KR101259078B1 - Method for fabricating superhydrophobic thin film - Google Patents

Method for fabricating superhydrophobic thin film Download PDF

Info

Publication number
KR101259078B1
KR101259078B1 KR1020090133815A KR20090133815A KR101259078B1 KR 101259078 B1 KR101259078 B1 KR 101259078B1 KR 1020090133815 A KR1020090133815 A KR 1020090133815A KR 20090133815 A KR20090133815 A KR 20090133815A KR 101259078 B1 KR101259078 B1 KR 101259078B1
Authority
KR
South Korea
Prior art keywords
thin film
pah
paa
tio
repellent
Prior art date
Application number
KR1020090133815A
Other languages
Korean (ko)
Other versions
KR20110047097A (en
Inventor
김진호
임태영
황종희
Original Assignee
주식회사 비봉 이앤지
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비봉 이앤지, 한국세라믹기술원 filed Critical 주식회사 비봉 이앤지
Priority to KR1020090133815A priority Critical patent/KR101259078B1/en
Publication of KR20110047097A publication Critical patent/KR20110047097A/en
Application granted granted Critical
Publication of KR101259078B1 publication Critical patent/KR101259078B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 초발수 TiO2 박막을 습식 공정법에 의해 유리 기판 위에 제조하기 위한 제조방법에 관한 것으로서, Micro-nano 복합구조의 거친 표면을 갖는 박막을 제조하기 위하여 layer-by-layer (LBL) deposition 법과 liquid phase deposition (LPD) 법이 이용되었다. 초발수 박막은 LBL 법에 의해 texture 구조를 갖는 (PAH/PAA) 박막을 제조한 후 그 위에 LPD 법에 의해 TiO2 나노 입자를 적층시키고 그 표면을 fluoroalkyltrimethoxysilane (FAS)를 사용하여 발수 처리를 하여 제조하였다. (PAH/PAA)10 박막의 표면에 45분 동안 TiO2를 적층한 박막은 RMS roughness 가 65.6 nm 로 거친 표면을 보여주었고 발수 처리 이후에 접촉각 155° 정도의 초발수 특성과 함께 파장 650 nm 이상에서는 80 % 이상의 투과율을 보여주었다. 서로 다른 조건에서 제조된 박막의 표면 구조, 광학적 특성, 접촉각을 FE-SEM, AFM, UV-Vis, contact angel meter를 이용하여 측정하였다.The present invention relates to a manufacturing method for manufacturing a super water-repellent TiO 2 thin film on a glass substrate by a wet process method, in order to prepare a thin film having a rough surface of a micro-nano composite structure layer-by-layer (LBL) deposition Method and liquid phase deposition (LPD) method were used. The super water repellent thin film is prepared by preparing a (PAH / PAA) thin film having a texture structure by the LBL method, then laminating TiO 2 nanoparticles by the LPD method, and water repelling the surface using fluoroalkyltrimethoxysilane (FAS). It was. (PAH / PAA) 10 The thin film of TiO 2 laminated on the surface of the thin film for 45 minutes showed a rough surface with RMS roughness of 65.6 nm. It showed over 80% transmittance. Surface structures, optical properties, and contact angles of thin films prepared under different conditions were measured using FE-SEM, AFM, UV-Vis, and contact angel meters.

초발수, LPD법, LBL법, FAS Super water-repellent, LPD method, LBL method, FAS

Description

초발수 박막 제조방법{METHOD FOR FABRICATING SUPERHYDROPHOBIC THIN FILM}Super water-repellent thin film manufacturing method {METHOD FOR FABRICATING SUPERHYDROPHOBIC THIN FILM}

본 발명은 초발수 TiO2 박막을 습식 공정법에 의해 유리 기판 위에 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a super water-repellent TiO 2 thin film on a glass substrate by a wet process method.

물 접촉각 150° 이상을 갖는 초발수 자기정화 박막은 내오염성이 우수한 건축 외장재, 화학 및 바이오 센서, 디스플레이, 자동차유리, 태양전지 모듈유리에 응용됨으로써 박막 제조에 관한 많은 연구가 보고되고 있다. 초발수 박막을 제조하기 위해서는 기판의 표면에 우선 요철 구조를 갖는 거친 표면을 형성시키는 공정과 그 표면을 낮은 표면에너지를 갖는 화합물을 이용하여 표면을 개질 하는 공정이 요구된다. Super water-repellent self-cleaning thin films having a water contact angle of 150 ° or more have been reported to be applied to building exterior materials, chemical and bio-sensors, displays, automobile glass, and solar cell module glass which have excellent pollution resistance. In order to manufacture a super water-repellent thin film, a process of first forming a rough surface having an uneven structure on the surface of the substrate and a process of modifying the surface using a compound having a low surface energy is used.

