KR101259855B1 - Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform - Google Patents

Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform Download PDF

Info

Publication number
KR101259855B1
KR101259855B1 KR1020110039338A KR20110039338A KR101259855B1 KR 101259855 B1 KR101259855 B1 KR 101259855B1 KR 1020110039338 A KR1020110039338 A KR 1020110039338A KR 20110039338 A KR20110039338 A KR 20110039338A KR 101259855 B1 KR101259855 B1 KR 101259855B1
Authority
KR
South Korea
Prior art keywords
yarn
coating
fabric
silicone
heat
Prior art date
Application number
KR1020110039338A
Other languages
Korean (ko)
Other versions
KR20120121491A (en
Inventor
진성우
김경돈
장순호
김은민
전재균
Original Assignee
주식회사 소포스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소포스 filed Critical 주식회사 소포스
Priority to KR1020110039338A priority Critical patent/KR101259855B1/en
Publication of KR20120121491A publication Critical patent/KR20120121491A/en
Application granted granted Critical
Publication of KR101259855B1 publication Critical patent/KR101259855B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/78Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon; with halides or oxyhalides of silicon; with fluorosilicates
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B17/00Protective clothing affording protection against heat or harmful chemical agents or for use at high altitudes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/904Flame retardant

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명은 아라미드섬유를 함유하는 실로 제직된 직물을 실리콘계코팅액으로 코팅하여 난연성 및 내열성을 저하시키지 않으면서도 필링성이 우수한 산업안전작업복용 직물을 제공하는 것이다.The present invention provides a fabric for industrial safety work wear which is coated with a silicone-based coating liquid containing a aramid fiber-containing yarn, and has excellent peeling properties without deteriorating flame retardancy and heat resistance.

Description

산업안전작업복용 직물의 고내열성 실리콘코팅방법{Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform} TECHNICAL FIELD [0001] The present invention relates to a high-heat-resistant silicone coating method for a fabric for industrial safety work,

본 발명은 산업안전작업복에 적용할 수 있는 직물에 내열성의 저하가 없으면서 필링방지에 의한 내구성 향상을 위한 실리콘코팅방법에 관한 것이다. The present invention relates to a silicone coating method for improving durability by preventing peeling while not deteriorating the heat resistance of a fabric applicable to industrial safety workwear.

산업현장에서 작업자가 착용하는 안전작업복은 고강도, 내열성 및 내화학성을 필요로 한다. 예를 들면 위험한 용도에 사용되는 방탄복, 공업용 작업복, 소방복 및 군인의 보호복은 면이나 모와 같은 비합성 섬유로 된 실로 짠 직물로 만든 후 이들 직물을 통상적인 할로겐과 인 또는 이들 중 하나에 기초한 내화제로 처리하여 사용하였는데, 이러한 작업복은 활동에 제한을 받고 일반적인 비내열성 직물보다 더 무거운 문제가 있었다. Safety work clothes worn by workers at industrial sites require high strength, heat resistance and chemical resistance. For example, protective garments used in dangerous applications, industrial garments, fire extinguishers and military garments may be made of yarn woven of non-synthetic fibers, such as cotton or wool, and then those fabrics may be treated with conventional halogen and phosphorus, The work clothes were limited in activity and were heavier than normal non-heat resistant fabrics.

상기 산업안전작업복 중에서도 특히 용접 작업시 착용하는 용접복은 내열성 및 난연성이 더욱 필요로 하는 작업복에 속한다. 특히 아크 용접 작업시에는 용접작업 과정에서 많은 불꽃이 튀며, 전기에 의한 감전, 용접시 발생되는 고온의 열기 및 작업장에서 예상치 못한 외부 충격 등의 위험요소가 상존하고 있다.Among the above-mentioned industrial safety work clothes, a welded garment to be worn during the welding work belongs to a work garment which requires more heat resistance and flame retardancy. Especially, in arc welding work, many sparks are splashed during the welding work, and there are risks such as electric shock, high temperature heat generated in welding, and unexpected external impact in the workplace.

이러한 위험요소로부터 작업자를 보호하기 위해 용접복, 용접 마스크 및 용접 장갑 등의 용접용 보호장구(Welding Gear)를 착용하게 되며, 이 중 용접복은 특히 자신의 신체의 대부분을 보호하기 때문에 다른 보호장구에 비해 더 중요하다. 종래의 용접복은 동물의 가죽으로 제작되었는데, 이와 같이 가죽으로 제작된 용접복은 용접 작업시 불꽃이 튀어 닿게 되면 고온의 열에 의해 쉽게 오그라들거나 소실되며, 무겁고 불편할 뿐 아니라 통풍이 되지 않는 문제점이 있었다.In order to protect workers from these hazards, Welding Gears such as welding belts, welding masks and welding gloves are worn. Among them, welding belts protect most of their bodies, . Conventional welding belts are made of animal leather. Such welding belts made of leather are easily shrunken or lost due to high-temperature heat when the spark plug is touched during the welding work, and are not only heavy and inconvenient but also do not ventilate .

