KR101253293B1 - DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene - Google Patents
DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene Download PDFInfo
- Publication number
- KR101253293B1 KR101253293B1 KR1020100126440A KR20100126440A KR101253293B1 KR 101253293 B1 KR101253293 B1 KR 101253293B1 KR 1020100126440 A KR1020100126440 A KR 1020100126440A KR 20100126440 A KR20100126440 A KR 20100126440A KR 101253293 B1 KR101253293 B1 KR 101253293B1
- Authority
- KR
- South Korea
- Prior art keywords
- meat
- dna
- seq
- base
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 PPARGC1A 유전자 3' UTR 영역의 SNP를 포함하는 돼지의 육질 증가 여부 확인용 DNA 표지인자에 관한 것으로, 더욱 구체적으로 서열번호 1의 염기서열에서 2956번째 C 염기를 포함하는 15 내지 800개의 연속서열로 구성되는 돼지의 육질 증가 여부 확인용 DNA 표지인자에 관한 것이다.
본 발명에 따르면, 상기 SNP는 돼지의 근섬유조성에 차이를 주지 않으면서 육질 특성인 pH의 증가 또는 유리육즙의 감소를 일으켜 육질의 증가에 영향을 준다. 이러한 유전적 변이를 이용하여 돼지의 육질 개량 및 우수 개체의 선별에 유용한 DNA 표지인자를 개발할 수 있다.The present invention relates to a DNA marker for confirming whether meat is increased in pigs including SNPs of the 3 'UTR region of the PPARGC1A gene, and more specifically, 15 to 800 consecutive sequences including the 2956 th C base in the nucleotide sequence of SEQ ID NO: 1. The present invention relates to a DNA marker for confirming whether or not pork is composed of sequences.
According to the present invention, the SNP affects the increase in meat quality by causing an increase in pH, which is a meaty property, or a decrease in free juice, without affecting the muscle fiber composition of pigs. This genetic variation can be used to develop DNA markers useful for improving the quality of pigs and screening superior individuals.
Description
본 발명은 PPARGC1A 유전자 3' UTR 영역의 SNP를 포함하는 돼지의 육질 증가 여부 확인용 DNA 표지인자에 관한 것으로, 더욱 구체적으로 서열번호 1의 염기서열에서 2956번째 C 염기를 포함하는 15 내지 800개의 연속서열로 구성되는 돼지의 육질 증가 여부 확인용 DNA 표지인자에 관한 것이다.
The present invention relates to a DNA marker for confirming whether meat is increased in pigs including SNPs of the 3 'UTR region of the PPARGC1A gene, and more specifically, 15 to 800 consecutive sequences including the 2956 th C base in the nucleotide sequence of SEQ ID NO: 1. The present invention relates to a DNA marker for confirming whether or not pork is composed of sequences.
근섬유조성을 포함하는 근섬유특성은 유전적인 요인에 의해 크게 영향을 받는다. 특히, 돼지의 경우 근세포조성의 유전력이 근섬유형별로 37~58%로써 높고, 육질관련 형질과의 유전상관 관계도 높기 때문에 유전적인 개량을 통해서 각 개체의 근세포조성의 조절이 가능할 것으로 판단되고 있다 (Larzul, C. et al. 1997. J. AnimSci. 75: 3126-3137.). DNA 표지인자를 이용한 선발방법인 MAS(Marker Assisted Selection)는 가축의 육종에 있어서 선발의 정확도를 높이고 개량속도를 증가시켜, 유전적 개량량을 극대화할 수 있는 방법으로서 최근 첨단분자육종기법으로 각광받고 있다. 근섬유조성의 변이가 대부분 유전적 요인에 의해 발생한다는 점은 MAS를 접목한 개량이 매우 효율적일 수 있음을 시사한다.Muscle fiber properties, including muscle fiber composition, are greatly influenced by genetic factors. In particular, pigs have a high heritability of 37-58% for each myofibrillar type and a high genetic correlation with meat-related traits. Larzul, C. et al. 1997. J. Anim Sci. 75: 3126-3137.). Marker Assisted Selection (MAS), a method of selecting DNA markers, increases the accuracy of selection and increases the rate of improvement in livestock breeding and maximizes genetic improvement. have. The fact that the variation of muscle fiber composition is mostly caused by genetic factors implies that the modification with MAS can be very effective.
그러나 근세포 특성은 도체의 등심근에서만 측정이 가능한 형질로서, 생체에서의 측정이 불가능하다. 따라서 이를 위주로 한 선발과 개량을 위해서는 도축을 하지 않고도 개체의 근세포 특성을 예측할 수 있는 방법이 필요하다. 바로 이러한 점에서 DNA 표지인자의 개발이 근본적으로 요구되며, 후보유전자의 개발과 유전자 구조 분석을 통한 유전자원 확보가 필수적으로 선행되어야 한다.However, myocyte characteristics are traits that can only be measured in the cartilage of the carcass, and cannot be measured in vivo. Therefore, for selection and improvement based on this, there is a need for a method for predicting the myocyte characteristics of the individual without slaughter. In this regard, the development of DNA markers is fundamentally required, and the development of candidate genes and the securing of genetic resources through gene structure analysis must be essential.
PPARGC1A(Peroxisome proliferator-activated receptor-gamma coactivator-1) 유전자는 PGC1의 전구체로서 적응대사량(adaptive thermogenesis)과 지방세포 분화(adipocyte differentiation)에 깊게 관여함으로써 동물의 에너지대사에 깊게 관여하여, 가축의 육질관련 후보유전자로 최근 거론되고 있다 (Erkens, T. et al. 2006. BMC Biotechnol 6: 41). 더욱이, 이 유전자가 근섬유 타입 I 형성을 유도하는 주요한 역할을 하는 것으로 보고됨으로써 (Lin, J. et al. 2002. Nature 418: 797-801), 본 발명자들은 PPARGC1A 유전자를 근섬유조성, 특히 타입 I 형성에 관여하고 육질향상과 관련이 있는 후보유전자로 선정하였다.PPARGC1A (Peroxisome proliferator-activated receptor-gamma coactivator-1) gene is a precursor of PGC1, which is deeply involved in animal metabolism by deeply involved in adaptive thermogenesis and adipocyte differentiation. It has been recently discussed as a candidate gene (Erkens, T. et al. 2006. BMC Biotechnol 6: 41). Furthermore, it has been reported that this gene plays a major role in inducing myofibrillar Type I formation (Lin, J. et al. 2002. Nature 418: 797-801), and we have found that the PPARGC1A gene can be used for myofibrillar formation, especially Type I formation. Were selected as candidate genes involved in meat quality and meat quality.
최근 5년간에 걸쳐 동물과 식물을 포함한 모든 후생동물(metazoan)의 유전체 (genome)로부터 21-25 뉴클레오티드(nucleotide, nt)의 길이를 갖는 다양한 마이크로 RNA (MicroRNA, miRNA)들이 발현된다는 것이 보고되어 있다. 이 miRNA들은 단백질을 생산하지 않고, 대신 염기서열 상보적인 표적(target) 유전자들의 발현을 억제한다 (Bartel D. P., 2004, Cell 116:281-297).It has been reported that over the last five years, various microRNAs (MicroRNAs, miRNAs) with lengths of 21-25 nucleotides (nts) are expressed from the genomes of all metazoan, including animals and plants. . These miRNAs do not produce proteins, but instead inhibit the expression of sequence complementary target genes (Bartel D. P., 2004, Cell 116: 281-297).
miRNA는 미성숙의 일차 전사체 (primary transcript)로 최초 생성된 후, 두 개의 서로 다른 리보뉴클레아제(ribonuclease, RNase) III 효소들인 Drosha와 Dicer에 의해 핵과 세포질에서 잇따라 프로세싱(processing)되어 성숙된 miRNA를 형성한다 (Lee Y. et al., 2003, Nature 425:415-419, Bernstein E. et al., 2001, Nature 409:363-366). 성숙된 miRNA들은 RISC (RNA-Induced Silencing Complex)내로 들어가 그들의 염기서열 상보적인 표적 mRNA를 찾는 안내자 역할을 하고, 염기서열 상보성 정도에 따라 표적 mRNA들의 번역 억제(translational repression) 또는 분해(degradation)를 야기한다 (He L. et al., 2004, Nat Rev Genet. 5:522-531). 동물의 경우 miRNA는 표적 mRNA의 3' UTR에 존재하는 결합부위(binding site)와 불완전염기쌍형성(imperfect base pairing)을 통해 번역 억제를 하는 것으로 보고되어 있다 (Bartel D. P., 2004, Cell 116:281-297).miRNAs were initially produced as immature primary transcripts and subsequently matured by subsequent processing in the nucleus and cytoplasm by two different ribonuclease (RNase) III enzymes, Drosha and Dicer. (Lee Y. et al., 2003, Nature 425: 415-419, Bernstein E. et al., 2001, Nature 409: 363-366). Mature miRNAs enter the RNA-Induced Silencing Complex (RISC) and serve as a guide to find their sequence complementary target mRNAs, resulting in translational repression or degradation of target mRNAs depending on the degree of sequence complementarity. (He L. et al., 2004, Nat Rev Genet. 5: 522-531). In animals, miRNAs have been reported to inhibit translation through binding sites and imperfect base pairing in the 3 'UTR of the target mRNA (Bartel DP, 2004, Cell 116: 281-). 297).
miRNA는 염기서열 상보적인 표적 mRNA의 3' UTR에 RISC 복합체가 결합할 수 있도록 안내자 역할을 함으로써 그 표적 유전자의 발현을 억제를 유도한다. 따라서 표적 유전자 3' UTR 부위의 염기서열 변화가 존재한다면 특정 miRNA에 의한 발현억제가 증가할 수도 있고 반대로 감소할 수도 있다. 이러한 표적 유전자의 염기서열 변화로 인해 miRNA에 의한 발현조절 차이가 생긴다는 것이 이미 보고된 바 있다 (Clop A. et al., 2006, Nat Genet 38:813-818). miRNA induces inhibition of expression of the target gene by acting as a guide to the RISC complex binding to the 3 'UTR of the sequence complementary target mRNA. Therefore, if there is a nucleotide sequence change in the target 3 'UTR region, expression inhibition by a specific miRNA may be increased or vice versa. It has already been reported that the change of the nucleotide sequence of the target gene results in a difference in expression regulation by miRNA (Clop A. et al., 2006, Nat Genet 38: 813-818).