본 발명은 micro-nano 복합구조의 표면 조도가 높은 박막을 제조하기 위하여 LBL법과 LPD법을 이용한 초발수 박막제조를 목적으로 한다.The present invention aims to produce a super water-repellent thin film using the LBL method and the LPD method in order to produce a high surface roughness of the micro-nano composite structure.

상기 목적을 달성하기 위하여 본 발명은 (PAH/PAA) 박막 제조 후 그 위에 TiO2 나노 입자를 적층시키고 그 표면을 FAS처리 하여 초발수 박막을 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method of manufacturing a super water-repellent thin film by laminating TiO 2 nanoparticles on the (PAH / PAA) thin film and then FAS treating the surface thereof.

또한, 본 발명은 LBL법에 의한 (PAH/PAA) 박막 제조 후 그 위에 LPD법에 의해 TiO2 나노 입자를 적층시키고 그 표면을 FAS처리 하여 초발수 박막을 제조하는 방법을 제공한다.In addition, the present invention after the (PAH / PAA) thin film production by the LBL method and the TiO 2 by LPD method thereon The present invention provides a method of manufacturing a super water-repellent thin film by laminating nanoparticles and treating the surface thereof.

그리고, 본 발명은 상기의 제조방법을 통해 초발수 박막을 형성할 수 있다.And, the present invention can form a super water-repellent thin film through the above manufacturing method.

본 발명은 초발수 특성을 갖는 박막을 제조할 수 있으며, 또한 이에 의해 제조된 박막은 높은 투과율을 갖는 효과가 있다.The present invention can produce a thin film having a super water-repellent property, and the thin film produced thereby has the effect of having a high transmittance.

전술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The above objects, features and advantages will become more apparent through the following examples in conjunction with the accompanying drawings. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

물 접촉각 150°이상을 갖는 초발수 자기정화 박막은 내오염성이 우수한 건축 외장재, 화학 및 바이오 센서, 디스플레이, 자동차유리, 태양전지 모듈유리에 응용됨으로써 박막 제조에 관한 많은 연구가 보고되고 있다. 초발수 박막을 제조하기 위해서는 기판의 표면에 우선 요철 구조를 갖는 거친 표면을 형성시키는 공정과 그 표면을 낮은 표면에너지를 갖는 화합물을 이용하여 표면을 개질 하는 공정이 요구된다. 대표적인 자정유리는 광촉매, 김서림방지(anti-fogging), 항균(anti-bacteria)특성을 지닌 TiO2를 유리기판에 코팅하여 제조하고 있다. TiO2 박막은 sol-gel, sputtering, chemical vapor deposition (CVD), layer-by-layer (LBL) 법, liquid phase deposition (LPD) 법과 같은 다양한 방법들에 의해 제조된다. 특히 습식 공정법인 LBL 법과 LPD 법은 박막제조 공정이 간단하고 막 두께를 나노 스케일로 제어하기 용이하며 대면적 코팅에 유리한 장점을 갖고 있다. LBL 법은 상온 상압에서 물에 녹거나 분산되어 양전하 혹은 음전하를 갖는 전해질 폴리머 용액이나 나노 입자 분산용액에 기판을 번갈아 침적하여 서로 다른 전하를 갖는 물질의 정전기력을 이용하여 박막을 제조하는 기술이다. LBL 법은 전해질 용액의 농도, pH, 침적시간 등을 제어하여 다양한 구조의 표면을 갖는 박막을 제조할 수 있다. LPD법에 의한 TiO2 박막 제조는 전구체 (TiF4, TiCl4)를 물에 녹여 용액의 농도와 pH를 적정한 후 기판을 수용액에 침적시켜 60~70℃ 정도의 온도를 유지하면서 침적 시간에 따라 박막의 두께 및 성장속도를 제어하여 기판 위에 막을 코팅하는 기술이다. 이 방법들은 기판 위에 요철 구조의 막을 형성시키기 위한 적절한 방법이라 할 수 있다.Super water-repellent self-cleaning thin films having a water contact angle of 150 ° or more have been reported to be applied to building exterior materials, chemical and bio-sensors, displays, automobile glass, solar cell module glass, which have excellent pollution resistance, and many studies on thin film manufacturing have been reported. In order to manufacture a super water-repellent thin film, a process of first forming a rough surface having an uneven structure on the surface of the substrate and a process of modifying the surface using a compound having a low surface energy is used. Typical self-cleaning glass is manufactured by coating TiO 2 having a photocatalyst, anti-fogging, and anti-bacterial properties on a glass substrate. TiO 2 thin films are manufactured by various methods such as sol-gel, sputtering, chemical vapor deposition (CVD), layer-by-layer (LBL), and liquid phase deposition (LPD). In particular, the LBL method and the LPD method, which are wet processes, have a simple thin film manufacturing process, are easy to control the film thickness on a nano scale, and have advantages in large area coating. The LBL method is a technique of manufacturing a thin film using electrostatic forces of materials having different charges by alternately depositing a substrate in an electrolyte polymer solution or a nanoparticle dispersion solution having a positive or negative charge dissolved or dispersed in water at room temperature and normal pressure. LBL method can produce a thin film having a surface of various structures by controlling the concentration, pH, deposition time, etc. of the electrolyte solution. In the preparation of TiO 2 thin film by LPD method, the precursors (TiF 4 , TiCl 4 ) are dissolved in water, the concentration and pH of the solution are titrated, and the substrate is immersed in an aqueous solution to maintain a temperature of about 60 to 70 ° C. according to the deposition time. It is a technique of coating a film on a substrate by controlling the thickness and growth rate of. These methods can be said to be suitable methods for forming an uneven structure film on a substrate.

