KR101249951B1 - Method for coating in process equipments and coating structure using the same - Google Patents

Method for coating in process equipments and coating structure using the same Download PDF

Info

Publication number
KR101249951B1
KR101249951B1 KR1020120118617A KR20120118617A KR101249951B1 KR 101249951 B1 KR101249951 B1 KR 101249951B1 KR 1020120118617 A KR1020120118617 A KR 1020120118617A KR 20120118617 A KR20120118617 A KR 20120118617A KR 101249951 B1 KR101249951 B1 KR 101249951B1
Authority
KR
South Korea
Prior art keywords
coating
coating layer
process equipment
spraying
layer
Prior art date
Application number
KR1020120118617A
Other languages
Korean (ko)
Inventor
이문기
유승남
김선배
이명노
김대근
Original Assignee
아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이원스 주식회사 filed Critical 아이원스 주식회사
Priority to KR1020120118617A priority Critical patent/KR101249951B1/en
Application granted granted Critical
Publication of KR101249951B1 publication Critical patent/KR101249951B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Abstract

PURPOSE: A coating method for processing equipment and a coating structure thereof are provided to prevent the generation of a crack on the surface by forming a second coating layer and to improve wear resistance and corrosion resistance. CONSTITUTION: A coating method of processing equipment comprises the following steps: A first coating layer(120) is deposited onto the surface(110) of the processing equipment by the use of thermal spray coating; A second coating layer(130) is deposited on the surface of the first coating layer by the use of low temperature spray coating. The second coating layer is formed in the inside of a vacuum chamber.

Description

공정 장비의 코팅 방법 및 이를 이용한 코팅 구조{Method for coating in process equipments and coating structure using the same}Method for coating in process equipments and coating structure using the same}

본 발명은 공정 장비의 코팅 방법 및 이를 이용한 코팅 구조에 관한 것이다.The present invention relates to a coating method of the process equipment and a coating structure using the same.

현재 상업적으로 이용되고 있는 코팅 공정은 일반적으로 열용사 코팅 공정이 널리 사용되고 있다.Currently, commercially available coating processes are generally used in a thermal spray coating process.

상기 열용사 코팅 공정의 가장 큰 특징은 매우 높은 열에너지를 이용하여 고융점의 금속 또는 세라믹소재를 급속한 상전이를 통해 모재에 분사 코팅하는 공법으로 작업 공정의 조건만 최적화 시 수㎛ ~ 수mm까지 코팅이 가능하며, 분사 공정 중 여러 가지 기자재를 통해 3차원 형상의 코팅도 가능하다. 이러한 우수한 특성으로 바탕으로 내화학적, 내마모성 코팅 분야에서 높은 신뢰성이 있으며, 우주 항공, 반도체, 기계 선박 등의 다양한 분야에서 널리 적용되고 있다.The biggest feature of the thermal spray coating process is a method of spray coating a metal or ceramic material of high melting point to the base material by rapid phase transition using very high heat energy. In addition, a three-dimensional coating is possible through various materials during the spraying process. Due to these excellent properties, it has high reliability in chemical and abrasion resistant coatings, and has been widely applied in various fields such as aerospace, semiconductors, and mechanical ships.

특히, 반도체 공정에서 사용되는 공정 장비의 표면은 내화학적/내플라즈마 보호용 코팅을 위해 일반적으로 고융점의 세라믹 소재를 이용하여 열용사 코팅 공법으로 통해 보호층을 적층하고 있다.In particular, the surface of the process equipment used in the semiconductor process is generally laminated with a protective layer by a thermal spray coating method using a high melting point ceramic material for chemical / plasma protective coatings.

하지만, 상기 열용사 코팅 공정은 표면에 발생하는 균열로 인해 제품의 공정 및 실사용 중 파티클이 발생하게 되고, 이는 공정 중 큰 악영향으로 작용한다. However, the thermal spray coating process generates particles during the process and actual use of the product due to cracks generated on the surface, which acts as a bad effect during the process.

이에 기존에는 실링 공정을 통해 고분자 물질로 코팅 표면에 도포하여 파티클 발생을 저감시켰으나, 상기 고분자 물질의 낮은 물리적/화학적 특성으로 인해 사용 수명이 높이 않은 문제점이 있다.Therefore, in the past, the particle generation was reduced by coating the coating surface with a polymer material through a sealing process, but there is a problem in that the service life is not high due to the low physical / chemical properties of the polymer material.