본 발명에서는 돼지의 품종별로 실제 적육생산능력과 육질형질을 측정하고, PPARGC1A 유전자를 근섬유조성, 특히 타입 I 형성에 관여하고 육질향상과 관련이 있는 후보유전자로 선정하여 3' UTR 영역에서 유전자형 분석결과를 토대도 연관성 분석을 실시하였다. 이를 통해서 PPARGC1A 유전자의 3' UTR 영역에서 SNP를 탐색하고 그에 따른 육질 향상관련 기능을 규명하였고, 관련 DNA 표지인자로서 효용성을 검증하였다.
In the present invention, the actual red meat production capacity and meat quality were measured for each pig breed, and PPARGC1A gene was selected as a candidate gene involved in muscle fiber composition, especially type I formation and related to meat quality, and genotyping result in the 3 'UTR region. Based on this, we conducted a correlation analysis. Through this, the SNP was searched in the 3 'UTR region of the PPARGC1A gene, the function related to meat improvement was confirmed, and the utility as a related DNA marker was verified.
따라서, 본 발명의 주된 목적은 돼지의 PPARGC1A 유전자의 3' UTR 영역에 존재하는 SNP를 이용하여 육질을 향상시키는 육질 증가 관련 DNA 표지인자 및 이를 이용한 SNP 분석용 키트를 제공하는 데 있다.Accordingly, a main object of the present invention is to provide a meat growth-related DNA marker for improving meat quality using SNPs present in the 3 ′ UTR region of the PPARGC1A gene of pigs, and a kit for SNP analysis using the same.
본 발명의 다른 목적은 상기 육질 증가 관련 DNA 표지인자를 이용한 돼지의 육질 증가 여부를 확인하는 방법을 제공하는데 있다.
It is another object of the present invention to provide a method for confirming whether or not meat is increased by using the DNA markers related to meat quality.
본 발명의 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열에서, 2956번째 C 염기를 포함하는 15 내지 800개의 연속서열로 구성되는 돼지의 육질 증가 여부 확인용 DNA 표지인자를 제공한다.According to an aspect of the present invention, the present invention provides a DNA marker for increasing the meat quality of pigs consisting of 15 to 800 consecutive sequences including the 2956 th C base in the nucleotide sequence of SEQ ID NO: 1.
본 발명자들은, 서열번호 1로 표시된 PPARGC1A 유전자의 3' UTR 영역에서 돼지의 육질 특성과 관련된 단염기다형성(single nucleotide polymorphism, SNP)을 찾아내고, 이러한 SNP에 따른 돼지 개체의 육질 특성 및 유전자형과의 연관성을 분석하였다. 상기 DNA 표지인자는 가축의 육질 관련 후보유전자로 최근 연구되고 있는 PPARGC1A 유전자의 3' UTR 서열 중 일부로서, 특정부위에서 T 또는 C로 염기가 치환된 SNP(single nucleotide polymorphism) 부위를 포함한다.The present inventors have found a single nucleotide polymorphism (SNP) related to the meat quality of pigs in the 3 'UTR region of the PPARGC1A gene represented by SEQ ID NO: 1, and compared with the meat characteristics and genotypes of the pig individual according to the SNP. Association was analyzed. The DNA marker is part of the 3 'UTR sequence of the PPARGC1A gene, which has recently been studied as a meat-related candidate gene for livestock, and includes a single nucleotide polymorphism (SNP) site where a base is substituted with T or C at a specific site.
본 발명은 PPARGC1A 유전자의 3' UTR 영역에서 육질의 증가를 일으키는 SNP (T→C 치환) 부위를 밝혀내고 이를 포함하는 DNA 단편의 “돼지의 육질 증가 여부 확인하기 위한 DNA 표지인자”로서의 신규한 용도에 관한 것이다.The present invention finds an SNP (T → C substitution) site that causes an increase in meat quality in the 3 'UTR region of the PPARGC1A gene and uses it as a "DNA marker for confirming whether the pork meat is increased." It is about.
상기 PPARGC1A 유전자는 포유동물에서 에너지 대사에 관여한다는 것이 이미 알려져 있고, 또한 가축의 육질관련 후보유전자로 다양한 연구가 진행되고 있으며, 특히 마우스의 근섬유 타입 I 형성을 유도하는 주요한 역할을 하는 것으로도 알려져 있다. 그러나, 돼지의 PPARGC1A 유전자의 3' UTR 영역에서 특정 부위의 SNP를 이용하여 육질이 향상된 개체를 선별하는 방법은 전혀 알려져 있지 않으며, 본 발명자들이 이러한 육질 증가 관련 SNP를 처음으로 밝혔다.The PPARGC1A gene is known to be involved in energy metabolism in mammals, and various studies have been conducted as a candidate for meat quality in livestock, and in particular, it is known to play a major role in inducing muscle fiber type I formation in mice. . However, there is no known method for screening individuals having improved meat quality using SNPs at specific sites in the 3 'UTR region of the PPARGC1A gene in pigs, and the inventors first disclosed the SNPs related to meat quality increase.
본 발명에 있어서, 상기 DNA 단편은 돼지의 육질 특성과 관련한 PPARGC1A 유전자의 3' UTR 영역의 새로운 유전적 변이 부위(SNP site)인 2956번째 C 염기를 포함하는 DNA 표지인자이다. 이 유전적 변이 부위는 T→C로 염기가 치환되어 유전자의 발현에 차이를 주게 되어 결과적으로 육질 향상에 영향을 미친다. 상기 DNA 단편의 크기는 전체 유전자의 full length가 아닌 한 상기 SNP 부위를 포함하는 어떤 단편 크기일 수 있으나, 바람직하게는 15 내지 수백 염기일 수 있으며, 더욱 바람직하게는 15 내지 800 염기일 수 있다. 특히 15 내지 30 염기의 경우는 상기 SNP를 탐지하기 위한 프로브(probe)나 프라이머로 이용될 수 있다. 본 발명의 실시예에서는, 상기 DNA 표지인자로서 상기 SNP 부위를 포함하는 736 bp 크기의 DNA 단편 (서열번호 4)을 DNA 표지인자로 이용하였다.In the present invention, the DNA fragment is a DNA marker comprising the 2956th C base, which is a new genetic variation (SNP site) of the 3 'UTR region of the PPARGC1A gene related to the meat properties of pigs. This genetic mutation site is replaced by a base T → C difference in the expression of the gene, resulting in improved meat quality. The size of the DNA fragment may be any fragment size including the SNP site, as long as it is not the full length of the entire gene, but preferably 15 to several hundred bases, more preferably 15 to 800 bases. Especially 15 to 30 base can be used as a probe (probe) or primer for detecting the SNP. In an embodiment of the present invention, a DNA fragment of 736 bp (SEQ ID NO: 4) including the SNP site was used as the DNA marker.
본 발명에 있어서, 상기 DNA 표지인자는 돼지의 근육 내 근섬유조성에 차이를 주지 않으면서 육질 관련 형질인 pH를 증가시키고 유리육즙(drip loss)을 감소시킴으로써 육질을 증가시키는 것을 특징으로 한다. 본 발명의 실시예 4에서와 같이, 상기 서열번호 1의 2956번째 C 염기에서의 SNP에 따른 유전자형(CC, CT, TT)과 근섬유형질 및 육질의 연관성 분석을 분석하여 CT 및 TT 유전자형이 향상된 육질을 나타냄을 확인하였다 (표 8 참조).In the present invention, the DNA marker is characterized in that the meat quality is increased by increasing the pH and meat free traits (drip loss) without increasing the muscle fiber composition of pigs. As in Example 4 of the present invention, CT and TT genotypes improved by analyzing the correlation analysis of genotypes (CC, CT, TT), muscle fiber and meat quality according to SNP at the 2956 th C base of SEQ ID NO: 1 Was confirmed (see Table 8).
본 발명에서, “육질의 증가”란 상기 서열번호 1의 2956번째 SNP로 인한 개체별 유전자형(CC, TC, TT)에 따라 돼지의 육질 관련 형질인 pH가 높게 나타난 것을 의미한다. 즉, 서열번호 1의 2956번째 SNP의 경우 CT 및 TT 유전자형 개체가 CC 유전자형 개체와 비교하여 pH가 증가하고 유리육즙이 감소된 상태를 의미한다.In the present invention, "increase in meat" means that the pH of meat-related traits of pigs is high according to the individual genotype (CC, TC, TT) due to the 2956 th SNP of SEQ ID NO: 1. That is, the 2956 th SNP of SEQ ID NO: 1 means that the CT and TT genotype individuals have increased pH and reduced free juice compared to CC genotype individuals.