이에 다양한 섬유로 만든 직물에 난연제처리를 하는 경우가 많았는데, 난연제는 유기계(인계, 질소계, 할로겐계) 및 무기계(금속수산화물, 안티몬계)로 구별된다. 유기계 난연제 중 대표적인 할로겐계 난연제는 연소의 추진역할을 하는 활성라디칼(OH·, H·)을 할로겐 화합물인 HX가 연소과정에서 포착함으로서 그 난연효과를 발휘한다. 또한 HX는 불연성가스를 발생시킴으로써 가연성가스를 희석시키고 산소도 차단하는 효과를 가진다. 그러나 이때 발생하는 할로겐가스는 금형 및 전선 등의 금속을 부식시켜 베이스폴리머나 장비에 치명적인 영향을 줄 수 있을 뿐만 아니라 인체에도 유해한 문제점을 가진다. Therefore, flame retardants are often applied to fabrics made from various fibers. Flame retardants are classified into organic (phosphorous, nitrogen, halogen) and inorganic (metal hydroxide, antimony). Representative halogen-based flame retardants among organic flame retardants exhibit their flame-retarding effect by capturing the active radicals (OH., H.) Which act as a propellant of combustion in the combustion process of HX, which is a halogen compound. In addition, HX has the effect of diluting combustible gas and blocking oxygen by generating incombustible gas. However, the halogen gas generated at this time has a detrimental effect on the human body as well as a fatal effect on the base polymer or equipment by corroding metals such as molds and electric wires.

한편, 무기계 난연제는 난연제 중에서 사용량이 가장 많은 수산화알루미늄Al(OH)3는 470cal/g의 흡열량에 의해 난연효과를 크게 나타내고 있는데, 이러한 수산화금속화합물의 난연효과는 입자 크기나 입도 분포, 불순물, Na2O의 감량 등이 있으며 Al(OH)3의 난연효과를 높이기 위한 또 다른 방법으로는 충진량을 높이는 방법이 있고, 기계적 성질을 향상시키기 위해 표면처리기술이 연구되고 있는데, 충분한 난연성 및 내열성을 확보하기 위해서는 충진량을 높이거나 입자크기를 작게 해야 하지만, 이 경우 코팅 분산성 문제를 초래하므로 적정 함량을 사용하는 것이 관건이다.On the other hand, in the inorganic flame retardant, aluminum hydroxide (Al) (OH) 3, which has the largest amount of flame retardant, exhibits a large flame retarding effect due to the heat absorption amount of 470 cal / g. The flame retarding effect of the metal hydroxide compound depends on the particle size, And the reduction of Na 2 O. Another method to increase the flame retarding effect of Al (OH) 3 is to increase the filling amount. To improve the mechanical properties, surface treatment technology is being studied. It has sufficient flame retardancy and heat resistance However, in order to achieve the coating dispersion problem, it is important to use an appropriate amount.

또한, 안티몬계 난연제는 주로 할로겐계 난연제와 병용하여 사용하거나 할로겐을 포함하고 있는 PVC, CPE와 같은 수지에 사용됨으로써 큰 난연효과의 상승작용을 얻을 수 있어 많이 사용되어져 왔으나 안티몬계 난연제는 가격이 불안정하고 연소시 유독가스를 배출하는 문제점을 가지고 있다. Antimony based flame retardants have been widely used because they are used in combination with halogen-based flame retardants or halogen-containing resins such as PVC and CPE to obtain a synergistic effect of a large flame retardant effect. However, antimony- And there is a problem that toxic gas is emitted when it is burned.

이러한 이유로 최근에는 비연소성 및 내열성이 우수한 파라-아라미드, 메타-아라미드, 탄화섬유, PBO, 방염성 레이온등의 고강도ㆍ고내열성 섬유를 이용한 용접복을 개발하기에 이르렀으나 이러한 직물은 우수한 열적안정성은 보였지만 단섬유 형태여서 방적사로 제조하여 사용하는 경우가 많았으며, 이러한 고강도ㆍ고내열성 섬유의 방적사의 경우에 필링성이 좋지 못한 문제점을 가지고 있었으며, 이러한 필링성을 개선하기 위해서는 수지가공을 하여야 하였으나 내열성이 저하되는 문제점을 가지고 있었다.For this reason, in recent years, the development of welded fabrics using high-strength and high-temperature-resistant fibers such as para-aramid, meta-aramid, carbon fiber, PBO, and flame retardant rayon excellent in non-combustibility and heat resistance has been developed. In case of spun yarn of high strength and high heat resistance fiber, the filing property was not good. In order to improve the peeling property, it was necessary to process resin, but heat resistance And had a problem of deteriorating.