본 발명은 열용사 코팅으로 형성된 제1코팅층 상에 저온분사 코팅으로 형성된 제2코팅층을 형성하여, 반도체 공정 및 실사용 중에 공정 장비에서 발생하는 파티클을 저감하는 공정 장비의 코팅 방법 및 이를 이용한 코팅 구조를 제공한다.The present invention forms a second coating layer formed of a low-temperature spray coating on the first coating layer formed of the thermal spray coating, coating method of the process equipment to reduce the particles generated in the process equipment during the semiconductor process and practical use and coating structure using the same To provide.

본 발명에 따른 공정 장비의 코팅 방법은 공정 장비의 표면에 열용사 코팅을 이용해 제1코팅층을 증착하는 단계 및 상기 제1코팅층 상에 저온분사 코팅을 이용해 제2코팅층을 증착하는 단계를 포함한다.Coating method of the process equipment according to the present invention includes the step of depositing a first coating layer using a thermal spray coating on the surface of the process equipment and the step of depositing a second coating layer using a low-temperature spray coating on the first coating layer.

상기 제2코팅층 상에 실링 공정을 통해 고분자 물질을 코팅하는 단계를 더 포함할 수 있다. 상기 제1코팅층을 증착하는 단계에 있어서, 상기 열용사 코팅은 화염 용사, 아크 용사, 플라즈마 용사, 폭발용사, 선폭용사, 레이저 용사 및 초고속 화염 용사 중 어느 하나를 이용할 수 있다. 상기 제2코팅층을 증착하는 단계에 있어서, 상기 제2코팅층은 진공 챔버 내에서 형성될 수 있다. 상기 진공 챔버 내의 진공도는 760torr 이하일 수 있다.The method may further include coating a polymer material on the second coating layer through a sealing process. In the step of depositing the first coating layer, the thermal spray coating may use any one of flame spraying, arc spraying, plasma spraying, explosion spraying, linewidth spraying, laser spraying and ultra-fast flame spraying. In depositing the second coating layer, the second coating layer may be formed in a vacuum chamber. The degree of vacuum in the vacuum chamber may be 760torr or less.

본 발명에 따른 공정 장비의 코팅 구조는 공정 장비의 표면에 형성되는 제1코팅층, 상기 제1코팅층 상에 형성되는 제2코팅층을 포함하고, 상기 제1코팅층은 열용사 코팅으로 형성되며, 상기 제2코팅층 저온분사 코팅으로 형성된다.The coating structure of the process equipment according to the present invention includes a first coating layer formed on the surface of the process equipment, a second coating layer formed on the first coating layer, the first coating layer is formed of a thermal spray coating, 2 coating layer formed by cold spray coating.

상기 제2코팅층 상에 형성되는 고분자층을 더 포함할 수 있다. 상기 고분자층은 실링 공정을 통해 형성될 수 있다. 상기 열용사 코팅은 화염 용사, 아크 용사, 플라즈마 용사, 폭발용사, 선폭용사, 레이저 용사 및 초고속 화염 용사 중 어느 하나를 이용할 수 있다. 상기 제2코팅층은 진공 챔버 내에서 형성될 수 있다. 상기 진공 챔버 내의 진공도는 760torr 이하일 수 있다.It may further include a polymer layer formed on the second coating layer. The polymer layer may be formed through a sealing process. The thermal spray coating may use any one of flame spraying, arc spraying, plasma spraying, explosion spraying, linewidth spraying, laser spraying, and ultrafast flame spraying. The second coating layer may be formed in a vacuum chamber. The degree of vacuum in the vacuum chamber may be 760torr or less.

본 발명은 공정 및 실사용 중에 공정 장비에서 발생하는 파티클을 효과적으로 억제하는 것이 가능하다.The present invention makes it possible to effectively suppress particles generated in process equipment during processing and practical use.

도 1은 본 발명에 따른 공정 장비의 코팅 구조를 개략적으로 도시한 모식도이다.
도 2a는 종래의 공정 장비의 표면 이미지이고, 2b는 본 발명에 따른 공정 장비의 표면 이미지이다.
도 3a는 종래의 공정 장비에서 시간에 따른 파티클 발생량을 도시한 그래프이고, 도 3b는 본 발명에 따른 공정 장비에서 시간에 따른 파티클 발생량을 도시한 그래프이고, 도 3c는 종래의 공정 장비와 본 발명에 따른 공정 장비에서 발생한 파티클을 크기별로 비교한 그래프이다.
도 4는 종래의 공정 장비와 본 발명에 따른 공정 장비의 파괴전압을 비교한 그래프이다.
1 is a schematic diagram schematically showing the coating structure of the process equipment according to the present invention.
2a is a surface image of a conventional process equipment, and 2b is a surface image of a process equipment according to the present invention.
Figure 3a is a graph showing the amount of particle generation with time in the conventional process equipment, Figure 3b is a graph showing the amount of particle generation with time in the process equipment according to the present invention, Figure 3c is a conventional process equipment and the present invention This is a graph comparing particles generated in process equipment according to size.
Figure 4 is a graph comparing the breakdown voltage of the conventional process equipment and the process equipment according to the present invention.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art can easily carry out the present invention.