돼지의 육질특성은 고기의 질을 pH, 육색, 근내지방도, 지방색, 조직감, 성숙도 등에 따라 등급을 구분하게 되는데, 이 중 특히 pH와 유리육즙은 돼지고기의 육질 특성을 나타내는데 중요한 판별 기준이 된다. 최근 돼지에 있어 육질이 매우 중요하게 부각되고 있기 때문에 육질이 우수한 돼지를 선발하고 육종 및 생산함으로써 품질이 향상된 고급육의 개발이 중요하다. 따라서 본 발명의 DNA 표지인자를 이용하면 육질이 향상된 개체를 조기에 진단하고 선별하여 육질이 향상된 고급육을 손쉽게 선별할 수 있다.
Pork's meat quality is classified by grade of meat according to pH, meat color, intramuscular fat, fat color, texture, maturity, etc. Among them, pH and glass broth are important criteria for indicating meat quality of pork. In recent years, since the quality of meat is very important in pigs, it is important to develop high-quality meat with improved quality by selecting, breeding, and producing excellent meat. Therefore, by using the DNA marker of the present invention, it is possible to easily select high-quality meat with improved meat quality by early diagnosis and screening of individuals with improved meat quality.
본 발명의 다른 양태에 따르면, 본 발명은 서열번호 2와 서열번호 3으로 표시된 올리고뉴클레오티드로 구성되는, 돼지 PPARGC1A 유전자의 3' UTR 영역에서 육질 증가 여부 관련 SNP를 탐색하기 위한 프라이머를 제공한다. 본 발명의 실시예에서는 Genebank (accession no. AB106108)에 등록된 유전자 서열에 기초하여 본 발명의 PPARGC1A 유전자의 3' UTR에 존재하는 SNP를 탐색할 수 있는 프라이머를 제작하였다. 본 발명의 프라이머는 종래 밝혀지지 않은 SNP를 포함하는 유전자 단편을 증폭하기 위한 것으로, 돼지 PPARGC1A 유전자의 3' UTR 서열 중 특정 부위(서열번호 1에서 2956번째 염기)에서 SNP를 포함하는 유전자 단편을 제조할 수 있게 해준다.According to another aspect of the present invention, the present invention provides a primer for searching for a SNP related to meat quality in the 3 'UTR region of the porcine PPARGC1A gene, consisting of oligonucleotides represented by SEQ ID NO: 2 and SEQ ID NO: 3. In the embodiment of the present invention, a primer was prepared to search for SNP present in the 3 'UTR of the PPARGC1A gene of the present invention based on the gene sequence registered in Genebank (accession no. AB106108). The primer of the present invention is for amplifying a gene fragment containing a SNP, which is not known in the prior art, to prepare a gene fragment containing a SNP at a specific site (SEQ ID NO: 1 to 2956 base) of the 3 'UTR sequence of the porcine PPARGC1A gene. It allows you to.
상기 프라이머를 이용하여 제조된 유전자 단편의 염기서열의 결정은, 당업계에 알려진 다양한 방법에 의하여 이루어질 수 있다. 예를 들면, 디데옥시 법에 의하여 직접적인 핵산의 뉴클레오티드 서열의 결정을 통하여 이루어지거나, SNP 부위의 서열을 포함하는 프로브 또는 그에 상보적인 프로브를 상기 DNA와 혼성화시키고 그로부터 얻어지는 혼성화 정도를 측정함으로써 다형성 부위의 뉴클레오티드 서열을 결정하는 방법 등이 이용될 수 있다. 혼성화의 정도는 예를 들면, 검출가능한 표지를 표적 DNA에 표지하여, 혼성화된 표적 DNA 만을 특이적으로 검출함으로써 이루어질 수 있으나, 그외 전기적 신호 검출방법 등이 사용될 수 있다.The nucleotide sequence of the gene fragment prepared using the primer can be determined by various methods known in the art. For example, by determining the nucleotide sequence of a nucleic acid directly by the dideoxy method, or by hybridizing a probe comprising the sequence of the SNP site or a probe thereof to the DNA and measuring the degree of hybridization obtained therefrom. Methods for determining the nucleotide sequence may be used. The degree of hybridization can be determined, for example, by marking a detectable label on the target DNA and specifically detecting only the hybridized target DNA, but other electrical signal detection method and the like can be used.
구체적으로, 대립형질 특이적 프로브 혼성화 방법(allele-specific probe hybridization), 대립형질 특이적 증폭 방법(allele-specific amplification), 서열분석법(sequencing), 5' 뉴클레아제 분해법(5' nuclease digestion), 분자 비콘 어세이법(molecular beacon assay), 올리고뉴클레오티드 결합 어세이법(oligonucleotide ligation assay), 크기 분석법(size analysis), 단일 가닥 배좌 다형성법(single-stranded conformation polymorphism) 등의 방법에 의해 수행될 수 있다.Specifically, allele-specific probe hybridization, allele-specific amplification, sequencing, 5 'nuclease digestion, and 5' Molecular beacon assay, oligonucleotide ligation assay, size analysis, single-stranded conformation polymorphism, and the like. have.
본 발명의 실시예에서는, 본 발명의 상기 SNP 부위를 포함하는 DNA 단편을 제조하고 DNA 단편을 직접적인 서열분석법(sequencing)을 이용하여 SNP 부위의 염기서열을 결정하여 유전자형을 구분하였다. 예를 들어, 서열번호 2와 서열번호 3의 프라이머로 증폭한 DNA 단편(736 bp)을 이용하여 유전자형을 CC, CT, TT로 구분할 수 있었다 (도 3 참조).
In the embodiment of the present invention, a DNA fragment comprising the SNP site of the present invention was prepared and genotype was determined by determining the nucleotide sequence of the SNP site using direct sequencing. For example, genotypes could be divided into CC, CT, and TT using DNA fragments (736 bp) amplified by primers of SEQ ID NO: 2 and SEQ ID NO: 3 (see FIG. 3).
본 발명의 다른 양태에 따르면, 본 발명은 상기 DNA 표지인자에 상보적으로 결합하는 프로브(probe)를 포함하는 돼지의 육질 증가 여부 관련 SNP 분석용 키트를 제공한다. 본 발명에서 프로브(probe)란 혼성화 프로브를 의미하는 것으로, 핵산의 상보성 가닥에 서열 특이적으로 결합할 수 있는 올리고뉴클레오티드를 의미한다. 본 발명의 상기 프로브는 SNP를 검출하기 위한 방법 등에 사용될 수 있다. 상기 검출 방법에는 서던 블롯팅 등과 같은 핵산의 혼성화에 근거한 검출방법들이 포함되며, 마이크로어레이를 이용한 방법에서 마이크로어레이의 기판에 미리 결합된 형태로 제공될 수도 있다.
According to another aspect of the present invention, the present invention provides a kit for SNP analysis related to the increase in meat quality of a pig comprising a probe that binds complementarily to the DNA marker. Probe (probe) in the present invention means a hybridization probe, it means an oligonucleotide capable of sequence-specific binding to the complementary strand of the nucleic acid. The probe of the present invention can be used for a method for detecting SNPs. The detection method includes detection methods based on hybridization of nucleic acids such as Southern blotting, or the like, and may be provided in a form that is pre-coupled to a substrate of a microarray in a method using a microarray.
본 발명의 다른 양태에 따르면, 본 발명은 하기 단계들을 포함하는, 돼지의 육질 증가 여부를 확인하는 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for checking whether the pork is increased in meat, comprising the following steps:
a) 돼지로부터 게노믹 DNA를 분리하는 단계;a) separating genomic DNA from pigs;
b) 상기 a)단계의 DNA를 주형으로 하여 서열번호 1로 표시된 PPARGC1A 유전자의 3' UTR 영역의 2956번째 염기를 포함하는 특정부위를 증폭시키는 단계;b) amplifying a specific site including the 2956 base of the 3 ′ UTR region of the PPARGC1A gene represented by SEQ ID NO: 1 using the DNA of step a) as a template;
c) 상기 b)단계에서 증폭된 DNA의 염기서열을 분석하는 단계; 및c) analyzing the base sequence of the DNA amplified in step b); And
d) 상기 c)단계의 염기서열 결과로부터 서열번호 1의 2956번째 염기가 T 염기에서 C 염기로 치환 여부를 확인하는 단계.d) confirming whether or not the 2956 base of SEQ ID NO: 1 is replaced by the T base to the C base from the base sequence result of step c).
본 발명의 방법에서, 상기 b)단계에서 서열번호 2와 서열번호 3으로 표시된 프라이머를 이용하여 증폭시키는 것을 특징으로 한다. 상기 b)단계의 DNA 증폭은 PPARGC1A 유전자 3' UTR 영역의 2956번째 염기인 SNP가 포함된 특정부위를 증폭시킬 수 있는 어떤 프라이머일 수 있으나, 바람직하게는 서열번호 2와 서열번호 3로 표시된 올리고뉴클레오티드로 구성된 프라이머를 이용하여 증폭시킬 수 있다.In the method of the present invention, characterized in that the amplification using the primers shown in SEQ ID NO: 2 and SEQ ID NO: 3 in step b). The DNA amplification of step b) may be any primer capable of amplifying a specific region including SNP, which is the 2956 base of the 3PAR UTR region of the PPARGC1A gene, but is preferably an oligonucleotide represented by SEQ ID NO: 2 and SEQ ID NO: 3 Can be amplified using a primer consisting of.