그러므로 본 발명은 상기 종래기술의 문제점을 해결하여 인체에 무해하면서도 친환경적일뿐만 아니라 난연성 및 내열성을 저하시키지 않으면서도 필링성이 개선된 산업안전작업복용 직물의 고내열성 실리콘코팅방법을 제공하는 것을 기술적과제로 한다.
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a highly heat-resistant silicone coating method for fabrics for occupational safety work which is harmless to the human body and is environmentally friendly as well as improving peelability without deteriorating flame retardancy and heat resistance. .

따라서, 본 발명에 의하면 고강도ㆍ고내열성 실로 제직된 직물을 하기 화학식 1 기재의 실리콘폴리머 85~95중량% 및 하기 화학식 2의 구조를 갖는 가교제 5~15중량%로 이루어진 실리콘계코팅액으로 코팅하는 것을 특징으로 하는 산업안전작업복용 직물의 고내열성 실리콘코팅방법이 제공된다.Therefore, according to the present invention, the fabric woven with a high strength and high heat resistance yarn is coated with a silicon-based coating solution composed of 85 to 95% by weight of a silicone polymer represented by the following formula 1 and 5 to 15% by weight of a crosslinking agent having a structure represented by the following formula Resistant silicone coating composition is provided.

[화학식 1][Chemical Formula 1]

Figure 112011031225627-pat00001
Figure 112011031225627-pat00001

[상기 R1은 H 또는 CH3이며,[Wherein R 1 is H or CH 3,

상기 R2는 H, m = 650~800 임.]
And R < 2 > is H, m = 650 to 800.

[화학식 2](2)

Figure 112011031225627-pat00002
Figure 112011031225627-pat00002

[상기 R3는 H 또는 CH3이고, o = 40~70 임.]
[Wherein R 3 is H or CH 3 and o = 40 to 70.]

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 고강도ㆍ고내열성 실로 제직된 직물을 실리콘계코팅액으로 코팅하여 우수한 난연성 및 내열성을 가지면서도 필링성이 우수한 산업안전작업복용 직물을 제공하는 것이다.
The present invention provides a fabric for industrial safety workwear having excellent flame retardancy and heat resistance and excellent peelability by coating a fabric woven with a high strength and high heat resistance yarn with a silicone coating liquid.

본 발명에서는 고강도ㆍ고내열성 실로 제직된 직물을 하기 화학식 1 기재의 실리콘폴리머 85~95중량% 및 하기 화학식 2의 구조를 갖는 가교제 5~15중량%로 이루어진 실리콘계코팅액으로 코팅한다.In the present invention, the fabric woven with a high strength and high heat resistance yarn is coated with a silicone-based coating solution composed of 85 to 95% by weight of a silicone polymer represented by the following formula (1) and 5 to 15% by weight of a crosslinking agent having a structure represented by the following formula (2).

[화학식 1][Chemical Formula 1]

Figure 112011031225627-pat00003
Figure 112011031225627-pat00003

[상기 R1은 H 또는 CH3이며,[Wherein R 1 is H or CH 3,

상기 R2는 H, m = 650~800 임.]
And R < 2 > is H, m = 650 to 800.

[화학식 2](2)

Figure 112011031225627-pat00004
Figure 112011031225627-pat00004

[상기 R3는 H 또는 CH3이고, o = 40~70 임.]
[Wherein R 3 is H or CH 3 and o = 40 to 70.]

상기 실리콘계 코팅액의 주성분인 화학식 1 기재의 실리콘폴리머는 규소(Si)와 산소(O)의 전기음성도 차이가 커 에너지적으로 매우 안정되어 열과 산화에 강하며 고온에서 사용되는 경우 안정적인 폴리머이다. 또한, 분자 구조상 실록산(Si-O-Si)에 기인하는 무기적 특성 때문에 내열성, 화학적 안정성, 전기절연성, 내마모성이 우수하다. 특히 상기 화학식 1기재의 실리콘폴리머는 일반 실리콘폴리머에 비하여 이중결합을 가지고 있기 때문에 가교제와 반응하여 네트워크 구조를 형성할 수 있어 고분자 피막형태로 직물표면에 균일하게 도포되어 고내열성의 저하방지에 바람직하다. The silicon polymer of formula (1), which is a main component of the silicon-based coating solution, is a stable polymer when it is used at high temperatures because it has strong energy and is resistant to heat and oxidation because of the difference in electronegativity between silicon (Si) and oxygen (O). In addition, it is excellent in heat resistance, chemical stability, electrical insulation and abrasion resistance because of the inorganic property due to siloxane (Si-O-Si) on the molecular structure. In particular, since the silicone polymer of Formula 1 has a double bond as compared with a general silicone polymer, it can form a network structure by reacting with a crosslinking agent, and is uniformly applied to the surface of a fabric in the form of a polymer film to prevent deterioration of high heat resistance .

