KR101249055B1 - Synthetic method of cathod material for lithium secondary battery - Google Patents

Synthetic method of cathod material for lithium secondary battery Download PDF

Info

Publication number
KR101249055B1
KR101249055B1 KR1020100077947A KR20100077947A KR101249055B1 KR 101249055 B1 KR101249055 B1 KR 101249055B1 KR 1020100077947 A KR1020100077947 A KR 1020100077947A KR 20100077947 A KR20100077947 A KR 20100077947A KR 101249055 B1 KR101249055 B1 KR 101249055B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
lithium secondary
solution
cathode material
Prior art date
Application number
KR1020100077947A
Other languages
Korean (ko)
Other versions
KR20120021674A (en
Inventor
전웅
김기홍
권오준
손진군
송창호
한기천
김기영
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020100077947A priority Critical patent/KR101249055B1/en
Publication of KR20120021674A publication Critical patent/KR20120021674A/en
Application granted granted Critical
Publication of KR101249055B1 publication Critical patent/KR101249055B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 2차전지의 양극 활물질로 사용되는 리튬 2차전지 양극재의 제조 방법에 관한 것으로, 리튬 농축 용액을 준비하는 단계와, Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질을 상기 리튬 농축 용액에 용해시켜 혼합 용해액을 만드는 용해 단계와, 상기 혼합 용해액을 챔버에 열간 분무하여 리튬 2차전지 양극재 분말를 합성하는 합성 단계를 포함하는 리튬 2차전지 양극재의 제조 방법을 제공한다.
본 발명에 의하면, 탄산리튬 제조 공정을 생략하고, 리튬 농축 용액과 리튬 2차전지 양극재의 원료인 Co, Ni, Fe, Mn으로부터 선택된 1가지 이상의 물질을 혼합 용해시킨 다음 챔버에 열간 분무하여 다양한 리튬 2차전지 양극재를 합성함으로써, 대량생산이 용이하고 저비용으로 고품질의 리튬 2차전지 양극재를 제조할 수 있는 효과가 있다.
The present invention relates to a method for producing a lithium secondary battery cathode material used as a cathode active material of a lithium secondary battery, comprising the steps of preparing a concentrated lithium solution, and at least one material selected from Co, Ni, Fe, Mn It provides a method for producing a lithium secondary battery cathode material comprising a dissolving step of dissolving in a concentrated solution to form a mixed solution, and a synthesis step of synthesizing the lithium secondary battery cathode material powder by hot spraying the mixed solution in a chamber.
According to the present invention, a lithium carbonate manufacturing process is omitted, and at least one material selected from Co, Ni, Fe, and Mn, which is a raw material of a lithium concentrated solution and a lithium secondary battery cathode material, is mixed and dissolved, and then hot sprayed into a chamber to provide various lithium. By synthesizing the secondary battery positive electrode material, the mass production is easy and there is an effect of producing a high quality lithium secondary battery positive electrode material at low cost.

Description

리튬 2차전지 양극재의 제조 방법{SYNTHETIC METHOD OF CATHOD MATERIAL FOR LITHIUM SECONDARY BATTERY}Manufacturing method of positive electrode material of lithium secondary battery {SYNTHETIC METHOD OF CATHOD MATERIAL FOR LITHIUM SECONDARY BATTERY}

본 발명은 리튬 2차전지의 양극 활물질로 사용되는 리튬 2차전지 양극재의 제조 방법에 관한 것으로, 보다 상세하게는 탄산리튬 제조 공정을 생략하고, 다양한 리튬 2차전지 양극재를 합성함으로써 대량생산이 용이하고 저비용으로 리튬 2차전지 양극재를 제조할 수 있는 리튬 2차전지 양극재의 제조 방법에 관한 것이다.The present invention relates to a method for producing a lithium secondary battery positive electrode material used as a positive electrode active material of a lithium secondary battery, and more specifically, mass production is achieved by omitting a lithium carbonate manufacturing process and synthesizing various lithium secondary battery positive electrode materials. The present invention relates to a method for producing a lithium secondary battery positive electrode material that can easily and at a low cost produce a lithium secondary battery positive electrode material.

현재, 노트북, 핸드폰, 하이브리드 및 전기 자동차 등 전기 제품의 경량화, 소형화 추세에 따라 높은 에너지 밀도를 갖는 리튬 2차전지의 개발이 활발히 진행되고 있다.Currently, the development of lithium secondary batteries having high energy density is actively progressed in accordance with the trend of lightening and miniaturizing electric products such as notebooks, mobile phones, hybrids, and electric vehicles.