본 발명의 방법에서, 상기 SNP 부위를 포함하는 DNA 단편을 제조하고 DNA 단편을 직접적인 서열분석법(sequencing)을 이용하여 SNP 부위의 염기서열을 결정하여 유전자형을 구분할 수 있다. 상기 방법에 따르면, 서열번호 2와 서열번호 3의 프라이머로 증폭한 DNA 단편에 존재하는 SNP 부위의 염기를 확인함으로써 유전자형을 CC, CT, TT로 구분할 수 있고, 각 유전자형에 따른 육질 특성을 비교함으로써 돼지 개체에서 육질의 증가 여부를 확인할 수 있게 된다 (표 8 참조).
In the method of the present invention, a DNA fragment containing the SNP region may be prepared, and DNA fragments may be genotyped by determining the nucleotide sequence of the SNP region using direct sequencing. According to the above method, genotypes can be divided into CC, CT, and TT by identifying the bases of the SNP sites present in the DNA fragments amplified by the primers of SEQ ID NO: 2 and SEQ ID NO: 3, and by comparing meat quality according to each genotype. It is possible to determine whether there is an increase in meat quality in pig subjects (see Table 8).
이상 설명한 바와 같이, 본 발명에 따르면 돼지 PPARGC1A 유전자 3' UTR 영역의 SNP는 근섬유조성의 차이를 주지 않으면서 육질 특성인 pH의 증가 및 유리육즙의 감소를 일으켜 육질의 증가에 영향을 주는 것으로 판단할 수 있다. 따라서 본 발명의 유전적 변이(SNP)는 돼지의 육질 특성과 관련한 기능을 가지며 이러한 특성을 통해서 육질 개량과 관련한 DNA 마커로서 유용하게 사용될 수 있다.
As described above, according to the present invention, the SNP of the 3 ′ UTR region of the porcine PPARGC1A gene may be determined to affect the increase in meat quality by increasing the pH of the meat properties and decreasing the free juice without causing a difference in muscle fiber composition. Can be. Therefore, the genetic variation (SNP) of the present invention has a function related to the meat quality of pigs and can be usefully used as a DNA marker related to meat quality improvement through such characteristics.
도 1은 돼지 PPARGC1A 유전자 3' UTR의 염기서열을 분석한 결과이다. 2956번째 염기(T→C 치환)가 새로 발견한 단일염기변이부위(SNP)이다.
도 2는 본 발명에 따른 DNA 표지인자의 일예로서, 본 발명에 따른 프라이머를 이용한 직접염기서열분석에 사용된 DNA 단편을 나타낸다.
도 3은 본 발명에 따른 SNP에 대한 PCR 및 직접염기서열분석(direct sequencing)을 실시하여 염기에 따른 peak의 차이를 이용하여 유전자형을 분석하는 방법을 나타낸다.Figure 1 shows the results of analyzing the nucleotide sequence of the pig PPARGC1A gene 3 'UTR. The 2956th base (T → C substitution) is the newly discovered single base mutation site (SNP).
Figure 2 is an example of a DNA marker according to the present invention, shows a DNA fragment used for direct sequencing using a primer according to the present invention.
Figure 3 shows a method for genotyping using the difference in the peak according to the base by performing PCR and direct sequencing (Sequencing) for the SNP according to the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. PPARGC1A 유전자의 3' UTR에 대한 염기서열 분석 및 변이 탐색Example 1.Sequence analysis and mutation search for 3 'UTR of PPARGC1A gene
돼지 PPARGC1A에 대한 정보를 National Center for Biotechnology Information (NCBI) 홈페이지 (http://www.ncbi.nlm.nih.gov/)를 활용하여, 기존에 알려진 돼지 PPARGC1A 유전자의 cDNA 염기서열(AB106108, http://www.ncbi.nlm.nig.Gov/BLAST)을 토대로 PPARGC1A 유전자의 3' UTR 영역의 서열을 확보하였다. PPARGC1A 유전자 3' UTR의 SNP을 탐색하기 위하여 7개의 앰플리콘(amplicon)을 이용하여 돼지 4개 품종 (Yorkshire, Landrace, Duroc, Berkshire)에 대해 염기서열을 분석하였다. 상기 앰플리콘을 PCR 할 수 있는 7개의 프라이머 set를 제작하였다 (표 1). PCR 혼합물의 조성 및 반응조건은 하기 표 2와 표 3에 나타내었으며, 본 발명에서 염기서열분석을 실시한 영역은 서열번호 1과 같다. 염기서열분석 결과를 품종별로 비교(alignment)하여 단일염기변이(SNP)를 발견하였다. 서열번호 1로 표시되는 돼지 PPARGC1A 유전자의 3' UTR에서 2956번째 T 염기가 C 염기로 치환된 SNP임을 확인하였다.
For information on porcine PPARGC1A, using the National Center for Biotechnology Information (NCBI) homepage (http://www.ncbi.nlm.nih.gov/), the cDNA sequence of the previously known porcine PPARGC1A gene (AB106108, http: //www.ncbi.nlm.nig.Gov/BLAST) to obtain the sequence of the 3 'UTR region of the PPARGC1A gene. In order to search for the SNP of the 3PAR UTR of the PPARGC1A gene, sequences were analyzed for four pigs (Yorkshire, Landrace, Duroc, Berkshire) using seven amplicons. Seven primer sets capable of PCR of the amplicon were prepared (Table 1). The composition and reaction conditions of the PCR mixture are shown in Tables 2 and 3 below, and the region subjected to sequencing in the present invention is shown in SEQ ID NO: 1. Sequencing of the sequencing results by cultivars (SNP) was found. In the 3 'UTR of the porcine PPARGC1A gene represented by SEQ ID NO: 1, it was confirmed that the 2956 th T base was SNP substituted with C base.
실시예 2. 돼지의 genomic DNA 추출Example 2 Extraction of Genomic DNA from Pigs
상기 유전자 다형성 분석을 위한 genomic DNA의 분리는 Sambrook 등 (1989)의 방법에 준하여 실시하였다. 돼지의 경정맥에서 10 ml의 혈액을 채취한 후, 응고를 방지하기 위해서 ACD 용액 (citric acid 0.48 g, sodium citrate 1.32 g, glucose 1.47 g to H2O 100 ml) 2 ml을 첨가하여 4℃ 유지하여 실험실까지 운반하였다. 50 ml 원심분리용 튜브에 옮긴 후 1,300 g에서 15분간 원심분리하여 buffy coat을 모아 15 ml의 DNA extraction buffer (10 mM Tris-Cl, pH 8.0; 0.1 M EDTA, pH 8.0; 0.5% SDS; 20% μg/ml)를 넣고 잘 섞은 후 37℃ 항온수조에서 1시간 동안 배양하였다. 배양 후 Proteinase K (200 μg/ml, BRL)를 혼합하여 37℃ 항온수조에서 12시간 동안 반응시켰다. 여기에 동량의 0.5M Tris-Cl (pH 8.0)으로 준비된 페놀(Phenol)에 넣고 30분 동안 섞어 추출한 후 실온에서 15분간 5,000 g로 원심분리하여 층이 생기도록 하였다. 이 과정을 3번 반복한 후, 직경이 0.3 cm 되는 피펫(pippet)으로 상징액을 취하여 50 ml Tris-Cl (pH 8.0), 10 mM EDTA (pH 8.0) 4L에서 18시간 동안 4℃에서 투석하여 chromosomal DNA를 분리하였다. 분리된 DNA 순도는 spectrophotometer (Beckman, USA)를 이용하여 흡광도 A260과 A280의 비율로 측정하였으며, 0.8% 아가로즈 겔 전기영동을 시행하여 DNA의 분자량을 확인하였다.
Isolation of genomic DNA for gene polymorphism analysis was performed according to the method of Sambrook et al. (1989). After collecting 10 ml of blood from the jugular vein, 2 ml of ACD solution (citric acid 0.48 g, sodium citrate 1.32 g, glucose 1.47 g to H 2 O 100 ml) was added and maintained at 4 ° C. Transported to the lab. Transfer to a 50 ml centrifuge tube and centrifuge at 1,300 g for 15 minutes to collect buffy coat and collect 15 ml of DNA extraction buffer (10 mM Tris-Cl, pH 8.0; 0.1 M EDTA, pH 8.0; 0.5% SDS; 20% μg / ml) was mixed well and incubated for 1 hour in a 37 ℃ constant temperature water bath. After incubation, Proteinase K (200 μg / ml, BRL) was mixed and reacted in a 37 ° C. constant temperature water bath for 12 hours. Phenol (Phenol) prepared with the same amount of 0.5M Tris-Cl (pH 8.0) was added to the mixture for 30 minutes, extracted, and centrifuged at 5,000 g for 15 minutes at room temperature to form a layer. After repeating this procedure 3 times, the supernatant was taken with a pipette with a diameter of 0.3 cm and dialyzed at 4 ° C in 4 L of 50 ml Tris-Cl (pH 8.0) and 10 mM EDTA (pH 8.0) for 18 hours to obtain chromosomal DNA was isolated. The isolated DNA purity was measured by a spectrophotometer (Beckman, USA) at a ratio of absorbance of A260 to A280, and the molecular weight of DNA was confirmed by 0.8% agarose gel electrophoresis.
