (Tuerk, C., and Gold, L. (1990) .Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science 249, 505-510; Ellington, AD, and Szostak, JW (1990) .In vitro selection of RNA molecules that bind specific ligands.Nature 346, 818-822).

수용체에 특이적인 앱타머는 종종 작용제(agonist) 또는 길항제(antagonist)로서의 기능을 한다. 그 결과 앱타머와 표적 단백질의 결합은 수용체와 리간드의 결합을 모방함으로써 표적 단백질이 원래 보유하고 있던 기능을 억제 또는 향상 시킨다. Aptamers specific for receptors often function as agonists or antagonists. As a result, the binding of the aptamer to the target protein mimics the binding of the receptor to the ligand, thereby inhibiting or enhancing the function originally possessed by the target protein.

VEGF-165 (vascular endothelial growth factor-165)에 결합하는 RNA 앱타머에 대한 미국 식품의약청의 의약품 사용 승인은 앱타머를 이용한 치료제 개발 연구의 가능성을 제시한다. The US Food and Drug Administration's approval of RNA aptamers binding to vascular endothelial growth factor-165 (VEGF-165) offers the possibility of research into drug development using aptamers.

이에 따라서, RNA 앱타머를 이용한 RIG-I 단백질의 발현 조절을 통한 면역 조절 및 항바이러스 제제의 개발이 진행중이나, 그 성과는 아직 미미한 실정이다.
Accordingly, the development of immunoregulatory and antiviral agents through the regulation of the expression of RIG-I protein using RNA aptamer is ongoing, but the results are still insignificant.

이에, 본 발명은 변성이 쉬운 바이러스 유래 물질 (단백질 또는 핵산)이 아닌, 숙주의 면역 관련 단백질인 RIG-I 유전자에 의하여 코딩되는 단백질 (이하, 'RIG-I 단백질'이라 칭함)에 특이적으로 결합하는 RNA 앱타머를 선별 및 제공하는 것을 목적으로 한다.Accordingly, the present invention specifically relates to a protein encoded by the RIG-I gene, which is an immune-related protein of the host, but not a virus-derived substance (protein or nucleic acid) that is easily denatured (hereinafter, referred to as 'RIG-I protein'). It is aimed at selecting and providing a binding RNA aptamer.

따라서, 본 발명의 일례는 RIG-I에 특이적으로 결합하는 RNA 앱타머에 관한 것이다. 이와 같이 RIG-I에 특이적으로 결합하는 RNA 앱타머를 제공함으로서 RIG-I에 의해 매개되는 신호 전달 과정 및/또는 면역 반응 및/또는 항바이러스 반응을 조절할 수 있다.Thus, one example of the present invention relates to RNA aptamers that specifically bind to RIG-I. By providing an RNA aptamer that specifically binds to RIG-I, it is possible to modulate signal transduction processes and / or immune responses and / or antiviral responses mediated by RIG-I.

다른 예는 RIG-I에 특이적으로 결합하는 RNA 앱타머를 유효성분으로 함유하는, 비자아적 RNA (non-self RNA)에 대한 면역반응을 일으키는 면역 유도제, 및 RIG-I 단백질 유래 항 바이러스 신호에 의해 증식이 억제되는 바이러스의 증식 억제 효과를 갖는 항바이러스제에 관한 것이다. Another example is an immune inducer that produces an immune response against non-self RNA, which contains an RNA aptamer that specifically binds to RIG-I, and an antiviral signal derived from RIG-I protein. The present invention relates to an antiviral agent having a proliferation inhibitory effect of a virus whose proliferation is inhibited.

또 다른 예는 RIG-I에 특이적으로 결합하는 RNA 앱타머를 유효성분으로 함유하는 RIG-I와 상동성을 가지는 MDA5 및 LGP2의 발현 및/또는 작용 조절제에 관한 것이다. Another example relates to an expression and / or action modulator of MDA5 and LGP2 having homology with RIG-I containing an RNA aptamer specifically binding to RIG-I as an active ingredient.

또 다른 예는 RIG-I에 특이적으로 결합하는 RNA 앱타머를 이용하여 RIG-I 단백질의 양을 정량적으로 측정하거나, 세포 내 위치를 추적하는 RIG-I 단백질의 분석 방법에 관한 것이다. Another example relates to a method for the analysis of RIG-I proteins that quantitatively measures the amount of RIG-I protein or tracks its location in cells using RNA aptamers that specifically bind to RIG-I.

또 다른 예는 RIG-I에 특이적으로 결합하는 RNA 앱타머의들이 공통적으로 갖는 보존적 염기서열 (consensus sequence) 및/또는 특이적 이차 구조 분석을 통하여 새로운 RIG-I 결합 물질 및/또는 활성 조절 물질을 탐색하는 방법에 관한 것이다. Another example is the regulation of new RIG-I binding agents and / or activity through conservative sequence and / or specific secondary structure analysis common to RNA aptamers that specifically bind to RIG-I. A method of searching for a substance.

또 다른 예는 RIG-I 단백질과 기능적 또는 염기 서열적 상동성 (homology)이 높은 단백질 (예컨대, MDA5, LGP2 등)에 대한 결합 물질 및/또는 활성 조절 물질의 선별에 정보를 제공하는 방법에 관한 것이다.
Another example relates to a method for providing information on the selection of binding agents and / or activity modulators for proteins with high functional or base sequence homology with RIG-I proteins (eg, MDA5, LGP2, etc.). will be.

본 발명자들은 세포 내 감염된 RNA 바이러스를 인지하고 항바이러스 반응을 유도하는 면역 수용체 단백질인 RIG-I에 특이적인 RNA 앱타머를 발견하였으며, 선별된 RIG-I RNA 앱타머가 RIG-I에 의해 매개되는 신호 전달 과정을 증폭시키고 인터페론-베타의 합성을 향상시킴으로써, 세포 내 감염된 RNA 바이러스 등과 같은 세포 내의 비자아적 RNA (non-self RNA)의 증식을 억제한다는 사실을 확인하였으며, 이로서 RIG-I RNA 앱타머가 비자아적 RNA에 대한 면역 유도제(조절제), 항바이러스제, 및/또는 바이러스 감염 예방과 치료제로 유용하게 사용될 수 있음을 확인함으로써 본 발명을 완성하기에 이르렀다.  The inventors have discovered an RNA aptamer specific for RIG-I, an immune receptor protein that recognizes intracellular infected RNA viruses and induces an antiviral response, and the selected RIG-I RNA aptamers are mediated by RIG-I. By amplifying the delivery process and enhancing the synthesis of interferon-beta, we found that it inhibits the proliferation of non-self RNA in cells, such as intracellular infected RNA viruses, such that the RIG-I RNA aptamers The present invention has been completed by confirming that it can be usefully used as an immune inducing agent (modulator), antiviral agent, and / or virus infection prevention and treatment against sub RNA.

본 발명은 RNA 앱타머의 표적 물질을 변성이 쉬운 바이러스 유래 물질 (단백질 또는 핵산)이 아닌, 숙주의 면역 관련 단백질인 RIG-I로 선정함으로써, 보다 안정적이고 우수한 효과를 갖는 항바이러스 효과를 갖는 것을 특징으로 한다.  The present invention selects the target material of the RNA aptamer as RIG-I, which is an immune-related protein of the host, rather than a virus-derived material (protein or nucleic acid) that is easily denatured, thereby having an antiviral effect having more stable and superior effect. It features.

본 발명에서 사용된 'RIG-I RNA 앱타머'는 RIG-I 단백질 (서열번호 108)에 특이적으로 결합하는 RNA 단편 (올리고뉴클레오타이드)를 의미하는 것이다.As used herein, 'RIG-I RNA aptamer' refers to an RNA fragment (oligonucleotide) that specifically binds to a RIG-I protein (SEQ ID NO: 108).

본 발명 일례는 RIG-I RNA 앱타머의 염기 서열이 제공된다. One example of the present invention provides the base sequence of the RIG-I RNA aptamer.

본 발명에 따른 RNA 앱타머는, 호모 사피엔스 (Homo sapiens) RIG-I 유전자로부터 번역된 전체 단백질 (Accession No. O95786, 925 aa, 서열번호 99)표적으로 하여, 무작위적 염기 서열의 RNA 라이브러리로부터 반복적 선별 및 증폭 과정을 통해 선별된 물질들이다. 따라서 선별된 RIG-I RNA 앱타머들의 결합력과 효능은 결합 부위에 따라 다양할 수 있다.RNA aptamer according to the present invention, Homo sapiens ( Homo sapiens ) Targeted proteins (Accession No. O95786, 925 aa, SEQ ID NO: 99) translated from the RIG-I gene are selected from repetitive selection and amplification processes from an RNA library of random nucleotide sequences. Thus, the binding capacity and potency of the selected RIG-I RNA aptamers may vary depending on the binding site.

본 발명의 일례에서 선별된 총 45(서열번호 54 내지 98)의 RIG-I RNA 앱타머를 분석한 결과, 이들은 매우 높은 비율 (평균 52%)로 우라실 (U; uracil) 염기를 포함하는 U-rich 부위 (서열번호 1 내지 45)를 가지며, 모든 RIG-I RNA 앱타머들에게서 공통적으로 연속적인 우라실 염기 서열 구조 (Un; n=2~11)가 반복적으로 존재하는 것으로 나타났다. 이는 선별된 RIG-I RNA 앱타머들은 염기 서열에 따른 RNA 3차 구조와 함께 염기 서열 자체도 RIG-I의 결합에 중요함을 의미하는 것이다. Analysis of a total of 45 (SEQ ID NOs: 54-98) of RIG-I RNA aptamers selected in one example of the present invention revealed that they contained U- containing uracil bases at very high rates (average 52%). It has been shown that it has a rich site (SEQ ID NOS: 1 to 45) and that there is a repetitive uracil sequence structure (Un; n = 2-11) that is common to all RIG-I RNA aptamers. This means that the selected RIG-I RNA aptamers, along with the RNA tertiary structure according to the base sequence, are also important for the binding of RIG-I.

따라서, 본 발명에 따른 RIG-I 단백질에 특이적으로 결합하는 RNA 앱타머는 우라실 (U)이 2 내지 11개가 연결된 반복단위를 2 내지 10개 포함하는 U-rich 부위를 갖는 것을 특징으로 한다.Therefore, the RNA aptamer specifically binding to the RIG-I protein according to the present invention is characterized in that it has a U-rich region containing 2 to 10 repeating units in which 2 to 11 uracils (U) are linked.

상기 RIG-I 단백질에 특이적으로 결합하는 RNA 앱타머를 보다 상세히 설명하면,When explaining in detail the RNA aptamer specifically binding to the RIG-I protein,

- 5' 말단 부위, U-rich 부위, 및 3' 말단 부위로 이루어지고,Consisting of a 5 'terminal region, a U-rich region, and a 3' terminal region,

- 상기 5' 말단 부위는 A, G, C, 및 U로 이루어진 군에서 선택된 1종 이상의 염기 12 내지 18개로 이루어진 올리고뉴클레오타이드이고,The 5 ′ terminal portion is an oligonucleotide consisting of 12 to 18 bases of at least one base selected from the group consisting of A, G, C, and U,

- 상기 U-rich 부위는 A, G, C, 및 U로 이루어진 군에서 선택된 4종의 염기 35 내지 50개로 이루어지고, U의 개수가 전체 염기 개수의 20 내지 60%이고, U가 연속적으로 2 내지 11개 연결된 반복단위를 2 내지 10개 포함하는 올리고뉴클레오타이드이고,The U-rich region consists of 35 to 50 four bases selected from the group consisting of A, G, C, and U, the number of U is 20 to 60% of the total number of bases, and U is continuously 2 Oligonucleotides containing 2 to 10 linked repeating units,

- 상기 3' 말단 부위는 A, G, C, 및 U로 이루어진 군에서 선택된 1종 이상의 염기 5 내지 35개로 이루어진 올리고뉴클레오타이드인The 3 ′ terminal portion is an oligonucleotide consisting of 5 to 35 bases of at least one base selected from the group consisting of A, G, C, and U

것일 수 있다. It may be.

이 때, 상기RNA 앱타머에 존재하는 U와 C는 두 번째 탄소 위치의 하이드록실기가 플루오르기로 치환된 것일 수 있다. 이와 같이 U와 C의 두 번째 탄소 위치의 하이드록실기가 플루오르기로 치환됨으로써, RNase의 공격이나 자체적 활성에 의한 RNA 분해(degradation)에 저항성이 높아져, RNA의 안정성이 높아진다는 이점이 있다.At this time, U and C present in the RNA aptamer may be a hydroxyl group of the second carbon position is substituted with a fluorine group. As such, when the hydroxyl groups at the second carbon positions of U and C are substituted with fluorine groups, resistance to RNA degradation due to RNase attack or self-activation is increased, and the stability of RNA is increased.

상기한 바와 같이, U-rich 부위는 매우 높은 비율 (20-60%, 바람직하게 25-60%, 보다 바람직하게 30 내지 60%, 더욱 바람직하게 40 내지 60%, 평균 52%)로 우라실 (U; uracil) 염기를 포함하며, 연속적인 우라실 염기 서열 구조 (Un; n=2~11)가 2회 이상, 바람직하게는 2-10회, 더욱 바람직하게는 2-7회 반복적으로 존재한다. 이러한 U-rich 부위의 염기 서열에 따른 RIG-I RNA 앱타머의 RNA 3차 구조와 함께 염기 서열 자체도 RIG-I의 결합에 중요한 역할을 한다.As noted above, the U-rich moiety comprises uracil (U) at a very high rate (20-60%, preferably 25-60%, more preferably 30-60%, even more preferably 40-60%, on average 52%). uracil), wherein a continuous uracil base sequence structure (Un; n = 2-11) is present at least twice, preferably 2-10 times, more preferably 2-7 times. In addition to the RNA tertiary structure of the RIG-I RNA aptamer according to the nucleotide sequence of the U-rich region, the nucleotide sequence itself plays an important role in binding of RIG-I.

보다 구체적으로, U-rich 부위는 서열번호 1 내지 45의 염기서열을 갖는 올리고뉴클레오타이드일 수 있다. More specifically, the U-rich region may be an oligonucleotide having a nucleotide sequence of SEQ ID NO: 1 to 45.

상기 5' 말단 부위는 서열번호 46(GCGGAAGCGUGCUGGGCC) 중 연속하는 12 내지 18개의 염기로 구성된 염기서열, 예컨대, 서열번호 46의 염기서열, 서열번호 47(GCGGAAGCGUGCUGGG)의 염기서열, 서열번호 48(GCGGAAGCGUGCUGG), 및 서열번호 49(AAGCGUGCUGGG)의 염기서열로 이루어진 군에서 선택된 염기서열을 갖는 올리고뉴클레오타이드일 수 있다. The 5 'terminal portion is a nucleotide sequence consisting of 12 to 18 consecutive bases in SEQ ID NO: 46 (GCGGAAGCGUGCUGGGCC), such as the base sequence of SEQ ID NO: 46, the base sequence of SEQ ID NO: 47 (GCGGAAGCGUGCUGGG), SEQ ID NO: 48 (GCGGAAGCGUGCUGG) , And an oligonucleotide having a nucleotide sequence selected from the group consisting of SEQ ID NO: 49 (AAGCGUGCUGGG).

상기 3' 말단 부위는 서열번호 50(cauaacccaa)의 염기서열 또는 서열번호 53 (cauaacccag aggucgaugg aucccccc) 중 연속하는 5 내지 28개의 염기로 구성된 염기서열을 갖는 올리고뉴클레오타이드일 수 있다. 상기 서열번호 53 중 연속하는 5 내지 28개의 염기로 구성된 염기서열은 서열번호 53 (28개 염기), 서열번호 53의 1-9의 9개 염기 (cauaaccca)로 이루어진 서열번호 51, 또는 서열번호 53의 1-18의 18개 염기 (cauaacccag aggucgau)로 이루어진 서열번호 52의 염기서열을 갖는 올리고뉴클레오타이드일 수 있다. 바람직한 구체예에서, 상기 3' 말단 부위는 서열번호 50 내지 53으로 이루어진 군에서 선택된 염기서열을 갖는 올리고뉴클레오타이드일 수 있다.The 3 ′ terminal portion may be an oligonucleotide having a nucleotide sequence consisting of 5 to 28 consecutive bases in SEQ ID NO: 50 (cauaacccaa) or SEQ ID NO: 53 (cauaacccag aggucgaugg aucccccc). The base sequence consisting of 5 to 28 consecutive bases in SEQ ID NO: 53 is SEQ ID NO: 53 (28 bases), SEQ ID NO: 51 consisting of 9 bases (cauaaccca) of 1-9 of SEQ ID NO: 53, or SEQ ID NO: 53 It may be an oligonucleotide having a nucleotide sequence of SEQ ID NO: 52 consisting of 18 bases (cauaacccag aggucgau) of 1-18. In a preferred embodiment, the 3 'terminal portion may be an oligonucleotide having a nucleotide sequence selected from the group consisting of SEQ ID NO: 50 to 53.

본 발명에 따른 RNA 앱타머는 상기한 바와 같은 U-rich 부위/3' 말단 부위 또는 5' 말단 부위/U-rich 부위/3' 말단 부위의 조합에 의하여 다양하게 구성될 수 있다. 바람직한 구체예에서, RNA 앱타머는 서열번호 58 내지 101로 이루어진 군에서 선택된 염기서열, 또는 상기 서열의 5' 부위에 상기한 바와 같은 5' 말단 부위를 추가로 갖는 것일 수 있다.The RNA aptamer according to the present invention may be variously configured by a combination of the U-rich region / 3 'end region or the 5' terminal region / U-rich region / 3 'terminal region as described above. In a preferred embodiment, the RNA aptamer may further have a base sequence selected from the group consisting of SEQ ID NOs: 58 to 101, or a 5 'terminal portion as described above in the 5' region of the sequence.

본 발명에 따른 RIG-I 앱타머는 RIG-I 단백질과 특이적으로 결합하여 RIG-I 단백질의 작용 활성화 역할을 하며, 이를 통하여 다양한 면역 유도, 항바이러스 등의 효과를 발휘한다. The RIG-I aptamer according to the present invention specifically binds to the RIG-I protein and plays a role of activating the action of the RIG-I protein, thereby exerting various immune induction and antiviral effects.

또한, 본 발명에 따른 RIG-I 앱타머는 RIG-I 단백질과 아미노산 서열 상동성이 높고, 그 구조가 비슷한 것으로 알려져 있는 MDA5(human MDA5: NM_022168)와 LGP2(human LGP2: NM_024119)와의 친화성도 높을 것으로 예상된다 (The Journal of Immunology, vol175, p2851-2858 참조). 특히, 본 발명에 따른 RIG-I 앱타머는 MDA5를 과발현시킨 실험에서도 효능이 나타내는 것이 확인되어 (도 3c 참조), RIG-I 뿐아니라 MDA5에 대해서도 작용 활성화 효과를 나타낼 수 있는 것으로 확인되었다. In addition, the RIG-I aptamer according to the present invention has a high amino acid sequence homology with the RIG-I protein, and has a high affinity between MDA5 (human MDA5: NM_022168) and LGP2 (human LGP2: NM_024119), which are known to have a similar structure. Expected (see The Journal of Immunology, vol 175, p2851-2858). In particular, it was confirmed that the RIG-I aptamer according to the present invention exhibits efficacy even in an experiment overexpressing MDA5 (see FIG. 3C), and it was confirmed that the RIG-I aptamer may exhibit an action activation effect on MDA5 as well as RIG-I.

따라서, 본 발명에 따른 RIG-I 앱타머는 RIG-I 단백질, MDA5 단백질 및 LGP2 단백질로 이루어진 군에서 선택된 1종 이상의 작용 활성화제로서의 역할을 할 수 있다.Therefore, the RIG-I aptamer according to the present invention may serve as one or more action activators selected from the group consisting of RIG-I protein, MDA5 protein and LGP2 protein.