요철 구조의 표면을 소수성으로 개질하기 위해서 불소 혹은 실리콘 화합물들이 많이 이용되고 있고 그 중에서 특히 매우 낮은 표면에너지(~8mJ/m2) 를 갖고 있는 fluoroalkyltrimethoxysilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3,)가 널리 사용되고 있다. 또한, 본 발명에서는 micro-nano 복합구조의 표면 조도가 높은 박막을 제조하기 위하여 LBL법과 LPD법을 이용하여 실험 조건에 따른 막의 표면 및 광학적 특성을 확인하였고, FAS를 이용하여 발수처리 되어 제조된 박막의 표면 접촉각을 확인했다.In order to hydrophobically modify the surface of the uneven structure, fluorine or silicon compounds are widely used, and among them, fluoroalkyltrimethoxysilane (FAS, CF 3 (CF 2 ) 7 CH 2 CH, which has very low surface energy (~ 8mJ / m 2 ) 2 Si (OCH 3 ) 3 ,) is widely used. In addition, in the present invention, in order to prepare a thin film having a high surface roughness of the micro-nano composite structure, the surface and optical properties of the film were confirmed by the experimental conditions using the LBL method and the LPD method, and the thin film manufactured by the water repellent treatment using the FAS. The surface contact angle of was confirmed.