실시예 3. PCR 및 직접염기서열분석을 통한 유전자형 분석Example 3. Genotyping by PCR and Direct Base Sequence Analysis
전구체 돼지 PPARGC1A 유전자의 3' UTR 영역에서 확인한 SNP의 유전자형 분석을 위하여, RFLP 방법을 이용하고자 하였으나, 본 발명의 SNP를 인식할 수 있는 제한효소가 없었기 때문에, 본 발명에서는 새로이 발견한 SNP를 포함하는 영역에 대한 PCR 및 직접염기서열분석(direct sequencing)을 통해 개체별 유전자형분석을 실시하였다. PCR 반응과 직접염기서열분석을 위해, Forward primer (5'-CAC AGG TTC TGC GTT ACG AC-3', 20mer; 서열번호 2)와 Reverse primer (5'-AAA GCA CCA GTT CGG GTT AC-3', 20mer; 서열번호 3)로 구성된 프라이머 쌍을 제작하였다 (표 4). 유전자형을 분석하기 위한 PCR을 실시하는데 있어 프라이머는 각 2.0 μl (10 μM)씩 첨가하고, 그 외 반응 첨가물은 10X PCR reaction buffer (100 mM Tris-Cl; pH 8.3, 500 mM KCl, 15 mM Mg2Cl) 5.0 μl, dNTP (2 mM each) 5.0 μl, Taq DNA polymerase (5 unit/μl, Enzynomics) 0.5 μl, Template (genomic) DNA 2.0 μl (약 100 ng)와 ddH2O 33.5 μl를 섞어 최종적으로 50.0 μl를 반응시켰다. 반응조건은 94℃에서 10분간 initial denaturation을 실시한 후, 94℃에서 1분간 denaturation, 60.0℃에서 1분간 annealing, 74℃에서 1분간 extension을 한 cycle로 30 cycle을 반복한 후, 72℃에서 final extension을 실시한 후 PCR 반응을 종료하였다 (표 5 및 표 6 참조).
For genotyping of SNPs identified in the 3 'UTR region of the precursor porcine PPARGC1A gene, the RFLP method was used, but since there was no restriction enzyme capable of recognizing the SNPs of the present invention, the present invention includes a newly discovered SNP. Individual genotyping was performed by PCR and direct sequencing of the regions. For PCR reaction and direct sequencing, Forward primer (5'-CAC AGG TTC TGC GTT ACG AC-3 ', 20mer; SEQ ID NO: 2) and Reverse primer (5'-AAA GCA CCA GTT CGG GTT AC-3' A primer pair consisting of 20mer; SEQ ID NO: 3) was prepared (Table 4). For PCR analysis, genomic DNA was prepared by adding 2.0 μl (10 μM) of each primer and 10 × PCR reaction buffer (100 mM Tris-Cl; pH 8.3, 500 mM KCl, 15 mM Mg 2 Cl), 5.0 μl of dNTP (2 mM each), 0.5 μl of Taq DNA polymerase (5 units / μl, Enzynomics), 2.0 μl of Template (genomic) DNA (approximately 100 ng) and 33.5 μl of ddH 2 O 50.0 μl was reacted. The reaction conditions were 10 min initial denaturation at 94 ° C, 1 min denaturation at 94 ° C, 1 min annealing at 60.0 ° C, 1 cycle extension at 74 ° C, 30 cycles, and final extension at 72 ° C. After the PCR reaction was terminated (see Table 5 and Table 6).
이와 같이 확보된 PCR product (736 bp; 서열번호 4)를 직접염기서열분석을 통하여 서열번호 1로 표기된 PPARGC1A 유전자의 3' UTR에서 2956 bp 위치의 염기 구성을 알 수 있었다 (도 1 참조).Thus obtained PCR product (736 bp; SEQ ID NO: 4) through direct sequencing was found the base configuration of 2956 bp position in the 3 'UTR of the PPARGC1A gene represented by SEQ ID NO: 1 (see Fig. 1).
도 3은 돼지 PPARGC1A의 3' UTR 영역에서 2956 bp 위치의 염기 구성을 나타낸다. CC 유전자형 (C homozygote)과 TT 유전자형 (T homozygote)의 경우 염기의 peak가 하나로 나타나고 있지만, CT 유전자형 (T/C heterozygote)의 경우 peak가 2개로 나타남을 확인할 수 있었다.Figure 3 shows the base composition of the 2956 bp position in the 3 'UTR region of porcine PPARGC1A. In the case of CC genotype (C homozygote) and TT genotype (T homozygote), the base peak is shown as one, but in the case of CT genotype (T / C heterozygote), it can be seen that two peaks.
본 발명에서 Berkshire, Landrace, Yorkshire의 세품종으로 구성된 공시돈에 대해 SNP의 유전자형이 441두가 분석되었으며, 유전자형 및 유전자 빈도는 하기 표 7과 같다. SNP 위치에서 TT, TC 유전자형을 가진 개체가 높게 나타났으며, 유전자 빈도에서도 T allele이 높게 분포하고 있었다.
In the present invention, 441 genotypes of SNPs were analyzed for the test pigs consisting of three varieties of Berkshire, Landrace, and Yorkshire, and genotypes and gene frequencies are shown in Table 7 below. Individuals with TT and TC genotypes were found at the SNP position, and T allele was also highly distributed in gene frequency.
실시예 4. 표지유전자형 별 근섬유조성 및 육질차이 확인Example 4 Identification of Muscle Fiber Composition and Meat Difference by Marker Type
1) 근섬유특성 분석1) muscle fiber characteristics analysis
근섬유특성 분석을 위하여, 사후 45분이 지난 8번 흉추의 등심근의 근육샘플을 수집하였고, 0.5-×0.5-×1.0-cm의 조각으로 자르고, 액체질소로 재빠르게 얼리고, 분석 전까지는 -80℃에서 보관되었다. 횡단부분(10 μm thick)은 20℃ 상에서 크라이오스태트(cryostat; CM1850, Leica, Germany) 기계로 준비되었고, 근섬유형 식별 분석을 위해 타입 I, IIa와 IIb 섬유를 프리인큐베이션(acid preincubation, pH 4.35)을 처리한 액토미오신(actomyosin) ATPase 방법으로 염색하여 분류하였다. 모든 샘플은 CCD 카메라(charge-coupled device color camera; IK-642K, Toshiba, Japan)와 이미지 분석 시스템(the image analysis system; Image-Pro Plus, Media Cybernetics, USA) 장치를 이용하여 근섬유 특성이 분석되었다.
For muscle fiber characterization, 45 minutes post mortem muscle samples of the dorsum muscles of the thoracic vertebrae were collected, cut into pieces of 0.5- × 0.5- × 1.0-cm, quickly frozen with liquid nitrogen, and -80 ° C until analysis. Were kept at. The cross section (10 μm thick) was prepared on a cryostat (CM1850, Leica, Germany) machine at 20 ° C. and preincubated with type I, IIa and IIb fibers for myofiblot identification analysis (acid preincubation, pH 4.35). ) Was stained and classified using the actomyosin ATPase method. All samples were characterized by muscle fiber characterization using a CCD camera (charge-coupled device color camera; IK-642K, Toshiba, Japan) and an image analysis system (Image-Pro Plus, Media Cybernetics, USA). .
2) 육질 분석2) meat analysis
근육의 pH는 사후 45분에 스피어-형 전극(spear-type electrode)의 사용으로 등뼈 13번/14번 부분에서 측정되었다. 육색(Lightness)은 색도계(chromameter; CR-300, Minolta Camera Co., Japan)를 사용하여 등심근의 사후 45분경에 측정하였다. 유리육즙량(drip loss)은 2℃에서 48시간 동안 플라스틱 백에서 표면에 있는 근육 샘플의 양의 차이를 측정하는 방법으로 분석되었다 (Honikel, K. O. (1987). Martinus Nijhoff, In P. V. Tarrant, G. Eikelenboom, & G. Monin (Eds.): 129142). 결과는 하기 표 8에 나타내었다.
Muscle pH was measured at spine 13/14 at 45 minutes post mortem using a spear-type electrode. Lightness was measured at 45 minutes post mortem muscle of the sirloin using a colorimeter (CR-300, Minolta Camera Co., Japan). The glass drip loss was analyzed by measuring the difference in the amount of muscle sample on the surface in a plastic bag for 48 hours at 2 ° C (Honikel, KO (1987). Martinus Nijhoff, In PV Tarrant, G. Eikelenboom, & G. Monin (Eds.): 129142). The results are shown in Table 8 below.
3) 유전자형과 형질과의 연관성 분석3) Analysis of association between genotype and trait
도 3에서 보는 바와 같이, CC, CT, TT의 세 가지 유전자형을 확인할 수 있으며, SNP에 따른 유전자형과 근섬유특성 및 육질형질과의 연관성 분석을 실시하였다. 통계분석 프로그램으로는 SAS 9.13 package에서 제공되는 SAS/GLM procedure를 이용하였다. 이 모델에서 품종, 성별, 도축차수는 고정효과로 분석되었다. 분석결과는 최소제곱평균(Least Squares Means)과 표준오차로 나타냈으며 이를 통해 유의차를 평가하고 연관성을 분석하였다. 하기 표 8은 돼지 PPARGC1A 유전자의 3' UTR 영역에서의 SNP와 근섬유 특성 및 육질 특성 간의 연관성을 분석한 결과이다.