일반적으로 주성분인 실리콘계 코팅액에 내열성을 상승시키기 위해서는 난연제를 사용하는데, 이러한 난연제는 폴리머의 연소과정 중 가열ㆍ분해ㆍ발열 등의 특정한 연소단계를 방해함으로써 연소를 억제하거나 완화시켜 난연효과를 나타낸다. Generally, a flame retardant is used to increase the heat resistance of the silicone coating liquid, which is the main component. Such a flame retardant inhibits or softens combustion by preventing specific combustion stages such as heating, decomposition, and heat generation during the combustion process of the polymer.

그러나 본 발명에서는 상기 난연제를 함유하지 않는 실리콘계 코팅액을 제공함으로써 환경문제나 독성문제가 없는 고내열성을 발현하는 코팅방법을 제공하는 것이다. However, the present invention provides a silicone-based coating solution containing no flame retardant to provide a coating method exhibiting high heat resistance without environmental problems or toxicity problems.

특히, 난연제를 사용하는 경우에는 난연제가 입자 형태로 코팅제와 함께 직물표면에 분포하게 되어 균일한 코팅처리가 되지 못하고, 이로 인해 필링성 문제가 해결되지 않는데 반해, 본 발명에 의해 코팅된 직물은 직물 표면에 코팅제가 균일하게 존재하도록 하여 직물의 필링성 문제를 해결하는 것이다.In particular, in the case of using a flame retardant agent, the flame retardant agent is dispersed on the surface of the fabric together with the coating agent in the form of particles, so that the uniformity of the coating treatment can not be obtained and thus the problem of peeling can not be solved. And the coating agent is uniformly present on the surface, thereby solving the problem of peeling of the fabric.

기존의 고강도ㆍ고내열성 실을 사용한 직물과 같이 직물 표면에 필링이 발생하게 되면 마찰 강도가 감소하고, 피부에 자극적이며 외관상 좋지 않다. 이러한 문제점을 해결하기 위하여 본 발명에서는 고강도ㆍ고내열성 실을 사용한 직물을 실리콘계 코팅제로 표면을 피복하였다. 고강도ㆍ고내열성 실은 주로 방적사로서 필라멘트사에 비하여 표면에 단섬유가 많이 분포하기 때문에 외부 힘에 의해 섬유끼리 서로 엉키는 현상이 발생하기 쉽다. 이러한 필링을 방지하기 위하여 직물 표면에 코팅층을 형성하여 표면에 위치한 섬유를 고정시켜 엉킴 현상을 감소시킬 수 있으며, 코팅 층이 외부로부터 섬유를 보호할 수 있어 필링 현상을 감소시킬 수 있는 것이다. When peeling occurs on the surface of a fabric as in the case of a fabric using a conventional high-strength and high-heat-resistant yarn, the friction strength is reduced, the skin is irritating, and the appearance is not good. In order to solve such a problem, in the present invention, a fabric using a high-strength and high-temperature-resistant yarn is coated with a silicone-based coating agent. The high strength and high heat resistance yarn are mainly spun yarn, because the short fibers are distributed on the surface much more than the filament yarn, so that the fibers tend to tangle with each other due to the external force. In order to prevent such peeling, a coating layer may be formed on the surface of the fabric to fix the fibers located on the surface to reduce entanglement, and the coating layer can protect the fibers from the outside, thereby reducing the peeling phenomenon.

본 발명의 실리콘계코팅액은 화학식 1 기재의 실리콘폴리머 85~95중량% 및 가교제 5~15중량%로 이루어지는데, 가교제는 화학식 1 기재의 실리콘폴리머와 가교를 이룰수 있도록 하는 것으로서 하기 화학식 2의 구조를 갖고 백금촉매를 미량함유하는 것으로서 pH : 7.0±0.5, 비중 : 0.996±0.001, 점도 : 1,000cP 미만, 분자량 : 3,000~5,000인 것이 실리콘계 코팅제를 완전 경화시키는데 특히 바람직하다.
The silicone-based coating liquid of the present invention comprises 85 to 95% by weight of the silicone polymer of Formula 1 and 5 to 15% by weight of a crosslinking agent. The crosslinking agent is capable of crosslinking with the silicone polymer of Formula 1, Containing a trace amount of a platinum catalyst and having a pH of 7.0 ± 0.5, a specific gravity of 0.996 ± 0.001, a viscosity of less than 1,000 cP and a molecular weight of 3,000 to 5,000 is particularly preferable for completely curing a silicone coating agent.