본 발명에서 획득한 RIG-I 단백질과 특이적으로 결합하는 RNA 염기 서열 정보는 향후 더욱 강력한 결합력과 조절력을 가진 RIG-I 조절 물질을 발굴하는데 이용될 수 있으며, 또한 RIG-I와 상동성이 높은 유전자나 유사 구조를 가진 단백질, 예컨대, MDA5 및/또는 LGP2 단백질을 표적으로 한 결합 물질 발굴에도 이용될 수 있다. RNA sequencing information specifically binding to the RIG-I protein obtained in the present invention can be used in the future to discover RIG-I modulators with stronger binding and regulatory power, and also has high homology with RIG-I. It can also be used to find binding materials targeting genes or proteins with similar structures, such as MDA5 and / or LGP2 proteins.

본 발명에서 선별된 각각의 RIG-I RNA 앱타머 clone과 정제된 RIG-I 단백질과의 결합은 RNA-EMSA (RNA electrophoretic mobility assay)를 통해 인비트로(in vitro)에서 확인되었다(도 1b 참조).The binding of each RIG-I RNA aptamer clone and purified RIG-I protein selected in the present invention was confirmed in vitro through RNA electrophoretic mobility assay (RNA-EMSA) (see FIG. 1B). .

본 발명의 RIG-I RNA 앱타머들 중, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 61, 및 서열번호 63의 염기서열을 갖는 것은 인터페론-베타 유전자(NM_002176)의 프로모터(promoter)를 활성화 시키는 효능이 있는 것으로 확인되었다 (실시예 2 및 도 2a 참조). Among the RIG-I RNA aptamers of the present invention, those having the nucleotide sequences of SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 61, and SEQ ID NO: 63 It was found to be effective in activating the promoter of the interferon-beta gene (NM_002176) (see Example 2 and FIG. 2A).

본 발명의 RIG-I RNA 앱타머들 중, 서열번호 61은 염기성 탈인산 효소(alkaline phosphatase; AP)를 처리하여 5' 말단에 붙어있는 triphosphate (ppp)를 제거한 경우 더욱 강력하게 인터페론-베타 유전자의 프로모터를 활성화시킬 수 있음을 확인하였다(실시예 2 및 도 2b 참조). 이를 통해, RIG-I RNA 앱타머 서열번호 61의 경우 5'-ppp-ssRNA에 의해 만들어지는 구조가 아닌, 특징적 염기 서열을 통해 RIG-I의 리간드(ligand)로 작동함을 알 수 있다.Among the RIG-I RNA aptamers of the present invention, SEQ ID NO: 61 is more robust to the removal of triphosphate (ppp) attached to the 5 'end by treatment with basic alkaline phosphatase (AP). It was confirmed that the promoter can be activated (see Example 2 and FIG. 2B). Through this, it can be seen that the RIG-I RNA aptamer sequence No. 61 acts as a ligand of RIG-I through the characteristic base sequence, not the structure made by 5'-ppp-ssRNA.

또한, AP를 처리한 RIG-I RNA 앱타머 서열번호 61는 인터페론에 의한 신호 전달을 담당하는 STAT1 (Signal transducer and activator of transcription 1) 전사 단백질과 ISRE (Interferon-stimulated response element) 사이의 결합을 유도함으로서 전사 반응을 활성화시킬 수 있음을 확인하였다 (실시예 2 및 도 2c 참조). In addition, AP-treated RIG-I RNA aptamer SEQ ID NO 61 induces the binding between the transcript of the signal transducer and activator of transcription 1 (STAT1) and the interferon-stimulated response element (ISRE) responsible for signal transduction by interferon. It was confirmed that the transcriptional reaction can be activated (see Example 2 and FIG. 2C).

또한, AP를 처리한 RIG-I RNA 앱타머 서열번호 61는 인터페론-베타의 유전자 발현을 조절하는 전사단백질인 IRF3 (Interferon regulatory factor 3)의 활성을 유도한다. 이 결과 AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의해 인터페론-베타 유전자의 발현이 강하게 유도된다. In addition, AP-treated RIG-I RNA aptamer SEQ ID NO 61 induces the activity of IRF3 (Interferon regulatory factor 3), a transcriptional protein that regulates gene expression of interferon-beta. As a result, the expression of the interferon-beta gene is strongly induced by AP-treated RIG-I RNA aptamer SEQ ID NO: 61.

또한, AP를 처리한 RIG-I RNA 앱타머 서열번호 61는 또한 염증 반응의 조절 물질인 란티스 (RANTES Regulated upon Activation, Normal T cell Expressed and presumably Secreted; NM_002985)의 발현도 강하게 유도하는 것으로 나타났다 (실시예 2 및 도 2d 참조). In addition, RIG-I RNA aptamer SEQ ID No. 61 treated with AP is also used as a regulator of inflammatory response (RANTES) Regulated upon Activation, Normal T cell Expressed and presumably Secreted; NM_002985) was also strongly induced (see Example 2 and FIG. 2D).

또한, AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능은 세포 내 존재하는 RIG-I 단백질에 의존적이다 (도3A 참조). AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능은 세포 내 MDA5 (melanoma-differentiation-associated gene 5, Helicard) 단백질에는 비의존적이나, RIG-I 및/또는 MDA5 단백질을 과다 발현할 경우, 인터페론-베타 합성 효능이 증가되기도 한다. AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능은 RIG-I 전체 단백질 (1-925 aa, 서열번호 108)이 모두 필요하다. AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능을 길이가 긴 polyI:C와 짧은 길이의 polyI:C에 의한 인터페론-베타 합성 효능과 나누어 비교했을 때, 가장 효과적으로 RIG-I 단백질의 활성을 증가시킨다.  In addition, the efficacy of interferon-beta synthesis by RIG-I RNA aptamer SEQ ID 61 treated with AP is dependent on the RIG-I protein present in the cell (see FIG. 3A). Efficacy of interferon-beta synthesis by RIG-I RNA aptamer SEQID 61 treated with AP is independent of intracellular MDA5 (melanoma-differentiation-associated gene 5, Helicard) proteins, but it does not affect RIG-I and / or MDA5 proteins. Overexpression also increases the efficacy of interferon-beta synthesis. Interferon-beta synthesis efficiency by AP-treated RIG-I RNA aptamer SEQ ID NO: 61 requires all of the RIG-I total protein (1-925 aa, SEQ ID NO: 108). The effect of RIG-I RNA aptamer sequence number 61 treated with AP on interferon-beta synthesis was compared with that of long-term polyI: C and short-length polyI: C. -I increase the activity of the protein.

이러한 결과로 볼 때, 본 발명에 따른 RIG-I RNA 앱타머는 인터페론-베타 합성 효능 증가를 통한 면역 조절제(유도제)로서 유용하다. 따라서, 본 발명의 또 다른 예는 상기 RIG-I RNA 앱타머를 유효성분으로 함유하는 면역 조절제를 제공한다. 상기 면역 조절제는 RIG-I 유전자, MDA5 유전자, 인터페론 (특히, 인터페론-베타) 유전자, 란티스 (RANTES) 유전자 등의 면역 단백질의 합성을 증가시키는 효과를 갖는 것일 수 있다.In view of these results, the RIG-I RNA aptamer according to the present invention is useful as an immunomodulator (inducer) through increased interferon-beta synthesis efficacy. Therefore, another example of the present invention provides an immunomodulator containing the RIG-I RNA aptamer as an active ingredient. The immunomodulator may be one having an effect of increasing the synthesis of immune proteins, such as RIG-I gene, MDA5 gene, interferon (especially, interferon-beta) gene, Rantis (RANTES) gene.

상기와 같은 RIG-I RNA 앱타머의 RIG-I 유전자, MDA5 유전자, 인터페론-베타, 란티스 (RANTES) 등의 면역 단백질의 합성을 증가시키는 면역 조절(유도) 효과에 의하여, 상기 RIG-I RNA 앱타머는 상기 면역 단백질과 관련된 다양한 면역 질환의 치료 및/또는 예방 효과를 가질 수 있다. The RIG-I RNA Apta by the immunomodulatory (induced) effect of increasing the synthesis of immune proteins such as RIG-I gene, MDA5 gene, interferon-beta, RANTES (RANTES) of the RIG-I RNA aptamer as described above Mer may have a therapeutic and / or prophylactic effect of various immune diseases associated with said immune protein.

따라서, 본 발명의 또 다른 측면은, 상기 RIG-I RNA 앱타머를 유효성분으로 함유하는 면역 질환의 치료 또는 예방용 조성물을 제공한다. 상기 면역 질환은 바이러스성 질환 (viral-induced disease) 및 인터페론 부족증(Interferon deficiency disease)으로 이루어진 군에서 선택되는 것일 수 있으며, 상기 바이러스성 질환은 RIG-I가 인식하는 모든 RNA 바이러스인 C형 간염 바이러스 (hepatitis C virus, HCV), 급성 호흡기 중후군 (SARS) 바이러스, 인플루엔자 바이러스 (Influenza virus), 웨스트 나일 바이러스 (West Nile Virus), 에볼라 바이러스 (Ebola Virus), 소낭성 구내염 바이러스 (Vesicular Stomatitis Virus), 뉴캐슬병 바이러스 (Newcastle Disease Virus) 등으로 이루어진 군에서 선택된 1종 이상의 RNA 바이러스에 의한 질환일 수 있다.Accordingly, another aspect of the present invention provides a composition for treating or preventing immune diseases containing the RIG-I RNA aptamer as an active ingredient. The immune disease may be selected from the group consisting of a viral disease (viral-induced disease) and interferon deficiency disease, the viral disease is hepatitis C virus, which is any RNA virus recognized by RIG-I (hepatitis C virus, HCV), Acute Respiratory Syndrome (SARS) virus, Influenza virus, West Nile Virus, Ebola Virus, Vesicular Stomatitis Virus, Newcastle Disease Virus (Newcastle Disease Virus) may be a disease caused by one or more RNA viruses selected from the group consisting of.

또한, NDV-GFP (GFP-tagged Newcastle disease virus)로 감염된 세포에 RIG-I RNA 앱타머 서열번호 61을 처리하면 바이러스의 단백질과 RNA가 모두 감소하는 것으로 나타났다 (실시예 <4-1> 참조). 또한, RIG-I RNA 앱타머 서열번호 61로 기 처리된 세포에 NDV-GFP를 감염시키면 처리하지 않은 대조군 세포에 비하여 바이러스 증식이 약화되는 것으로 확인되었다. (실시예 <4-2> 참조). 이는 본 발명에 따른 RIG-I RNA 앱타머가 바이러스 증식 억제제로 이용될 수 있음을 시사한다. In addition, treatment of RIG-I RNA aptamer SEQ ID No. 61 with cells infected with GFP-tagged Newcastle disease virus (NDV-GFP) reduced both the protein and RNA of the virus (see Example <4-1>). . In addition, infection of NDV-GFP in cells previously treated with RIG-I RNA aptamer SEQ ID NO 61 resulted in decreased virus proliferation compared to untreated control cells. (See Example <4-2>). This suggests that the RIG-I RNA aptamer according to the present invention can be used as a virus growth inhibitor.

이러한 결과로 볼 때, 본 발명에 따른 RIG-I RNA 앱타머는 바이러스 증식 억제를 통한 항바이러스제로서 유용하다. 따라서, 본 발명의 또 다른 예는 상기 RIG-I RNA 앱타머를 유효성분으로 함유하는 항바이러스제를 제공한다. 상기 바이러스는 RIG-I가 인식하는 모든 RNA 바이러스일 수 있으며, 예컨대, C형 간염 바이러스 (hepatitis C virus, HCV), 급성 호흡기 중후군 (SARS) 바이러스, 인플루엔자 바이러스 (Influenza virus), 웨스트 나일 바이러스 (West Nile Virus), 에볼라 바이러스 (Ebola Virus), 소낭성 구내염 바이러스 (Vesicular Stomatitis Virus), 및 뉴캐슬병 바이러스 (Newcastle Disease Virus)로 이루어진 군에서 선택된 1종 이상의 바이러스일 수 있다. In view of these results, the RIG-I RNA aptamer according to the present invention is useful as an antiviral agent through virus growth inhibition. Therefore, another example of the present invention provides an antiviral agent containing the RIG-I RNA aptamer as an active ingredient. The virus may be any RNA virus recognized by RIG-I, such as hepatitis C virus (HCV), acute respiratory syndrome (SARS) virus, influenza virus, West Nile virus (West) Nile Virus, Ebola Virus, Vesicular Stomatitis Virus, and Newcastle Disease Virus.

또 다른 예에서, 본 발명에 따른 RIG-I RNA 앱타머는 RIG-I에 의하여 발현이 유도되는 유전자의 발현 조절 역할을 할 수 있다 (실시예 2 내지 5 참조). 따라서, 본 발명의 또 다른 예는 상기 RIG-I RNA 앱타머를 포함하는 유전자 발현 조절제를 제공한다. 상기 유전자는 RIG-I에 의하여 발현이 유도되는 모든 유전자일 수 있으며, 항바이러스 유전자 및/또는 면역 관련 유전자, 예컨대, RIG-I 유전자, MDA5 유전자, 인터페론 (특히, 인터페론-베타) 유전자, 란티스 유전자 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. In another example, the RIG-I RNA aptamer according to the present invention may serve to regulate expression of genes induced by RIG-I (see Examples 2 to 5). Accordingly, another example of the present invention provides a gene expression regulator comprising the RIG-I RNA aptamer. The gene may be any gene whose expression is induced by RIG-I, and may be an antiviral gene and / or an immune related gene such as the RIG-I gene, MDA5 gene, interferon (especially interferon-beta) gene, lantis gene It may be one or more selected from the group consisting of.

본 발명에 따른 면역조절제, 면역질환 치료 또는 예방용 조성물, 항바이러스제, 유전자 발현 조절제 등의 투여량은 환자의 상태 및 체중, 질병의 정도, 제제의 형태, 투여경로 및 기간에 따라 당업자에 의해 적절하게 선택될 수 있다.  예컨대, 보다 바람직한 효과를 위해서, 상기 투여량은 유효성분인 RNA 앱타머를 기준으로 1일 0.000001 mg/kg 내지 500 mg/kg, 예컨대, 0.001 mg/kg 내지 200 mg/kg의 범위에서 적절하게 선택될 수 있으나, 이에 제한되는 것은 아니다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수 있다.  본 발명의 조성물은 동물, 바람직하게는 인간을 포함하는 포유동물에 다양한 경로로 투여될 수 있다.  투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 정맥, 근육, 피하주사 등에 의해 투여될 수 있다.  본 발명의 조성물의 약학적 투여 형태는 유효성분의 약학적 허용 가능한 염의 형태로도 사용될 수 있고, 또한 단독으로 또는 타 약학적 활성 화합물과 결합뿐만 아니라 적당한 집합으로 사용될 수 있다.Doses of immunomodulators, compositions for treating or preventing immunological disorders, antiviral agents, gene expression modulators, etc. according to the present invention are appropriate to those skilled in the art depending on the condition and weight of the patient, the extent of the disease, the form of the preparation, the route of administration, and duration. Can be chosen. For example, for a more desirable effect, the dosage is appropriately selected in the range of 0.000001 mg / kg to 500 mg / kg, such as 0.001 mg / kg to 200 mg / kg per day, based on the active ingredient RNA aptamer It may be, but is not limited thereto. The administration may be carried out once a day or divided into several doses. The compositions of the present invention may be administered to a mammal, including a human, in various ways. All modes of administration may be expected, for example, by oral, intravenous, intramuscular, subcutaneous injection, and the like. The pharmaceutical dosage form of the composition of the present invention may be used in the form of a pharmaceutically acceptable salt of the active ingredient, and may be used alone or in combination with other pharmaceutically active compounds as well as in a suitable combination.

또 다른 예에서, 본 발명은 In another example, the present invention

제1항 내지 제5항 중 어느 한 항에 따른 RNA 앱타머를 시료에 적용하는 단계; 및Applying the RNA aptamer according to any one of claims 1 to 5 to a sample; And

단백질과 결합한 RNA 앱타머의 위치 또는 수준을 확인하여, 시료 내 RIG-I에 의하여 코딩되는 단백질의 위치 또는 양을 결정하는 단계Identifying the location or level of RNA aptamer bound to the protein to determine the location or amount of the protein encoded by RIG-I in the sample

를 포함하는, RIG-I 단백질 분석 방법에 관한 것이다.It relates to, RIG-I protein analysis method.

RNA 앱타머와 단백질과의 결합은 통상적인 모든 수단으로 검출 가능하며, 예컨대, RNA 앱타머에, 예컨대 통상의 형광물질 (fluorescences; 예컨대, Cy5 등), 방사성동위원소 등과 같은 통상의 표지 물질을 표지하여 시료와 반응사키고, 통상의 검출 수단 (예컨대, 형광 현미경, Radioimmunodetection (RAID) 등)을 통하여 표적 단백질의 세포내 위치를 추적할 수 있으며, 특정 항체를 이용하는 ELISA(Enzyme-linked Immunosorbent Assay)와 같이 in vitro 상에서 단백질 양을 정량할 수 있는 통상의 수단을 통하여 측정할 수 있다.
The binding of the RNA aptamer to the protein can be detected by any conventional means, for example labeling the RNA aptamer with conventional labeling materials such as, for example, conventional fluorescences (eg, Cy5, etc.), radioisotopes, etc. React with the sample and track the intracellular location of the target protein through conventional detection means (e.g., fluorescence microscopy, Radioimmunodetection (RAID), etc.), and use an ELISA (Enzyme-linked Immunosorbent Assay) using a specific antibody. Likewise, it can be measured by conventional means to quantify the amount of protein in vitro.

상기에서 살펴본 바와 같이, 본 발명의 RNA 앱타머는 RIG-I 단백질에 특이적으로 결합하며, 인터페론-베타의 발현을 증가시키고, RNA 바이러스의 증식을 억제하는 효과를 보이므로, 상기 RNA 앱타머들은 세포 내 혹은 인비트로 상에서 RIG-I 단백질을 특이적으로 감지하는 기술에 응용되거나, RIG-I 단백질을 매개하여 이루어지는 모든 항바이러스 반응의 조절에 이용되거나, 또는 RIG-I 단백질을 매개하여 이루어지는 모든 바이러스 감염 관련 질병의 치료에 유용하게 이용될 수 있다.
As described above, the RNA aptamer of the present invention specifically binds to the RIG-I protein, increases the expression of interferon-beta, and inhibits the proliferation of RNA viruses. All viral infections applied to techniques that specifically detect RIG-I proteins in vitro or in vitro, used to modulate all antiviral responses mediated by RIG-I proteins, or mediated by RIG-I proteins It can be usefully used for the treatment of related diseases.