As shown in FIG. 3, three genotypes of CC, CT, and TT can be identified, and a correlation analysis between genotype, muscle fiber characteristics, and meat quality according to SNP was performed. For statistical analysis program, SAS / GLM procedure provided in SAS 9.13 package was used. In this model, breed, gender and slaughter order were analyzed as fixed effects. The results of the analysis were expressed as Least Squares Means and standard errors. Table 8 below is a result of analyzing the association between the SNP and muscle fiber properties and meat quality in the 3 'UTR region of the porcine PPARGC1A gene.
기존 연구에 따르면 근섬유특성 중 육질에 주요하게 영향을 미치는 것은 근섬유 수 및 면적의 조성으로 보고되었으며 (Klont, R. E. et al. 1998. Meat Science 49: S219-S229), 특히 느린 산화작용의 성질을 띠는 근섬유 타입 I이 높을 경우 육질에 긍정적으로 영향을 미치는 것으로 알려져 있다.Existing studies have reported that the major influence on meat quality among muscle fibers is the composition of muscle fiber number and area (Klont, RE et al. 1998. Meat Science 49: S219-S229), especially slow oxidation. Is known to have a positive effect on meat quality when muscle fiber type I is high.
상기 표 8의 결과에서, SNP에 따른 근섬유특성 중 총근섬유수(Total fiber number), 근섬유단면적(Mean CSA of fibers) 및 근섬유밀도(The density of total fibers)에서는 유전자형 간에 유의적인 차이가 관찰되지 않았다. 특히, 근섬유조성(Fibers composition)에서도 유전자형 간에 유의적인 차이가 관찰되지 않았다. 그러나 육질형질에서는 CT 및 TT 유전자형이 CC 유전자형에 비해 도축 후 45분 후 근육 pH (pH45min)가 높게 나타나고(P < 0.01) 유리육즙(Drip loss)이 낮게 나타났으며(P < 0.001), 이를 통해 CT, TT 유전자형이 CC 유전자형에 비해 육질이 우수한 것으로 판단할 수 있다. 또한, TT 유전자형은 명도(lightness, L *)가 CC 유전자형에 비해 낮게 나타나(P < 0.10) 육질이 우수하다는 것을 확인할 수 있으며, 특히 함께 육질이 좋게 나타난 CT 유전자형과 비교하여 더 낮은 유리육즙(drip loss)을 나타나므로 (P < 0.001) 육질이 우수하다고 할 수 있다.In the results of Table 8, no significant differences were observed between genotypes in total fiber number, mean CSA of fibers, and the density of total fibers. . In particular, no significant difference was observed between genotypes in the fiber composition. However, the meat quality traits were CT, and TT genotype have higher appears (P <0.01) glass broth (Drip loss) was low muscle pH (pH 45min) after 45 minutes after slaughter than the CC genotype (P <0.001), it Through CT, TT genotype can be judged that the meat quality is superior to the CC genotype. In addition, the TT genotype showed lower lightness ( L * ) compared to the CC genotype ( P <0.10), indicating that the meat quality was excellent, and especially, the lower drip compared to the CT genotype that showed good meat quality together. ( P <0.001) meat quality is excellent.
이와 같이, 본 발명의 SNP의 경우 근섬유타입별 단면적조성에서 유의적인 차이가 없었음에도 불구하고 육질형질에서 차이를 보이는 것은 근섬유타입 I 면적 조성에 따른 육질 향상이 아닌 지방대사 및 에너지 대사에 관여하는 PPARGC1A 유전자의 기능에 따른 다른 메커니즘에 의해 육질이 향상된 것으로 판단할 수 있다.As such, in the case of the SNP of the present invention, despite the fact that there was no significant difference in cross-sectional composition by muscle fiber type, the difference in meat quality was not related to meat improvement according to muscle fiber type I area composition, but PPARGC1A involved in fat metabolism and energy metabolism. It can be judged that meat quality is improved by other mechanisms depending on the function of the gene.
이상의 결과를 종합하면, 돼지 PPARGC1A의 3' UTR 에서 SNP (서열번호 1에서 2956번째 T 염기가 C 염기로 치환)는 근섬유 조성에 차이를 주지 않으면서 최종적으로 돈육의 pH, 유리육즙 및 명도와 같은 육질 향상에 영향을 주는 SNP로 확인되었다.Taken together, the SNPs in the 3 'UTR of porcine PPARGC1A (substituted from the 1956 to 2956 T-bases for C bases), finally, have no difference in muscle fiber composition, SNPs affecting meat quality were identified.
<110> Korea University Industrial and Academic Collaboration Foundation <120> DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene <160> 4 <170> KopatentIn 1.71 <210> 1 <211> 3771 <212> DNA <213> Sus scrofa <400> 1 atgactttga tcctgcttcc accaagagca agtatgactc tctggatttc gatagtttac 60 tgaaagaagc tcagagaagc ttgcgcaggt aacatgttcc ctggctgagg atgacagagg 120 gacggtgaat acctcacggg acagcgcgtc cttccctaac agactcttgc aagtcatact 180 taggaatttc tcctacttta cactctctgt acaaaaacaa aacacaacaa caacaataca 240 acaagaacaa caataatggt ttacatgaac acagctgctg aagaggcaag agacaggatg 300 gatatccagt aagcacatgt ttattcatgg gtgtcagctt tgctttccct gagtctcttg 360 gtgatggagt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtga gtgcgcgtgt 420 gtgcttggtt taggggaagt atgtgtgggt acatgtgagg actgggggca cctgaccaga 480 atgcgcaagg gcaaaccatt tcaaatggca gcagttccat gaagacacgc ttaaaaccta 540 gaacttcaaa atgttcgtat tctattcaaa aggaaaaaaa aaaaaaaaaa aaaaaaaaaa 600 agcataaatt caaaaggaaa gaaaactaac caaccaacca accacaagcc accctaaaat 660 gacagccact gatgtctggg catcggcctc tgtactctgt ttttttaaga aagtgcaaaa 720 tcaacttgaa gcaagctttc tctcataatg taatgattat gtgacaatcc cgaagaaacc 780 acaggttccg tagaactcat atcctttctc tctctttttt ttcttctttt ttccccccct 840 tttccttttg ccatggaatc tgggtgggag aggatactgc cggcaccgga atgctaaact 900 ttcctaacat tttgaagttt ctgtagttcg tcctttctcc tgacacccat gtaaatgtcc 960 aaaatgttga tcttccactg caaattcaaa agcctgtcaa tggtcaagcg tgcagcttgt 1020 tcagcggttc tttctgagga gcgagcgcgg tgttacatga taatgagagt tgggtagaac 1080 tctctgggat gtgttcagct agtgtaattg ctacattctc cgatgtagtt aagtatttac 1140 agatgttaaa tggagtattt ttattttgtg tacatacgat acaatgatgt tctttttttg 1200 ttacagctat gcactgtaaa tgcagccttc ttttcaaaac tgctaaattt ttcttaatca 1260 agaatattca aatgtaatta tgaggtgaaa caactattgt acactaacat atttagaagc 1320 tgaacttacc gcttatatat atatttgatt gtaaaaaaaa aaaacaaaaa caaaggacag 1380 tgtgtgtgtc cgttgagtgc aacacaacca atcgatgagc ttcaatcatc ccttcttaga 1440 tgagcttcaa tctaagcatc ttgtcaagaa atatcctagc ccctaaaggt attaaccact 1500 tctgcgatat ttttccacat tttcttgttg cttgtttttc tttgaagttt tatacactgg 1560 atttgttagg ggaatgaaat tttctcatct aaaatttttc tagaagatat catgatttta 1620 tgtaaagtct ctcaatgggt aaccattaag aaatgttttt attttctcta tcaacagtag 1680 ttttgaaact agaggtcaaa aatcttttta aaatgctgtt tttgttttaa tttttgtgat 1740 tttaatttga tacaaaatgc tgaggtaata attacagtat gatttttaca ataattaatg 1800 tgtgtctgaa gactatcttt gaagccagta tctccttccc ttggcagagg atgtgatggt 1860 atttatctgt attttttaca gttatgcatc ctgtataaat actgatattt cattcctttg 1920 tttactaaag agacatattt atcagttgca gatagcctat ttattataaa ttatgagatg 1980 atgaaaataa taaagccagt ggaaattttc tacctaggat gcatggcaat tgtcaggttg 2040 gagtttaagt gtttcatttg ggaaattcag cttttgcaga agcagtgttt ctacttgcac 2100 tagcatggcc tctgacgtga ccatgatgtc gttcttgatg acattgcttc tgctaaactc 2160 aataaaaact tccgaaaacc ctccactttt gagcatcagg atttcctctg agtgtggaac 2220 ccctggaatg caagtcagta aagtttggag tgtgtattca agtttatgaa atgagattcg 2280 attacagttt ggccgacatg acttttctgg aagacacagc gtacctaccc cttaatcgtt 2340 cttttccttt ctctcgccca acatggtctt ctaaaatgga ttcacctccc tcccccccca 2400 gccaatgcag ctcattttga tagctgcatt cattttatca ccagcatatt gtgttctgag 2460 tgaatcactg tctgtcctgt cagatgcttg cttgattttt tggcttctta tttctaagta 2520 gatagaaagc aataaaaata ctatgaaata aaagaacttg ttcacaggtt ctgcgttacg 2580 acagtaacac atctttaatc cgcctaattc ttgttgttct gtaggttaaa tgcaggtatt 2640 ttaactctgt gtgaacgcca aactaaagtt tacagtcttt ctttttgaat tttgagtatc 2700 ttctgttgta gaataagaat aataaaaaaa gactattaag agcaataaat tatttttaag 2760 aaatcgatac ttagtacatc atattatgtg ttcaaggacc agatgcgttc tctattttgc 2820 ctttaaagtt ttgtgatcca attttaaata acattctcct tttggccctg gatcgtggac 