LBL 법을 이용하여 texture 구조의 박막을 제조하기 위하여 양전하를 갖는 Poly(allylamine hydrochloride) (PAH, Aldrich , Mw = 70,000g) 와 음전하를 갖는 Poly(acrylic acid) (PAA, Aldrich, Mw = 100,000, 35 wt.% solution in water)를 사용하였다. 사용된 두 전해질 폴리머의 농도는 0.01M 이고, 용액의 pH는 NaOH를 이용하여 각각 pH9.5, pH6.0으로 적정하였다. LPD 법에 의한 TiO2 박막 제조하기 위해 Titanium(Ⅳ) fluoride (TiF4, Aldrich)를 사용하였다. 용액의 농도는 0.04M, pH는 NH4OH를 사용하여 pH2.0으로 조절하였다. 기판으로는 slide glass를 사용하였고 기판의 친수처리를 위해 증류수와 에탄올을 2:3의 부피비로 섞은후 KOH를 1.0 wt.% 첨가한 용액에 기판을 담근후 5~10분 초음파 처리를 한 후 증류수를 이용하여 세정하였다. 친수처리된 기판은 먼저 PAH용액에 10분간 침적된 후 증류수에 1분씩 3회 침적되어 세정되었다. 이후 PAA 용액에 10분간 침적된 후 증류수에 1분씩 3회 세정되었다. 이 과정을 1 bilayer로 하여 5, 10, 15회 반복하여 실시하였다. 이후부터 5 bilayers를 적층했을 때, (PAH/PAA)5 라고 표기한다. LBL 법에 의해 폴리머 막이 증착된 유리기판은 TiF4 용액에 30분, 45분, 1시간, 2시간 동안 침적되어 70℃에서 유지되었다. 이후 증류수를 이용하여 세정을 하였고 표면을 발수 처리 하기 위하여 hexane 용액에 희석된 2 wt.% 의FAS 용액에 기판을 20분 동안 침적한 후 100℃ 에서 한시간 동안 건조하였다. 박막 제조 모식도를 도 1에 나타내었다.Poly (allylamine hydrochloride) with positive charge (PAH, Aldrich, Mw = 70,000g) and poly (acrylic acid) with negative charge (PAA, Aldrich, Mw = 100,000, 35) wt.% solution in water) was used. The concentration of the two electrolyte polymers used was 0.01M, and the pH of the solution was titrated to pH9.5 and pH6.0 using NaOH, respectively. Titanium (IV) fluoride (TiF 4 , Aldrich) was used to prepare the TiO 2 thin film by LPD method. The concentration of the solution was adjusted to pH 2.0 using 0.04M, pH using NH 4 OH. The slide glass was used as a substrate, and distilled water and ethanol were mixed at a volume ratio of 2: 3, and the substrate was immersed in a solution containing 1.0 wt.% KOH, followed by ultrasonic treatment for 5 to 10 minutes, followed by distilled water. It was washed using. The hydrophilized substrate was first immersed in PAH solution for 10 minutes and then immersed in distilled water three times for 1 minute and washed. Subsequently, it was immersed in a PAA solution for 10 minutes and then washed three times with distilled water for 1 minute. This process was repeated 5, 10, 15 times with 1 bilayer. After that, when 5 bilayers are stacked, (PAH / PAA) 5 is indicated. The glass substrate on which the polymer film was deposited by the LBL method was deposited in a TiF 4 solution for 30 minutes, 45 minutes, 1 hour, and 2 hours and maintained at 70 ° C. Thereafter, the substrate was washed with distilled water, and the substrate was dipped in 2 wt.% FAS solution diluted in hexane solution for 20 minutes for water repellent treatment, and then dried at 100 ° C. for one hour. A thin film manufacturing schematic is shown in FIG.

제조된 박막의 표면 미세구조를 확인하기 위하여 field emission scanning electron microscope (FE-SEM, JSM 6700, JEOL)를 사용하였고 박막의 광학적 특성을 분석하기 위하여 UV-Vis spectrophotometer (V-570, JASCO)를 이용하여 투과율을 측정하였다. 박막 표면의 조도는 atomic force microscope (AFM, JSPM5200, JEOL, Japan)을 이용하여 측정하였고, 제조된 박막 표면의 물 접촉각을 확인하기 위해 contact angle meter (Easy Drop, KRUSS)를 이용하였다.A field emission scanning electron microscope (FE-SEM, JSM 6700, JEOL) was used to confirm the surface microstructure of the prepared thin film, and a UV-Vis spectrophotometer (V-570, JASCO) was used to analyze the optical properties of the thin film. The transmittance was measured. The surface roughness of the thin film was measured using an atomic force microscope (AFM, JSPM5200, JEOL, Japan), and a contact angle meter (Easy Drop, KRUSS) was used to confirm the water contact angle of the prepared thin film surface.

LBL 법에 의해 유리 기판 위에 코팅된 (PAH/PAA) 박막의 bilayer 수에 따른 미세구조를 도 2에 나타내었다. (PAH/PAA)5 박막은 아직 texture 구조를 보이지 않고 있으며 (PAH/PAA)10 박막은 texture 구조를 형성하고 있다. Bilayer 수가 5에서 15로 증가됨에 따라 texture 구조의 크기가 증가됨을 확인하였다. 제조된 (PAH/PAA)5,10,15 박막의 투과율을 도 3에 나타내었다. 평평한 표면을 갖는 (PAH/PAA)5 박막은 유리기판과 거의 동일한 투과율을 보여주었고 (PAH/PAA)10,15 박막은 texture 구조의 형성으로 인해 약간 투과율이 저하되었지만 파장 550 nm 이상에서 89% 이상의 높은 투과율을 나타내었다. 도 4는 유리 기판과 5, 10, 15 bilayers의 (PAH/PAA) 박막이 각각 코팅된 유리기판을 LPD 용액에 45분간 침적하여 TiO2를 성형시킨 박막의 미세구조를 나타낸다. (PAH/PAA) 막이 코팅되지 않은 유리기판에는 TiO2 가 200 ~ 300 nm 정도의 클러스터를 형성하고 있지만 상당히 적다. 그에 비해 (PAH/PAA)5 박막 표면에는 훨씬 더 많은 TiO2가 형성된 것을 확인할 수 있다.The microstructure according to the number of bilayers of the (PAH / PAA) thin film coated on the glass substrate by the LBL method is shown in FIG. 2. The (PAH / PAA) 5 thin film does not yet have a texture structure, and the (PAH / PAA) 10 thin film has a texture structure. As the number of bilayers was increased from 5 to 15, the size of the texture structure was confirmed to increase. The transmittance of the prepared (PAH / PAA) 5,10,15 thin film is shown in FIG. 3. Having a flat surface (PAH / PAA) 5 thin film on a glass substrate and showed almost the same transmittance (PAH / PAA) 10,15 thin film has been slightly lowered transmittance due to the formation of the texture structure or more than 89% in wavelength 550 nm High transmittance was shown. FIG. 4 shows the microstructure of a thin film on which TiO 2 was formed by immersing a glass substrate and a glass substrate coated with 5, 10, and 15 bilayers (PAH / PAA) thin films in an LPD solution for 45 minutes. Glass substrates not coated with (PAH / PAA) form TiO 2 clusters on the order of 200 – 300 nm, but are quite small. In comparison, much more TiO 2 was formed on the surface of the (PAH / PAA) 5 thin film.