[화학식 2](2)

Figure 112011031225627-pat00005
Figure 112011031225627-pat00005

[상기 R3는 H 또는 CH3이고, o = 40~70 임.]
[Wherein R 3 is H or CH 3 and o = 40 to 70.]

상기 실리콘폴리머는 비중 0.97~1.07, 점도 9,000~10,000cP, 분자량 50,000~70,000 및 평균분자량 55,000~65,000인 것이 필름 형성능에 바람직하다. 본 발명의 상기 화학식 1의 실리콘폴리머는 말단에 이중결합을 포함하고 있기 때문에 코팅제의 주구조가 되는 선(linear)상 폴리머가 가교제와 반응하여 블록코폴리머(block-copolymer)를 형성하여 네트워크 구조를 형성할 수 있다. 선상의 폴리머 구조는 열이나 힘에 의해 결합이 쉽게 끊어지기 쉬우나, 상기 블록코폴리머는 네트워크 구조를 형성해 거대고분자로 변화해 구조적으로 안정되어 필름형성능을 향상시키게 된다.
The silicone polymer preferably has a specific gravity of 0.97 to 1.07, a viscosity of 9,000 to 10,000 cP, a molecular weight of 50,000 to 70,000, and an average molecular weight of 55,000 to 65,000. Since the silicone polymer of Formula 1 of the present invention has a double bond at the terminal, the linear polymer as a main structure of the coating agent reacts with the crosslinking agent to form a block copolymer, . The linear polymer structure tends to be easily broken due to heat or force, but the block copolymer forms a network structure and changes to a macromolecular structure to be structurally stable, thereby improving the film forming ability.

본 발명에서 상기 고강도ㆍ고내열성 실은 파라-아라미드, 메타-아라미드, 탄화섬유, PBO, 방염성레이온 중 어느 하나이상을 함유한 고강도ㆍ고내열성 실이 바람직하다. 특히 그 혼합형태는 안전작업복의 용도별로 혼합방적사, 복합가연사, 에어텍스쳐사 및 합연사 중 어느 하나인 것을 사용할 수 있다.In the present invention, the high-strength and high-temperature-resistant yarn is preferably a high-strength, high-heat-resistant yarn containing at least one of para-aramid, meta-aramid, carbon fiber, PBO and flame retardant rayon. In particular, the blended yarn may be any one of mixed yarns, mixed yarn yarns, air texture yarns, and sliver yarns for each use of the safety workwear.

본 발명에서 직물을 코팅하기 위한 방법으로는 디핑법, 롤러코팅, 나이프코팅 등의 여러 가지 방법을 사용할 수 있겠으나, 직물의 태와 항필링성을 위해 나이프코팅방법을 사용하는 것이 바람직하다. 나이프코팅 후 170~180oC로 코팅액을 경화시켜 산업안전작업복용 직물을 제공하게 된다.In the present invention, various methods such as dipping method, roller coating, and knife coating can be used as a method for coating the fabric, but it is preferable to use a knife coating method for the woven and knitted. After knife coating, the coating solution is cured at 170 to 180 ° C to provide industrial safety workwear fabrics.

따라서 본 발명의 고내열성 실리콘코팅방법에 의하면 인체에 무해하면서도 친환경적일뿐만 아니라 난연성 및 내열성을 저하시키지 않으면서도 필링성이 우수한 산업안전작업복용 직물을 제공할 수 있다.
Therefore, according to the high heat-resistant silicone coating method of the present invention, it is possible to provide a fabric for industrial safety work, which is harmless to the human body and is not only environmentally friendly but also excellent in peelability without deteriorating flame retardancy and heat resistance.