일반적으로 리튬 2차전지는 리튬을 흡장 및 방출할 수 있는 흑연이 적용된 음극과, 리튬을 함유한 복합 산화물이 적용된 양극과, 유기 전해액을 포함하는 구성을 갖고 있다. 이러한 리튬 2차전지에 사용되는 양극재는 높은 에너지밀도, 충·방전시의 우수한 싸이클 특성, 전해질에 대한 화학적 안정성 등의 조건을 충족시켜야 한다.In general, a lithium secondary battery has a structure including a negative electrode to which graphite capable of occluding and releasing lithium, a positive electrode to which a composite oxide containing lithium is applied, and an organic electrolyte solution. The cathode material used in such a lithium secondary battery must satisfy the conditions such as high energy density, excellent cycle characteristics during charging and discharging, and chemical stability for an electrolyte.

이와 같은 조건을 만족시키기 위해, 리튬 2차전지는 리튬 복합산화물 양극과 탄소 음극으로 구성되는 것이 일반적이고, 이중 리튬 2차전지의 양극을 구성하는 양극재는 도 1에 나타난 바와 같이 통상 리튬 함유 용액에 CO2가스를 취입하여 리튬을 탄산화함으로써 탄산리튬을 제조한 후에, 상기 탄산리튬을 Co,Ni,Fe,Mg 등에서 선택된 1가지 이상의 물질과 함께 혼합 및 분쇄하여 낮은 온도에서 건조시킨 후에 이를 다시 고온에서 열처리하여 LiCoO2, LiNiO2, LiFeO2, LiMnO2, LiMO2(M은 Co,Ni)등의 복합 산화물 분말을 제조하여 2차전지의 양극재로 사용해 왔다.In order to satisfy such conditions, the lithium secondary battery is generally composed of a lithium composite oxide positive electrode and a carbon negative electrode, the positive electrode material constituting the positive electrode of the double lithium secondary battery is usually CO in a lithium-containing solution as shown in FIG. 2 Lithium carbonate is prepared by blowing gas into lithium, and then mixing and pulverizing the lithium carbonate with one or more materials selected from Co, Ni, Fe, Mg, and the like, drying them at a low temperature, and then heat-treating them at a high temperature. Thus, composite oxide powders such as LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , and LiMO 2 (M is Co, Ni) have been prepared and used as cathode materials for secondary batteries.

그러나, 이러한 종래의 리튬 2차전지의 양극재 제조 방법은 다수의 공정으로 이루어짐으로써 공정이 복잡하고 제조 비용 및 시간이 많이 소요되는 문제가 있었다. However, such a method of manufacturing a cathode material of a lithium secondary battery according to the related art has a problem in that the process is complicated and the manufacturing cost and time are high due to a plurality of processes.

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 탄산리튬 제조 공정을 생략하고, 리튬 농축 용액과 리튬 2차전지 양극재의 원료인 Co, Ni, Fe, Mn으로부터 선택된 1가지 이상의 물질을 혼합 용해시킨 다음 챔버에 열간 분무하여 다양한 리튬 2차전지 양극재를 합성함으로써 대량생산이 용이하고 저비용으로 고품질의 리튬 2차전지 양극재를 제조하는 방법의 제공을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems, omitting the process for producing lithium carbonate, mixing and dissolving at least one material selected from Co, Ni, Fe, Mn which is a raw material of lithium concentrate solution and lithium secondary battery cathode material It is intended to provide a method for producing a high-quality lithium secondary battery cathode material at a low cost and easy to mass production by synthesizing various lithium secondary battery cathode material by hot spraying to the chamber.

본 발명은 리튬 농축 용액을 준비하는 단계와, Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질을 상기 리튬 농축 용액에 용해시켜 혼합 용해액을 만드는 용해 단계와, 상기 혼합 용해액을 챔버에 열간 분무하여 리튬 2차전지 양극재 분말를 합성하는 합성 단계를 포함하는 리튬 2차전지 양극재의 제조 방법을 제공한다.The present invention comprises the steps of preparing a concentrated lithium solution, a dissolution step of dissolving at least one material selected from Co, Ni, Fe, Mn in the lithium concentrated solution to form a mixed solution, and the mixed solution is hot to the chamber It provides a method for producing a lithium secondary battery positive electrode material comprising a synthesis step of synthesizing the lithium secondary battery positive electrode powder by spraying.

이때, 상기 리튬 농축 용액은 전기분해에 의해 분리된 리튬이 농축된 수산화 리튬 수용액인 것에도 그 특징이 있다.In this case, the lithium concentrated solution is characterized in that the lithium hydroxide separated by electrolysis is concentrated lithium hydroxide aqueous solution.