도면 1A는 SELEX를 통한 RIG-I 특이적 RNA 앱타머를 선별하는 과정의 모식도이고,
도면 1B는 방사능 표지된 RIG-I RNA 앱타머 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 61, 서열번호 63 각각의 결합을 인비트로에서 RNA-EMSA를 통해 확인한 것이며,
도면 2A는 RIG-I RNA 앱타머 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 61, 및 서열번호 63의 각각의 서열에 의한 pPRDIII-I-Luc 활성을 확인한 것이며,
도면 2B는 탈인산화 효소 (alkaline-phosphatase)로 처리한 라이브러리 RNA, RIG-I RNA 앱타머 서열번호 54, 서열번호 56, 서열번호 58, 서열번호 61 각각에 의한 pPRDIII-I-Luc 활성을 확인한 것이며,
도면 2C는 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 pPRDIII-I-Luc 와, pISRE-Luc의 활성으로 확인한 것이며,
도면 2D는 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 인터페론-베타와 란티스의 mRNA 수준에서 확인한 것이며,
도면 2E는 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 인터페론-베타(100U/ml), non- or RNaseIII- treated polyI:C (1.5ug/ml), AP-treated 라이브러리와 비교하여 pPRDIII-I-Luc 활성으로 비교한 것이고,
도면 3A는 RIG-I와 MDA5에 특이적인 siRNA를 이용하여 세포내 각 단백질의 양을 감소시킨 세포에서 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 PRDIII-I-Luc 활성으로 비교한 것이고,
도면 3B는 AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 통한 IRF3의 활성 효과를 세포내 위치 변화로 확인하기위해 Immuno-staining한 결과이며,
도면 3C는 RIG-I 또는 MDA5를 각각 과발현시킨 세포에서 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 pPRDIII-I-Luc 활성으로 비교한 것이고,
도면 3D는 RIG-I의 다양한 돌연변이 유전자들을 과발현시킨 세포에서 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 효과를 pPRDIII-I-Luc 활성으로 비교한 것이고,
도면4A는 NDV-GFP를 감염시킨 세포에 AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 시간별로 처리하고 바이러스 양 변화를 GFP 단백질 양으로 확인한 결과이며,
도면 4B는 NDV-GFP를 감염시킨 세포에 AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 시간별로 처리하고 NDV의 RNA양을 통해 바이러스 양 변화를 확인한 결과이며,
도면 4C는 이 조건에서 동시에 인터페론-베타의 양도 확인한 결과이며,
도면 5A 및 5B는 AP를 처리한 라이브러리 RNA와 RIG-I RNA 앱타머 서열번호 61을 먼저 처리한 세포에 NDV-GFP를 감염시키고 바이러스 양 변화를 GFP 단백질 양으로 확인한 결과이며,
도면 5C, 및 5D는 이 조건에서 동시에 NDV의 RNA양과 인터페론-베타의 RNA양을 확인한 결과이다.
1A is a schematic diagram of a process for selecting RIG-I specific RNA aptamers through SELEX,
1B shows the in vitro binding of each of the radiolabeled RIG-I RNA aptamers SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63 Confirmed by RNA-EMSA,
FIG. 2A shows pPRDIII-I by each sequence of RIG-I RNA aptamer SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 61, and SEQ ID NO: 63 -Luc activity is confirmed,
FIG. 2B confirms pPRDIII-I-Luc activity by library RNA, RIG-I RNA aptamer SEQID 54, SEQ ID NO 56, SEQ ID NO 58, and SEQ ID NO 61 treated with an alkaline phosphatase. ,
Figure 2C confirms the effects of pPRDIII-I-Luc and pISRE-Luc the effect of AP-treated RIG-I RNA aptamer SEQ ID NO: 61,
2D shows the effects of RIG-I RNA aptamer SEQID 61 treated with AP at the mRNA levels of interferon-beta and lantis,
2E compares the effect of AP treated RIG-I RNA aptamer SEQ ID NO: 61 with interferon-beta (100 U / ml), non- or RNase III-treated polyI: C (1.5 ug / ml), AP-treated libraries Compared to pPRDIII-I-Luc activity,
FIG. 3A compares the effect of RIG-I RNA aptamer SEQID 61 treated with AP on PRDIII-I-Luc activity in cells in which the amount of each protein in the cell was reduced by using siRNA specific for RIG-I and MDA5. One,
FIG. 3B shows the results of Immuno-staining to confirm the effect of IRF3 activity on the intracellular position through AP-treated RIG-I RNA aptamer SEQ ID NO: 61,
3C compares the effect of RIG-I RNA aptamer SEQID 61 treated with AP with pPRDIII-I-Luc activity in cells overexpressing RIG-I or MDA5, respectively.
FIG. 3D compares the effect of RIG-I RNA aptamer SEQ ID 61 with pPRDIII-I-Luc activity in cells overexpressing various mutant genes of RIG-I,
Figure 4A is a result of processing the RIG-I RNA aptamer SEQ ID 61 treated with AP to the cells infected with NDV-GFP hourly and confirmed the change in the amount of virus as the amount of GFP protein,
Figure 4B is a result of processing the AP-treated RIG-I RNA aptamer SEQ ID No. 61 to the cells infected with NDV-GFP hourly and confirmed the change in the amount of virus through the RNA amount of the NDV,
Figure 4C is the result of confirming the amount of interferon-beta at the same time under these conditions,
Figures 5A and 5B is a result of confirming the virus amount changes in the amount of GFP protein infected with NDV-GFP in the cells treated with AP RNA-treated RIG-I RNA aptamer SEQ ID NO: 61,
5C and 5D show the results of confirming the RNA amount of NDV and the RNA amount of interferon-beta at the same time under these conditions.

이하, 하기의 실시예에 의하여 본 발명을 보다 상세히 설명하고자 한다. 그러나, 이들 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예Example 1:  One: RIGRIG -I 단백질에 대한 For -I protein RNARNA 앱타머의Of app tamer 제작 making

RIG-I 단백질에 대한 RNA 앱타머를 제조하기 위하여 본 발명자들은 RNA 라이브러리와 정제된 RIG-I 단백질을 이용하였다. To prepare RNA aptamers for RIG-I proteins, we used RNA libraries and purified RIG-I proteins.

RNA 라이브러리는 40여개의 염기가 무작위적으로 들어간 76mer의 단일 올리고뉴클레오타이드(5'-GCGCAAGCGTGCTGGGCC-[N38 ~46]-CATAACCCAGAGGTCGA T -3', N은 A, T, G, 및 C로 이루어진 군에서 임의로 선택된 것)를 주형으로 하여 T7 프로모터를 가진 5'-프라이머(5'-GGTAATACGACTCACTATAGG GAGAGCGCAAGCGTGCTGGG-3', 서열번호: 100)와 3'-프라이머(5'-GGGGGGATCCATCGACCTCTGGGTTATG-3', 서열번호 101)를 이용해 DNA 라이브러리를 제조한 후, Durascribe T7 transcription kit (Epicentre Biotechnologies)을 이용하여 만들었다. 정제된 RIG-I 단백질(오병하 교수님, POSTECH 생명과)과 RNA 라이브러리를 인비트로에서 결합시킨 뒤, RIG-I에 결합한 RNA만 분리시켜 RT-PCR을 통해 증폭시켰다. 증폭시킨 DNA를 주형으로 하여 다시 RNA를 합성한 뒤, RIG-I와 결합시키는 과정을 13번 반복하였다 (도면 1A). RNA library of the single oligonucleotide of 40 bases containing a random 76mer oligonucleotide (5'-GCGCAAGCGTGCTGGGCC- [N 38 ~ 46] -CATAACCCAGAGGTCGA T -3 ', N is from the group consisting of A, T, G, and C 5'-primer (5'-GGTAATACGACTCACTATAGG GAGAGCGCAAGCGTGCTGGG-3 ', SEQ ID NO: 100) and 3'-primer (5'-GGGGGGATCCATCGACCTCTGGGTTATG-3', SEQ ID NO: 101) with a T7 promoter as a template DNA libraries were prepared using the Durascribe T7 transcription kit (Epicentre Biotechnologies). After incorporating the purified RIG-I protein (Professor Byung-Ha Oh, POSTECH Biotechnology) and RNA library in vitro, only RNA bound to RIG-I was isolated and amplified by RT-PCR. RNA was synthesized again using the amplified DNA as a template, and the process of binding to RIG-I was repeated 13 times (Fig. 1A).

13번의 사이클로 선택/증폭된 RNA pool에서 총 45개의 클론을 선택하여 시퀀싱을 수행하였다. 그 결과 염기 서열이 독립적인 총 45가지의 앱타머 RNA를 획득하였다(서열번호 54 내지 98). 이중 무작위로 선별된 8개의 클론 (서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 61, 및 서열번호 63)에 대하여 RNA-EMSA를 수행하였다 (도면 1B). Sequencing was performed by selecting a total of 45 clones from 13 selected / amplified RNA pools. As a result, a total of 45 aptamer RNAs having independent nucleotide sequences were obtained (SEQ ID NOs: 54 to 98). RNA-EMSA was performed on eight randomly selected clones (SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 61, and SEQ ID NO: 63). (Fig. 1B).

시퀀싱을 통해 분석한 결과, 선별된 RNA 앱타머 클론들은 매우 높은 비율 (평균 52%)로 우라실 (U; uracil) 염기를 포함하고 있으며, 모든 RIG-I RNA 앱타머들에게서 공통적으로 연속적인 우라실 염기 서열 구조 (Un; n=2~11)가 반복적으로 발견되었다. 45개의 RNA 염기 서열의 얼라인먼트를 통하여 RIG-I RNA 앱타머 랜덤 시퀀스 상에서 U가 나타난 위치에 대한 정보를 확보하였다. Sequencing analysis showed that the selected RNA aptamer clones contained uracil (U) base in a very high proportion (52% on average), and were sequentially contiguous uracil base in all RIG-I RNA aptamers. The sequence structure (Un; n = 2-11) was found repeatedly. The alignment of 45 RNA sequences provided information on the position of the U on the RIG-I RNA aptamer random sequence.

5'--------U--U-----UU--U----UUUUUUUU-UUUUUUUUUU-3' 5 '-------- U--U ----- UU--U ---- UUUUUUUU-UUUUUUUUUU-3'

얻어진 RNA 앱타머의 염기 서열은 A, G, C, U 가 동량으로 혼합된 염기들 중에서 랜덤하게 선택된 38 내지 46개의 뉴클레오티드를 의미하는 N38 ~46을 포함한다(U-rich 부위).The base sequence of the resulting RNA aptamer comprises 38 ~ 46 N to mean A, G, C, 38 to 46 nucleotides U is randomly selected from among the base mixture with the same amount (U-rich region).

5'- GGUAAUACGACUCACUAUAGGGAGAGCGGAAGCGUGCUGGG N38 ~46 CAUAACCCAGAG GUCGAUGGAUCCCCC -3' 5'- GGUAAUACGACUCACUAUAGGGAGAGCGGAAGCGUGCUGGG N 38 ~ 46 CAUAACCCAGAG GUCGAUGGAUCCCCC -3 '

본 실시예에 따른 RNA 앱타머는 서열번호 55 내지 98로 이루어진 군에서 선택된 올리고뉴클레오타이드로 구성되어 있고, 안정성을 위하여 U (우라실)와 C (시토신)의 두 번째 탄소 위치에 붙어있는 하이드록실기가 플루오르기로 치환시켜 제작하였다. RNA aptamer according to the present embodiment is composed of oligonucleotides selected from the group consisting of SEQ ID NO: 55 to 98, and for the stability the hydroxyl group attached to the second carbon position of U (uracil) and C (cytosine) fluorine It was produced by substituting with a group.

상기와 서열번호 54-98은 T7 폴리머레이즈 결합 부위 등의 서열 분석을 위하여 필요한 5' 부위를 제거하고, 실제 앱타머 기능을 하는 서열로만 표시하였으며, 그 구체적인 서열은 다음과 같다 (굵은 글씨는 U-rich 부위를 의미한다.   Above and SEQ ID NO: 54-98 removed the 5 'site necessary for sequence analysis, such as T7 polymerase binding site, and represented only as a sequence that actually functions as aptamer, the specific sequence is as follows (bold letters are U means the -rich region.

서열 번호 54 SEQ ID NO: 54

GCGGAAGCGUGCUGGGUCGAAUUUCCAUCUUGUAUAUAAACUAUGUCUAAAUUUUUUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG UCGAAUUUCCAUCUUGUAUAUAAACUAUGUCUAAAUUUUUUUUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 55SEQ ID NO: 55

GCGGAAGCGUGCUGGGCCAUAUUUUUUUCAGGGUAGCUCUCAUAGUUUUUUUUUUUCGAUUCAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC AUAUUUUUUUCAGGGUAGCUCUCAUAGUUUUUUUUUUUCGAUU CAUAACCCAGAGGUCGAU

서열 번호 56SEQ ID NO: 56

GCGGAAGCGUGCUGGGCCACGUUUUAUUCAUAUUAUUUUCAAGUUAUUUGUUUGUGU CAUAACCCAGAGGUCGAUGGAUGCGGAAGCGUGCUGGGCC ACGUUUUAUUCAUAUUAUUUUCAAGUUAUUUGUUUGUGU CAUAACCCAGAGGUCGAUGGAU

서열 번호 57SEQ ID NO: 57

GCGGAAGCGUGCUGGGUCGACUUUAAAUUUUUUCGGAUAUACACAAAUUAUUUUUUAAC CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCGACUUUAAAUUUUUUCGGAUAUACACAAAUUAUUUUUUAAC CAUAACCCAGAGGUCGAU

서열 번호 58SEQ ID NO: 58

GCGGAAGCGUGCUGGGGAAUUAAAAAUAAAACGUGUAUGGAAUCACUGAGGCAUUGG CAUAACCCAGAGGUCGAU GCGGAAGCGUGCUGGG GAAUUAAAAAUAAAACGUGUAUGGAAUCACUGAGGCAUUGG CAUAACCCAGAGGUCGAU

서열 번호 59SEQ ID NO: 59

GCGGAAGCGUGCUGGGCCUAAUAGUGGUUUAUUCCACUCGACUACUUUUUUUGUUUUAUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC UAAUAGUGGUUUAUUCCACUCGACUACUUUUUUUGUUUUAUAU CAUAACCCAGAGGUCGAU

서열 번호 60SEQ ID NO: 60

GCGGAAGCGUGCUGGGCCACACUUCAUUUCUAAGUCCGCUCAAUUUUGUUUUUUUUGCCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CCACACUUCAUUUCUAAGUCCGCUCAAUUUUGUUUUUUUUGC CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 61SEQ ID NO: 61

GCGGAAGCGUGCUGGGCCACCAUCCGUAACUAGCUAAUACUUGUUAUCUUUUUAUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CCACCAUCCGUAACUAGCUAAUACUUGUUAUCUUUUUAUUUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 62SEQ ID NO: 62

GCGGAAGCGUGCUGGGUCCAUAUUUUACCCAGUAGUAUAAUGUUUUAAUUUUUUGUUUA CAUAACCCAGCGGAAGCGUGCUGGG UCCAUAUUUUACCCAGUAGUAUAAUGUUUUAAUUUUUUGUUUA CAUAACCCA

서열 번호 63SEQ ID NO: 63

AAGCGUGCUGGGGCCAUAAUACCUAUACAUAUAUUAUAUCUUGUUUUGUUUGUUCCAUAACCCAGAGGUCGAUGGAUCCCCCCAAGCGUGCUGGG GCCAUAAUACCUAUACAUAUAUUAUAUCUUGUUUUGUUUGUUC CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 64SEQ ID NO: 64

GCGGAAGCGUGCUGGGCUAGUAGAACUUUUGUUUUUUCGAUUAAUGUAUUUUUUAUUUGG CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG CUAGUAGAACUUUUGUUUUUUCGAUUAAUGUAUUUUUUAUUUGG CAUAACCCAGAGGUCGAU

서열 번호 65SEQ ID NO: 65

GCGGAAGCGUGCUGGGGCGCUUUACCGACAUGUUGCACAUGCUUAUUUUAACUUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG GCGCUUUACCGACAUGUUGCACAUGCUUAUUUUAACUUUUU CAUAACCCAGAGGUCGAU

서열 번호 66SEQ ID NO: 66

GCGGAAGCGUGCUGGGUCUCCGGGAAGGAAUUUCUGUUUGUUAUUUUAUCUUACUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCGCGGAAGCGUGCUGGG UCUCCGGGAAGGAAUUUCUGUUUGUUAUUUUAUCUUACUUUU CAUAACCCAGAGGUCGAUGGAUCCCCC

서열 번호 67SEQ ID NO: 67

GCGGAAGCGUGCUGGGCCGCUAGCAUACUUUCGCCAUCUAUAAUUACUUUUAUUUUUUACAUAACCCAGCGGAAGCGUGCUGGGCC GCUAGCAUACUUUCGCCAUCUAUAAUUACUUUUAUUUUUUA CAUAACCCA

서열 번호 68SEQ ID NO: 68

GCGGAAGCGUGCUGGGUCUAAAUCAUUAAUUAUCCGCAUCUCAACAUGUUUUACUUUACAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG UCUAAAUCAUUAAUUAUCCGCAUCUCAACAUGUUUUACUUUA CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 69SEQ ID NO: 69

GCGGAAGCGUGCUGGGUCCUUUAAUAUGAGUUGUCAUUAUUUUGAUUGUUUUUUUUUG CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCCUUUAAUAUGAGUUGUCAUUAUUUUGAUUGUUUUUUUUUG CAUAACCCAGAGGUCGAU

서열 번호 70SEQ ID NO: 70

GCGGAAGCGUGCUGGGCCUACGUCGCUCGUUUCUAUUAAUUUCGUAUUUUGUUUUUC CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC UACGUCGCUCGUUUCUAUUAAUUUCGUAUUUUGUUUUUC CAUAACCCAGAGGUCGAU

서열 번호 71SEQ ID NO: 71

GCGGAAGCGUGCUGGGGCGUUUUUCGACUCUCAUAUUAUUAAUUCAAGUGUAUAUUGC CAUAACCCAGCGGAAGCGUGCUGGG GCGUUUUUCGACUCUCAUAUUAUUAAUUCAAGUGUAUAUUGC CAUAACCCA

서열 번호 72SEQ ID NO: 72

GCGGAAGCGUGCUGGGCCAUAUAACGGACCUCGACCGCUACCUUUUGUCUAAUUUUUUUAUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC AUAUAACGGACCUCGACCGCUACCUUUUGUCUAAUUUUUUUAUUUU CAUAACCCAGAGGUCGAU

서열 번호 73SEQ ID NO: 73

GCGGAAGCGUGCUGGGCCAGCUAUCUUGUUAUUUUAUUAACUUUCUGAUUUUUUAU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC AGCUAUCUUGUUAUUUUAUUAACUUUCUGAUUUUUUAU CAUAACCCAGAGGUCGAU

서열 번호 74SEQ ID NO: 74

GCGGAAGCGUGCUGGGCCAUACCUUUACCGCAAUUCGUUCCUAUUUAGCAUUUUUUUCCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CCAUACCUUUACCGCAAUUCGUUCCUAUUUAGCAUUUUUUUC CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 75SEQ ID NO: 75

GCGGAAGCGUGCUGGGUCUAUUUUCUUUCUCUUGCUAAUUUAUUUUAACUUCAUGUAU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCUAUUUUCUUUCUCUUGCUAAUUUAUUUUAACUUCAUGUAU CAUAACCCAGAGGUCGAU

서열 번호 76SEQ ID NO: 76

GCGGAAGCGUGCUGGGUCAACUAGAAAGUUCGUUUUAUUUUGAUGUUAUUUGAUUUUUA CAUAACCCAAGCGGAAGCGUGCUGGG UCAACUAGAAAGUUCGUUUUAUUUUGAUGUUAUUUGAUUUUUA CAUAACCCAA

서열 번호 77SEQ ID NO: 77

GCGGAAGCGUGCUGGGCCUUCAUGGGCUAAUGACCUCUUAUUCUUAUUUAUUUGUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC UUCAUGGGCUAAUGACCUCUUAUUCUUAUUUAUUUGUUUU CAUAACCCAGAGGUCGAU

서열 번호 78SEQ ID NO: 78

GCGGAAGCGUGCUGGGGCAUUUCCAGAUUUAUUUAUUGGCAAUCUAUAUUUUUAUUUACAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG GCAUUUCCAGAUUUAUUUAUUGGCAAUCUAUAUUUUUAUUUA CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 79SEQ ID NO: 79

GCGGAAGCGUGCUGGGACUAUUUAACACGGCUUUACAAAACUUUGCUUGUUUUUUUUUUGUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG ACUAUUUAACACGGCUUUACAAAACUUUGCUUGUUUUUUUUUUGUU CAUAACCCAGAGGUCGAU