도 1은 본 발명에 따른 공정 장비의 코팅 구조를 개략적으로 도시한 모식도이다.1 is a schematic diagram schematically showing the coating structure of the process equipment according to the present invention.

본 발명에 따른 공정 장비의 코팅 구조(100)는 공정 장비의 표면(110), 제1코팅층(120) 및 제2코팅층(130)을 포함한다.The coating structure 100 of the process equipment according to the present invention includes a surface 110, a first coating layer 120 and a second coating layer 130 of the process equipment.

상기 제1코팅층(120)은 상기 공정 장비의 표면(110) 상에 증착되는 코팅층으로, 열용사 코팅으로 형성된다. 즉, 공정 장비의 표면에 열용사 코팅을 통해 증착되는 코팅층이다.The first coating layer 120 is a coating layer deposited on the surface 110 of the process equipment, is formed by a thermal spray coating. That is, the coating layer is deposited through the thermal spray coating on the surface of the process equipment.

상기 제1코팅층(120)을 형성하는 재료는 내화학 및 내플라즈마 그리고 전기적 특성이 우수한 산화물 계열(Y2O3, Al2O3, ZrO2, TiO2)의 세라믹소재로 이루어지는 것이 바람직하다. 이는 상기 산화물 계열 세라믹소재가 우수한 결합특성이 있으므로, 공정 장비에서 사용되는 환경으로부터 금속성 모재를 보호하는데 유리하기 때문이다. 하지만, 이는 바람직한 실시예에 불과하며, 본 발명이 제1코팅층(120)의 재료를 한정하는 것은 아니다.The material for forming the first coating layer 120 is preferably made of a ceramic material of oxide-based (Y 2 O 3 , Al 2 O 3 , ZrO 2 , TiO 2 ) excellent in chemical resistance, plasma and electrical properties. This is because the oxide-based ceramic material has an excellent bonding property, it is advantageous to protect the metallic base material from the environment used in the process equipment. However, this is only a preferred embodiment, and the present invention does not limit the material of the first coating layer 120.

여기서, 상기 열용사 코팅은 표면에 요구되는 특정 성질을 갖는 분말, 봉 형태의 코팅재를 대기나 진공 분위기에서 플라즈마 등의 다양한 열원을 사용하여 용융, 반 용융한 후 고속으로 분사하여 오버레이 코팅을 형성시키는 표면 코팅 기술이다.Here, the thermal spray coating is a powder, rod-shaped coating material having a specific property required on the surface by melting and semi-melting using a variety of heat sources such as plasma in the air or vacuum atmosphere to spray at high speed to form an overlay coating Surface coating technology.

상기 열용사 코팅에 사용되는 열원에 따라 상기 열용사 코팅은 화염 용사, 아크 용사, 플라즈마 용사, 폭발용사, 선폭용사, 레이저 용사 및 초고속 화염 용사 등으로 분류된다.According to the heat source used for the thermal spray coating, the thermal spray coating is classified into flame spray, arc spray, plasma spray, explosion spray, line width spray, laser spray and ultra-fast flame spray.

즉, 상기 제1코팅층(120)은 열용사를 이용하기 때문에 상기 공정 장비의 표면(110)과 코팅재의 사이에 발생하는 열충격에 의해 매우 많은 크랙(미도시)이 생성된다.That is, since the first coating layer 120 uses thermal spraying, very many cracks (not shown) are generated by thermal shock generated between the surface 110 of the process equipment and the coating material.

상기 제2코팅층(130)은 상기 제1코팅층(120)의 상에 증착되는 코팅층으로, 저온분사 코팅으로 형성된다. The second coating layer 130 is a coating layer deposited on the first coating layer 120, it is formed of a low temperature spray coating.