도 1은 본 발명인 실시예 1의 실리콘코팅방법에 의한 코팅후 직물표면 SEM사진이며,
도 2는 본 발명인 실시예 1의 실리콘코팅방법에 의한 코팅후 직물단면 SEM사진이며,
도 3은 비교예 1의 실리콘코팅방법에 의한 코팅후 직물표면 SEM사진이며,
도 4는 비교예 1의 실리콘코팅방법에 의한 코팅후 직물단면 SEM사진이며,
도 5는 비교예 2의 실리콘코팅방법에 의한 코팅후 직물표면 SEM사진이며,
도 6은 비교예 2의 실리콘코팅방법에 의한 코팅후 직물단면 SEM사진이며,
도 7은 비교예 3의 실리콘코팅방법에 의한 코팅후 직물표면 SEM사진이며,
도 8은 비교예 3의 실리콘코팅방법에 의한 코팅후 직물단면 SEM사진이며,
도 9는 비교예 4의 실리콘코팅방법에 의한 코팅후 직물표면 SEM사진이며,
도 10은 비교예 4의 실리콘코팅방법에 의한 코팅후 직물단면 SEM사진이다.
1 is a SEM photograph of the surface of a fabric after coating by the silicon coating method of Example 1 of the present invention,
2 is a SEM photograph of a cross section of a fabric after coating by the silicon coating method of Example 1 of the present invention,
3 is a SEM photograph of the fabric surface after coating by the silicon coating method of Comparative Example 1,
4 is a cross-sectional SEM photograph of the fabric after coating by the silicon coating method of Comparative Example 1,
5 is a SEM photograph of the fabric surface after coating by the silicon coating method of Comparative Example 2,
6 is a cross-sectional SEM photograph of the fabric after coating by the silicon coating method of Comparative Example 2,
7 is a SEM photograph of the fabric surface after coating by the silicon coating method of Comparative Example 3,
8 is a SEM photograph of a cross section of a fabric after coating by the silicon coating method of Comparative Example 3,
9 is a SEM photograph of the fabric surface after coating by the silicon coating method of Comparative Example 4,
10 is a cross-sectional SEM photograph of the fabric after coating by the silicon coating method of Comparative Example 4. Fig.

이하 다음의 실시 예에서는 본 발명의 산업안전작업복용 직물의 고내열성 실리콘코팅방법에 대한 비한정적인 예시를 하고 있다.The following examples illustrate non-limiting examples of a highly heat resistant silicone coating process for fabrics for industrial safety work clothes of the present invention.

[합성례 1][Synthesis Example 1]

반응기에 디비닐테트라메틸디실록산과 옥타메틸시클로테트라실록산을 투입하고 백금촉매를 투입하여 상압에서 80~90℃, 10시간 동안 천천히 교반하여 하기 화학식 1 기재의 실리콘폴리머를 합성하였다.
The reactor was charged with divinyltetramethyldisiloxane and octamethylcyclotetrasiloxane, and a platinum catalyst was added thereto. The mixture was slowly stirred at 80 to 90 ° C for 10 hours under atmospheric pressure to synthesize a silicone polymer represented by Formula 1 below.

[화학식 1][Chemical Formula 1]

Figure 112011031225627-pat00006
Figure 112011031225627-pat00006

[상기 R1은 H 또는 CH3이며, 상기 R2는 H, m = 650~800 임.][Wherein R 1 is H or CH 3 , and R 2 is H, m = 650 to 800]

얻어진 실리콘폴리머는 pH 7.0±0.5, 비중 0.97~1.07, 점도 9,000~10,000 cP, 분자량 50,000~70,000 및 평균분자량 55,000~65,000이다.
The obtained silicone polymer has a pH of 7.0 ± 0.5, a specific gravity of 0.97 to 1.07, a viscosity of 9,000 to 10,000 cP, a molecular weight of 50,000 to 70,000 and an average molecular weight of 55,000 to 65,000.

[실시예 1 및 비교예 1~4][Example 1 and Comparative Examples 1 to 4]

상기 합성례 1에서 얻어진 실리콘폴리머(SOFO-7000, 엠제이코리아社産) 및 하기 화학식 2의 백금촉매를 미량함유하는 가교제(SOFO-7000CAT, 엠제이코리아社産, pH : 7.0±0.5, 비중 : 0.996±0.001, 점도 : 1,000cP 미만, 분자량 : 3,000~ 5,000)를 하기 표 1의 조성비에 따라 혼합한 후 상온에서 교반하여 실리콘계코팅액을 만들었다. 얻어진 실리콘계코팅액을 탄화섬유와 파라계아라미드섬유를 5:5로 혼합한 혼합방적사(20수 2합사)를 사용하여 2/1 트윌조직으로 제직한 직물의 표면을 나이프두께 0.8㎜로 하여 나이프코팅한 후 170℃로 10m/분의 경화속도로 경화하여 코팅작업을 완료하고 직물의 물성을 측정하여 표 1에 나타내었다.
(SOFO-7000CAT, produced by MJ Corp., pH: 7.0 ± 0.5, specific gravity: 0.996 ± 1) containing a small amount of the silicone polymer (SOFO-7000, produced by MJ Corp.) obtained in Synthesis Example 1 and a platinum catalyst of Formula 0.001, viscosity: less than 1,000 cP, molecular weight: 3,000 to 5,000) were mixed according to the composition ratios shown in Table 1, and then stirred at room temperature to prepare a silicone-based coating solution. The surface of the fabric woven with a 2/1 twill structure was knife-coated with a knife thickness of 0.8 mm using a mixed spinning yarn (20 number 2 yarn) obtained by mixing the obtained silicone-based coating solution with carbon fiber and para aramid fiber at a ratio of 5: 5 After curing at a curing speed of 10 m / min at 170 캜, the coating operation was completed, and the physical properties of the fabric were measured and shown in Table 1.