게다가, 상기 열간 분무시 온도는 500~800℃인 것에도 그 특징이 있다.In addition, the hot spray is characterized in that the temperature is 500 ~ 800 ℃.

뿐만 아니라, 상기 용해 단계 이후에, 상기 혼합 용해액에 킬레이트제와 중합조제를 첨가하여 가열하는 킬레이트화 및 중합 단계와, 상기 킬레이트화 및 중합 단계를 거친 상기 혼합 용해액을 가열하여 분해시키는 열분해 단계가 더 포함된 것에도 그 특징이 있다.In addition, after the dissolving step, a chelating and polymerization step of heating by adding a chelating agent and a polymerization aid to the mixed solution, and a pyrolysis step of heating and decomposing the mixed solution having undergone the chelation and polymerization step. It also has its features.

나아가, 상기 킬레이트제는 구연산이고, 상기 중합조제는 에틸렌글리콜인 것에도 그 특징이 있다.Further, the chelating agent is citric acid, the polymerization aid is also characterized in that the ethylene glycol.

아울러, 합성된 상기 리튬 2차전지 양극재 분말을 회수하는 단계를 더 포함하는 것에도 그 특징이 있다.In addition, there is also a feature that further comprises the step of recovering the synthesized lithium secondary battery cathode material powder.

본 발명에 의하면, 탄산리튬 제조 공정을 생략하고, 리튬 농축 용액과 리튬 2차전지 양극재의 원료인 Co, Ni, Fe, Mn으로부터 선택된 1가지 이상의 물질을 혼합 용해시킨 다음 챔버에 열간 분무하여 다양한 리튬 2차전지 양극재를 합성함으로써, 대량생산이 용이하고 저비용으로 고품질의 리튬 2차전지 양극재를 제조할 수 있는 효과가 있다.According to the present invention, a lithium carbonate manufacturing process is omitted, and at least one material selected from Co, Ni, Fe, and Mn, which is a raw material of a lithium concentrated solution and a lithium secondary battery cathode material, is mixed and dissolved, and then hot sprayed into a chamber to provide various lithium. By synthesizing the secondary battery positive electrode material, the mass production is easy and there is an effect of producing a high quality lithium secondary battery positive electrode material at low cost.

도 1은 종래의 리튬 2차전지 양극재 제조 방법의 플로우 차트.
도 2는 전기분해에 의해 리튬을 회수하는 공정을 나타낸 구성도.
도 3은 본 발명에 따른 리튬 2차전지 양극재 제조 방법의 플로우 차트.
1 is a flow chart of a conventional lithium secondary battery cathode material manufacturing method.
2 is a block diagram showing a step of recovering lithium by electrolysis.
3 is a flow chart of a method of manufacturing a lithium secondary battery positive electrode material according to the present invention.

이하, 본 발명의 구성에 대하여 도면을 참조하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the structure of this invention is described in detail with reference to drawings.

본 발명은 탄산리튬을 제조하는 복잡한 제조 공정을 생략하고, 리튬 농축 용액에 리튬 2차전지 양극재의 원료인 Co, Ni, Fe, Mn으로부터 선택된 1가지 이상의 물질을 혼합 용해시킨 다음 열간 분무하여 다양한 리튬 2차전지 양극재를 합성함으로써, 대량생산이 용이하고 저비용으로 리튬 2차전지 양극재를 제조하는 것을 그 특징으로 한다.The present invention omits the complicated manufacturing process for producing lithium carbonate, mixes and dissolves one or more materials selected from Co, Ni, Fe, and Mn, which are raw materials of a lithium secondary battery cathode material, in a lithium concentrated solution, and then hot sprays various lithium. By synthesizing the secondary battery positive electrode material, the lithium secondary battery positive electrode material can be manufactured at low cost with easy production.

본 발명은 먼저 리튬 농축 용액을 준비하는 단계를 수행한다. 상기 리튬 농축 용액은 Mg, Ca, B, SO4 등의 불순물이 제거되고 리튬이 고농도로 농축된 용액이며, 상기 리튬 농축 용액은 다양한 방법에 의하여 리튬이 고농축된 용액이 모두 가능하지만, 특히, 전기분해에 의해 분리된 고순도의 리튬이 농축된 용액인 것이 바람직하다.The present invention first performs a step of preparing a concentrated lithium solution. The lithium concentrated solution is a solution in which impurities such as Mg, Ca, B, and SO 4 are removed and lithium is concentrated at a high concentration, and the lithium concentrated solution may be any solution in which lithium is highly concentrated by various methods. It is preferred that the high purity lithium separated by decomposition be a concentrated solution.