서열 번호 80SEQ ID NO: 80

GCGGAAGCGUGCUGGGUCAUAAUAUAUAUCAUUGCUCUUGUUAAUUUGUUUAUUUUUCA CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCAUAAUAUAUAUCAUUGCUCUUGUUAAUUUGUUUAUUUUUCA CAUAACCCAGAGGUCGAU

서열 번호 81SEQ ID NO: 81

GCGGAAGCGUGCUGGGCCUUCCAUCCUUUUUUUAUGAUCCAUAAUUAACAUUUCUUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC UUCCAUCCUUUUUUUAUGAUCCAUAAUUAACAUUUCUUUUU CAUAACCCAGAGGUCGAU

서열 번호 82SEQ ID NO: 82

GCGGAAGCGUGCUGGGUCACGAUAUUUUUUAGCUAGUGUCAUACAGUUUUUUUAUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCACGAUAUUUUUUAGCUAGUGUCAUACAGUUUUUUUAUUUU CAUAACCCAGAGGUCGAU

서열 번호 83SEQ ID NO: 83

GCGGAAGCGUGCUGGGCUAAAUCUUAUUUCUAAUUUUGUAUUUUGUCUAUGAUUUUUU CAUAACCCAGCGGAAGCGUGCUGGG CUAAAUCUUAUUUCUAAUUUUGUAUUUUGUCUAUGAUUUUUU CAUAACCCA

서열 번호 84SEQ ID NO: 84

GCGGAAGCGUGCUGGACAUGUGACAUUACUAAGUAACUUUUAAUUUUUAAAUCUUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGG ACAUGUGACAUUACUAAGUAACUUUUAAUUUUUAAAUCUUUUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 85SEQ ID NO: 85

GCGGAAGCGUGCUGGGCCGUUUUAGUAUUUCUUUCAUUUAUAAUUUUGACUAUCUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGGCC GUUUUAGUAUUUCUUUCAUUUAUAAUUUUGACUAUCUUUU CAUAACCCAGAGGUCGAU

서열 번호 86SEQ ID NO: 86

GCGGAAGCGUGCUGGGUCGUAGUGCACUAAUUCAUGUCACAUUUUUUAUAUUUGUUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG UCGUAGUGCACUAAUUCAUGUCACAUUUUUUAUAUUUGUUUUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 87SEQ ID NO: 87

GCGGAAGCGUGCUGGGCUGGAAACGCUUCGCUUAAUAUUUGUAUUUUCGUUUAUUUCCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CUGGAAACGCUUCGCUUAAUAUUUGUAUUUUCGUUUAUUUC CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 88SEQ ID NO: 88

GCGGAAGCGUGCUGGGUCUUUAUUGCGUUUUCCGUUGGAUUUGUGCAACUGUUUUUUUAUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG UCUUUAUUGCGUUUUCCGUUGGAUUUGUGCAACUGUUUUUUUAUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 89SEQ ID NO: 89

GCGGAAGCGUGCUGGGUCUAUUACACUCGAGUCUCAUUUGUUUUACAUGUUAUUUUUC CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCUAUUACACUCGAGUCUCAUUUGUUUUACAUGUUAUUUUUC CAUAACCCAGAGGUCGAU

서열 번호 90SEQ ID NO: 90

GCGGAAGCGUGCUGGGCUUCGAUUAUUAAGAUUUCCGAACAUUUUUUAGUUUAUUUUUCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CUUCGAUUAUUAAGAUUUCCGAACAUUUUUUAGUUUAUUUUU CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 91SEQ ID NO: 91

GCGGAAGCGUGCUGGGCCCUAUCCAAGAUUUGGAAAUUUAUUGAUGUUUUUUUGUUGCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGGCC CUAUCCAAGAUUUGGAAAUUUAUUGAUGUUUUUUUGUUG CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 92SEQ ID NO: 92

GCGGAAGCGUGCUGGGCCAUUGAAUUUUGAUGUACACAGUUUAUUUCUUUUUUGGUUUACAUAACCCAGAGGUCGAUGGAUGCGGAAGCGUGCUGGG CCAUUGAAUUUUGAUGUACACAGUUUAUUUCUUUUUUGGUUUA CAUAACCCAGAGGUCGAUGGAU

서열 번호 93SEQ ID NO: 93

GCGGAAGCGUGCUGGGCUCAUUAGAAAUCUAUUAUUCGUUUUGUUUUUCUCUGUUUCCAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG CUCAUUAGAAAUCUAUUAUUCGUUUUGUUUUUCUCUGUUUC CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 94SEQ ID NO: 94

GCGGAAGCGUGCUGGGACGAAGUCAUAAUGUCGUAUAUCUCUUAUUUGUUUUUUUGU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG ACGAAGUCAUAAUGUCGUAUAUCUCUUAUUUGUUUUUUUGU CAUAACCCAGAGGUCGAU

서열 번호 95SEQ ID NO: 95

GCGGAAGCGUGCUGGGUCGUCCAGUUCUCACUCACCGAUUUUUGUUUGUUUCUUAUUAA CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG UCGUCCAGUUCUCACUCACCGAUUUUUGUUUGUUUCUUAUUAA CAUAACCCAGAGGUCGAU

서열 번호 96SEQ ID NO: 96

GCGGAAGCGUGCUGGGUCACUAACUUAGCUUUGCGAUAGAAGCAUUUACUACUUUUUUUACAUAACCCAGAGGUCGAUGGAUCCCCCCGCGGAAGCGUGCUGGG UCACUAACUUAGCUUUGCGAUAGAAGCAUUUACUACUUUUUUUA CAUAACCCAGAGGUCGAUGGAUCCCCCC

서열 번호 97SEQ ID NO: 97

GCGGAAGCGUGCUGGGGCCACAAAGGCGGUCUUAUCUUCAUUUAAUUUUUUAAUUUU CAUAACCCAGAGGUCGAUGCGGAAGCGUGCUGGG GCCACAAAGGCGGUCUUAUCUUCAUUUAAUUUUUUAAUUUU CAUAACCCAGAGGUCGAU

서열 번호 98SEQ ID NO: 98

GCGGAAGCGUGCUGGGUCAUUUUCAUCAAAUAUAGUUAUCAAAAUUGUUAUUGUUUU CAUAACCCAGAGGUCGAU
GCGGAAGCGUGCUGGG UCAUUUUCAUCAAAUAUAGUUAUCAAAAUUGUUAUUGUUUU CAUAACCCAGAGGUCGAU

실시예Example 2:  2: RIGRIG -I -I RNARNA 앱타머에In Aptamer 의한 인터페론-베타 합성 증가 시험 Test for increasing interferon-beta synthesis

pPRD-III-I-luc는 IRF3 전사단백질에 의한 전사 조절의 활성도를 측정하기 위한 용도로 사용되는 리포터 플라스미드로서, 루시퍼레이즈 효소를 만드는 유전자의 발현이 인터페론-베타 유전자의 프로모터에 의해 조절되는 성질을 갖는다.  pPRDIII-I-luc 벡터를 가지고 있는 HepG2 인간 간암 세포주(ATCC)에 RIG-I RNA 앱타머 (서열번호 54 (Aptamer 1), 서열번호 55(Aptamer 2), 서열번호 56(Aptamer 3), 서열번호 57(Aptamer 4), 서열번호 58(Aptamer 5), 서열번호 59(Aptamer 6), 서열번호 61(Aptamer 9), 서열번호 63(Aptamer 11))를 각각 1.5ug/ml의 농도로 처리한 후, 인터페론-베타의 합성 효능을 측정한 결과, 실험에 사용된 모든 RNA 앱타머들에 의해 PRDIII-I-luc의 활성도가 대조군에 비해 현격하게 증가되었다 (도 2a 참조, Promega사에서 판매하는 Dual-luciferase reporter assay kit을 이용하여 제조사 protocol에 따라 실험함). pPRD-III-I-luc is a reporter plasmid that is used to measure the activity of transcriptional regulation by IRF3 transcriptional protein. The expression of genes that make luciferase enzyme is regulated by the promoter of interferon-beta gene. Have RIG-I RNA aptamer (SEQ ID NO: 54 (Aptamer 1), SEQ ID NO: 55 (Aptamer 2), SEQ ID NO: 56 (Aptamer 3), SEQ ID NO :) in a HepG2 human liver cancer cell line (ATCC) containing a pPRDIII-I-luc vector 57 (Aptamer 4), SEQ ID NO: 58 (Aptamer 5), SEQ ID NO: 59 (Aptamer 6), SEQ ID NO: 61 (Aptamer 9), SEQ ID NO: 63 (Aptamer 11), respectively, at a concentration of 1.5 ug / ml As a result of measuring the synthesis efficacy of interferon-beta, the activity of PRDIII-I-luc was significantly increased compared to the control by all RNA aptamers used in the experiment (see FIG. 2A, Dual-Sold by Promega). Experiment according to manufacturer's protocol using luciferase reporter assay kit).

알칼라인 포스파타제(Alkaline Phosphatase (AP), Roche, 20ug RNA에 30U의 AP를 처리함)를 처리한 RIG-I RNA 앱타머 서열번호 54, 서열번호 56, 서열번호 58의 경우, 인터페론-베타의 합성 효능이 AP 처리 이전에 비해 감소하였다 (도면 2B, Library: 실시예 1의 RNA library), CL1 (서열번호 54), CL3 (서열번호 56), CL5 (서열번호 58)). 이는 이들 RNA 앱타머들이 가지고 있는 5‘triphosphate-ssRNA 구조가 RIG-I 단백질에 의해 일부 인지된 결과로 해석된다.Efficacy of Interferon-beta Synthesis of RIG-I RNA Aptamers SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58 Treated with Alkaline Phosphatase (AP), Roche, 30 U AP for 20 ug RNA This decreased compared to before AP treatment (Fig. 2B, Library: RNA library of Example 1), CL1 (SEQ ID NO: 54), CL3 (SEQ ID NO: 56), CL5 (SEQ ID NO: 58)). This translates into the partial recognition of the 5'triphosphate-ssRNA structure of these RNA aptamers by the RIG-I protein.

반면에 알칼라인 포스파타제(AP)를 처리한 RIG-I RNA 앱타머 서열번호 61의 경우, 인터페론-베타의 합성 효능이 탈인산 효소를 이용해 5'-ppp를 제거한 이후에도 차이가 없거나 또는 제거 전에 비해 현격하게 증가하였다 (도 2b 참조, CL9 (서열번호 61)). 이는 RIG-I RNA 앱타머 서열번호 61은 기존에 알려지지 않은 새로운 구조 혹은 염기서열을 통하여 RIG-I 단백질과 결합 혹은 RIG-I 단백질에 의해 인지된 결과로 해석된다.  On the other hand, in the case of RIG-I RNA aptamer SEQID 61 treated with alkaline phosphatase (AP), the synthesis efficacy of interferon-beta was no difference even after removal of 5'-ppp using dephosphorase or was significantly greater than before removal. Increased (see FIG. 2B, CL9 (SEQ ID NO: 61)). This RIG-I RNA aptamer SEQ ID NO 61 is interpreted as a result recognized by the RIG-I protein or binding to the RIG-I protein through a new structure or nucleotide sequence unknown.

AP를 처리한 RIG-I RNA 앱타머 서열번호 61은 인터페론에 의한 신호 전달을 담당하는 STAT1 전사 단백질의 활성을 증가시킨다 (도 2c 참조). 도 2c의 PRDIII-I은 인터페론-베타 유전자의 발현에 중요한 전사인자(transcription factor)인 IRF3/7의 결합부위로 알려져 있으며, Dr.Katherine A. Fitzgerald (University of Massachusetts)로부터 제공받아 사용하였다. ISRE는 인터페론 신호 전달에 의해 활성되는 STAT의 binding site로 알려져 있으며, Stratagene사로부터 구입하여 사용하였다. Luciferase assay는 앞서 promega사의 kit을 사용하였다 (실시예 5 참고). 결과적으로 AP를 처리한 서열번호 61 RIG-I RNA 앱타머에 의해 인터페론-베타의 합성이 증가하며, 또한 염증 반응을 매개하는 중요 물질인 란티스 (RANTES)의 발현 역시 현격하게 증가된다 (도 2d 참조, Q-real-time PCR 결과, 실시예 6 참조). RIG-I RNA aptamer SEQ ID 61 treated with AP increases the activity of the STAT1 transcriptional protein responsible for signal transduction by interferon (see FIG. 2C). PRDIII-I of FIG. 2C is known as a binding site of IRF3 / 7, which is an important transcription factor for the expression of the interferon-beta gene. Dr. Katherine A. Fitzgerald (University of Massachusetts) was used. ISRE is known as the binding site of STAT activated by interferon signal transduction, and was purchased from Stratagene. Luciferase assay was previously used a kit of promega (see Example 5). As a result, the synthesis of interferon-beta was increased by AP 61 RIG-I RNA aptamer, and the expression of RANTES, an important substance mediating an inflammatory response, was also significantly increased (see FIG. 2D). , Q-real-time PCR results, see Example 6).

RIG-I 단백질에 의한 인터페론-베타 합성 효능은 인위적으로 합성된 이중나선 RNA 가닥인 polyI:C 처리에 의해 증가된다. 길이가 긴 polyI:C(Sigma)는 주로 MDA5단백질을 통하여 신호를 전달하는 반면, RNaseIII(TAKARA)에 의해 짧은 형태로 절단된 polyI:C(Sigma)는 RIG-I를 통하여 인터페론-베타 합성 신호를 전달한다. AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능은, 동량의 길이가 긴 polyI:C 나 RNaseIII를 처리한 짧은 polyI:C와 비교시, 가장 효과적임을 알 수 있다 (도 2e 참조). The efficacy of interferon-beta synthesis by the RIG-I protein is increased by polyI: C treatment, which is an artificially synthesized double helix RNA strand. Longer polyI: C (Sigma) transmits signals primarily through the MDA5 protein, whereas shorter polyI: C (Sigma) cleaved by RNaseIII (TAKARA) forms interferon-beta synthesis signals via RIG-I. To pass. Interferon-beta synthesis efficacy by AP-treated RIG-I RNA aptamer SEQ ID NO 61 is most effective when compared to short polyI: C treated with the same amount of long polyI: C or RNaseIII ( 2e).

Filter binding assay(White, R. et al, 2001, Mol Ther., 4(6), 567-73, Fitzwater, T et al, 1996, methods Enzymol (267), 275-301)를 통해 AP를 처리한 RIG-I RNA 앱터머 서열 번호62의 Kd value를 확인한 결과, Bmax value가 0.2945(표준 오차 1.21E-02)일 때 Kd=37.2333(표준 오차 6.5659)였다(도 2f 참조).
AP treatment through a filter binding assay (White, R. et al, 2001, Mol Ther., 4 (6), 567-73, Fitzwater, T et al, 1996, methods Enzymol (267), 275-301). As a result of confirming the Kd value of the RIG-I RNA aptamer sequence number 62, when the Bmax value was 0.2945 (standard error 1.21E-02), Kd = 37.2333 (standard error 6.5659) (see FIG. 2F).

실시예Example 3:  3: RIGRIG -I -I RNARNA 앱타머를Aptamer 통한 신호 전달도 Signal transduction through

RIG-I RNA 앱타머를 통한 인터페론-베타 합성 효능에 관여하는 생체 물질을 알아보았다. 이를 위하여 비특이적 siRNA (siControl, Quiagen, 5'-GAA UUU GCA CGA AAA CGC C-3', 서열번호 112), MDA-5 특이적 siRNA (siMDA5, Qiagen validated siRNA (S103649037)), 및 RIG-I 특이적 siRNA (siRIG-I, Quiagen, 5'-GAG GUG CAG UAU AUU CA GG-3', 서열번호 113)를 처리한 HepG2 세포주에서 AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 인터페론-베타 합성 효능을 RNA library(실시예 1) 에 의한 효능과 비교하였다 (도 3a 참조). 대조군이나 MDA-5 siRNA를 처리한 세포에 비해, RIG-I siRNA 처리에 의해 세포 내 RIG-I 단백질 발현이 감소되어 있는 세포에서만 특징적으로 AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능이 감소하였다. 이는 RIG-I RNA 앱타머에 의한 신호 전달에는 RIG-I 단백질이 필요함을 시사한다.Biomaterials involved in the efficacy of interferon-beta synthesis through RIG-I RNA aptamers were identified. For this purpose non-specific siRNA (siControl, Quiagen, 5'-GAA UUU GCA CGA AAA CGC C-3 ', SEQ ID NO: 112), MDA-5 specific siRNA (siMDA5, Qiagen validated siRNA (S103649037)), and RIG-I specific Interferon-beta of RIG-I RNA aptamer SEQ ID NO: 61 treated with AP in HepG2 cell line treated with red siRNA (siRIG-I, Quiagen, 5'-GAG GUG CAG UAU AUU CA GG-3 ', SEQ ID NO: 113) Synthetic potency was compared with potency by RNA library (Example 1) (see FIG. 3A). Compared to control or MDA-5 siRNA-treated cells, RIG-I RNA aptamer SEQ ID No. 61 treated with AP was characteristic only in cells in which RIG-I protein expression was decreased by RIG-I siRNA treatment. Interferon-beta synthesis efficacy decreased. This suggests that RIG-I protein is required for signal transduction by RIG-I RNA aptamers.

AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의해 인터페론-베타의 유전자 발현을 조절하는 전사인자 (transcription factor)인 IRF3의 세포내 위치가 I세포질에서 핵 내로 이동함을 관찰하였다 (도 3b 참조, Library: RNA library, Clone9: 서열번호 61, PolyC: Sigma). 이를 통하여 RIG-I RNA 앱타머에 의한 신호 전달은 RIG-I에 특이적이며, IRF3를 통해 이루어짐을 알 수 있다. It was observed that the intracellular location of IRF3, a transcription factor that regulates interferon-beta gene expression, was shifted from the I cytoplasm to the nucleus by AP-treated RIG-I RNA aptamer SEQID 61 (FIG. 3B). See Library: RNA library, Clone9: SEQ ID NO: 61, PolyC: Sigma). This suggests that signal transduction by RIG-I RNA aptamer is specific to RIG-I and is via IRF3.

세포 내 RIG-I 활성이 없거나 매우 낮은 Huh7 인간 간암 세포주(ATCC)를 이용하여 RIG-I RNA 앱타머를 통한 신호 전달 과정에 필요한 생체 물질을 알아보았다. 이를 위해서 먼저, Huh7 세포주에 pEF-BOS/Flag-RIG-I(Dr. Takashi Fujita, Institute for virus research Kyoto University)와 pEF-BOS/myc-MDA5(Dr S. Goodbourn, University of London, London, Great Britain)를 각각 Lipofectamine2000(Invitrogen)을 이용하여 transfection시킴으로써 RIG-I또는 MDA-5 유전자를 과발현 시킨 후, AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능을 RNA library에 의한 효능과 비교하였다 (도 3c 참조). 이 결과 RIG-I 단백질 이외도, MDA-5 단백질이 RIG-I RNA 앱타머에 의한 신호 전달에 긍정적인 영향을 미칠 수 있음을 알 수 있다.Huh7 human liver cancer cell line (ATCC) with or without intracellular RIG-I activity was used to determine the biomaterials required for the signal transduction process through RIG-I RNA aptamers. To this end, first, pEF-BOS / Flag-RIG-I (Dr. Takashi Fujita, Institute for virus research Kyoto University) and pEF-BOS / myc-MDA5 (Dr S. Goodbourn, University of London, London, Great) Britain) was transfected with Lipofectamine2000 (Invitrogen), respectively, and overexpressed the RIG-I or MDA-5 gene, and then the AP-treated RIG-I RNA aptamer SEQ ID NO: 61 to the RNA library to the effect of synthesis Compared with efficacy (see FIG. 3C). As a result, in addition to the RIG-I protein, it can be seen that the MDA-5 protein may have a positive effect on signal transmission by the RIG-I RNA aptamer.