[화학식 2](2)

Figure 112011031225627-pat00007
Figure 112011031225627-pat00007

[상기 R3는 H 또는 CH3이고, o = 40~70 임.][Wherein R 3 is H or CH 3 and o = 40 to 70.]


구분

division

조성비

Composition ratio

필링(급)

Peeling (grade)

방염성실험

Flame proofing experiment
HTI(sec)HTI (sec) t12(sec)t12 (sec) 실시예 1Example 1 실리콘폴리머 91% + 가교제 9%91% of silicone polymer + 9% of crosslinking agent 3.53.5 13.8413.84 9.439.43 비교예 1Comparative Example 1 실리콘폴리머 63% + 가교제 6% +
AL계 난연제 31%
63% of silicone polymer + 6% of crosslinking agent +
AL flame retardant 31%
3.03.0 14.1214.12 10.0310.03
비교예 2Comparative Example 2 실리콘폴리머 63% + 가교제 6% +
Mg계 난연제 31%
63% of silicone polymer + 6% of crosslinking agent +
Mg-based flame retardant 31%
3.03.0 14.1914.19 10.1710.17
비교예 3Comparative Example 3 실리콘폴리머 61% + 가교제 6% +
AL계 난연제 30% +Mg계난연제 3%
61% of silicone polymer + 6% of crosslinking agent +
AL flame retardant 30% + Mg flame retardant 3%
3.03.0 14.0114.01 9.879.87
비교예 4Comparative Example 4 실리콘폴리머 60% + 가교제 6% +
AL계 난연제 30% +Mg계난연제 3% +
염료 1%
60% of silicone polymer + 6% of crosslinking agent +
AL flame retardant 30% + Mg flame retardant 3% +
Dye 1%
3.03.0 13.9713.97 9.649.64

코팅 후 경화의 상태를 알아보기 위하여 주사전자현미경(SEM)으로 직물의 표면과 단면을 측정하였다. 실시예 1은 직물 표면에 코팅제가 존재함을 확인하였고(도 1 및 도 2), 비교예 1 내지 비교예 4는 난연제가 입자 형태로 코팅제와 함께 분포함을 확인하였다(도 3 내지 도 10).
Surface and cross section of fabric were measured by scanning electron microscope (SEM) to determine the state of hardening after coating. In Example 1, it was confirmed that a coating agent was present on the fabric surface (FIGS. 1 and 2), and Comparative Examples 1 to 4 confirmed that the flame retardant was dispersed in the form of particles together with the coating agent (FIGS. 3 to 10) .

Claims (4)

고강도ㆍ고내열성 실로 제직된 직물을 비중 0.97~1.07, 점도 9,000~10,000 cP, 분자량 50,000~70,000 및 평균분자량 55,000~65,000인 하기 화학식 1 기재의 실리콘폴리머 85~95중량% 및 하기 화학식 2의 구조를 갖는 가교제 5~15중량%로 이루어진 실리콘계코팅액으로 코팅하는 것을 특징으로 하는 산업안전작업복용 직물의 고내열성 실리콘코팅방법.
[화학식 1]
Figure 112012088781841-pat00008

[상기 R1은 H 또는 CH3이며, 상기 R2는 H, m = 650~800 임.]

[화학식 2]
Figure 112012088781841-pat00009

[상기 R3는 H 또는 CH3이고, o = 40~70 임.]
85 to 95% by weight of a silicone polymer having a specific gravity of 0.97 to 1.07, a viscosity of 9,000 to 10,000 cP, a molecular weight of 50,000 to 70,000 and an average molecular weight of 55,000 to 65,000, And 5 to 15% by weight of a crosslinking agent having a crosslinking agent.
[Chemical Formula 1]
Figure 112012088781841-pat00008

[Wherein R 1 is H or CH 3 , and R 2 is H, m = 650 to 800]