즉, 일실시예로서 도 2에 도시된 바와 같이, 양이온 교환막에 의하여 구획되는 양극이 설치된 양극셀 및 음극이 설치된 음극셀을 준비하고, 양극 전해욕으로서 양극셀에 고농도의 인산리튬 수용액을 공급하고 음극셀에 수용액을 공급한 후, 전기분해를 하여 양이온 교환막을 통해 리튬 이온을 선택적으로 분리함으로써 불순물이 없는 고순도의 리튬이 농축된 수산화 리튬(LiOH) 수용액을 얻을 수 있다.That is, as an example, as shown in Figure 2, to prepare a positive electrode cell and a negative electrode cell is provided with a positive electrode partitioned by a cation exchange membrane, supplying a high concentration of aqueous lithium phosphate solution to the positive electrode as a positive electrode electrolytic bath After supplying the aqueous solution to the cathode cell, by electrolysis to selectively separate the lithium ions through a cation exchange membrane can be obtained a lithium hydroxide (LiOH) aqueous solution of high purity lithium free of impurities.

그 다음에, Co, Ni, Fe, Mn으로부터 선택된 1종 이상이 포함된 물질을 상기 리튬 농축 용액에 용해시켜 혼합 용해액을 만드는 용해 단계를 수행한다. 즉, Co, Ni, Fe, Mn으로부터 선택된 1종의 물질을 상기 리튬 농축 용액에 혼합하여 분산시켜 액상의 혼합 용해액을 제조한다.Then, a dissolution step of dissolving a material containing at least one selected from Co, Ni, Fe, and Mn in the lithium concentrated solution to form a mixed solution is performed. That is, one material selected from Co, Ni, Fe, and Mn is mixed and dispersed in the lithium concentrated solution to prepare a liquid mixed solution.

이때, 상기 혼합 용해액에 킬레이트제(chelating agent)와 중합조제(polymerization agent)를 첨가하여 가열하는 킬레이트화 및 중합 단계와, 상기 킬레이트화 및 중합 단계를 거친 상기 혼합 용해액을 가열하여 분해시키는 열분해 (pyrolysis) 단계가 더 포함될 수 있다.At this time, a chelating and polymerization step of heating by adding a chelating agent and a polymerization agent to the mixed solution, and pyrolysis to heat and decompose the mixed solution after the chelating and polymerization step. A pyrolysis step may be further included.

즉, 상기 혼합 용해액에 킬레이트제를 첨가하여 가장 외곽에 붙어 있는 수소(H)들이 H+이 되어 용해되고 곧 용해액에 용해된 금속 이온들과 결합하게 된다. 여기서, 상기 킬레이트제는 구연산(C6H8O7, citric acid), 아디픽산(C6H10O4, adipic acid), 메타크릴산(C4H6O2, methacrylic acid), 클리코릭산(C2H4O3, glycolic acid) 중에서 선택되는 1종 이상으로 이루어질 수 있지만, 특히 가격이 저렴하고, 킬레이트화 반응성이 우수한 구연산을 사용하는 것이 바람직하다.That is, by adding a chelating agent to the mixed solution, hydrogen (H) attached to the outermost part becomes H + to be dissolved, and soon combines with metal ions dissolved in the solution. Here, the chelating agent is citric acid (C 6 H 8 O 7 , citric acid), adipic acid (C 6 H 10 O 4 , adipic acid), methacrylic acid (C 4 H 6 O 2 , methacrylic acid), glyco Although it may be composed of one or more selected from lactic acid (C 2 H 4 O 3 , glycolic acid), it is particularly preferable to use citric acid, which is low in price and excellent in chelating reactivity.

그리고, 중합조제를 함께 첨가하고 가열하여 에스테르반응에 의해 중합체를 형성한다. 이때, 상기 중합조제로는 중합반응성이 우수한 에틸렌글리콜(ethylene glycol)을 사용하는 것이 바람직하다.Then, the polymerization aid is added together and heated to form a polymer by esterification. In this case, it is preferable to use ethylene glycol having excellent polymerization reactivity as the polymerization aid.

여기서, 상기 중합 반응은 100 ~ 250℃의 온도 범위로 가열하는 것이 바람직한데, 100℃ 미만에서는 중합반응성이 떨어지고, 250℃를 초과하면 중합열이 많이 발생하여 열을 효과적으로 제거하여 반응을 조절하기 어려워지는 문제가 있기 때문이다.Here, the polymerization reaction is preferably heated to a temperature range of 100 ~ 250 ℃, less than 100 ℃ polymerization reactivity is lower, if it exceeds 250 ℃ is a lot of polymerization heat is generated to remove the heat effectively difficult to control the reaction Losing is a problem.