Huh7 세포주에 RIG-I의 다양한 돌연변이 유전자를 과발현 시킨 후, AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능을 RNA library에 의한 효능과 비교하였다 (도면 3D). RIG-I의 돌연변이 유전자는 1) RIG-I의 CARD 도메인이 제거된 유전자 (Helicase), 2) RIG-I의 두 번째 엑손만이 제거된 유전자 (△exon2), 3) RIG-I의 RNA helicase 도메인이 제거된 유전자 (CARD), 및 4) RIG-I의 RD 도메인이 제거된 유전자 (△RD)를 사용하였다. 조사한 모든 RIG-I 돌연변이 유전자의 경우, AP를 처리한 RIG-I RNA 앱타머 서열번호 61에 의한 인터페론-베타 합성 효능이 모두 나타나지 않았으며, 이는 RIG-I 앱타머에 의한 신호 전달에는 정상적인 RIG-I 단백질이 필요함을 알 수 있다. 
After overexpressing various mutant genes of RIG-I in the Huh7 cell line, the interferon-beta synthesis efficacy by RIG-I RNA aptamer SEQ ID 61 treated with AP was compared with that by the RNA library (Fig. 3D). The mutant genes of RIG-I are: 1) gene with the CARD domain removed from RIG-I (Helicase), 2) gene with only the second exon removed from RIG-I (△ exon2), 3) RNA helicase from RIG-I The gene with the domain removed (CARD), and 4) the gene with the RD domain of RIG-I removed (ΔRD) was used. All RIG-I mutant genes examined did not show any interferon-beta synthesis potency by AP-treated RIG-I RNA aptamer SEQ ID NO 61, which is normal for signal transduction by RIG-I aptamer. It can be seen that I protein is required.

실시예Example 4:  4: RIGRIG -I -I RNARNA 앱타머에In Aptamer 의한 바이러스 증식 억제  Inhibition of virus proliferation by

<4-1> 바이러스 감염 후 처리한 <4-1> Processed after virus infection RIGRIG -I -I RNARNA 앱타머의Of app tamer 효과 effect

NDV-GFP(Dr. Peter Palese, Mount Sinai School of Medicine)를 HepG2 세포주에 감염시키고(50% 이상의 세포가 GFP positive인 정도의 양으로 상기 바이러스를 10%FBS containing MEM과 함께 세포에 처리), 12시간 후, AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 각 6시간과 12시간 처리하고 세포내 바이러스 양을 GFP 단백질에 대한 웨스턴 블랏 어세이로 조사하였다 (실시예 7 참조). 그 결과, NDV-GFP만 감염시킨 샘플과 비교하였을 때, RIG-I 앱타머를 처리한 샘플에서 GFP 단백질이 현저히 감소되었음을 알 수 있었다 (도 4a 참조). NDV-GFP (Dr. Peter Palese, Mount Sinai School of Medicine) was infected with the HepG2 cell line (the cells were treated with 10% FBS containing MEM in an amount such that at least 50% of the cells were GFP positive), 12 After hours, AP treated RIG-I RNA aptamer SEQID 61 was treated for 6 and 12 hours each and the amount of intracellular virus was examined by Western blot assay for GFP protein (see Example 7). As a result, it was found that the GFP protein was significantly reduced in the sample treated with RIG-I aptamer when compared to the sample infected with NDV-GFP only (see FIG. 4A).

NDV-GFP를 HepG2 세포주에 감염시키고, 3시간 후, AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 각 3시간과 9시간 처리하고 세포내 바이러스 양을 NDV-RNA 에 대한 실시간 역전사 중합 연쇄 반응 (real time RT-PCR) 방법으로 관찰하였다 (실시예 6 참조). 그 결과, NDV-GFP만 감염시킨 샘플과 비교하였을 때, RIG-I 앱타머를 처리한 샘플에서 NDV 바이러스의 RNA 양이 현저히 감소되었음을 관찰하였다 (도면 4B). After 3 hours of NDV-GFP infection with HepG2 cell line, AP-treated RIG-I RNA aptamer SEQID 61 was treated for 3 and 9 hours, respectively, and the amount of intracellular virus was real-time reverse transcription polymerase chain to NDV-RNA. Observation was made by the reaction (real time RT-PCR) method (see Example 6). As a result, it was observed that the RNA amount of the NDV virus was significantly reduced in the sample treated with RIG-I aptamer when compared to the sample infected only NDV-GFP (Fig. 4B).

동시에, NDV-GFP로 감염된 세포에 AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 각 3시간과 9시간 처리한 후 세포에서 합성되는 인터페론-베타의 양을 인터페론-베타 유전자에 대한 실시간 역전사 중합 연쇄 반응 (real time RT-PCR) 방법으로 관찰하였다 (실시예 6 참조). 그 결과, NDV-GFP만 감염시킨 샘플과 비교하였을 때, RIG-I 앱타머를 처리한 샘플에서 인터페론-베타의 유전자 발현이 현저히 증가되었음을 관찰하였다 (도면 4C). 이를 통하여 AP를 처리한 RIG-I RNA 앱타머 서열번호 61은 RNA 바이러스에 감염된 세포에서 바이러스 증식을 억제시키는 효능을 가지고 있음을 알 수 있다.
At the same time, the cells treated with NDV-GFP were treated with AP-treated RIG-I RNA aptamer SEQ ID No. 61 for 3 hours and 9 hours, respectively, and then the amount of interferon-beta synthesized in the cells was real-time reverse transcription of the interferon-beta gene. Observation was made by a polymerization chain reaction (real time RT-PCR) method (see Example 6). As a result, it was observed that the gene expression of interferon-beta was significantly increased in the sample treated with RIG-I aptamer compared to the sample infected with NDV-GFP only (Fig. 4C). Through this, it can be seen that RIG-I RNA aptamer SEQ ID 61 treated with AP has an effect of inhibiting virus proliferation in cells infected with RNA virus.

<4-2> 바이러스 감염 전 처리한 <4-2> Treated before virus infection RIGRIG -I -I RNARNA 앱타머의Of app tamer 효과 effect

HepG2 세포주에 AP를 처리한 RIG-I RNA 앱타머 서열번호 61을 6시간 처리한 뒤, NDV-GFP를 12시간 감염시키고 세포내 바이러스 양을 GFP 단백질에 대한 웨스턴 블랏 어세이로 조사하였다 (실시예 7 참조). 그 결과, NDV-GFP만 감염시킨 샘플과 비교하였을 때, RIG-I 앱타머를 기 처리한 샘플에서 GFP 단백질의 양이 현저히 감소되었음을 알 수 있다 (도 5a 참조). HepG2 cell line was treated with AP treated RIG-I RNA aptamer SEQID 61 for 6 hours, then infected with NDV-GFP for 12 hours and the amount of intracellular virus was examined by Western blot assay for GFP protein (Example 7). As a result, it can be seen that the amount of GFP protein was significantly reduced in the sample pre-treated with RIG-I aptamer compared to the sample infected with NDV-GFP only (see FIG. 5A).

또한 AP를 처리한 RIG-I RNA 앱타머 서열번호 61이 전 처리된 후 NDV-GFP로 감염된 세포에 남아있는 NDV-GFP 바이러스의 양을 GFP 단백질에 대한 형광을 현미경하에서 조사하였다. 그 결과, NDV-GFP만 감염시킨 세포과 비교하였을 때, RIG-I 앱타머로 전처리된 세포에서 GFP 단백질의 양이 현저히 감소되었음을 알 수 있다 (도 5b 참조).  In addition, the amount of NDV-GFP virus remaining in cells infected with NDV-GFP after pre-treatment of AP-treated RIG-I RNA aptamer SEQ ID No. 61 was examined under the microscope for fluorescence of the GFP protein. As a result, it can be seen that the amount of GFP protein was significantly reduced in cells pretreated with RIG-I aptamer compared to cells infected only with NDV-GFP (see FIG. 5B).

또한 AP를 처리한 RIG-I RNA 앱타머 서열번호 61이 전 처리된 세포에 NDV-GFP를 감염시킨 후, 세포에 남아있는 NDV-GFP 바이러스의 양을 NDV 바이러스 특이적 유전자 RNA 에 대한 실시간 역전사 중합 연쇄 반응 (real time RT-PCR) 방법으로 관찰하였다(실시예 6 참조). 그 결과, NDV-GFP만 감염시킨 샘플과 비교하였을 때, RIG-I 앱타머를 처리한 샘플에서 NDV 바이러스의 RNA 양이 현저히 감소되었음을 관찰하였다 (도 5c 참조). In addition, after infecting the NDV-GFP cells with the AP-treated RIG-I RNA aptamer SEQID 61, the amount of NDV-GFP virus remaining in the cells was converted to NDV virus-specific gene RNA in real time. Observation was made by a real time RT-PCR method (see Example 6). As a result, it was observed that the RNA amount of the NDV virus was significantly reduced in the sample treated with RIG-I aptamer when compared to the sample infected with NDV-GFP only (see FIG. 5C).

동시에, AP를 처리한 RIG-I RNA 앱타머 서열번호 61의 RIG-I RNA 앱타머로 전 처리된 세포에 NDV-GFP가 감염될 경우, 세포에서 합성되는 인터페론-베타의 양을 인터페론-베타 유전자에 대한 실시간 역전사 중합 연쇄 반응 (real time RT-PCR) 방법으로 관찰하였다 (실시예 6 참조). 그 결과, NDV-GFP만 감염시킨 세포에 비해 RIG-I 앱타머를 선 처리한 샘플에서 인터페론-베타 유전자 발현이 현저히 증가되었다 (도면 5D). 이를 통하여, AP를 처리한 RIG-I RNA 앱타머 서열번호 61로 선처리 할 경우, 감염된 RNA 바이러스의 증식을 효과적으로 억제시키는 효능이 있음을 알 수 있다.At the same time, when NDV-GFP was infected with a cell pretreated with RIG-I RNA aptamer SEQ ID 61, which treated AP, the amount of interferon-beta synthesized in the cell was transferred to the interferon-beta gene. Were observed by real time RT-PCR method (see Example 6). As a result, interferon-beta gene expression was significantly increased in the samples pretreated with RIG-I aptamer compared to cells infected only with NDV-GFP (Fig. 5D). Through this, it can be seen that the pretreatment with AP-treated RIG-I RNA aptamer SEQ ID NO 61 has an effect of effectively inhibiting the proliferation of infected RNA virus.

 

실시예Example 5:  5: 루시퍼레이즈Luciferase 어세이Assay ( ( LuciferaseLuciferase assayassay ))

pPRDIII-I-luc 이나 pISRE-Luc 리포터 플라즈미드를 pRL-CMV 플라즈미드와 함께 Lipofectamine 2000 (invitrogen) 제제를 이용하여 HepG2 혹은 Huh7 세포내로 주입하였다. 36시간 뒤, 인터페론-베타 100U/ml (R&D system에서 구입), polyI:C (Sigma에서 구입), AP를 처리한 RNA 라이브러리, 혹은 서열 번호 62의 RIG-I RNA 앱타머를 처리하고, 6-12시간 이후에 Dual-luciferase kit (Promega 회사로부터 구입)를 이용하여 리포터 효소의 활성을 측정하였다. 경우에 따라, 루시퍼레이즈 리포터 벡터들과 함께 pEF-BOS, pEF-BOS에 클로닝 된 RIG-I, Helicase, △exon2, CARD, △RD 그리고 MDA5의 발현 벡터도 함께 세포에 주입하였다. pEF-BOS에 클로닝 된 RIG-I 발현 벡터(pEF-BOS-Flag-RIG-I)는 Dr. Takashi Fujita (Institute for virus research Kyoto University)로부터 제공 받아 사용하였으며. 이 것을 주형으로, △exon2은 5'- CCT GGT TTA GGG AGG GTT ATT CTG GAC TTT-3' (서열번호 114) 및 5'-AAA GTC CAG AAT AAC CCT CCC TAA ACC AGG-3' (서열번호 115) 프라이머, △RD는 5'-GCT CTA GAT AAG CCA CCA TGG AT-3' (서열번호 116) 및 5'-CCA TCG ATT CAT CTT GCT CTT CCT CTG CC-3' (서열번호 117) 프라이머, CARD는 5'-GAAGGCCTATGGATTATAAGGATGAT-3' (서열번호 118) 및 5'-CCATCGATTCAAGACACTTCTGAAGG-3' (서열번호 119) 프라이머, helicase는 5'-GAAGGCCTATGGATTATAAGGATGAT-3' (서열번호 120) 및 5'-CCATCGATTCATTTGGACATTTCTGC-3' (서열번호 121) 프라이머를 이용하여 본 실험실에서 제작하였다. pEF-BOS에 클로닝 된 MDA5 발현벡터 (pEF-BOS/myc-MDA5)는 Dr S. Goodbourn (University of London, London, Great Britain)로부터 제공받아 사용하였다.
pPRDIII-I-luc or pISRE-Luc reporter plasmids were injected into HepG2 or Huh7 cells with Lipofectamine 2000 (invitrogen) preparations along with pRL-CMV plasmids. After 36 hours, treated with an RNA library treated with interferon-beta 100U / ml (purchased from the R & D system), polyI: C (purchased from Sigma), AP, or RIG-I RNA aptamer of SEQ ID NO: 62, 6- After 12 hours, reporter enzyme activity was measured using a Dual-luciferase kit (purchased from Promega). In some cases, the expression vectors of RIG-I, Helicase, Δexon2, CARD, ΔRD and MDA5 cloned into pEF-BOS, pEF-BOS together with luciferase reporter vectors were also injected into the cells. The RIG-I expression vector cloned into pEF-BOS (pEF-BOS-Flag-RIG-I) was described by Dr. It was used by Takashi Fujita (Institute for virus research Kyoto University). With this template, Δexon2 is 5'- CCT GGT TTA GGG AGG GTT ATT CTG GAC TTT-3 '(SEQ ID NO: 114) and 5'-AAA GTC CAG AAT AAC CCT CCC TAA ACC AGG-3' (SEQ ID NO: 115) ) Primer, ΔRD is 5'-GCT CTA GAT AAG CCA CCA TGG AT-3 '(SEQ ID NO: 116) and 5'-CCA TCG ATT CAT CTT GCT CTT CCT CTG CC-3' (SEQ ID NO: 117) primer, CARD Primers 5'-GAAGGCCTATGGATTATAAGGATGAT-3 '(SEQ ID NO: 118) and 5'-CCATCGATTCAAGACACTTCTGAAGG-3' (SEQ ID NO: 119), helicase is 5'-GAAGGCCTATGGATTATAAGGATGAT-3 '(SEQ ID NO: 120) and 5'-CCATCGATTCATTT-3' (SEQ ID NO: 121) It was produced in the laboratory using a primer. The MDA5 expression vector cloned into pEF-BOS (pEF-BOS / myc-MDA5) was used from Dr S. Goodbourn (University of London, London, Great Britain).

실시예Example 6: 실시간  6: real time 역전사Reverse transcription 중합 연쇄 반응 ( Polymerization Chain Reaction ( realreal -- timetime RTRT -- PCRPCR ))

HepG2 세포주의 전체 RNA를 TRIzol reagent (Invitrogen에서 구입)를 이용하여 추출한 다음, 1ug의 전체 RNA를 주형으로 Improm-II reverse transcription system (Promega에서 구입)를 이용하여 cDNA를 합성하였다. 실시간 역전사 중합 연쇄 반응을 위해서는 cDNA, 각 유전자들을 위한 프라이머, SYBR premix Ex-Taq (Takara) 그리고 One-stepTMReal-timePCRsystem (AppliedBiosystem)가 사용되었다. 실험에 사용되는 각 유전자들의 프라이머는 아래과 같다.  IFNb, 5'-TGCTCTCCTGTTGTGCTTCTCC-3'(서열번호 102) & 5'-CATCTCATAGATGGTCAATGCGG-3' (서열번호 103); RANTES, 5'-ATGAAGGTCTCCAAAGAG-3'(서열번호 104) & 5'-GCTCATCTCCAAAGAG-3'(서열번호 105); TFNa, 5'-CACCATCAGCCGCATC-3'(서열번호 106) & 5'-CAGGGCAATGATCCCA-3'(서열번호 107); NDV-GFP, 5'-TTGATGGCAGGCCTCTTGC-3'(서열번호 108) & 5'-GGAGGATGTTGGACGCATT-3'(서열번호 109); Actin, 5'-TCATGAAGTGTGACGTTGACATCCGT-3'(서열번호 110), 및 5'-CCTAGAAGCATTTGCGGTGCACGATG-3(서열번호 111).
Total RNA of the HepG2 cell line was extracted using TRIzol reagent (purchased from Invitrogen), and then cDNA was synthesized using an Improm-II reverse transcription system (purchased from Promega) using 1 ug of total RNA as a template. For real-time reverse transcription polymerase chain reaction, cDNA, primers for each gene, SYBR premix Ex-Taq (Takara) and One-step TM Real-time PCR system (AppliedBiosystem) were used. The primers of each gene used in the experiment are as follows. IFNb, 5'-TGCTCTCCTGTTGTGCTTCTCC-3 '(SEQ ID NO: 102) &5'-CATCTCATAGATGGTCAATGCGG-3' (SEQ ID NO: 103); RANTES, 5'-ATGAAGGTCTCCAAAGAG-3 '(SEQ ID NO: 104) &5'-GCTCATCTCCAAAGAG-3' (SEQ ID NO: 105); TFNa, 5'-CACCATCAGCCGCATC-3 '(SEQ ID NO: 106) &5'-CAGGGCAATGATCCCA-3' (SEQ ID NO: 107); NDV-GFP, 5'-TTGATGGCAGGCCTCTTGC-3 '(SEQ ID NO: 108) &5'-GGAGGATGTTGGACGCATT-3' (SEQ ID NO: 109); Actin, 5'-TCATGAAGTGTGACGTTGACATCCGT-3 '(SEQ ID NO: 110), and 5'-CCTAGAAGCATTTGCGGTGCACGATG-3 (SEQ ID NO: 111).