Texture 구조를 갖는 (PAH/PAA)10,15 박막의 표면에는 TiO2 나노 입자들이 표면 위에 치밀하게 형성되어 있는 것을 확인할 수 있다. 도 5는 (PAH/PAA)10 박막의 표면 위에 TiO2 막을 형성시키기 위한 LPD 법의 시간에 따른 미세구조를 나타낸다. 도면에서 확인할 수 있듯이 TiO2 나노 입자들이 (PAH/PAA) 박막의 표면에 치밀하게 형성되어 있으며 용액 침적 시간이 늘어남에 따라 TiO2 박막의 두께 증가로 인해 60분 이후에는 거의 (PAH/PAA)의 texture 구조가 보이지 않고 있다. 더욱이 120분 침적 후에는 박막의 표면에 크랙이 발생하였다. 도 8은 (PAH/PAA) 박막의 bilayer 수와 LPD법의 침적시간에 따라 제조된 박막을 FAS를 이용하여 발수 처리된 박막의 물 접촉각을 보여준다. 유리 기판 위에 증착된 (PAH/PAAA)5,10,15 박막을 45분 침적시켜 TiO2를 표면에 형성시킨 박막은 접촉각 150°이상의 초발수 특성을 보여주었다.It can be seen that TiO 2 nanoparticles are densely formed on the surface of the (PAH / PAA) 10,15 thin film having a textured structure. FIG. 5 shows the time-dependent microstructure of the LPD method for forming a TiO 2 film on the surface of a (PAH / PAA) 10 thin film. As can be seen from the figure, the TiO 2 nanoparticles are densely formed on the surface of the (PAH / PAA) thin film and almost 60 (PAH / PAA) after 60 minutes due to the increase in the thickness of the TiO 2 thin film as the solution deposition time increases. The texture structure is not visible. Furthermore, after 120 minutes of deposition, cracks occurred on the surface of the thin film. FIG. 8 shows the water contact angle of the thin film prepared according to the number of bilayers of the (PAH / PAA) thin film and the deposition time of the LPD method using the FAS. A thin film of TiO 2 formed on the surface by depositing (PAH / PAAA) 5,10,15 thin film deposited on a glass substrate for 45 minutes showed a super water-repellent property with a contact angle of 150 ° or more.