상기 제2코팅층(130)을 형성하는 재료는 금속, 세라믹, 고분자재료 모두 사용이 가능하며, 일반적으로 공정 환경 조건에 따라 세라믹소재(Y2O3, Al2O3, TiO2, ZrO2, AlN, SiC, Si3N4, ZrB2, YF, YAG) 등이 사용되며, 본 공정장비 사용환경에서는 내플라즈마 내식성이 가장 우수한 이트륨(Yttrium)계열의 세라믹 소재를 사용한다. 이는 저온분사 코팅 중 발생되는 상전이 현상이 없고, 고밀도의 세라믹 구조 층의 제조로 인해 플라즈마 환경 내에서 식각 률이 매우 낮은 코팅 막이기 때문이다. 하지만, 이는 바람직한 실시예에 불과하며, 본 발명이 제2코팅층(130)의 재료를 한정하는 것은 아니다.The material for forming the second coating layer 130 can be used for all metals, ceramics, and polymer materials, and in general, ceramic materials (Y 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , AlN, SiC, Si 3 N 4 , ZrB 2 , YF, YAG) are used, and Yttrium-based ceramic material with the best plasma corrosion resistance is used in this process equipment environment. This is because there is no phase change occurring during the low temperature spray coating, and because of the manufacture of the high density ceramic structure layer, the coating film has a very low etching rate in the plasma environment. However, this is only a preferred embodiment, and the present invention does not limit the material of the second coating layer 130.

여기서, 상기 열용사 코팅 공정기술은 분말을 코팅하는 데 열과 운동을 동시에 사용하는 반면에 저온 분사 코팅은 상온에 가까운 낮은 온도의 고속 가스 흐름에 의한 운동 에너지만을 이용한다. 일반적으로 저온 분사 코팅은 대략 300~1500m/s의 초음속 가스 흐름 내에 코팅 분말을 주입하여 모재 표면에 충돌과 동시에 높은 변형을 유도하여 코팅을 형성시키는 기술이다. 즉, 상기 제2코팅층(130)은 운동에너지만을 이용하여 코팅하게 되므로 코팅층에 열충격에 의한 크랙이 생성되지 않는다.Here, the thermal spray coating process technology uses heat and motion at the same time to coat the powder, while the low temperature spray coating uses only the kinetic energy by the high-speed gas flow of low temperature close to room temperature. In general, low temperature spray coating is a technique of injecting coating powder into a supersonic gas flow of about 300-1500 m / s to induce high deformation at the same time to the surface of the base material to form a coating. That is, since the second coating layer 130 is coated using only kinetic energy, cracks due to thermal shock are not generated in the coating layer.

따라서, 상기 제2코팅층(130)은 상기 제1코팅층(120)에서 생성되는 크랙이 표면으로 전이되는 것을 억제할 수 있으며, 내화학, 내마모성, 내부식성이 우수한 코팅층을 형성한다.Accordingly, the second coating layer 130 may suppress the cracks generated in the first coating layer 120 from transferring to the surface, and form a coating layer having excellent chemical resistance, abrasion resistance, and corrosion resistance.

본 발명에 따른 공정 장비의 코팅 구조(100)의 제2코팅층(130)은 진공 챔버 내에서 진공 분위기에서 형성되는 것이 바람직하다. 여기서, 상기 진공 챔버 내의 진공도는 대략 760torr이하인 것으로 바람직하다. 상기 진공 챔버에서는 내부의 압력과 분말 공급부의 압력 차를 이용하여 분말을 이송하므로 챔버 내부를 진공분위기로 유지하여 운동에너지 구현한다. 하지만, 챔버 내부의 압력이 760torr 이상이면, 분말 공급부로부터 분말을 이송할 수 없게 된다.The second coating layer 130 of the coating structure 100 of the process equipment according to the invention is preferably formed in a vacuum atmosphere in a vacuum chamber. Here, the degree of vacuum in the vacuum chamber is preferably about 760 torr or less. Since the vacuum chamber transfers the powder using the pressure difference between the internal pressure and the powder supply unit, the vacuum chamber is maintained in a vacuum atmosphere to realize kinetic energy. However, if the pressure inside the chamber is 760torr or more, the powder cannot be transferred from the powder supply part.

또한, 도 1에서 도시하지는 않았지만, 본 발명에 따른 공정 장비의 코팅 구조(100)는 상기 제2코팅층(130) 상에 실링 공정으로 형성되는 고분자층을 더 포함할 수 있다. 상기 고분자층은 상기 제2코팅층(130)에서 발생하는 파티클을 더욱 효과적으로 저감하여, 공정의 신뢰성 및 안정성을 제공한다.
In addition, although not shown in FIG. 1, the coating structure 100 of the process equipment according to the present invention may further include a polymer layer formed by a sealing process on the second coating layer 130. The polymer layer more effectively reduces the particles generated in the second coating layer 130, thereby providing the reliability and stability of the process.

다음은 도 2a 내지 도 4를 참조하여, 본 발명에 따른 공정 장비와 종래의 공정 장비의 특성을 비교 설명한다.Next, the characteristics of the process equipment according to the present invention and the conventional process equipment will be described with reference to FIGS. 2A to 4.