실시예Example 7:  7: 웨스턴Western 블랏과Blot and 면역 형광염색법 ( Immunofluorescence staining WesternWestern blotblot andand Immunofluorescence  Immunofluorescence stainingstaining ))

루시퍼레이즈 어세이에 사용된 세포 용해물 혹은 lysis buffer (25 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholate)를 사용하여 얻은 세포 용해물을 12% SDS-PAGE로 분리한 뒤, GFP (Santacruz), RIG-I (ALEXIS Biochemicals), MDA5 (ProSci Incorporated), Flag (M2, Sigma), c-Myc (Roche), 및 β-Actin (Santacruz)를 특이적으로 인지하는 항체를 이용하여 각 단백질의 양을 확인하였다. IRF3의 세포내 위치를 확인하기 위해서 아래와 같은 실험 방법을 이용하였다. HepG2 세포주를 덮개유리(cover-glass)위에서 배양한 후, 6시간 동안 polyI:C 혹은 앱타머를 처리하였다. 이 후, 4% paraformaldehyde로 세포를 고정하고 0.2% TritonX-100으로 세포의 투과성을 높인 다음, anti-IRF3 (Santacruz)와 anti-Rabbit IgG-Alexa Fluor 488 (Invitrogen)항체를 이용하여 세포 내 IRF3의 위치를 탐지하였다. 핵 염색을 위해서는 Hoechst 33258 (Sigma)를 이용하였다. 형광 신호는 형광현미경을 이용하여 확인하였다.
Cell lysates used in the luciferase assay or cell lysates obtained using lysis buffer (25 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholate) After separation by SDS-PAGE, GFP (Santacruz), RIG-I (ALEXIS Biochemicals), MDA5 (ProSci Incorporated), Flag (M2, Sigma), c-Myc (Roche), and β-Actin (Santacruz) The amount of each protein was confirmed by using the antibody recognized as a target. The following experimental method was used to confirm the intracellular location of IRF3. HepG2 cell lines were incubated on cover-glass and then treated with polyI: C or aptamer for 6 hours. Afterwards, the cells were fixed with 4% paraformaldehyde and the cells permeable with 0.2% TritonX-100. Then, the anti-IRF3 (Santacruz) and anti-Rabbit IgG-Alexa Fluor 488 (Invitrogen) antibodies were used to Location was detected. Hoechst 33258 (Sigma) was used for nuclear staining. Fluorescence signal was confirmed using a fluorescence microscope.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION POSCO <120> RNA Aptamer Targeting RIG-I Protein and Use thereof <130> DPP-2010-0469-KR <160> 121 <170> KopatentIn 1.71 <210> 1 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 1 ucgaauuucc aucuuguaua uaaacuaugu cuaaauuuuu uuuu 44 <210> 2 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 2 auauuuuuuu caggguagcu cucauaguuu uuuuuuuucg auu 43 <210> 3 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 3 acguuuuauu cauauuauuu ucaaguuauu uguuugugu 39 <210> 4 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 4 ucgacuuuaa auuuuuucgg auauacacaa auuauuuuuu aac 43 <210> 5 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 5 gaauuaaaaa uaaaacgugu auggaaucac ugaggcauug g 41 <210> 6 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 6 uaauaguggu uuauuccacu cgacuacuuu uuuuguuuua uu 42 <210> 7 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 7 ccacacuuca uuucuaaguc cgcucaauuu uguuuuuuuu gc 42 <210> 8 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 8 ccaccauccg uaacuagcua auacuuguua ucuuuuuauu uu 42 <210> 9 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 9 uccauauuuu acccaguagu auaauguuuu aauuuuuugu uua 43 <210> 10 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 10 gccauaauac cuauacauau auuauaucuu guuuuguuug uuc 43 <210> 11 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 11 cuaguagaac uuuuguuuuu ucgauuaaug uauuuuuuau uugg 44 <210> 12 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 12 gcgcuuuacc gacauguugc acaugcuuau uuuaacuuuu u 41 <210> 13 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 13 ucuccgggaa ggaauuucug uuuguuauuu uaucuuacuu uu 42 <210> 14 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 14 gcuagcauac uuucgccauc uauaauuacu uuuauuuuuu a 41 <210> 15 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 15 ucuaaaucau uaauuauccg caucucaaca uguuuuacuu ua 42 <210> 16 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 16 uccuuuaaua ugaguuguca uuauuuugau uguuuuuuuu ug 42 <210> 17 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 17 uacgucgcuc guuucuauua auuucguauu uuguuuuuc 39 <210> 18 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 18 gcguuuuucg acucucauau uauuaauuca aguguauauu gc 42 <210> 19 <211> 46 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 19 auauaacgga ccucgaccgc uaccuuuugu cuaauuuuuu uauuuu 46 <210> 20 <211> 38 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 20 agcuaucuug uuauuuuauu aacuuucuga uuuuuuau 38 <210> 21 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 21 ccauaccuuu accgcaauuc guuccuauuu agcauuuuuu uc 42 <210> 22 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 22 ucuauuuucu uucucuugcu aauuuauuuu aacuucaugu au 42 <210> 23 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 23 aacuagaaag uucguuuuau uuugauguua uuugauuuuu a 41 <210> 24 <211> 40 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 24 uucaugggcu aaugaccucu uauucuuauu uauuuguuuu 40 <210> 25 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 25 gcauuuccag auuuauuuau uggcaaucua uauuuuuauu ua 42 <210> 26 <211> 46 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 26 acuauuuaac acggcuuuac aaaacuuugc uuguuuuuuu uuuguu 46 <210> 27 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 27 ucauaauaua uaucauugcu cuuguuaauu uguuuauuuu uca 43 <210> 28 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 28 uuccauccuu uuuuuaugau ccauaauuaa cauuucuuuu u 41 <210> 29 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 29 ucacgauauu uuuuagcuag ugucauacag uuuuuuuauu uu 42 <210> 30 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 30 cuaaaucuua uuucuaauuu uguauuuugu cuaugauuuu uu 42 <210> 31 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 31 acaugugaca uuacuaagua acuuuuaauu uuuaaaucuu uuu 43 <210> 32 <211> 40 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 32 guuuuaguau uucuuucauu uauaauuuug acuaucuuuu 40 <210> 33 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 33 ucguagugca cuaauucaug ucacauuuuu uauauuuguu uuu 43 <210> 34 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 34 cuggaaacgc uucgcuuaau auuuguauuu ucguuuauuu c 41 <210> 35 <211> 45 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 35 ucuuuauugc guuuuccguu ggauuugugc aacuguuuuu uuauu 45 <210> 36 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 36 ucuauuacac ucgagucuca uuuguuuuac auguuauuuu uc 42 <210> 37 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 37 cuucgauuau uaagauuucc gaacauuuuu uaguuuauuu uu 42 <210> 38 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 38 cuauccaaga uuuggaaauu uauugauguu uuuuuguug 39 <210> 39 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 39 ccauugaauu uugauguaca caguuuauuu cuuuuuuggu uua 43 <210> 40 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 40 cucauuagaa aucuauuauu cguuuuguuu uucucuguuu c 41 <210> 41 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 41 acgaagucau aaugucguau aucucuuauu uguuuuuuug u 41 <210> 42 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 42 ucguccaguu cucacucacc gauuuuuguu uguuucuuau uaa 43 <210> 43 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 43 ucacuaacuu agcuuugcga uagaagcauu uacuacuuuu uuua 44 <210> 44 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 44 gccacaaagg cggucuuauc uucauuuaau uuuuuaauuu u 41 <210> 45 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 45 ucauuuucau caaauauagu uaucaaaauu guuauuguuu u 41 <210> 46 <211> 18 <212> RNA <213> Artificial Sequence <220> <223> 5' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 46 gcggaagcgu gcugggcc 18 <210> 47 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> 5' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 47 gcggaagcgu gcuggg 16 <210> 48 <211> 15 <212> RNA <213> Artificial Sequence <220> <223> 5' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 48 gcggaagcgu gcugg 15 <210> 49 <211> 12 <212> RNA <213> Artificial Sequence <220> <223> 5' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 49 aagcgugcug gg 12 <210> 50 <211> 10 <212> RNA <213> Artificial Sequence <220> <223> 3' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 50 cauaacccaa 10 <210> 51 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 3' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 51 cauaaccca 9 <210> 52 <211> 18 <212> RNA <213> Artificial Sequence <220> <223> 3' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 52 cauaacccag aggucgau 18 <210> 53 <211> 28 <212> RNA <213> Artificial Sequence <220> <223> 3' terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 53 cauaacccag aggucgaugg aucccccc 28 <210> 54 <211> 88 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 54 gcggaagcgu gcugggucga auuuccaucu uguauauaaa cuaugucuaa auuuuuuuuu 60 cauaacccag aggucgaugg aucccccc 88 <210> 55 <211> 79 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 55 gcggaagcgu gcugggccau auuuuuuuca ggguagcucu cauaguuuuu uuuuuucgau 60 ucauaaccca gaggucgau 79 <210> 56 <211> 79 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 56 gcggaagcgu gcugggccac guuuuauuca uauuauuuuc aaguuauuug uuugugucau 60 aacccagagg ucgauggau 79 <210> 57 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 57 gcggaagcgu gcugggucga cuuuaaauuu uuucggauau acacaaauua uuuuuuaacc 60 auaacccaga ggucgau 77 <210> 58 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 58 gcggaagcgu gcuggggaau uaaaaauaaa acguguaugg aaucacugag gcauuggcau 60 aacccagagg ucgau 75 <210> 59 <211> 78 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 59 gcggaagcgu gcugggccua auagugguuu auuccacucg acuacuuuuu uuguuuuauu 60 cauaacccag aggucgau 78 <210> 60 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 60 gcggaagcgu gcugggccac acuucauuuc uaaguccgcu caauuuuguu uuuuuugcca 60 uaacccagag gucgauggau cccccc 86 <210> 61 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 61 gcggaagcgu gcugggccac cauccguaac uagcuaauac uuguuaucuu uuuauuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 62 <211> 68 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 62 gcggaagcgu gcugggucca uauuuuaccc aguaguauaa uguuuuaauu uuuuguuuac 60 auaaccca 68 <210> 63 <211> 83 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 63 aagcgugcug gggccauaau accuauacau auauuauauc uuguuuuguu uguuccauaa 60 cccagagguc gauggauccc ccc 83 <210> 64 <211> 78 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 64 gcggaagcgu gcugggcuag uagaacuuuu guuuuuucga uuaauguauu uuuuauuugg 60 cauaacccag aggucgau 78 <210> 65 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 65 gcggaagcgu gcuggggcgc uuuaccgaca uguugcacau gcuuauuuua acuuuuucau 60 aacccagagg ucgau 75 <210> 66 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 66 gcggaagcgu gcugggucuc cgggaaggaa uuucuguuug uuauuuuauc uuacuuuuca 60 uaacccagag gucgauggau ccccc 85 <210> 67 <211> 68 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 67 gcggaagcgu gcugggccgc uagcauacuu ucgccaucua uaauuacuuu uauuuuuuac 60 auaaccca 68 <210> 68 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 68 gcggaagcgu gcugggucua aaucauuaau uauccgcauc ucaacauguu uuacuuuaca 60 uaacccagag gucgauggau cccccc 86 <210> 69 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 69 gcggaagcgu gcuggguccu uuaauaugag uugucauuau uuugauuguu uuuuuuugca 60 uaacccagag gucgau 76 <210> 70 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 70 gcggaagcgu gcugggccua cgucgcucgu uucuauuaau uucguauuuu guuuuuccau 60 aacccagagg ucgau 75 <210> 71 <211> 67 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 71 gcggaagcgu gcuggggcgu uuuucgacuc ucauauuauu aauucaagug uauauugcca 60 uaaccca 67 <210> 72 <211> 82 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 72 gcggaagcgu gcugggccau auaacggacc ucgaccgcua ccuuuugucu aauuuuuuua 60 uuuucauaac ccagaggucg au 82 <210> 73 <211> 74 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 73 gcggaagcgu gcugggccag cuaucuuguu auuuuauuaa cuuucugauu uuuuaucaua 60 acccagaggu cgau 74 <210> 74 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 74 gcggaagcgu gcugggccau accuuuaccg caauucguuc cuauuuagca uuuuuuucca 60 uaacccagag gucgauggau cccccc 86 <210> 75 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 75 gcggaagcgu gcugggucua uuuucuuucu cuugcuaauu uauuuuaacu ucauguauca 60 uaacccagag gucgau 76 <210> 76 <211> 69 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 76 gcggaagcgu gcugggucaa cuagaaaguu cguuuuauuu ugauguuauu ugauuuuuac 60 auaacccaa 69 <210> 77 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 77 gcggaagcgu gcugggccuu caugggcuaa ugaccucuua uucuuauuua uuuguuuuca 60 uaacccagag gucgau 76 <210> 78 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 78 gcggaagcgu gcuggggcau uuccagauuu auuuauuggc aaucuauauu uuuauuuaca 60 uaacccagag gucgauggau cccccc 86 <210> 79 <211> 80 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 79 gcggaagcgu gcugggacua uuuaacacgg cuuuacaaaa cuuugcuugu uuuuuuuuug 60 uucauaaccc agaggucgau 80 <210> 80 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 80 gcggaagcgu gcugggucau aauauauauc auugcucuug uuaauuuguu uauuuuucac 60 auaacccaga ggucgau 77 <210> 81 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 81 gcggaagcgu gcugggccuu ccauccuuuu uuuaugaucc auaauuaaca uuucuuuuuc 60 auaacccaga ggucgau 77 <210> 82 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 82 gcggaagcgu gcugggucac gauauuuuuu agcuaguguc auacaguuuu uuuauuuuca 60 uaacccagag gucgau 76 <210> 83 <211> 67 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 83 gcggaagcgu gcugggcuaa aucuuauuuc uaauuuugua uuuugucuau gauuuuuuca 60 uaaccca 67 <210> 84 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 84 gcggaagcgu gcuggacaug ugacauuacu aaguaacuuu uaauuuuuaa aucuuuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 85 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 85 gcggaagcgu gcugggccgu uuuaguauuu cuuucauuua uaauuuugac uaucuuuuca 60 uaacccagag gucgau 76 <210> 86 <211> 87 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 86 gcggaagcgu gcugggucgu agugcacuaa uucaugucac auuuuuuaua uuuguuuuuc 60 auaacccaga ggucgaugga ucccccc 87 <210> 87 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 87 gcggaagcgu gcugggcugg aaacgcuucg cuuaauauuu guauuuucgu uuauuuccau 60 aacccagagg ucgauggauc ccccc 85 <210> 88 <211> 89 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 88 gcggaagcgu gcugggucuu uauugcguuu uccguuggau uugugcaacu guuuuuuuau 60 ucauaaccca gaggucgaug gaucccccc 89 <210> 89 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 89 gcggaagcgu gcugggucua uuacacucga gucucauuug uuuuacaugu uauuuuucca 60 uaacccagag gucgau 76 <210> 90 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 90 gcggaagcgu gcugggcuuc gauuauuaag auuuccgaac auuuuuuagu uuauuuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 91 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 91 gcggaagcgu gcugggcccu auccaagauu uggaaauuua uugauguuuu uuuguugcau 60 aacccagagg ucgauggauc ccccc 85 <210> 92 <211> 81 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 92 gcggaagcgu gcugggccau ugaauuuuga uguacacagu uuauuucuuu uuugguuuac 60 auaacccaga ggucgaugga u 81 <210> 93 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 93 gcggaagcgu gcugggcuca uuagaaaucu auuauucguu uuguuuuucu cuguuuccau 60 aacccagagg ucgauggauc ccccc 85 <210> 94 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 94 gcggaagcgu gcugggacga agucauaaug ucguauaucu cuuauuuguu uuuuugucau 60 aacccagagg ucgau 75 <210> 95 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 95 gcggaagcgu gcugggucgu ccaguucuca cucaccgauu uuuguuuguu ucuuauuaac 60 auaacccaga ggucgau 77 <210> 96 <211> 88 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 96 gcggaagcgu gcugggucac uaacuuagcu uugcgauaga agcauuuacu acuuuuuuua 60 cauaacccag aggucgaugg aucccccc 88 <210> 97 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 97 gcggaagcgu gcuggggcca caaaggcggu cuuaucuuca uuuaauuuuu uaauuuucau 60 aacccagagg ucgau 75 <210> 98 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 98 gcggaagcgu gcugggucau uuucaucaaa uauaguuauc aaaauuguua uuguuuucau 60 aacccagagg ucgau 75 <210> 99 <211> 925 <212> PRT <213> Artificial Sequence <220> <223> full length amino acid sequence of RIG-I protein of Homo sapiens <400> 99 Met Thr Thr Glu Gln Arg Arg Ser Leu Gln Ala Phe Gln Asp Tyr Ile 1 5 10 15 Arg Lys Thr Leu Asp Pro Thr Tyr Ile Leu Ser Tyr Met Ala Pro Trp 20 25 30 Phe Arg Glu Glu Glu Val Gln Tyr Ile Gln Ala Glu Lys Asn Asn Lys 35 40 45 Gly Pro Met Glu Ala Ala Thr Leu Phe Leu Lys Phe Leu Leu Glu Leu 50 55 60 Gln Glu Glu Gly Trp Phe Arg Gly Phe Leu Asp Ala Leu Asp His Ala 65 70 75 80 Gly Tyr Ser Gly Leu Tyr Glu Ala Ile Glu Ser Trp Asp Phe Lys Lys 85 90 95 Ile Glu Lys Leu Glu Glu Tyr Arg Leu Leu Leu Lys Arg Leu Gln Pro 100 105 110 Glu Phe Lys Thr Arg Ile Ile Pro Thr Asp Ile Ile Ser Asp Leu Ser 115 120 125 Glu Cys Leu Ile Asn Gln Glu Cys Glu Glu Ile Leu Gln Ile Cys Ser 130 135 140 Thr Lys Gly Met Met Ala Gly Ala Glu Lys Leu Val Glu Cys Leu Leu 145 150 155 160 Arg Ser Asp Lys Glu Asn Trp Pro Lys Thr Leu Lys Leu Ala Leu Glu 165 170 175 Lys Glu Arg Asn Lys Phe Ser Glu Leu Trp Ile Val Glu Lys Gly Ile 180 185 190 Lys Asp Val Glu Thr Glu Asp Leu Glu Asp Lys Met Glu Thr Ser Asp 195 200 205 Ile Gln Ile Phe Tyr Gln Glu Asp Pro Glu Cys Gln Asn Leu Ser Glu 210 215 220 Asn Ser Cys Pro Pro Ser Glu Val Ser Asp Thr Asn Leu Tyr Ser Pro 225 230 235 240 Phe Lys Pro Arg Asn Tyr Gln Leu Glu Leu Ala Leu Pro Ala Met Lys 245 250 255 Gly Lys Asn Thr Ile Ile Cys Ala Pro Thr Gly Cys Gly Lys Thr Phe 260 265 270 Val Ser Leu Leu Ile Cys Glu His His Leu Lys Lys Phe Pro Gln Gly 275 280 285 Gln Lys Gly Lys Val Val Phe Phe Ala Asn Gln Ile Pro Val Tyr Glu 290 295 300 Gln Gln Lys Ser Val Phe Ser Lys Tyr Phe Glu Arg His Gly Tyr Arg 305 310 315 320 Val Thr Gly Ile Ser Gly Ala Thr Ala Glu Asn Val Pro Val Glu Gln 325 330 335 Ile Val Glu Asn Asn Asp Ile Ile Ile Leu Thr Pro Gln Ile Leu Val 340 345 350 Asn Asn Leu Lys Lys Gly Thr Ile Pro Ser Leu Ser Ile Phe Thr Leu 355 360 365 Met Ile Phe Asp Glu Cys His Asn Thr Ser Lys Gln His Pro Tyr Asn 370 375 380 Met Ile Met Phe Asn Tyr Leu Asp Gln Lys Leu Gly Gly Ser Ser Gly 385 390 395 400 Pro Leu Pro Gln Val Ile Gly Leu Thr Ala Ser Val Gly Val Gly Asp 405 410 415 Ala Lys Asn Thr Asp Glu Ala Leu Asp Tyr Ile Cys Lys Leu Cys Ala 420 425 430 Ser Leu Asp Ala Ser Val Ile Ala Thr Val Lys His Asn Leu Glu Glu 435 440 445 Leu Glu Gln Val Val Tyr Lys Pro Gln Lys Phe Phe Arg Lys Val Glu 450 455 460 Ser Arg Ile Ser Asp Lys Phe Lys Tyr Ile Ile Ala Gln Leu Met Arg 465 470 475 480 Asp Thr Glu Ser Leu Ala Lys Arg Ile Cys Lys Asp Leu Glu Asn Leu 485 490 495 Ser Gln Ile Gln Asn Arg Glu Phe Gly Thr Gln Lys Tyr Glu Gln Trp 500 505 510 Ile Val Thr Val Gln Lys Ala Cys Met Val Phe Gln Met Pro Asp Lys 515 520 525 Asp Glu Glu Ser Arg Ile Cys Lys Ala Leu Phe Leu Tyr Thr Ser His 530 535 540 Leu Arg Lys Tyr Asn Asp Ala Leu Ile Ile Ser Glu His Ala Arg Met 545 550 555 560 Lys Asp Ala Leu Asp Tyr Leu Lys Asp Phe Phe Ser Asn Val Arg Ala 565 570 575 Ala Gly Phe Asp Glu Ile Glu Gln Asp Leu Thr Gln Arg Phe Glu Glu 580 585 590 Lys Leu Gln Glu Leu Glu Ser Val Ser Arg Asp Pro Ser Asn Glu Asn 595 600 605 Pro Lys Leu Glu Asp Leu Cys Phe Ile Leu Gln Glu Glu Tyr His Leu 610 615 620 Asn Pro Glu Thr Ile Thr Ile Leu Phe Val Lys Thr Arg Ala Leu Val 625 630 635 640 Asp Ala Leu Lys Asn Trp Ile Glu Gly Asn Pro Lys Leu Ser Phe Leu 645 650 655 Lys Pro Gly Ile Leu Thr Gly Arg Gly Lys Thr Asn Gln Asn Thr Gly 660 665 670 Met Thr Leu Pro Ala Gln Lys Cys Ile Leu Asp Ala Phe Lys Ala Ser 675 680 685 Gly Asp His Asn Ile Leu Ile Ala Thr Ser Val Ala Asp Glu Gly Ile 690 695 700 Asp Ile Ala Gln Cys Asn Leu Val Ile Leu Tyr Glu Tyr Val Gly Asn 705 710 715 720 Val Ile Lys Met Ile Gln Thr Arg Gly Arg Gly Arg Ala Arg Gly Ser 725 730 735 Lys Cys Phe Leu Leu Thr Ser Asn Ala Gly Val Ile Glu Lys Glu Gln 740 745 750 Ile Asn Met Tyr Lys Glu Lys Met Met Asn Asp Ser Ile Leu Arg Leu 755 760 765 Gln Thr Trp Asp Glu Ala Val Phe Arg Glu Lys Ile Leu His Ile Gln 770 775 780 Thr His Glu Lys Phe Ile Arg Asp Ser Gln Glu Lys Pro Lys Pro Val 785 790 795 800 Pro Asp Lys Glu Asn Lys Lys Leu Leu Cys Arg Lys Cys Lys Ala Leu 805 810 815 Ala Cys Tyr Thr Ala Asp Val Arg Val Ile Glu Glu Cys His Tyr Thr 820 825 830 Val Leu Gly Asp Ala Phe Lys Glu Cys Phe Val Ser Arg Pro His Pro 835 840 845 Lys Pro Lys Gln Phe Ser Ser Phe Glu Lys Arg Ala Lys Ile Phe Cys 850 855 860 Ala Arg Gln Asn Cys Ser His Asp Trp Gly Ile His Val Lys Tyr Lys 865 870 875 880 Thr Phe Glu Ile Pro Val Ile Lys Ile Glu Ser Phe Val Val Glu Asp 885 890 895 Ile Ala Thr Gly Val Gln Thr Leu Tyr Ser Lys Trp Lys Asp Phe His 900 905 910 Phe Glu Lys Ile Pro Phe Asp Pro Ala Glu Met Ser Lys 915 920 925 <210> 100 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 5'-primer having T7 promoter for preparing RNA aptamer <400> 100 ggtaatacga ctcactatag ggagagcgca agcgtgctgg g 41 <210> 101 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 3'-primer for preparing RNA aptamer <400> 101 ggggggatcc atcgacctct gggttatg 28 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for IFNb gene <400> 102 tgctctcctg ttgtgcttct cc 22 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for IFNb gene <400> 103 catctcatag atggtcaatg cgg 23 <210> 104 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer for RANTES gene <400> 104 atgaaggtct ccaaagag 18 <210> 105 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for RANTES gene <400> 105 gctcatctcc aaagag 16 <210> 106 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for TFNa gene <400> 106 caccatcagc cgcatc 16 <210> 107 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for TFNa gene <400> 107 cagggcaatg atccca 16 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer for NDV-GFP gene <400> 108 ttgatggcag gcctcttgc 19 <210> 109 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer for NDV-GFP gene <400> 109 ggaggatgtt ggacgcatt 19 <210> 110 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for Actin gene <400> 110 tcatgaagtg tgacgttgac atccgt 26 <210> 111 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for Actin gene <400> 111 cctagaagca tttgcggtgc acgatg 26 <210> 112 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> non-specific siRNA <400> 112 gaauuugcac gaaaacgcc 19 <210> 113 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> MDA-5 specific siRNA <400> 113 gaggugcagu auauucagg 19 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer for exon2-deleted RIG-I <400> 114 cctggtttag ggagggttat tctggacttt 30 <210> 115 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer for exon2-deleted RIG-I <400> 115 aaagtccaga ataaccctcc ctaaaccagg 30 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for RD domain deleted RIG-I gene <400> 116 gctctagata agccaccatg gat 23 <210> 117 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer for RD domain deleted RIG-I gene <400> 117 ccatcgattc atcttgctct tcctctgcc 29 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> priemr for