적층 시간이 30분에서 45분으로 늘어났을 경우 접촉각은 5~10°정도 증가하였고, 60분~120분으로 늘어났을 경우에는 점차적으로 접촉각은 하락되었다. 이 결과는 도 5에서 알 수 있듯이, 45분까지는 폴리머 (PAH/PAA) 박막의 표면에 TiO2가 형성되어 micro-nano 복합구조를 형성하지만 45분 이후에는 texture 구조가 사라져 표면의 roughness 가 줄어들었기 때문이다. 도 6은 (PAH/PAA)10 박막을 TiF4 용액에 침적시킨 후 시간에 따라 제조된 박막의 투과율을 나타낸다. 적층 시간이 늘어남에 따라 TiO2의 막 두께가 증가하게 되므로 투과율은 낮아졌다. 서로 다른 조건에서 제조된 샘플 중에서 (PAH/PAA)10 박막의 표면에 TiO2를 45분간 증착 시킨 막은 파장 650 nm 이후 80 % 이상의 투과율과 접촉각 155°를 갖는 초발수 박막 특성을 보여주었다. 도 7은 (PAH/PAA)10 박막 표면에 45분간 TiO2를 증착하여 제조한 박막의 AFM 이미지와 물의 접촉각 이미지다. 이 박막의 Root mean square (RMS) surface roughness는 65.6 nm로 측정되었다.As the stacking time increased from 30 minutes to 45 minutes, the contact angle increased by 5-10 °, and when it increased from 60 minutes to 120 minutes, the contact angle gradually decreased. As shown in FIG. 5, TiO 2 was formed on the surface of the polymer (PAH / PAA) thin film until 45 minutes to form a micro-nano composite structure, but after 45 minutes, the texture structure disappeared and the surface roughness was reduced. Because. 6 shows the transmittance of a thin film prepared over time after (PAH / PAA) 10 thin film was deposited in a TiF 4 solution. As the deposition time increases, the film thickness of TiO 2 increases, so that the transmittance is lowered. Among the samples prepared under different conditions, the film deposited with TiO 2 on the surface of (PAH / PAA) 10 thin film for 45 minutes showed super water-repellent thin film having a transmittance of 80% or more and a contact angle of 155 ° after the wavelength of 650 nm. FIG. 7 is an AFM image of a thin film prepared by depositing TiO 2 on a surface of a (PAH / PAA) 10 thin film for 45 minutes, and a contact angle image of water. The root mean square (RMS) surface roughness of this film was measured at 65.6 nm.

LBL 법과 LPD 법을 이용하여 micro-nano 복합구조의 거친 표면을 갖는 박막을 제조한 후 FAS를 이용하여 제조된 박막의 표면을 발수 처리함으로써 초발수 박막을 제조하였다. pH9.0의 PAH와 pH6.0의 PAA를 이용하여 적층한 (PAH/PAA)막은 bilayer 수가 5일 때 평평한 표면 구조를 보였지만 10, 15로 증가됨에 따라 texture 구조의 표면을 형성하였다. 이 박막들은 가시광선 영역에서 높은 투과율을 보여주었다. LPD법에 의해 형성된 TiO2 나노 입자들은 유리 기판에 코팅된 (PAH/PAA) 박막의 표면에서 더 활발한 입자성장을 보여주었다. 침적시간이 45분을 초과하여 60분, 120분으로 증가됨에 따라 TiO2 막의 성장으로 인해 (PAH/PAA)의 texture 구조를 확인할 수 없었다. 특히 (PAH/PAA)10 박막의 표면에 45분 동안 TiO2 를 적층 시킨 박막은 RMS roughness 가 65.6 nm로 거친 표면을 보여주었고 발수 처리 이후에 접촉각은 155°로 향상되었으며 파장 650 nm 이상에서는 80 % 이상의 투과율을 보여주었다.After preparing a thin film having a rough surface of the micro-nano composite structure by using the LBL method and LPD method, a super water-repellent thin film was prepared by water repellent treatment of the surface of the thin film prepared by using FAS. The (PAH / PAA) film laminated with PAH of pH9.0 and PAA of pH6.0 showed a flat surface structure when the number of bilayers was 5, but increased to 10 and 15 to form the surface of the texture structure. These films showed high transmittance in the visible region. TiO 2 nanoparticles formed by LPD method showed more active grain growth on the surface of (PAH / PAA) thin film coated on glass substrate. As the deposition time increased to 60 minutes and 120 minutes in excess of 45 minutes, the texture structure of (PAH / PAA) could not be confirmed due to the growth of the TiO 2 film. Particularly, the thin film in which TiO 2 was laminated on the surface of (PAH / PAA) 10 thin film for 45 minutes showed a rough surface with RMS roughness of 65.6 nm, and after the water repellent treatment, the contact angle improved to 155 ° and 80% at wavelength above 650 nm. The above transmittance was shown.

아래의 표 1은 (PAH/PAA) 박막의 bilayer 수와 LPD 법의 침적시간에 따라 제조된 TiO2박막의 접촉각을 나타낸 것이다.Table 1 below shows the number of bilayers of the (PAH / PAA) thin film and the contact angle of the TiO 2 thin film prepared according to the deposition time of the LPD method.

Figure 112009081547042-pat00001
Figure 112009081547042-pat00001

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Will be clear to those who have knowledge of.

도 1은 초발수 박막 제조를 위한 모식도이다.1 is a schematic diagram for manufacturing a super water-repellent thin film.