도 2a는 종래의 공정 장비의 표면 이미지이고, 2b는 본 발명에 따른 공정 장비의 표면 이미지이다.2a is a surface image of a conventional process equipment, and 2b is a surface image of a process equipment according to the present invention.

도 2a의 (a)는 종래의 공정 장비의 표면을 5천 배율로 확대한 이미지이고, (a')은 종래의 공정 장비의 표면을 1천 배율로 확대한 이미지이다. 즉, 공정 장비의 표면에 형성된 열용사 코팅층(제1코팅층(120))의 표면을 확대한 이미지이다.(A) of FIG. 2A is an image which enlarged the surface of the conventional process equipment at 5,000 magnification, and (a ') is the image which enlarged the surface of the conventional process equipment at 1,000 magnification. That is, it is an enlarged image of the surface of the thermal spray coating layer (first coating layer 120) formed on the surface of the process equipment.

도 2b의 (b)는 본 발명에 따른 공정 장비의 표면을 5천 배율로 확대한 이미지이고, (b')은 본 발명에 따른 공정 장비의 표면을 1천 배율로 확대한 이미지이다. 즉, 공정 장비의 표면에 형성된 열용사 코팅층(제1코팅층(120)) 상에 형성된 저온분사 코팅층(제2코팅층(130))의 표면을 확대한 이미지이다.2b (b) is an image of the surface of the process equipment according to the present invention magnified at 5,000 magnification, (b ') is an image of an enlarged surface of the process equipment according to the present invention at 1,000 magnification. That is, it is an enlarged image of the surface of the low-temperature spray coating layer (second coating layer 130) formed on the thermal spray coating layer (first coating layer 120) formed on the surface of the process equipment.

도 2a를 확인하면, 제1코팅층(120)의 표면은 열충격으로 인해 표면에 매우 많은 양의 크랙이 발생한 것을 확인할 수 있다. 이에 비해, 도 2b의 제2코팅층(130)의 표면은 매우 높은 치밀도 및 우수한 표면 형상을 가지는 것을 확인할 수 있다.2A, it can be seen that the surface of the first coating layer 120 has a very large amount of cracks on the surface due to thermal shock. In contrast, it can be seen that the surface of the second coating layer 130 of FIG. 2B has a very high density and excellent surface shape.

도 3a는 종래의 공정 장비에서 시간에 따른 파티클 발생량을 도시한 그래프이고, 도 3b는 본 발명에 따른 공정 장비에서 시간에 따른 파티클 발생량을 도시한 그래프이고, 도 3c는 종래의 공정 장비와 본 발명에 따른 공정 장비에서 발생한 파티클을 크기별로 비교한 그래프이다.Figure 3a is a graph showing the amount of particle generation with time in the conventional process equipment, Figure 3b is a graph showing the amount of particle generation with time in the process equipment according to the present invention, Figure 3c is a conventional process equipment and the present invention This is a graph comparing particles generated in process equipment according to size.

도 3a 내지 도 3b는 플라즈마 공정 중 시간에 따라 발생하는 파티클의 양 및 크기를 나타내는 실험 결과를 나타내는 그래프이다.3A to 3B are graphs showing experimental results showing the amount and size of particles generated with time during the plasma process.

도 3a 내지 도 3b를 참조하면, 표면에 제1코팅층만 형성된 공정 장비는 시간에 따라 파티클의 발생량이 급격히 증가하는 것을 확인할 수 있다. 실험 결과 표면에 제1코팅층만 형성된 공정 장비는 대략 60분이 지난 후 발생하는 파티클의 총량은 대략 18,700개 정도인 것을 확인하였다. 하지만, 표면에 제1코팅층과 제2코팅층이 형성된 공정 장비는 파티클 발생량을 현저하게 저감할 수 있다. 실험 결과 표면에 제1코팅층과 제2코팅층이 형성된 공정 장비는 대략 60분이 지난 후 발생하는 파티클의 총량은 대략 5,300개 정도인 것을 확인하였다. 즉, 표면에 제1코팅층과 제2코팅층이 형성된 공정 장비는 표면에 제1코팅층만 형성된 공정 장비에 비해 파티클 발생량이 대략 1/3 이상으로 저감된다. 또한, 도 3c를 참조하면, 표면에 제1코팅층과 제2코팅층이 형성된 공정 장비는 표면에 제1코팅층만 형성된 공정 장비에 비해 발생하는 파티클의 크기가 고루 분포한다.3A to 3B, it can be seen that in the process equipment in which only the first coating layer is formed on the surface, the generation amount of particles rapidly increases with time. As a result of the experiment, the process equipment in which only the first coating layer was formed on the surface confirmed that the total amount of particles generated after about 60 minutes was about 18,700. However, the process equipment in which the first coating layer and the second coating layer are formed on the surface may significantly reduce the particle generation amount. As a result of the experiment, the process equipment in which the first coating layer and the second coating layer were formed on the surface confirmed that the total amount of particles generated after about 60 minutes was about 5,300. That is, the process equipment in which the first coating layer and the second coating layer are formed on the surface of the process equipment is reduced to approximately 1/3 or more compared to the process equipment in which only the first coating layer is formed on the surface. In addition, referring to FIG. 3C, the size of particles generated in the process equipment in which the first coating layer and the second coating layer are formed on the surface is greater than that in the process equipment in which only the first coating layer is formed on the surface.