RNA helicase domain deleted RIG-I gene (CARD) <400> 118 gaaggcctat ggattataag gatgat 26 <210> 119 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> priemr for RNA helicase domain deleted RIG-I gene (CARD) <400> 119 ccatcgattc aagacacttc tgaagg 26 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for CARD domain deleted RIG-I gene (helicase) <400> 120 gaaggcctat ggattataag gatgat 26 <210> 121 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for CARD domain deleted RIG-I gene (helicase) <400> 121 ccatcgattc atttggacat ttctgc 26 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION          POSCO <120> RNA Aptamer Targeting RIG-I Protein and Use <130> DPP-2010-0469-KR <160> 121 <170> Kopatentin 1.71 <210> 1 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 1 ucgaauuucc aucuuguaua uaaacuaugu cuaaauuuuu uuuu 44 <210> 2 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 2 auauuuuuuu caggguagcu cucauaguuu uuuuuuuucg auu 43 <210> 3 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 3 acguuuuauu cauauuauuu ucaaguuauu uguuugugu 39 <210> 4 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 4 ucgacuuuaa auuuuuucgg auauacacaa auuauuuuuu aac 43 <210> 5 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 5 gaauuaaaaa uaaaacgugu auggaaucac ugaggcauug g 41 <210> 6 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 6 uaauaguggu uuauuccacu cgacuacuuu uuuuguuuua uu 42 <210> 7 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 7 ccacacuuca uuucuaaguc cgcucaauuu uguuuuuuuu gc 42 <210> 8 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 8 ccaccauccg uaacuagcua auacuuguua ucuuuuuauu uu 42 <210> 9 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 9 uccauauuuu acccaguagu auaauguuuu aauuuuuugu uua 43 <210> 10 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 10 gccauaauac cuauacauau auuauaucuu guuuuguuug uuc 43 <210> 11 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 11 cuaguagaac uuuuguuuuu ucgauuaaug uauuuuuuau uugg 44 <210> 12 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 12 gcgcuuuacc gacauguugc acaugcuuau uuuaacuuuu u 41 <210> 13 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 13 ucuccgggaa ggaauuucug uuuguuauuu uaucuuacuu uu 42 <210> 14 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 14 gcuagcauac uuucgccauc uauaauuacu uuuauuuuuu a 41 <210> 15 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 15 ucuaaaucau uaauuauccg caucucaaca uguuuuacuu ua 42 <210> 16 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 16 uccuuuaaua ugaguuguca uuauuuugau uguuuuuuuu ug 42 <210> 17 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 17 uacgucgcuc guuucuauua auuucguauu uuguuuuuc 39 <210> 18 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 18 gcguuuuucg acucucauau uauuaauuca aguguauauu gc 42 <210> 19 <211> 46 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 19 auauaacgga ccucgaccgc uaccuuuugu cuaauuuuuu uauuuu 46 <210> 20 <211> 38 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 20 agcuaucuug uuauuuuauu aacuuucuga uuuuuuau 38 <210> 21 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 21 ccauaccuuu accgcaauuc guuccuauuu agcauuuuuu uc 42 <210> 22 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 22 ucuauuuucu uucucuugcu aauuuauuuu aacuucaugu au 42 <210> 23 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 23 aacuagaaag uucguuuuau uuugauguua uuugauuuuu a 41 <210> 24 <211> 40 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 24 uucaugggcu aaugaccucu uauucuuauu uauuuguuuu 40 <210> 25 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 25 gcauuuccag auuuauuuau uggcaaucua uauuuuuauu ua 42 <210> 26 <211> 46 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 26 acuauuuaac acggcuuuac aaaacuuugc uuguuuuuuu uuuguu 46 <210> 27 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 27 ucauaauaua uaucauugcu cuuguuaauu uguuuauuuu uca 43 <210> 28 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 28 uuccauccuu uuuuuaugau ccauaauuaa cauuucuuuu u 41 <210> 29 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 29 ucacgauauu uuuuagcuag ugucauacag uuuuuuuauu uu 42 <210> 30 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 30 cuaaaucuua uuucuaauuu uguauuuugu cuaugauuuu uu 42 <210> 31 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 31 acaugugaca uuacuaagua acuuuuaauu uuuaaaucuu uuu 43 <210> 32 <211> 40 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 32 guuuuaguau uucuuucauu uauaauuuug acuaucuuuu 40 <210> 33 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 33 ucguagugca cuaauucaug ucacauuuuu uauauuuguu uuu 43 <210> 34 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 34 cuggaaacgc uucgcuuaau auuuguauuu ucguuuauuu c 41 <210> 35 <211> 45 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 35 ucuuuauugc guuuuccguu ggauuugugc aacuguuuuu uuauu 45 <210> 36 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 36 ucuauuacac ucgagucuca uuuguuuuac auguuauuuu uc 42 <210> 37 <211> 42 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 37 cuucgauuau uaagauuucc gaacauuuuu uaguuuauuu uu 42 <210> 38 <211> 39 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 38 cuauccaaga uuuggaaauu uauugauguu uuuuuguug 39 <210> 39 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 39 ccauugaauu uugauguaca caguuuauuu cuuuuuuggu uua 43 <210> 40 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 40 cucauuagaa aucuauuauu cguuuuguuu uucucuguuu c 41 <210> 41 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 41 acgaagucau aaugucguau aucucuuauu uguuuuuuug u 41 <210> 42 <211> 43 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 42 ucguccaguu cucacucacc gauuuuuguu uguuucuuau uaa 43 <210> 43 <211> 44 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 43 ucacuaacuu agcuuugcga uagaagcauu uacuacuuuu uuua 44 <210> 44 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 44 gccacaaagg cggucuuauc uucauuuaau uuuuuaauuu u 41 <210> 45 <211> 41 <212> RNA <213> Artificial Sequence <220> <223> U-rich region of RNA aptamer for RIG-I protein <400> 45 ucauuuucau caaauauagu uaucaaaauu guuauuguuu u 41 <210> 46 <211> 18 <212> RNA <213> Artificial Sequence <220> <223> 5 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 46 gcggaagcgu gcugggcc 18 <210> 47 <211> 16 <212> RNA <213> Artificial Sequence <220> <223> 5 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 47 gcggaagcgu gcuggg 16 <210> 48 <211> 15 <212> RNA <213> Artificial Sequence <220> <223> 5 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 48 gcggaagcgu gcugg 15 <210> 49 <211> 12 <212> RNA <213> Artificial Sequence <220> <223> 5 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 49 aagcgugcug gg 12 <210> 50 <211> 10 <212> RNA <213> Artificial Sequence <220> <223> 3 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 50 cauaacccaa 10 <210> 51 <211> 9 <212> RNA <213> Artificial Sequence <220> <223> 3 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 51 cauaaccca 9 <210> 52 <211> 18 <212> RNA <213> Artificial Sequence <220> <223> 3 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 52 cauaacccag aggucgau 18 <210> 53 <211> 28 <212> RNA <213> Artificial Sequence <220> <223> 3 'terminal oligonucleotides of RNA aptamer for RIG-I protein <400> 53 cauaacccag aggucgaugg aucccccc 28 <210> 54 <211> 88 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 54 gcggaagcgu gcugggucga auuuccaucu uguauauaaa cuaugucuaa auuuuuuuuu 60 cauaacccag aggucgaugg aucccccc 88 <210> 55 <211> 79 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 55 gcggaagcgu gcugggccau auuuuuuuca ggguagcucu cauaguuuuu uuuuuucgau 60 ucauaaccca gaggucgau 79 <210> 56 <211> 79 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 56 gcggaagcgu gcugggccac guuuuauuca uauuauuuuc aaguuauuug uuugugucau 60 aacccagagg ucgauggau 79 <210> 57 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 57 gcggaagcgu gcugggucga cuuuaaauuu uuucggauau acacaaauua uuuuuuaacc 60 auaacccaga ggucgau 77 <210> 58 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 58 gcggaagcgu gcuggggaau uaaaaauaaa acguguaugg aaucacugag gcauuggcau 60 aacccagagg ucgau 75 <210> 59 <211> 78 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 59 gcggaagcgu gcugggccua auagugguuu auuccacucg acuacuuuuu uuguuuuauu 60 cauaacccag aggucgau 78 <210> 60 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 60 gcggaagcgu gcugggccac acuucauuuc uaaguccgcu caauuuuguu uuuuuugcca 60 uaacccagag gucgauggau cccccc 86 <210> 61 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 61 gcggaagcgu gcugggccac cauccguaac uagcuaauac uuguuaucuu uuuauuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 62 <211> 68 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 62 gcggaagcgu gcugggucca uauuuuaccc aguaguauaa uguuuuaauu uuuuguuuac 60 auaaccca 68 <210> 63 <211> 83 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 63 aagcgugcug gggccauaau accuauacau auauuauauc uuguuuuguu uguuccauaa 60 cccagagguc gauggauccc ccc 83 <210> 64 <211> 78 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 64 gcggaagcgu gcugggcuag uagaacuuuu guuuuuucga uuaauguauu uuuuauuugg 60 cauaacccag aggucgau 78 <210> 65 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 65 gcggaagcgu gcuggggcgc uuuaccgaca uguugcacau gcuuauuuua acuuuuucau 60 aacccagagg ucgau 75 <210> 66 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 66 gcggaagcgu gcugggucuc cgggaaggaa uuucuguuug uuauuuuauc uuacuuuuca 60 uaacccagag gucgauggau ccccc 85 <210> 67 <211> 68 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 67 gcggaagcgu gcugggccgc uagcauacuu ucgccaucua uaauuacuuu uauuuuuuac 60 auaaccca 68 <210> 68 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 68 gcggaagcgu gcugggucua aaucauuaau uauccgcauc ucaacauguu uuacuuuaca 60 uaacccagag gucgauggau cccccc 86 <210> 69 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 69 gcggaagcgu gcuggguccu uuaauaugag uugucauuau uuugauuguu uuuuuuugca 60 uaacccagag gucgau 76 <210> 70 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 70 gcggaagcgu gcugggccua cgucgcucgu uucuauuaau uucguauuuu guuuuuccau 60 aacccagagg ucgau 75 <210> 71 <211> 67 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 71 gcggaagcgu gcuggggcgu uuuucgacuc ucauauuauu aauucaagug uauauugcca 60 uaaccca 67 <210> 72 <211> 82 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 72 gcggaagcgu gcugggccau auaacggacc ucgaccgcua ccuuuugucu aauuuuuuua 60 uuuucauaac ccagaggucg au 82 <210> 73 <211> 74 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 73 gcggaagcgu gcugggccag cuaucuuguu auuuuauuaa cuuucugauu uuuuaucaua 60 acccagaggu cgau 74 <210> 74 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 74 gcggaagcgu gcugggccau accuuuaccg caauucguuc cuauuuagca uuuuuuucca 60 uaacccagag gucgauggau cccccc 86 <210> 75 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 75 gcggaagcgu gcugggucua uuuucuuucu cuugcuaauu uauuuuaacu ucauguauca 60 uaacccagag gucgau 76 <210> 76 <211> 69 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 76 gcggaagcgu gcugggucaa cuagaaaguu cguuuuauuu ugauguuauu ugauuuuuac 60 auaacccaa 69 <210> 77 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 77 gcggaagcgu gcugggccuu caugggcuaa ugaccucuua uucuuauuua uuuguuuuca 60 uaacccagag gucgau 76 <210> 78 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 78 gcggaagcgu gcuggggcau uuccagauuu auuuauuggc aaucuauauu uuuauuuaca 60 uaacccagag gucgauggau cccccc 86 <210> 79 <211> 80 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 79 gcggaagcgu gcugggacua uuuaacacgg cuuuacaaaa cuuugcuugu uuuuuuuuug 60 uucauaaccc agaggucgau 80 <210> 80 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 80 gcggaagcgu gcugggucau aauauauauc auugcucuug uuaauuuguu uauuuuucac 60 auaacccaga ggucgau 77 <210> 81 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 81 gcggaagcgu gcugggccuu ccauccuuuu uuuaugaucc auaauuaaca uuucuuuuuc 60 auaacccaga ggucgau 77 <210> 82 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 82 gcggaagcgu gcugggucac gauauuuuuu agcuaguguc auacaguuuu uuuauuuuca 60 uaacccagag gucgau 76 <210> 83 <211> 67 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 83 gcggaagcgu gcugggcuaa aucuuauuuc uaauuuugua uuuugucuau gauuuuuuca 60 uaaccca 67 <210> 84 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 84 gcggaagcgu gcuggacaug ugacauuacu aaguaacuuu uaauuuuuaa aucuuuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 85 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 85 gcggaagcgu gcugggccgu uuuaguauuu cuuucauuua uaauuuugac uaucuuuuca 60 uaacccagag gucgau 76 <210> 86 <211> 87 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 86 gcggaagcgu gcugggucgu agugcacuaa uucaugucac auuuuuuaua uuuguuuuuc 60 auaacccaga ggucgaugga ucccccc 87 <210> 87 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 87 gcggaagcgu gcugggcugg aaacgcuucg cuuaauauuu guauuuucgu uuauuuccau 60 aacccagagg ucgauggauc ccccc 85 <210> 88 <211> 89 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 88 gcggaagcgu gcugggucuu uauugcguuu uccguuggau uugugcaacu guuuuuuuau 60 ucauaaccca gaggucgaug gaucccccc 89 <210> 89 <211> 76 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 89 gcggaagcgu gcugggucua uuacacucga gucucauuug uuuuacaugu uauuuuucca 60 uaacccagag gucgau 76 <210> 90 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 90 gcggaagcgu gcugggcuuc gauuauuaag auuuccgaac auuuuuuagu uuauuuuuca 60 uaacccagag gucgauggau cccccc 86 <210> 91 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 91 gcggaagcgu gcugggcccu auccaagauu uggaaauuua uugauguuuu uuuguugcau 60 aacccagagg ucgauggauc ccccc 85 <210> 92 <211> 81 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 92 gcggaagcgu gcugggccau ugaauuuuga uguacacagu uuauuucuuu uuugguuuac 60 auaacccaga ggucgaugga u 81 <210> 93 <211> 85 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 93 gcggaagcgu gcugggcuca uuagaaaucu auuauucguu uuguuuuucu cuguuuccau 60 aacccagagg ucgauggauc ccccc 85 <210> 94 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 94 gcggaagcgu gcugggacga agucauaaug ucguauaucu cuuauuuguu uuuuugucau 60 aacccagagg ucgau 75 <210> 95 <211> 77 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 95 gcggaagcgu gcugggucgu ccaguucuca cucaccgauu uuuguuuguu ucuuauuaac 60 auaacccaga ggucgau 77 <210> 96 <211> 88 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 96 gcggaagcgu gcugggucac uaacuuagcu uugcgauaga agcauuuacu acuuuuuuua 60 cauaacccag aggucgaugg aucccccc 88 <210> 97 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 97 gcggaagcgu gcuggggcca caaaggcggu cuuaucuuca uuuaauuuuu uaauuuucau 60 aacccagagg ucgau 75 <210> 98 <211> 75 <212> RNA <213> Artificial Sequence <220> <223> RNA aptamer for RIG-I protein <400> 98 gcggaagcgu gcugggucau uuucaucaaa uauaguuauc aaaauuguua uuguuuucau 60 aacccagagg ucgau 75 <210> 99 <211> 925 <212> PRT <213> Artificial Sequence <220> <223> full length amino acid sequence of RIG-I protein of Homo sapiens <400> 99 Met Thr Thr Glu Gln Arg Arg Ser Leu Gln Ala Phe Gln Asp Tyr Ile   1 5 10 15 Arg Lys Thr Leu Asp Pro Thr Tyr Ile Leu Ser Tyr Met Ala Pro Trp              20 25 30 Phe Arg Glu Glu Glu Val Gln Tyr Ile Gln Ala Glu Lys Asn Asn Lys          35 40 45 Gly Pro Met Glu Ala Ala Thr Leu Phe Leu Lys Phe Leu Leu Glu Leu      50 55 60 Gln Glu Glu Gly Trp Phe Arg Gly Phe Leu Asp Ala Leu Asp His Ala  65 70 75 80 Gly Tyr Ser Gly Leu Tyr Glu Ala Ile Glu Ser Trp Asp Phe Lys Lys                  85 90 95 Ile Glu Lys Leu Glu Glu Tyr Arg Leu Leu Leu Lys Arg Leu Gln Pro             100 105 110 Glu Phe Lys Thr Arg Ile Ile Pro Thr Asp Ile Ile Ser Asp Leu Ser         115 120 125 Glu Cys Leu Ile Asn Gln Glu Cys Glu Glu Ile Leu Gln Ile Cys Ser     130 135 140 Thr Lys Gly Met Met Ala Gly Ala Glu Lys Leu Val Glu Cys Leu Leu 145 150 155 160 Arg Ser Asp Lys Glu Asn Trp Pro Lys Thr Leu Lys Leu Ala Leu Glu                 165 170 175 Lys Glu Arg Asn Lys Phe Ser Glu Leu Trp Ile Val Glu Lys Gly Ile             180 185 190 Lys Asp Val Glu Thr Glu Asp Leu Glu Asp Lys Met Glu Thr Ser Asp         195 200 205 Ile Gln Ile Phe Tyr Gln Glu Asp Pro Glu Cys Gln Asn Leu Ser Glu     210 215 220 Asn Ser Cys Pro Pro Ser Glu Val Ser Asp Thr Asn Leu Tyr Ser Pro 225 230 235 240 Phe Lys Pro Arg Asn Tyr Gln Leu Glu Leu Ala Leu Pro Ala Met Lys                 245 250 255 Gly Lys Asn Thr Ile Ile Cys Ala Pro Thr Gly Cys Gly Lys Thr Phe             260 265 270 Val Ser Leu Leu Ile Cys Glu His His Leu Lys Lys Phe Pro Gln Gly         275 280 285 Gln Lys Gly Lys Val Val Phe Phe Ala Asn Gln Ile Pro Val Tyr Glu     290 295 300 Gln Gln Lys Ser Val Phe Ser Lys Tyr Phe Glu Arg His Gly Tyr Arg 305 310 315 320 Val Thr Gly Ile Ser Gly Ala Thr Ala Glu Asn Val Pro Val Glu Gln                 325 330 335 Ile Val Glu Asn Asn Asp Ile Ile Ile Leu Thr Pro Gln Ile Leu Val             340 345 350 Asn Asn Leu Lys Lys Gly Thr Ile Pro Ser Leu Ser Ile Phe Thr Leu         355 360 365 Met Ile Phe Asp Glu Cys His Asn Thr Ser Lys Gln His Pro Tyr Asn     370 375 380 Met Ile Met Phe Asn Tyr Leu Asp Gln Lys Leu Gly Gly Ser Ser Gly 385 390 395 400 Pro Leu Pro Gln Val Ile Gly Leu Thr Ala Ser Val Gly Val Gly Asp                 405 410 415 Ala Lys Asn Thr Asp Glu Ala Leu Asp Tyr Ile Cys Lys Leu Cys Ala             420 425 430 Ser Leu Asp Ala Ser Val Ile Ala Thr Val Lys His Asn Leu Glu Glu         435 440 445 Leu Glu Gln Val Val Tyr Lys Pro Gln Lys Phe Phe Arg Lys Val Glu     450 455 460 Ser Arg Ile Ser Asp Lys Phe Lys Tyr Ile Ile Ala Gln Leu Met Arg 465 470 475 480 Asp Thr Glu Ser Leu Ala Lys Arg Ile Cys Lys Asp Leu Glu Asn Leu                 485 490 495 Ser Gln Ile Gln Asn Arg Glu Phe Gly Thr Gln Lys Tyr Glu Gln Trp             500 505 510 Ile Val Thr Val Gln Lys Ala Cys Met Val Phe Gln Met Pro Asp Lys         515 520 525 Asp Glu Glu Ser Arg Ile Cys Lys Ala Leu Phe Leu Tyr Thr Ser His     530 535 540 Leu Arg Lys Tyr Asn Asp Ala Leu Ile Ile Ser Glu His Ala Arg Met 545 550 555 560 Lys Asp Ala Leu Asp Tyr Leu Lys Asp Phe Phe Ser Asn Val Arg Ala                 565 570 575 Ala Gly Phe Asp Glu Ile Glu Gln Asp Leu Thr Gln Arg Phe Glu Glu             580 585 590 Lys Leu Gln Glu Leu Glu Ser Val Ser Arg Asp Pro Ser Asn Glu Asn         595 600 605 Pro Lys Leu Glu Asp Leu Cys Phe Ile Leu Gln Glu Glu Tyr His Leu     610 615 620 Asn Pro Glu Thr Ile Thr Ile Leu Phe Val Lys Thr Arg Ala Leu Val 625 630 635 640 Asp Ala Leu Lys Asn Trp Ile Glu Gly Asn Pro Lys Leu Ser Phe Leu                 645 650 655 Lys Pro Gly Ile Leu Thr Gly Arg Gly Lys Thr Asn Gln Asn Thr Gly             660 665 670 Met Thr Leu Pro Ala Gln Lys Cys Ile Leu Asp Ala Phe Lys Ala Ser         675 680 685 Gly Asp His Asn Ile Leu Ile Ala Thr Ser Val Ala Asp Glu Gly Ile     690 695 700 Asp Ile Ala Gln Cys Asn Leu Val Ile Leu Tyr Glu Tyr Val Gly Asn 705 710 715 720 Val Ile Lys Met Ile Gln Thr Arg Gly Arg Gly Arg Ala Arg Gly Ser                 725 730 735 Lys Cys Phe Leu Leu Thr Ser Asn Ala Gly Val Ile Glu Lys Glu Gln             740 745 750 Ile Asn Met Tyr Lys Glu Lys Met Met Asn Asp Ser Ile Leu Arg Leu         755 760 765 Gln Thr Trp Asp Glu Ala Val Phe Arg Glu Lys Ile Leu His Ile Gln     770 775 780 Thr His Glu Lys Phe Ile Arg Asp Ser Gln Glu Lys Pro Lys Pro Val 785 790 795 800 Pro Asp Lys Glu Asn Lys Lys Leu Leu Cys Arg Lys Cys Lys Ala Leu                 805 810 815 Ala Cys Tyr Thr Ala Asp Val Arg Val Ile Glu Glu Cys His Tyr Thr             820 825 830 Val Leu Gly Asp Ala Phe Lys Glu Cys Phe Val Ser Arg Pro His Pro         835 840 845 Lys Pro Lys Gln Phe Ser Ser Phe Glu Lys Arg Ala Lys Ile Phe Cys     850 855 860 Ala Arg Gln Asn Cys Ser His Asp Trp Gly Ile His Val Lys Tyr Lys 865 870 875 880 Thr Phe Glu Ile Pro Val Ile Lys Ile Glu Ser Phe Val Val Glu Asp                 885 890 895 Ile Ala Thr Gly Val Gln Thr Leu Tyr Ser Lys Trp Lys Asp Phe His             900 905 910 Phe Glu Lys Ile Pro Phe Asp Pro Ala Glu Met Ser Lys         915 920 925 <210> 100 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> 5'-primer having T7 promoter for preparing RNA aptamer <400> 100 ggtaatacga ctcactatag ggagagcgca agcgtgctgg g 41 <210> 101 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> 3'-primer for preparing RNA aptamer <400> 101 ggggggatcc atcgacctct gggttatg 28 <210> 102 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for IFNb gene <400> 102 tgctctcctg ttgtgcttct cc 22 <210> 103 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for IFNb gene <400> 103 catctcatag atggtcaatg cgg 23 <210> 104 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer for RANTES gene <400> 104 atgaaggtct ccaaagag 18 <210> 105 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for RANTES gene <400> 105 gctcatctcc aaagag 16 <210> 106 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for TFNa gene <400> 106 caccatcagc cgcatc 16 <210> 107 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> primer for TFNa gene <400> 107 cagggcaatg atccca 16 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer for NDV-GFP gene <400> 108 ttgatggcag gcctcttgc 19 <210> 109 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer for NDV-GFP gene <400> 109 ggaggatgtt ggacgcatt 19 <210> 110 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for Actin gene <400> 110 tcatgaagtg tgacgttgac atccgt 26 <210> 111 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for Actin gene <400> 111 cctagaagca tttgcggtgc acgatg 26 <210> 112 <211> 19 <212> RNA <213> Artificial Sequence <220> Non-specific siRNA <400> 112 gaauuugcac gaaaacgcc 19 <210> 113 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> MDA-5 specific siRNA <400> 113 gaggugcagu auauucagg 19 <210> 114 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer for exon2-deleted RIG-I <400> 114 cctggtttag ggagggttat tctggacttt 30 <210> 115 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer for exon2-deleted RIG-I <400> 115 aaagtccaga ataaccctcc ctaaaccagg 30 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer for RD domain deleted RIG-I gene <400> 116 gctctagata agccaccatg gat 23 <210> 117 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer for RD domain deleted RIG-I gene <400> 117 ccatcgattc atcttgctct tcctctgcc 29 <210> 118 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> priemr for RNA helicase domain deleted RIG-I gene (CARD) <400> 118 gaaggcctat ggattataag gatgat 26 <210> 119 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> priemr for RNA helicase domain deleted RIG-I gene (CARD) <400> 119 ccatcgattc aagacacttc tgaagg 26 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for CARD domain deleted RIG-I gene (helicase) <400> 120 gaaggcctat ggattataag gatgat 26 <210> 121 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer for CARD domain deleted RIG-I gene (helicase) <400> 121 ccatcgattc atttggacat ttctgc 26