2880 atgagtaaaa tacttgggtt attttcttac ttatcaaaag ataacactgc agatttcatg 2940 ttgaggatta atttttcccc ccttctggcc tgacaaatat tgttaccatg aagatagttt 3000 tactccatgg acttcaaatt gcatctaaaa ttagtgcaac gagagaatca ctagaccatc 3060 caaatagagc ctttgtatct tatgcagaca ctgtgggtag cccatcaaaa tgtaaactgt 3120 gttcttttta tttttatttt taattttttg agagaatatt tgaaatgaac acatgcccat 3180 catcactgga agcagatttc agcatagatc tgtaggattt ttagatgacc ccgggccatt 3240 gccttcatgc tgtggtaagt accacatcta caattttggt aacccgaact ggtgctttag 3300 aaatgtgggt tttttgtttt ttttttttaa gagatgtagc agaataatcc ttccagtgca 3360 acaaaatcaa ttttttgcta aacgactccg agagcaacgg ttgggctgtc aacattcaaa 3420 gcagcagaga gggaactttg cactattggg gtatgatggt tgggtcagtt gaaaaaaaag 3480 gaaacctttt catgccttta gatgtgagct tacagtaggt aatgattatg tgtccttttt 3540 tgatggctgt aatgagaact tcaatcactg tagtctaaga cctgatctat agatgaccta 3600 gaatagccat gtaatataat gtgatgattc taaatttgta cctatgtgac agacattttc 3660 aataatgtga actgctgatt tgatggagct actttaagat ttgtaggtga aagtgtaata 3720 ctattggttg aactatgctg aagagggaaa gtgagcgatt agttgagccc t 3771 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR <400> 2 cacaggttct gcgttacgac 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR <400> 3 aaagcaccag ttcgggttac 20 <210> 4 <211> 736 <212> DNA <213> Artificial Sequence <220> <223> DNA marker <400> 4 cacaggttct gcgttacgac agtaacacat ctttaatccg cctaattctt gttgttctgt 60 aggttaaatg caggtatttt aactctgtgt gaacgccaaa ctaaagttta cagtctttct 120 ttttgaattt tgagtatctt ctgttgtaga ataagaataa taaaaaaaga ctattaagag 180 caataaatta tttttaagaa atcgatactt agtacatcat attatgtgtt caaggaccag 240 atgcgttctc tattttgcct ttaaagtttt gtgatccaat tttaaataac attctccttt 300 tggccctgga tcgtggacat gagtaaaata cttgggttat tttcttactt atcaaaagat 360 aacactgcag atttcatgtt gaggattaat tttccccccc ttctggcctg acaaatattg 420 ttaccatgaa gatagtttta ctccatggac ttcaaattgc atctaaaatt agtgcaacga 480 gagaatcact agaccatcca aatagagcct ttgtatctta tgcagacact gtgggtagcc 540 catcaaaatg taaactgtgt tctttttatt tttattttta attttttgag agaatatttg 600 aaatgaacac atgcccatca tcactggaag cagatttcag catagatctg taggattttt 660 agatgacccc gggccattgc cttcatgctg tggtaagtac cacatctaca attttggtaa 720 cccgaactgg tgcttt 736 <110> Korea University Industrial and Academic Collaboration Foundation <120> DNA markers for detecting increase of porcine meat quality containing SNP in 3 'UTR of PPARGC1A gene <160> 4 <170> Kopatentin 1.71 <210> 1 <211> 3771 <212> DNA <213> Sus scrofa <400> 1 atgactttga tcctgcttcc accaagagca agtatgactc tctggatttc gatagtttac 60 tgaaagaagc tcagagaagc ttgcgcaggt aacatgttcc ctggctgagg atgacagagg 120 gacggtgaat acctcacggg acagcgcgtc cttccctaac agactcttgc aagtcatact 180 taggaatttc tcctacttta cactctctgt acaaaaacaa aacacaacaa caacaataca 240 acaagaacaa caataatggt ttacatgaac acagctgctg aagaggcaag agacaggatg 300 gatatccagt aagcacatgt ttattcatgg gtgtcagctt tgctttccct gagtctcttg 360 gtgatggagt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtga gtgcgcgtgt 420 gtgcttggtt taggggaagt atgtgtgggt acatgtgagg actgggggca cctgaccaga 480 atgcgcaagg gcaaaccatt tcaaatggca gcagttccat gaagacacgc ttaaaaccta 540 gaacttcaaa atgttcgtat tctattcaaa aggaaaaaaa aaaaaaaaaa aaaaaaaaaa 600 agcataaatt caaaaggaaa gaaaactaac caaccaacca accacaagcc accctaaaat 660 gacagccact gatgtctggg catcggcctc tgtactctgt ttttttaaga aagtgcaaaa 720 tcaacttgaa gcaagctttc tctcataatg taatgattat gtgacaatcc cgaagaaacc 780 acaggttccg tagaactcat atcctttctc tctctttttt ttcttctttt ttccccccct 840 tttccttttg ccatggaatc tgggtgggag aggatactgc cggcaccgga atgctaaact 900 ttcctaacat tttgaagttt ctgtagttcg tcctttctcc tgacacccat gtaaatgtcc 960 aaaatgttga tcttccactg caaattcaaa agcctgtcaa tggtcaagcg tgcagcttgt 1020 tcagcggttc tttctgagga gcgagcgcgg tgttacatga taatgagagt tgggtagaac 1080 tctctgggat gtgttcagct agtgtaattg ctacattctc cgatgtagtt aagtatttac 1140 agatgttaaa tggagtattt ttattttgtg tacatacgat acaatgatgt tctttttttg 1200 ttacagctat gcactgtaaa tgcagccttc ttttcaaaac tgctaaattt ttcttaatca 1260 agaatattca aatgtaatta tgaggtgaaa caactattgt acactaacat atttagaagc 1320 tgaacttacc gcttatatat atatttgatt gtaaaaaaaa aaaacaaaaa caaaggacag 1380 tgtgtgtgtc cgttgagtgc aacacaacca atcgatgagc ttcaatcatc ccttcttaga 1440 tgagcttcaa tctaagcatc ttgtcaagaa atatcctagc ccctaaaggt attaaccact 1500 tctgcgatat ttttccacat tttcttgttg cttgtttttc tttgaagttt tatacactgg 1560 atttgttagg ggaatgaaat tttctcatct aaaatttttc tagaagatat catgatttta 1620 tgtaaagtct ctcaatgggt aaccattaag aaatgttttt attttctcta tcaacagtag 1680 ttttgaaact agaggtcaaa aatcttttta aaatgctgtt tttgttttaa tttttgtgat 1740 tttaatttga tacaaaatgc tgaggtaata attacagtat gatttttaca ataattaatg 1800 tgtgtctgaa gactatcttt gaagccagta tctccttccc ttggcagagg atgtgatggt 1860 atttatctgt attttttaca gttatgcatc ctgtataaat actgatattt cattcctttg 1920 tttactaaag agacatattt atcagttgca gatagcctat ttattataaa ttatgagatg 1980 atgaaaataa taaagccagt ggaaattttc tacctaggat gcatggcaat tgtcaggttg 2040 gagtttaagt gtttcatttg ggaaattcag cttttgcaga agcagtgttt ctacttgcac 2100 tagcatggcc tctgacgtga ccatgatgtc gttcttgatg acattgcttc tgctaaactc 2160 aataaaaact tccgaaaacc ctccactttt gagcatcagg atttcctctg agtgtggaac 2220 ccctggaatg caagtcagta aagtttggag tgtgtattca agtttatgaa atgagattcg 2280 attacagttt ggccgacatg acttttctgg aagacacagc gtacctaccc cttaatcgtt 2340 cttttccttt ctctcgccca acatggtctt ctaaaatgga ttcacctccc tcccccccca 2400 gccaatgcag ctcattttga tagctgcatt cattttatca ccagcatatt gtgttctgag 2460 tgaatcactg tctgtcctgt cagatgcttg cttgattttt tggcttctta tttctaagta 2520 gatagaaagc aataaaaata ctatgaaata aaagaacttg ttcacaggtt ctgcgttacg 2580 acagtaacac atctttaatc cgcctaattc ttgttgttct gtaggttaaa tgcaggtatt 2640 ttaactctgt gtgaacgcca aactaaagtt tacagtcttt ctttttgaat tttgagtatc 2700 ttctgttgta gaataagaat aataaaaaaa gactattaag agcaataaat tatttttaag 2760 aaatcgatac ttagtacatc atattatgtg ttcaaggacc agatgcgttc tctattttgc 2820 ctttaaagtt ttgtgatcca attttaaata acattctcct tttggccctg gatcgtggac 2880 atgagtaaaa tacttgggtt attttcttac ttatcaaaag ataacactgc agatttcatg 2940 ttgaggatta atttttcccc ccttctggcc tgacaaatat tgttaccatg aagatagttt 3000 tactccatgg acttcaaatt gcatctaaaa ttagtgcaac gagagaatca ctagaccatc 3060 caaatagagc ctttgtatct tatgcagaca ctgtgggtag cccatcaaaa tgtaaactgt 3120 gttcttttta tttttatttt taattttttg agagaatatt tgaaatgaac acatgcccat 3180 catcactgga agcagatttc agcatagatc tgtaggattt ttagatgacc ccgggccatt 3240 gccttcatgc tgtggtaagt accacatcta caattttggt aacccgaact ggtgctttag 3300 aaatgtgggt tttttgtttt ttttttttaa gagatgtagc agaataatcc ttccagtgca 3360 acaaaatcaa ttttttgcta aacgactccg agagcaacgg ttgggctgtc aacattcaaa 3420 gcagcagaga gggaactttg cactattggg gtatgatggt tgggtcagtt gaaaaaaaag 3480 gaaacctttt catgccttta gatgtgagct tacagtaggt aatgattatg tgtccttttt 3540 tgatggctgt aatgagaact tcaatcactg tagtctaaga cctgatctat agatgaccta 3600 gaatagccat gtaatataat gtgatgattc taaatttgta cctatgtgac agacattttc 3660 aataatgtga actgctgatt tgatggagct actttaagat ttgtaggtga aagtgtaata 3720 ctattggttg aactatgctg aagagggaaa gtgagcgatt agttgagccc t 3771 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR <400> 2 cacaggttct gcgttacgac 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for PCR <400> 3 aaagcaccag ttcgggttac 20 <210> 4 <211> 736 <212> DNA <213> Artificial Sequence <220> <223> DNA marker <400> 4 cacaggttct gcgttacgac agtaacacat ctttaatccg cctaattctt gttgttctgt 60 aggttaaatg caggtatttt aactctgtgt gaacgccaaa ctaaagttta cagtctttct 120 ttttgaattt tgagtatctt ctgttgtaga ataagaataa taaaaaaaga ctattaagag 180 caataaatta tttttaagaa atcgatactt agtacatcat attatgtgtt caaggaccag 240 atgcgttctc tattttgcct ttaaagtttt gtgatccaat tttaaataac attctccttt 300 tggccctgga tcgtggacat gagtaaaata cttgggttat tttcttactt atcaaaagat 360 aacactgcag atttcatgtt gaggattaat tttccccccc ttctggcctg acaaatattg 420 ttaccatgaa gatagtttta ctccatggac ttcaaattgc atctaaaatt agtgcaacga 480 gagaatcact agaccatcca aatagagcct ttgtatctta tgcagacact gtgggtagcc 540 catcaaaatg taaactgtgt tctttttatt tttattttta attttttgag agaatatttg 600 aaatgaacac atgcccatca tcactggaag cagatttcag catagatctg taggattttt 660 agatgacccc gggccattgc cttcatgctg tggtaagtac cacatctaca attttggtaa 720 cccgaactgg tgcttt 736