도 2는 유리기판 위에 코팅된 (PAH/PAA)n 박막의 Bilayer 수에 따른 FE-SEM 이미지이다.2 is an FE-SEM image according to the number of Bilayers of a (PAH / PAA) n thin film coated on a glass substrate.

도 3은 유리기판 위에 코팅된 (PAH/PAA)n 박막의 Bilayer 수에 따른 투과율 스펙트럼이다.3 is a transmission spectrum according to the number of Bilayers of a (PAH / PAA) n thin film coated on a glass substrate.

도 4는 유리기판과 5, 10, 15 bilayers의 (PAH/PAA) 박막이 각각 코팅된 유리기판을 LPD 용액에 45분간 침적하여 성형시킨 TiO2 박막의 SEM 이미지이다.4 is a TiO 2 formed by depositing a glass substrate coated with a glass substrate of 5, 10, 15 bilayers (PAH / PAA) thin film in LPD solution for 45 minutes. SEM image of the thin film.

도 5는 침적시간에 따른 (PAH/PAA)10 박막의 표면위의 제조되어진 TiO2 박막의 SEM 이미지이다.5 is prepared TiO 2 on the surface of the (PAH / PAA) 10 thin film according to the deposition time SEM image of the thin film.

도 6은 침적시간에 따른 (PAH/PAA)10 박막의 표면위의 제조되어진 TiO2 박막의 투과율 스펙트럼이다.6 shows TiO 2 prepared on the surface of (PAH / PAA) 10 thin film according to deposition time. The transmittance spectrum of the thin film.

도 7은 45분의 침적시간을 갖는 (PAH/PAA)10 박막의 표면에 제조되어진 TiO2박막의 AFM 이미지와 TiO2박막 표면상의 물방울 이미지이다.7 is an AFM image of a TiO 2 thin film with water droplets on the surface image of a TiO 2 thin film been produced on the surface of (PAH / PAA) 10 having a thin film deposition time of 45 minutes.

도 8은 투명 초발수-초친수 패터닝 제조과정을 나타낸 도면이다.8 is a view showing a transparent super water-repellent superhydrophilic patterning process.

도 9는 LBL-SA법과 LPD법을 이용한 TiO2박막의 제조과정을 나타낸 도면이다.9 is a view showing a manufacturing process of the TiO 2 thin film using the LBL-SA method and LPD method.

Claims (9)

기판의 상부에 LBL법을 통해 (PAH/PAA)박막을 형성하고(PAH / PAA) thin film is formed on the substrate through LBL method 상기 (PAH/PAA)박막의 상부에 LPD법을 통해 45분간 TiO2 나노 입자를 적층하고 상기 적층된 표면을 FAS처리하며,The TiO 2 nanoparticles were laminated for 45 minutes on the top of the (PAH / PAA) thin film by LPD method, and the laminated surface was subjected to FAS treatment. 상기 (PAH/PAA)박막은 상기 기판을 친수 처리한 후 친수 처리된 기판을 양전하를 갖는 PAH에 담근 후 세정하고, 음전하를 갖는 PAA에 담근 후 세정하는 공정을 10회 반복하여 제조하는The (PAH / PAA) thin film is manufactured by repeating the process of hydrophilic treatment of the substrate and then immersing the hydrophilized substrate in PAH having a positive charge, and soaking in a PAA having a negative charge and then cleaning the substrate 10 times. 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 제 1항에 있어서,The method of claim 1, 상기 기판은The substrate is 증류수와 에탄올을 2:3의 부피비로 혼합한 혼합액에 KOH를 첨가한 용액에 담군후 증류수로 세정하여 친수 처리하는 Distilled water and ethanol were mixed in a volume ratio of 2: 3, immersed in a solution added with KOH, washed with distilled water and hydrophilized 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 삭제delete 제 1항에 있어서,The method of claim 1, TiO2 나노 입자는,TiO 2 Nanoparticles, 상기 (PAH/PAA)박막을 TiF4 용액에 침수하는The (PAH / PAA) thin film was immersed in TiF 4 solution 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 제 4항에 있어서, 상기 TiF4 용액은The method of claim 4 wherein the TiF 4 solution is 0.04M 농도와 PH 2.0을 나타내는 Indicating 0.04M concentration and PH 2.0 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 FAS처리는,The FAS process, 상기 TiO2 나노 입자가 적층 된 기판을 증류수를 이용하여 세정하고, The TiO 2 The substrate on which the nanoparticles are stacked is washed with distilled water, hexane 용액에 희석된 FAS 용액에 침적한 후 건조하는 dipped in FAS solution diluted in hexane solution and dried 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 제 1항에 있어서, 상기 FAS처리 후 발수 공정을 더 포함하는The method of claim 1, further comprising a water repellent process after the FAS treatment. 초발수 박막의 제조방법.Method for producing a super water-repellent thin film. 제 1항, 제 2항, 제 4항, 제 5항, 제 7항 및 제 8항 중 어느 하나의 항의 제조방법에 의해 제조된 초발수 박막.A super water-repellent thin film prepared by the method of any one of claims 1, 2, 4, 5, 7, and 8.
KR1020090133815A 2009-10-29 2009-12-30 Method for fabricating superhydrophobic thin film KR101259078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090133815A KR101259078B1 (en) 2009-10-29 2009-12-30 Method for fabricating superhydrophobic thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090103716 2009-10-29
KR20090103716 2009-10-29
KR1020090133815A KR101259078B1 (en) 2009-10-29 2009-12-30 Method for fabricating superhydrophobic thin film