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 61의 염기서열로 이루어지는, RIG-I(Retinoic-acid inducible gene-I) 단백질에 특이적으로 결합하는 RNA 앱타머.An RNA aptamer specifically binding to a Retinoic-acid inducible gene-I (RIG-I) protein consisting of the nucleotide sequence of SEQ ID NO: 61. 서열번호 61의 염기서열로 이루어지는 RNA 앱타머를 유효성분으로 함유하는, 면역 유도제. An immune inducer containing an RNA aptamer consisting of the nucleotide sequence of SEQ ID NO: 61 as an active ingredient. 제8항에 있어서,
상기 면역 유도제는 RIG-I 유전자, MDA5 유전자, 인터페론 유전자, 및 란티스 유전자로 이루어진 군에서 선택되는 1종 이상의 면역 단백질의 합성을 증가시키는 것을 특징으로 하는 것인, 면역 유도제.
9. The method of claim 8,
The immune inducing agent is an immune inducing agent, characterized in that for increasing the synthesis of one or more immune proteins selected from the group consisting of RIG-I gene, MDA5 gene, interferon gene, and lantis gene.
서열번호 61의 염기서열로 이루어지는 RNA 앱타머를 유효성분으로 함유하는, 항 RNA 바이러스제.An anti-RNA viral agent containing an RNA aptamer consisting of the nucleotide sequence of SEQ ID NO: 61 as an active ingredient. 제10항에 있어서,
상기 항 RNA 바이러스제는 C형 간염 바이러스 (hepatitis C virus, HCV), 급성 호흡기 중후군 (SARS) 바이러스, 인플루엔자 바이러스 (Influenza virus), 웨스트 나일 바이러스 (West Nile Virus), 에볼라 바이러스 (Ebola Virus), 소낭성 구내염 바이러스 (Vesicular Stomatitis Virus), 및 뉴캐슬병 바이러스 (Newcastle Disease Virus)로 이루어진 군에서 선택된 1종 이상의 RNA 바이러스에 대하여 항바이러스 활성을 갖는 것인,
항 RNA 바이러스제.
The method of claim 10,
The anti-RNA virus is hepatitis C virus (HCV), acute respiratory syndrome (SARS) virus, Influenza virus, West Nile Virus, Ebola Virus, vesicular It has antiviral activity against at least one RNA virus selected from the group consisting of Vesicular Stomatitis Virus, and Newcastle Disease Virus,
Anti-RNA viral agents.
제7항에 따른 RNA 앱타머를 시료에 적용하는 단계; 및
이중결합을 형성하는 RNA 앱타머의 위치 또는 수준을 확인하여, 시료 내 RIG-I에 의하여 코딩되는 단백질의 위치 또는 양을 결정하는 단계
를 포함하는, RIG-I 단백질 분석 방법.
Applying the RNA aptamer according to claim 7 to a sample; And
Identifying the position or level of the RNA aptamer forming the double bond to determine the position or amount of the protein encoded by RIG-I in the sample
Including, RIG-I protein analysis method.
서열번호 61의 염기서열로 이루어지는 RNA 앱타머를 유효성분으로 함유하는 유전자 발현 조절제. A gene expression regulator comprising an RNA aptamer consisting of the nucleotide sequence of SEQ ID NO: 61 as an active ingredient. 제13항에 있어서,
상기 유전자는 RIG-I 유전자, MDA5 유전자, 인터페론 유전자, 및 란티스 유전자로 이루어진 군에서 선택되는 것인,
유전자 발현 조절제.
The method of claim 13,
The gene is selected from the group consisting of RIG-I gene, MDA5 gene, interferon gene, and lantis gene,
Gene expression regulators.
제8항에 있어서,
서열번호 54 내지 59 또는 서열번호 63로 이루어지는 군에서 선택된 염기서열로 이루어지는 RNA 앱타머를 유효성분으로 더 함유하는 것을 특징으로 하는, 면역 유도제.
9. The method of claim 8,
Immune inducer, characterized in that it further comprises an RNA aptamer consisting of a base sequence selected from the group consisting of SEQ ID NO: 54 to 59 or SEQ ID NO: 63 as an active ingredient.
KR1020100032936A 2010-04-09 2010-04-09 RNA Aptamer Targeting RIG-I Protein and Use thereof KR101261589B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100032936A KR101261589B1 (en) 2010-04-09 2010-04-09 RNA Aptamer Targeting RIG-I Protein and Use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100032936A KR101261589B1 (en) 2010-04-09 2010-04-09 RNA Aptamer Targeting RIG-I Protein and Use thereof

Publications (2)

Publication Number Publication Date
KR20110113504A KR20110113504A (en) 2011-10-17
KR101261589B1 true KR101261589B1 (en) 2013-05-06

Family

ID=45028843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100032936A KR101261589B1 (en) 2010-04-09 2010-04-09 RNA Aptamer Targeting RIG-I Protein and Use thereof

Country Status (1)

Country Link
KR (1) KR101261589B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079864A1 (en) * 2016-10-24 2018-05-03 김성천 TNF-α-BINDING APTAMER, AND THERAPEUTIC USE FOR SAME

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510513B1 (en) * 2013-02-15 2015-04-10 경희대학교 산학협력단 Novel quantum dot-aptamer conjugate and use thereof
KR101517692B1 (en) * 2013-10-25 2015-05-04 아주대학교산학협력단 Method for screening therapeutic agent of liver cancer by inducing HBx degradation via stabilization of MARCH5 expression
CN107058329B (en) * 2016-08-24 2020-06-19 华南农业大学 Aptamer specifically binding to Newcastle disease virus and screening method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141146A1 (en) 2008-05-21 2009-11-26 Gunther Hartmann 5' triphosphate oligonucleotide with blunt end and uses thereof
WO2010002851A1 (en) 2008-06-30 2010-01-07 Alnylam Pharmaceuticals, Inc. Silencing and rig-1 activation by dual function oligonucleotides
WO2010028079A2 (en) 2008-09-02 2010-03-11 Alnylam Pharmaceuticals, Inc Synthetic methods and derivatives of triphosphate oligonucleotides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141146A1 (en) 2008-05-21 2009-11-26 Gunther Hartmann 5' triphosphate oligonucleotide with blunt end and uses thereof
WO2010002851A1 (en) 2008-06-30 2010-01-07 Alnylam Pharmaceuticals, Inc. Silencing and rig-1 activation by dual function oligonucleotides
WO2010028079A2 (en) 2008-09-02 2010-03-11 Alnylam Pharmaceuticals, Inc Synthetic methods and derivatives of triphosphate oligonucleotides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of virology, Vol.83, pp.4174-4184 (2009.05.)*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079864A1 (en) * 2016-10-24 2018-05-03 김성천 TNF-α-BINDING APTAMER, AND THERAPEUTIC USE FOR SAME
US11028395B2 (en) 2016-10-24 2021-06-08 Biois Co., Ltd. TNF-alpha-binding aptamer, and therapeutic use for same

Also Published As

Publication number Publication date
KR20110113504A (en) 2011-10-17

Similar Documents

Publication Publication Date Title
Marzo et al. Antisense oligonucleotides specific for transforming growth factor β2 inhibit the growth of malignant mesothelioma both in vitro and in vivo
Borkham-Kamphorst et al. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis
EP3246409A1 (en) Antibiotic-resistance-free vectors
JP6426001B2 (en) Compositions and methods for treating glioma
Wysoczynski et al. Selective upregulation of interleukin‐8 by human rhabdomyosarcomas in response to hypoxia: therapeutic implications
JP2021512123A (en) Compositions and Methods for Inducing Tripatite Motif-Containing Protein 16 (TRIM16) Signal Transduction
KR101261589B1 (en) RNA Aptamer Targeting RIG-I Protein and Use thereof
KR20180100316A (en) Agents for the treatment of diseases associated with unwanted cell proliferation
US20110184045A1 (en) Silencng and rig-i activation by dual function oligonucleotides
JP2015221026A (en) METHOD OF IMPROVING TRANSLATIONAL EFFICIENCY OF ARTIFICIAL SYNTHETIC mRNA
US20140255341A1 (en) Tumor Selective Chemokine Modulation
Liu et al. IL‑32γ promotes integrin αvβ6 expression through the activation of NF‑κB in HSCs
WO2010042530A2 (en) Nlrc5 as a target for immune therapy
JPWO2019182055A1 (en) Composition for suppressing inflammation
WO2022137964A1 (en) Pharmaceutical composition for preventing or treating cartilage/bone/joint diseases, and method for screening drug for preventing or treating cartilage/bone/joint diseases
JP5098033B2 (en) siRNA, recombinant vector expressing this siRNA, NR4A2 gene expression inhibitor, IL-17 gene expression inhibitor, and CD4 positive T cell proliferation inhibitor
RU2723091C2 (en) Oligonucleotide sequences aimed at the transcription factor tsc22d4, for treating insulin resistance
KR101535346B1 (en) Pharmaceutical use of c-Yes for differentiation therapy of cancer stem cell
JP2008543281A (en) Liver astrocyte-specific promoter and use thereof
WO2008048685A2 (en) Ox40 aptamers
Uppala Mechanisms Regulating Type I Interferon Signaling in Human Keratinocytes Triggered by Exogenous DNA
Hong Act1-Mediated RNA Metabolism in IL-17-Driven Inflammatory Diseases
JPWO2004027061A1 (en) Screening method for therapeutic drugs for antiproliferative diseases
JP5794532B2 (en) Interferon-α modulator
WO2012175735A1 (en) A20 inhibitors for the treatment of respiratory viral infections

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160421

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170313

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180307

Year of fee payment: 6