(2)
Figure 112012088781841-pat00009

[Wherein R 3 is H or CH 3 and o = 40 to 70.]
제 1항에 있어서, 상기 고강도ㆍ고내열성 실은 파라-아라미드, 메타-아라미드, 탄화섬유, PBO, 방염성레이온 중 어느 하나이상을 함유한 고강도ㆍ고내열성 실인 것을 특징으로 하는 산업안전작업복용 직물의 고내열성 실리콘코팅방법.
The industrial safety work cloth according to claim 1, wherein the high-strength and high-temperature resistant yarn is a high-strength, high-heat-resistance yarn containing at least one of para-aramid, meta-aramid, carbon fiber, PBO, Heat resistant silicone coating method.
제 2항에 있어서, 고강도ㆍ고내열성 실은 혼합방적사, 복합가연사, 에어텍스쳐사 및 합연사 중 어느 하나인 것을 특징으로 하는 산업안전작업복용 직물의 고내열성 실리콘코팅방법.
The method according to claim 2, wherein the high-strength and high-heat-resistant yarn is any one of mixed yarn, mixed yarn yarn, air texture yarn and sum yarn yarn.
삭제delete
KR1020110039338A 2011-04-27 2011-04-27 Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform KR101259855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110039338A KR101259855B1 (en) 2011-04-27 2011-04-27 Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110039338A KR101259855B1 (en) 2011-04-27 2011-04-27 Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform

Publications (2)

Publication Number Publication Date
KR20120121491A KR20120121491A (en) 2012-11-06
KR101259855B1 true KR101259855B1 (en) 2013-05-02

Family

ID=47507924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110039338A KR101259855B1 (en) 2011-04-27 2011-04-27 Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform

Country Status (1)

Country Link
KR (1) KR101259855B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004834A (en) 2014-07-04 2016-01-13 주식회사 블루인더스 Industrial Safety Uniform having flame-retardant and ventilation function and the manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101958271B1 (en) * 2017-04-04 2019-03-15 주식회사 그린웰텍 Fire prevention coating composition for fire prevention welding material
KR101997096B1 (en) * 2017-11-17 2019-07-11 (주)재화 Manufacturing method for environmental-friendly textile fabrics and environmental-friendly textile fabrics manufactured by the same
KR102052460B1 (en) * 2018-09-20 2020-01-08 주식회사 터치그린 industrial glove coated with polyurea resin composition and silicone resin, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683423B1 (en) 1998-12-11 2007-02-20 폴리아미드 하이 퍼포먼스 게엠베하 Process for siliconizing industrial woven fabrics
KR100972565B1 (en) * 2008-05-26 2010-07-28 장암엘에스 주식회사 Silicone Coating Composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683423B1 (en) 1998-12-11 2007-02-20 폴리아미드 하이 퍼포먼스 게엠베하 Process for siliconizing industrial woven fabrics
KR100972565B1 (en) * 2008-05-26 2010-07-28 장암엘에스 주식회사 Silicone Coating Composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004834A (en) 2014-07-04 2016-01-13 주식회사 블루인더스 Industrial Safety Uniform having flame-retardant and ventilation function and the manufacturing method

Also Published As

Publication number Publication date
KR20120121491A (en) 2012-11-06

Similar Documents

Publication Publication Date Title
KR101259855B1 (en) Process Of Coating High―Heat Resistant Silicone On Fabrics For Industrial Safety Uniform
Gaan et al. Flame retardant functional textiles
Li et al. Layer-by-layer self-assembly of organic-inorganic hybrid intumescent flame retardant on cotton fabrics
KR20060124761A (en) Modacrylic/cotton/aramid fiber blends for arc and flame protection
Horrocks Technical fibres for heat and flame protection
JP2008101294A (en) Flameproof woven fabric having excellent comfortableness and flameproof working wear made thereof
CN117535854A (en) Flame retardant fabric
MX2008011859A (en) Fabrics comprising ceramic particles and methods for making them.
US20110177740A1 (en) Flame Resistant Blends
Bajaj Fire-retardant materials
JP4043358B2 (en) Heat resistant fabric
CN113322564B (en) Anti-electric arc fabric and preparation method and application thereof
KR101590534B1 (en) Manufacturing method of industrial safety uniform having flame-retardant and ventilation function
CN113071160A (en) Molten metal drop splashing protective clothing and processing method thereof
CN112455018A (en) Fire-resistant suit and sewing fabric thereof
CN115142256B (en) Flame-retardant cloth and preparation method thereof
CN112757728A (en) Super-hydrophobic flame-retardant anti-cutting and anti-puncturing fabric and production method thereof
CN114341414A (en) Flame-retardant fabric
CN111074536A (en) Preparation method of fire-resistant flame-retardant polyethylene fiber UD cloth
CN115679683B (en) Molybdenum disulfide coating for fireproof flame-retardant cotton fabric and coating method thereof
WO2019101852A1 (en) Method for producing a flame-resistant textile article
JP7101391B1 (en) A flame-resistant fiber product that has been treated to be flame-proof and a method for manufacturing the flame-resistant fiber product.
JP4483446B2 (en) Heat resistant liner
CN114889234B (en) Preparation method of basalt fiber-containing protective clothing used in complex environment
KR102297700B1 (en) Fire resistant fabric using caron fiber and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170425

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190425

Year of fee payment: 7