그 다음에, 상기 킬레이트화 및 중합 단계를 거친 상기 혼합 용해액을 가열하여 분해시키는 열분해단계를 수행할 수 있는데, 상기 열분해 단계는 상기 중합체를 가열하여 분해시켜 C,H 등의 원소를 증발시켜 제거하는 과정이다. 이때, 상기 가열은 400 ~ 550℃의 온도에서 이루어지는 것이 바람직한 바, 400℃ 미만의 온도에서는 상기 킬레이트 중합체의 분해가 원활하지 않은 문제가 있고, 550℃를 초과하는 온도에서는 열분해의 효과가 포화되기 때문이다.Thereafter, a pyrolysis step of heating and decomposing the mixed solution having undergone the chelation and polymerization steps may be performed. The pyrolysis step may be performed by heating and decomposing the polymer to evaporate elements such as C and H. It's a process. At this time, the heating is preferably made at a temperature of 400 ~ 550 ° C, the decomposition of the chelate polymer is not smooth at a temperature below 400 ° C, since the effect of pyrolysis is saturated at a temperature exceeding 550 ° C. to be.

그 다음에, 상기 혼합 용해액을 챔버에 열간 분무하여 리튬 2차전지 양극재를 합성하는 합성 단계를 수행한다. 즉, 챔버를 버너로 가열하면서 액상의 상기 혼합 용해액을 챔버에 열간 분무함으로써 복합산화물인 LiCoO2, LiNiO2, LiFeO2, LiMnO2 등의 리튬 2차전지 양극재를 합성할 수 있다.Thereafter, a synthesis step of synthesizing the lithium secondary battery positive electrode material by hot spraying the mixed solution into the chamber. That is, lithium secondary battery cathode materials such as LiCoO 2 , LiNiO 2 , LiFeO 2 , and LiMnO 2 , which are composite oxides, may be synthesized by hot spraying the liquid mixed solution in the chamber while the chamber is heated with a burner.

상기 열간 분무는 챔버를 고온으로 가열하면서 액상으로 제조된 Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질과 리튬이 혼합된 혼합 용해액을 상기 챔버 내부로 분무함으로써 이루어진다.The hot spraying is performed by spraying a mixed solution of lithium mixed with at least one material selected from Co, Ni, Fe, and Mn prepared in a liquid state while heating the chamber to a high temperature.

이때, 상기 열간 분무시 온도는 500~800℃인 것이 바람직한 바, 상기 온도가 800℃를 초과하는 경우에는 합성 반응이 너무 빨리 진행되어 이상성장 입자가 형성되어 비균일상으로 됨으로써 2차전지의 수명이 저하될 수 있는 문제가 있고, 상기 온도가 500℃ 미만인 경우에는 원하는 최종 복합산화물의 구조를 형성할 수 없는 경우가 있기 때문이다.At this time, the temperature during the hot spray is preferably 500 ~ 800 ℃ bar, if the temperature exceeds 800 ℃ the synthesis reaction proceeds so fast that the abnormal growth particles are formed in a non-uniform phase life of the secondary battery This is because there is a problem that can be lowered, and if the temperature is less than 500 ° C., the desired final composite oxide structure may not be formed.

이와 같이, 리튬 2차전지의 양극 활물질로 사용되는 리튬 2차전지 양극재 제조시 종래의 복잡한 탄산리튬 제조 공정을 생략하고 Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질과 리튬이 혼합된 혼합 용해액을 열간 분무하여 다양한 복합산화물로 직접 합성함으로써 대량생산이 용이하고 저비용으로 리튬 2차전지 양극재를 제조할 수 있게 된다.As such, when the lithium secondary battery cathode material used as the cathode active material of the lithium secondary battery is omitted, a complicated lithium carbonate manufacturing process is omitted, and a mixture of lithium and one or more materials selected from Co, Ni, Fe, and Mn is mixed. By hot-spraying the melt and synthesizing it directly into various composite oxides, mass production is easy and a lithium secondary battery cathode material can be manufactured at low cost.