Claims (6)
In the nucleotide sequence of SEQ ID NO: 1, DNA marker for checking whether meat is increased in meat consisting of 15 to 800 consecutive sequences including the 2956 th C base.
According to claim 1, wherein the DNA marker is a DNA label, characterized in that to increase the meat quality by increasing the pH, meat-related traits and reducing free loss (drip loss) without making a difference in the muscle fiber composition of pigs factor.
A primer for searching for a DNA marker according to claim 1, wherein the oligonucleotide represented by SEQ ID NO: 2 and SEQ ID NO: 3 is related to whether meat quality is increased in the 3 'UTR region of the porcine PPARGC1A gene.
The kit for analyzing a DNA marker according to claim 1, related to whether or not meat is increased in a pig comprising a probe complementarily binding to the DNA marker of claim 1.
a) 돼지로부터 게노믹 DNA를 분리하는 단계;
b) 상기 a)단계의 DNA를 주형으로 하여 서열번호 1로 표시된 PPARGC1A 유전자의 3' UTR 영역의 2956번째 염기를 포함하는 특정부위를 증폭시키는 단계;
c) 상기 b)단계에서 증폭된 DNA의 염기서열을 분석하는 단계; 및
d) 상기 c)단계의 염기서열 결과로부터 서열번호 1의 2956번째 염기가 T 염기에서 C 염기로 치환 여부를 확인하는 단계.
A method for confirming whether meat is increased in meat, comprising the following steps:
a) separating genomic DNA from pigs;
b) amplifying a specific site including the 2956 base of the 3 ′ UTR region of the PPARGC1A gene represented by SEQ ID NO: 1 using the DNA of step a) as a template;
c) analyzing the base sequence of the DNA amplified in step b); And
d) confirming whether or not the 2956 base of SEQ ID NO: 1 is replaced by the T base to the C base from the base sequence result of step c).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100126440A KR101253293B1 (en) | 2010-12-10 | 2010-12-10 | DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100126440A KR101253293B1 (en) | 2010-12-10 | 2010-12-10 | DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120065103A KR20120065103A (en) | 2012-06-20 |
KR101253293B1 true KR101253293B1 (en) | 2013-04-15 |
Family
ID=46684997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100126440A KR101253293B1 (en) | 2010-12-10 | 2010-12-10 | DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101253293B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103181361B (en) * | 2013-02-01 | 2017-04-12 | 新疆维吾尔自治区畜牧科学院中国-澳大利亚绵羊育种研究中心 | Method for breeding Ili horses, and kit employed in method |
CN110904245B (en) * | 2019-12-23 | 2023-08-15 | 中南民族大学 | TaqMan fluorescent quantitative PCR method for identifying pork components by utilizing CACA genes and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120052796A (en) * | 2010-11-16 | 2012-05-24 | 고려대학교 산학협력단 | Dna markers for detecting increase of porcine meat quality |
-
2010
- 2010-12-10 KR KR1020100126440A patent/KR101253293B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120052796A (en) * | 2010-11-16 | 2012-05-24 | 고려대학교 산학협력단 | Dna markers for detecting increase of porcine meat quality |
Non-Patent Citations (1)
Title |
---|
Czech J. Anim. Sci., 55, 2010 (5): 200-208. * |
Also Published As
Publication number | Publication date |
---|---|
KR20120065103A (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6424027B2 (en) | DNA markers related to the 6 traits of pigs developed by analyzing the relations with traits and their discrimination systems | |
CN107058538B (en) | Primer composition, kit composed of primer composition and application of kit | |
KR101270091B1 (en) | DNA markers for detecting increase of porcine muscle fiber type I and meat quality containing SNP in 3' UTR of PPARGC1A gene | |
CN101392255B (en) | FTO gene clone relating to pig meat quality trait and application of the same as molecular marker | |
CN108893540B (en) | CircRNA _14707 and application thereof in molecular assisted breeding | |
KR101253293B1 (en) | DNA markers for detecting increase of porcine meat quality containing SNP in 3' UTR of PPARGC1A gene | |
CN110373454A (en) | A kind of kit and method of joint-detection EGFR genetic mutation | |
KR20070113336A (en) | Dna marker for detecting increase of pig muscle-cell number | |
CN101921852B (en) | Method for detecting single nucleotide polymorphism of cattle AdPLA gene | |
CN112941198B (en) | SNP marker for detecting pig eye muscle area and application thereof | |
KR101767644B1 (en) | Composition and method for prediction of pigs litter size using gene expression profile | |
KR101330398B1 (en) | DNA fragment markers for detecting improvement of porcine meat quality using SNPs in region of muscle specific microRNA-1 | |
KR101472025B1 (en) | Kits and methods for detecting intramuscular fat tissue of Hanwoo using TNMD and DUSP27 | |
CN112575095B (en) | Chicken slaughter trait-related miRNA and application thereof | |
KR101505120B1 (en) | DNA marker for detecting improvement of porcine meat quality using SNPs in region of muscle specific microRNA-208b | |
CN110964790B (en) | Method for detecting tea-goat PIGY gene CNV marker and application thereof | |
KR101438524B1 (en) | DNA marker for detecting increase of porcine meat quality using a SNP in porcine MYF5 gene | |
CN109628446B (en) | circRNA _27455 and detection reagent and application thereof | |
KR101243345B1 (en) | DNA markers for detecting increase of porcine meat quality | |
KR101253300B1 (en) | DNA markers for detecting increases of porcine meat quality containing SNP in region of primary micro RNA | |
TWI417545B (en) | Methods and kits for genotyping molecular markers in pigs | |
KR101696692B1 (en) | SNP Novel SNP marker for discriminating level of muscle fiber type within porcine muscle and use thereof | |
KR101663404B1 (en) | Single nucleotide polymorphism marker in TDRKH gene for diagnosis of meat quality in Hanwoo and method for diagnosis of meat quality in Hanwoo using same marker | |
CN114395628B (en) | Marker for colorectal cancer screening, probe composition and application thereof | |
KR101337668B1 (en) | DNA fragment markers for detecting increase of porcine Myosin heavy chain slow isoform and improvement on pork quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160225 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170328 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180405 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 7 |