도 4는 종래의 공정 장비와 본 발명에 따른 공정 장비의 파괴전압을 비교한 그래프이다.Figure 4 is a graph comparing the breakdown voltage of the conventional process equipment and the process equipment according to the present invention.

도 4를 참조하면, 플라즈마 내식성 평가 후 절연 특성을 확인한 결과, 표면에 제1코팅층과 제2코팅층이 형성된 공정 장비는 표면에 제1코팅층만 형성된 공정 장비에 비해 플라즈마 공정 전/후 모두 우수한 절연 특성으로 가진다.Referring to FIG. 4, as a result of confirming the insulation characteristics after the evaluation of the plasma corrosion resistance, the process equipment in which the first coating layer and the second coating layer are formed on the surface is superior to the process equipment before and after the plasma process, compared to the process equipment in which only the first coating layer is formed on the surface. To have.

본 발명은 상기 실시예들에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정, 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It is apparent to those skilled in the art that the present invention is not limited to the above embodiments and may be variously modified and modified without departing from the technical spirit of the present invention. It is.

100: 공정 장비의 코팅 구조
110: 공정 장비의 표면 120: 제1코팅층
130: 제2코팅층
100: coating structure of process equipment
110: surface of the process equipment 120: first coating layer
130: second coating layer

Claims (11)

공정 장비의 표면에 열용사 코팅을 이용해 제1코팅층을 증착하는 단계; 및
상기 제1코팅층 상에 저온분사 코팅을 이용해 제2코팅층을 증착하는 단계;를 포함하고,
상기 제2코팅층을 증착하는 단계에 있어서,
상기 제2코팅층은 진공 챔버 내에서 형성되는 것을 특징으로 하는 공정 장비의 코팅 방법.
Depositing a first coating layer on the surface of the process equipment using a thermal spray coating; And
And depositing a second coating layer using a low temperature spray coating on the first coating layer.
In the step of depositing the second coating layer,
And the second coating layer is formed in a vacuum chamber.
제 1항에 있어서,
상기 제2코팅층 상에 실링 공정을 통해 고분자 물질을 코팅하는 단계를 더 포함하는 것을 특징으로 하는 공정 장비의 코팅 방법.
The method of claim 1,
Coating method of the process equipment further comprises the step of coating a polymeric material on the second coating layer through a sealing process.
제 1항에 있어서,
상기 제1코팅층을 증착하는 단계에 있어서,
상기 열용사 코팅은 화염 용사, 아크 용사, 플라즈마 용사, 폭발용사, 선폭 용사, 레이저 용사 및 초고속 화염 용사 중 어느 하나를 이용하는 것을 특징으로 하는 공정 장비의 코팅 방법.
The method of claim 1,
In the step of depositing the first coating layer,
The thermal spray coating is a coating method of the process equipment, characterized in that using any one of flame spraying, arc spraying, plasma spraying, explosion spraying, linewidth spraying, laser spraying and ultra-fast flame spraying.
삭제delete 제 1항에 있어서,
상기 진공 챔버 내의 진공도는 760torr 이하인 것을 특징으로 하는 공정 장비의 코팅 방법.
The method of claim 1,
The vacuum degree in the vacuum chamber is less than 760torr.
공정 장비의 표면에 형성되는 제1코팅층;
상기 제1코팅층 상에 형성되는 제2코팅층; 을 포함하고,
상기 제1코팅층은 열용사 코팅으로 형성되며,
상기 제2코팅층 저온분사 코팅으로 형성되고,
상기 제2코팅층은 진공 챔버 내에서 형성되는 것을 특징으로 하는 공정 장비의 코팅 구조.
A first coating layer formed on the surface of the process equipment;
A second coating layer formed on the first coating layer; / RTI >
The first coating layer is formed of a thermal spray coating,
The second coating layer is formed of a low temperature spray coating,
The second coating layer is a coating structure of the process equipment, characterized in that formed in the vacuum chamber.
제 6항에 있어서,
상기 제2코팅층 상에 형성되는 고분자층을 더 포함하는 것을 특징으로 하는 공정 장비의 코팅 구조.
The method according to claim 6,
The coating structure of the process equipment further comprises a polymer layer formed on the second coating layer.
제 7항에 있어서,
상기 고분자층은 실링 공정을 통해 형성되는 것을 특징으로 하는 공정 장비의 코팅 구조.
8. The method of claim 7,
Coating structure of the process equipment, characterized in that the polymer layer is formed through a sealing process.
제 6항에 있어서,
상기 열용사 코팅은 화염 용사, 아크 용사, 플라즈마 용사, 폭발용사, 선폭 용사, 레이저 용사 및 초고속 화염 용사 중 어느 하나를 이용하는 것을 특징으로 하는 공정 장비의 코팅 구조.
The method according to claim 6,
The thermal spray coating is a coating structure of the process equipment, characterized in that using any one of flame spraying, arc spraying, plasma spraying, explosion spraying, linewidth spraying, laser spraying and ultra-fast flame spraying.
삭제delete 제 1항에 있어서,
상기 진공 챔버 내의 진공도는 760torr 이하인 것을 특징으로 하는 공정 장비의 코팅 구조.
The method of claim 1,
Coating degree of the process equipment, characterized in that the degree of vacuum in the vacuum chamber is less than 760torr.
KR1020120118617A 2012-10-24 2012-10-24 Method for coating in process equipments and coating structure using the same KR101249951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120118617A KR101249951B1 (en) 2012-10-24 2012-10-24 Method for coating in process equipments and coating structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120118617A KR101249951B1 (en) 2012-10-24 2012-10-24 Method for coating in process equipments and coating structure using the same