즉, 도 1에 도시된 바와 같이 종래에는 리튬 농축 용액에 CO2 가스를 취입하여 탄산리튬을 생성한 후 침강, 여과 및 세척하여 탄산리튬을 제조한 후, 이를 Co, Ni, Fe, Mn 중 1종 이상의 물질과 혼합 및 분쇄하여 건조후 고온 열처리를 통해 제조되는 리튬 2차전지 양극재를 제조하는 복잡한 공정을 거쳐야 했으나, 본 발명에서는 도 3에 도시된 바와 같이 Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질과 리튬을 혼합한 혼합 용해액을 챔버에 열간 분무하여 직접 다양한 리튬 2차전지 양극제를 제조함으로써 공정이 대폭 감소하여 저비용으로 리튬 2차전지 양극재를 제조할 수 있다.That is, after the prior art as shown in 1, to prepare a lithium carbonate by precipitation, filtration and washing after creating the lithium carbonate by blowing a CO 2 gas to a lithium concentration solution, which Co, Ni, Fe, Mn 1 After mixing and pulverizing with more than one species and drying, the lithium secondary battery cathode material manufactured through high-temperature heat treatment was required to undergo a complicated process, but in the present invention, as shown in FIG. 3, Co, Ni, Fe, and Mn were selected. By hot-spraying a mixed solution of one or more materials and lithium into the chamber by directly spraying a variety of lithium secondary battery cathodes, the process can be drastically reduced to produce a lithium secondary battery cathode material at low cost.

특히, 도 2에 도시된 바와 같이 인산리튬 수용액을 양극셀에 공급하여 전기분해된 리튬 이온을 양이온 교환막을 통해 선택적으로 투과시킨 고농도의 수산화 리튬 수용액을 이용할 경우에는 고순도의 리튬이 포함된 농축 용액을 얻을 수 있어 별도의 탄산리튬의 제조 공정없이도 고품질의 리튬 2차전지 양극재의 직접 제조가 보다 용이하다.In particular, as shown in FIG. 2, when a lithium phosphate aqueous solution is supplied to a positive electrode cell, a concentrated solution containing high purity lithium is used in the case of using a high concentration lithium hydroxide aqueous solution that selectively permeates electrolyzed lithium ions through a cation exchange membrane. It is possible to obtain a high-quality lithium secondary battery positive electrode material directly without a separate manufacturing process of lithium carbonate.

그리고, 합성된 상기 리튬 2차전지 양극재 분말을 회수하는 단계를 수행하여 최종적으로 리튬 2차전지용 양극재를 얻을 수 있다. 여기서, 회수 수단은 통상적으로 사용되는 공지의 수단을 이용한다.The lithium secondary battery positive electrode material may be finally obtained by performing the step of recovering the synthesized lithium secondary battery positive electrode material powder. Here, the recovery means uses known means that are commonly used.

이하, 본 발명의 실시예에 관하여 상세히 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위해 기재한 것일 뿐 본 발명은 이에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail. However, the following examples are only described to illustrate the present invention, but the present invention is not limited thereto.

[실시예1][Example 1]

도 2에 도시된 바와 같이, 양이온 교환막에 의하여 구획되는 양극이 설치된 양극셀 및 음극이 설치된 음극셀을 준비하고, 양극 전해욕으로서 양극셀에 고농도의 인산리튬 수용액을 공급하고 음극셀에 수용액을 공급한 후, 전기분해를 하여 양이온 교환막을 통해 리튬 이온을 음극셀로 선택적으로 분리하여 고순도의 리튬이 농축된 수산화 리튬(LiOH) 수용액을 제조하였다.As shown in FIG. 2, a cathode cell having a cathode partitioned by a cation exchange membrane and a cathode cell provided with a cathode are prepared, a high concentration lithium phosphate aqueous solution is supplied to the anode cell as an anode electrolytic bath, and an aqueous solution is supplied to the cathode cell. Thereafter, electrolysis was performed to selectively separate lithium ions through a cation exchange membrane into a cathode cell, thereby preparing a lithium hydroxide (LiOH) aqueous solution in which lithium of high purity was concentrated.

그리고, 상기 수산화 리튬 수용액에 양극재 원료 물질인 Co(NO3)26H2O를 혼합하여 혼합 용해액을 만들고, 챔버를 700℃의 온도에서 가열하면서 상기 혼합 용해액을 상기 챔버에 3시간 동안 열간 분무하였다.In addition, Co (NO 3 ) 2 6H 2 O, which is a cathode material, is mixed with the lithium hydroxide aqueous solution to form a mixed solution, and the mixed solution is heated in the chamber for 3 hours while the chamber is heated at a temperature of 700 ° C. Hot sprayed.