Publications (2)

Publication Number Publication Date
KR20110047097A KR20110047097A (en) 2011-05-06
KR101259078B1 true KR101259078B1 (en) 2013-05-06

Family

ID=44238427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090133815A KR101259078B1 (en) 2009-10-29 2009-12-30 Method for fabricating superhydrophobic thin film

Country Status (1)

Country Link
KR (1) KR101259078B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105385256A (en) * 2015-11-11 2016-03-09 中国人民解放军国防科学技术大学 Super-hydrophobic coating and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399392B1 (en) * 2012-06-12 2014-06-19 한국세라믹기술원 The manufacturing process of niobium pentoxide material with superhydrophobic characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. TSUGE et al. Fabrication of transparent TiO2 film with high adhesion by using self-assembly methods: Application to super-hydrophilic film. Thin Solid Films. 2008, 516, pp. 2463-2468*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105385256A (en) * 2015-11-11 2016-03-09 中国人民解放军国防科学技术大学 Super-hydrophobic coating and preparation method thereof

Also Published As

Publication number Publication date
KR20110047097A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
Moghadam et al. Multifunctional superhydrophobic surfaces
Mozumder et al. Recent developments in multifunctional coatings for solar panel applications: A review
US9221976B2 (en) Antireflective coatings with self-cleaning, moisture resistance and antimicrobial properties
TWI624515B (en) Inorganic-organic hybrid oxide polymer and manufacturing method thereof
Tao et al. Fabrication of robust, self-cleaning, broadband TiO2SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process
US20110019277A1 (en) anti-reflective coating
Tettey et al. Progress in superhydrophilic surface development
Yao et al. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO 2 &TiO 2 double-shelled hollow nanospheres
CN101344601B (en) Method for preparing anti-fog anti-reflection coating layer based on layered packaging technique
Simon et al. Development of thick superhydrophilic TiO2–ZrO2 transparent coatings realized through the inclusion of poly (methyl methacrylate) and pluronic-F127
CN103449735B (en) A kind of nanometer hydrated calcium silicate super-hydrophilic thin film and preparation method thereof and application
KR20140022491A (en) Superhydrophobic coating solution composition and method for producing the coating composition
KR101259078B1 (en) Method for fabricating superhydrophobic thin film
KR20110126966A (en) Hydrophobic sheet and preparation method thereof
Wu et al. Gradient refractive index-based broadband antireflective coatings and application in silicon solar modules
WO2016143297A1 (en) Glass plate provided with coating film and method for manufacturing same
Mamedov et al. Enhanced hydrophobicity of CeO2 thin films: Role of the morphology, adsorbed species and crystallography
Joghee et al. Superhydrophobic coatings based on pseudoboehmite nanoflakelets for sustainable photovoltaic energy production
CN103881419A (en) Hydrophobic hollow spherical SiO2 nanoparticle and its preparation method and application
Mohsin et al. Enhancement of Pigments Hydrophobicity by Mixing with Cr Doped SiO2 Nanoparticles
Wu et al. Hollow core-shell nanocoatings with gradient refractive index structure for enhanced photovoltaic performance
Sai et al. Preparation and Characterization of TiO2-SiO2 Sol-Gel Anti Reflection Coatings on Multi Crystalline Silicon Solar Cell
JP2008063173A (en) Rutile type titanium oxide film, its production method, and optical material
KR101238670B1 (en) Manufacturing method of hydrophilic thin film
KR101401354B1 (en) Multilayer nanostructured photocatalytic thin Films with high transmittance and a preparing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 5