Publications (1)

Publication Number Publication Date
KR101249951B1 true KR101249951B1 (en) 2013-04-03

Family

ID=48442197

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120118617A KR101249951B1 (en) 2012-10-24 2012-10-24 Method for coating in process equipments and coating structure using the same

Country Status (1)

Country Link
KR (1) KR101249951B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580682B1 (en) * 2014-07-28 2015-12-28 주식회사 혁성 Anti-Fouling Coating Layer for Water Supply Facilities and Preparation Method Thereof
KR20160021318A (en) * 2014-08-14 2016-02-25 (주)태광테크 A coating method for floating surface parts using the hybrid multi-coating apparatus
KR20170077835A (en) 2015-12-28 2017-07-06 아이원스 주식회사 Composite structure and forming method thereof
KR20190093389A (en) * 2018-02-01 2019-08-09 한양대학교 에리카산학협력단 Metal structure comprising nanocrystalline, and manufacturing method of the same
US10544500B2 (en) * 2014-04-25 2020-01-28 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US11008653B2 (en) 2016-07-15 2021-05-18 Applied Materials, Inc. Multi-layer coating with diffusion barrier layer and erosion resistant layer
KR20210154747A (en) 2020-06-12 2021-12-21 (주)티티에스 Coating apparatus and coating method of part
JP2022542655A (en) * 2019-08-05 2022-10-06 沈陽富創精密設備股▲フン▼有限公司 Manufacturing method of surface protective coating for main parts of IC device based on plasma spraying and low temperature spraying technology
KR20230016721A (en) * 2021-07-26 2023-02-03 (주)단단 Method for Forming Thermal Barrier Coatings by Using Normal Temperature Spray Coating and Thermal Spray Coating
KR102656880B1 (en) * 2019-08-05 2024-04-16 선양 포춘 프리시전 이큅먼트 컴퍼니., 리미티드. Manufacturing method of surface protective coating layer for IC equipment core components based on plasma spraying and cold spraying technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070067857A (en) * 2005-12-26 2007-06-29 재단법인 포항산업과학연구원 Carbon fiber-epoxy composite and coating methods thereof
JP2007321194A (en) 2006-05-31 2007-12-13 Tocalo Co Ltd Corrosion resistant thermal spray coating and sealing/covering method for thermal spray coating
JP2010106317A (en) 2008-10-30 2010-05-13 Nihon Ceratec Co Ltd Corrosion-resistant member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070067857A (en) * 2005-12-26 2007-06-29 재단법인 포항산업과학연구원 Carbon fiber-epoxy composite and coating methods thereof
JP2007321194A (en) 2006-05-31 2007-12-13 Tocalo Co Ltd Corrosion resistant thermal spray coating and sealing/covering method for thermal spray coating
JP2010106317A (en) 2008-10-30 2010-05-13 Nihon Ceratec Co Ltd Corrosion-resistant member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544500B2 (en) * 2014-04-25 2020-01-28 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US10563297B2 (en) 2014-04-25 2020-02-18 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
KR101580682B1 (en) * 2014-07-28 2015-12-28 주식회사 혁성 Anti-Fouling Coating Layer for Water Supply Facilities and Preparation Method Thereof
KR20160021318A (en) * 2014-08-14 2016-02-25 (주)태광테크 A coating method for floating surface parts using the hybrid multi-coating apparatus
KR101606423B1 (en) * 2014-08-14 2016-03-28 (주)태광테크 A coating method for floating surface parts using the hybrid multi-coating apparatus
KR20170077835A (en) 2015-12-28 2017-07-06 아이원스 주식회사 Composite structure and forming method thereof
WO2018124738A1 (en) * 2015-12-28 2018-07-05 아이원스 주식회사 Composite structure, and method for forming same
US11008653B2 (en) 2016-07-15 2021-05-18 Applied Materials, Inc. Multi-layer coating with diffusion barrier layer and erosion resistant layer
KR102070497B1 (en) 2018-02-01 2020-01-28 한양대학교 에리카산학협력단 Metal structure comprising nanocrystalline, and manufacturing method of the same
KR20190093389A (en) * 2018-02-01 2019-08-09 한양대학교 에리카산학협력단 Metal structure comprising nanocrystalline, and manufacturing method of the same
JP2022542655A (en) * 2019-08-05 2022-10-06 沈陽富創精密設備股▲フン▼有限公司 Manufacturing method of surface protective coating for main parts of IC device based on plasma spraying and low temperature spraying technology
KR102656880B1 (en) * 2019-08-05 2024-04-16 선양 포춘 프리시전 이큅먼트 컴퍼니., 리미티드. Manufacturing method of surface protective coating layer for IC equipment core components based on plasma spraying and cold spraying technology
KR20210154747A (en) 2020-06-12 2021-12-21 (주)티티에스 Coating apparatus and coating method of part
KR20230016721A (en) * 2021-07-26 2023-02-03 (주)단단 Method for Forming Thermal Barrier Coatings by Using Normal Temperature Spray Coating and Thermal Spray Coating
KR102570645B1 (en) * 2021-07-26 2023-08-28 (주)단단 Method for Forming Thermal Barrier Coatings by Using Normal Temperature Spray Coating and Thermal Spray Coating