[실시예2][Example 2]

상기 실시예1과 동일한 공정에 의해 수산화 리튬(LiOH) 수용액을 제조한 후, 상기 수산화 리튬 수용액에 양극재 원료 물질인 Co(NO3)26H2O를 혼합하여 혼합 용해액을 만들고, 상기 혼합 용해액에 구연산과 에틸린글리콜을 첨가하여 130℃에서 2시간 가열하고, 200℃에서 가열하여 농축시켰다. 그리고, 450℃의 온도로 가열하여 중합체를 열분해한 다음, 챔버를 700℃의 온도에서 가열하면서 혼합 용해액을 상기 챔버에 3시간 동안 열간 분무하였다.After preparing a lithium hydroxide (LiOH) aqueous solution by the same process as in Example 1, Co (NO 3 ) 2 6H 2 O as a cathode material raw material was mixed with the aqueous lithium hydroxide solution to form a mixed solution, the mixture Citric acid and ethylen glycol were added to the solution, and the mixture was heated at 130 ° C. for 2 hours, and then heated to 200 ° C. to concentrate. The polymer was then pyrolyzed by heating to a temperature of 450 ° C. and then the mixed solution was hot sprayed into the chamber for 3 hours while the chamber was heated at a temperature of 700 ° C.

상기 실시예1 및 실시예2의 실시 결과, 간소화된 공정에 의해 균질한 LiCoO2 양극재 분말을 얻을 수 있었다.As a result of the above Examples 1 and 2, a homogeneous LiCoO 2 cathode material powder could be obtained by a simplified process.

결국, 본 발명은 탄산리튬을 제조하는 복잡한 공정의 생략이 가능하고, 리튬 2차전지 양극재의 원료인 Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질과 리튬의 혼합 용해액을 챔버에 열간 분무하여 다양한 리튬 2차전지 양극재를 합성함으로써 대량생산이 용이하고 저비용으로 고품질의 리튬 2차전지 양극재를 제조할 수 있는 것이다.As a result, the present invention can omit a complicated process for producing lithium carbonate, and hot spraying a mixed solution of lithium with one or more materials selected from Co, Ni, Fe, and Mn, which are raw materials for lithium secondary battery cathode materials, to the chamber. By synthesizing various lithium secondary battery cathode materials, it is possible to manufacture high quality lithium secondary battery cathode materials at a low cost with easy mass production.

Claims (6)

리튬 농축 용액을 준비하는 단계와,
Co, Ni, Fe, Mn으로부터 선택된 1종 이상의 물질을 상기 리튬 농축 용액에 용해시켜 혼합 용해액을 만드는 용해 단계와,
상기 혼합 용해액을 챔버에 열간 분무하여 리튬 2차전지 양극재 분말를 합성하는 합성 단계를 포함하고,
상기 리튬 농축 용액은 전기분해에 의해 분리된 리튬이 농축된 수산화 리튬 수용액인 것을 특징으로 하는 리튬 2차전지 양극재의 제조 방법.
Preparing a concentrated lithium solution,
A dissolution step of dissolving at least one material selected from Co, Ni, Fe, and Mn in the lithium concentrated solution to form a mixed solution;
A synthetic step of synthesizing a lithium secondary battery cathode material powder by hot spraying the mixed solution into a chamber;
The lithium concentrated solution is a lithium secondary battery cathode material production method characterized in that the lithium hydroxide separated by electrolysis concentrated lithium hydroxide solution.
삭제delete 제1항에 있어서,
상기 열간 분무시 온도는 500~800℃인 것을 특징으로 하는 리튬 2차전지 양극재의 제조방법.
The method of claim 1,
Temperature during the hot spray is a manufacturing method of a lithium secondary battery cathode material, characterized in that 500 ~ 800 ℃.
제1항에 있어서,
상기 용해 단계 이후에, 상기 혼합 용해액에 킬레이트제와 중합조제를 첨가하여 가열하는 킬레이트화 및 중합 단계와,
상기 킬레이트화 및 중합 단계를 거친 상기 혼합 용해액을 가열하여 분해시키는 열분해 단계가 더 포함된 것을 특징으로 하는 리튬 2차전지 양극재의 제조 방법.
The method of claim 1,
After the dissolution step, a chelating and polymerization step of heating by adding a chelating agent and a polymerization aid to the mixed solution;
And a pyrolysis step of heating and decomposing the mixed solution having undergone the chelation and polymerization steps.
제4항에 있어서,
상기 킬레이트제는 구연산이고, 상기 중합조제는 에틸렌글리콜인 것을 특징으로 하는 리튬 2차전지 양극재의 제조 방법.
5. The method of claim 4,
Wherein said chelating agent is citric acid and said polymerization aid is ethylene glycol.
제1항에 있어서,
합성된 상기 리튬 2차전지 양극재 분말을 회수하는 단계를 더 포함하는 것을 특징으로 하는 리튬 2차전지 양극재의 제조 방법.
The method of claim 1,
Method for producing a lithium secondary battery cathode material characterized in that it further comprises the step of recovering the synthesized lithium secondary battery cathode material powder.
KR1020100077947A 2010-08-12 2010-08-12 Synthetic method of cathod material for lithium secondary battery KR101249055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100077947A KR101249055B1 (en) 2010-08-12 2010-08-12 Synthetic method of cathod material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100077947A KR101249055B1 (en) 2010-08-12 2010-08-12 Synthetic method of cathod material for lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20120021674A KR20120021674A (en) 2012-03-09
KR101249055B1 true KR101249055B1 (en) 2013-03-29

Family

ID=46129925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100077947A KR101249055B1 (en) 2010-08-12 2010-08-12 Synthetic method of cathod material for lithium secondary battery

Country Status (1)

Country Link
KR (1) KR101249055B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150221941A1 (en) * 2013-09-30 2015-08-06 Lg Chem, Ltd. Cathode active material coating solution for secondary battery and method of manufacturing the same
US9941508B2 (en) 2013-09-30 2018-04-10 Lg Chem, Ltd. Cathode active material for secondary battery, method of manufacturing the same, and cathode for lithium secondary battery including the cathode active material
US10756338B2 (en) 2013-09-30 2020-08-25 Lg Chem, Ltd. Cathode active material for secondary battery and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879210B1 (en) * 2013-09-30 2020-01-15 LG Chem, Ltd. Cathode active material coating solution for secondary battery and method for preparing same
WO2015047025A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Cathode active material for secondary battery, method for preparing same, and cathode for lithium secondary battery comprising same
WO2015047023A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Cathode active material for secondary battery and method for preparing same
KR102643446B1 (en) 2021-09-30 2024-03-07 조영기 Continuous manufacturing method of cathode material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011713A (en) 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011713A (en) 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electrochimica Acta 52, 2007, pp7226-7230 *
Electrochimica Acta 52, 2007, pp7286-7290 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150221941A1 (en) * 2013-09-30 2015-08-06 Lg Chem, Ltd. Cathode active material coating solution for secondary battery and method of manufacturing the same
US9941508B2 (en) 2013-09-30 2018-04-10 Lg Chem, Ltd. Cathode active material for secondary battery, method of manufacturing the same, and cathode for lithium secondary battery including the cathode active material
US10026960B2 (en) * 2013-09-30 2018-07-17 Lg Chem, Ltd. Cathode active material coating solution for secondary battery and method of manufacturing the same
US10756338B2 (en) 2013-09-30 2020-08-25 Lg Chem, Ltd. Cathode active material for secondary battery and method of manufacturing the same

Also Published As

Publication number Publication date
KR20120021674A (en) 2012-03-09

Similar Documents

Publication Publication Date Title
US11542175B2 (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
KR101249055B1 (en) Synthetic method of cathod material for lithium secondary battery
US11591670B2 (en) Recycling Li-ion batteries using green chemicals and processes
Lv et al. Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries
US20220242746A1 (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
KR101191154B1 (en) Method of recovery and synthesis of metaloxidic cathodic active material for lithium ionsecondary battery
KR20120015658A (en) Method for recovering with high purity lithium, lithium carbonate, lithium hydroxide and synthetic method of cathod material for lithium secondary battery from sea water
JP2012064557A5 (en)
CN106384813A (en) Fast synthesis method of positive electrode material for lithium ion battery
Zhang et al. Simplified co-precipitation synthesis of spinel LiNi0. 5Mn1. 5O4 with improved physical and electrochemical performance
CN107863530A (en) A kind of method that high-density lithium iron phosphate is prepared using siderite
CN104401957B (en) A kind of hydrothermal preparing process of positive electrode material of lithium secondary cell fluorophosphoric acid cobalt lithium
CN108110242A (en) A kind of preparation method of lithium ion battery nickel manganese cobalt composite material
CN102376956B (en) A kind of preparation method of lithium manganese phosphate material
CN110112387A (en) A kind of positive electrode and preparation method thereof that Asia titanium-oxide-coated is modified
JP2023546826A (en) Reuse and recycling of lithium-ion battery cathodes
CN107863531A (en) A kind of method that anode material for lithium-ion batteries is prepared using siderite
CN110867574A (en) Preparation method of high-nickel ternary material (NCW), product and application thereof
KR20230159451A (en) Core-shell gradient ternary precursor, its preparation method and application
CN103606702A (en) Easily-manufactured high-specific-capacity lithium ion battery
CN110311114B (en) Method for preparing ternary precursor of lithium battery through circular electrolysis
CN107732236A (en) Utilize the method for siderite Hydrothermal Synthesiss anode material for lithium-ion batteries
CN103199228A (en) Method for preparing modified ternary cathode material
CN103633323B (en) A kind of preparation method of ferrous lithium phosphate cathode active material and the ferrous lithium phosphate cathode active material of preparation thereof
CN117858846A (en) Ferric phosphate and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200305

Year of fee payment: 8