Similar Documents

Publication Publication Date Title
KR101249951B1 (en) Method for coating in process equipments and coating structure using the same
US10418229B2 (en) Aerosol deposition coating for semiconductor chamber components
US9890089B2 (en) Compositions and methods for thermal spraying a hermetic rare earth environmental barrier coating
TWI615506B (en) Plasma resistant coating layer and method of forming the same
KR101108692B1 (en) Dense rare earth metal oxides coating to seal the porous ceramic surface, and the method of rare earth metal oxides coating layer
TWI664073B (en) Plasma erosion resistant rare-earth oxide based thin film coatings
KR101916872B1 (en) Method for restoring coating layer of semiconductor process equipment component and semiconductor process equipment component thereof
JP6082345B2 (en) Thermal spray coating for semiconductor applications
TW201812055A (en) Ion assisted deposition top coat of rare-earth oxide
JP2017218635A5 (en)
KR101961411B1 (en) Coating of a chamber for producing a large oled panel and method for manufacturing the same
WO2011074290A1 (en) Method for producing a heat-shielding coating, turbine member provided with said heat-shielding coating, and gas turbine
Lin et al. Characteristics of yttrium fluoride and yttrium oxide coatings for plasma process equipment prepared by atmospheric plasma spraying
TW201923148A (en) Method for producing plasma-resistant coating layer and plasma-resistant member formed by the same
JP2020525640A (en) Method for forming yttrium fluoride oxide coating film and yttrium fluoride oxide coating film using the same
JP2010106327A (en) Corrosion-resistant member
JP6849808B2 (en) Method of forming a transparent fluorine-based thin film and a transparent fluorine-based thin film based on this method
KR101101910B1 (en) Multi-component ceramic coating material for thermal spray on the parts of semiconductor processing devices and fabrication method and coating method thereof
Ashizawa et al. Microstructure and plasma corrosion behavior of yttria coatings prepared by the aerosol deposition method
CN101752214A (en) Semiconductor processing cavity part and production method thereof, as well as semiconductor processing equipment
US20160348250A1 (en) Component with an abradable coating and a method for coating the abradable coating
KR20130010557A (en) Hot plate of semiconductor manufacturing apparatus
KR101769750B1 (en) Method for in-situ manufacturing thermal barrier coating having pore-graded structure and property gradient
CN104894505A (en) Vacuum plasma spraying forming method for ultra-thick coating
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180307

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190318

Year of fee payment: 7