KR101242852B1 - Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst - Google Patents

Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst Download PDF

Info

Publication number
KR101242852B1
KR101242852B1 KR1020100093915A KR20100093915A KR101242852B1 KR 101242852 B1 KR101242852 B1 KR 101242852B1 KR 1020100093915 A KR1020100093915 A KR 1020100093915A KR 20100093915 A KR20100093915 A KR 20100093915A KR 101242852 B1 KR101242852 B1 KR 101242852B1
Authority
KR
South Korea
Prior art keywords
catalyst
molybdenum
nickel
carrier
molybdenum catalyst
Prior art date
Application number
KR1020100093915A
Other languages
Korean (ko)
Other versions
KR20120032323A (en
Inventor
임효준
박은덕
김명엽
하성봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020100093915A priority Critical patent/KR101242852B1/en
Publication of KR20120032323A publication Critical patent/KR20120032323A/en
Application granted granted Critical
Publication of KR101242852B1 publication Critical patent/KR101242852B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 내황성을 확보하여, 황화수소 분위기에서도 메탄을 제조할 수 있는 촉매에 관한 것으로서, 담체에 몰리브데늄이 담지된 몰리브데늄 촉매와 그 제조방법을 제공하고, 상기 몰리브데늄 촉매를 이용하여 메탄을 제조하는 방법을 제공한다.The present invention relates to a catalyst capable of producing methane in a hydrogen sulfide atmosphere by securing sulfur resistance, and provides a molybdenum catalyst having a molybdenum supported on a carrier and a method for producing the same, using the molybdenum catalyst To provide a method of preparing methane.

Description

몰리브데늄 촉매 및 그 제조방법과 상기 촉매를 이용한 메탄 제조방법{MOLYBDENUM CATALYST AND METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING METHANE USING SAID CATALYST}MOLYBDENUM CATALYST AND METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING METHANE USING SAID CATALYST}

본 발명은 합성천연가스(Synthetic Natural Gas, SNG)의 주성분인 메탄을 제조하는 기술에 관한 것으로서, 보다 상세하게는 황화수소의 존재하에서 메탄을 제조하기 위한 몰리브데늄 촉매와 이를 제조하는 방법, 상기 촉매를 이용한 메탄 제조방법에 관한 것이다.The present invention relates to a technique for producing methane, which is a main component of Synthetic Natural Gas (SNG), and more particularly, a molybdenum catalyst for producing methane in the presence of hydrogen sulfide, and a method of preparing the same, the catalyst It relates to a methane production method using.

천연가스는 석유 등 다른 화석연료와 마찬가지로 지하에서 천연적으로 산출하는 가스 상태의 탄화수소로 메탄(CH4)이 주성분이며, 환경오염을 방지할 수 있는 청정성, 안정성, 편리성을 두루 갖춘 연료이기 때문에 대체 에너지로서 각광받고 있다. 이와 같은 장점 때문에 가정, 상업, 수송, 산업용 등 다양한 분야에서 사용되고 있다.
Natural gas, like other fossil fuels such as petroleum, is a gaseous hydrocarbon that is naturally produced underground and contains methane (CH 4 ) as its main component, and it is a fuel with cleanliness, stability, and convenience that can prevent environmental pollution. It is in the spotlight as alternative energy. Because of these advantages, it is used in various fields such as home, commercial, transportation, industrial.

그러나, 매장량의 한계로 인하여 가격의 불안과 수급의 제한이 발생한다. 따라서, 안정적인 천연가스의 수급을 위해서, 석탄 등으로부터 천연가스의 천연가스의 90%를 이루고 있는 메탄을 합성하여 합성천연가스를 생성시키는 기술이 연구되고 있다.
However, due to the limitation of reserves, price insecurity and supply and demand limitations occur. Therefore, for stable supply and demand of natural gas, a technique for synthesizing methane, which constitutes 90% of natural gas from natural gas, from coal or the like is being studied.

일반적으로 메탄을 생성하는 반응으로는 하기의 화학식 1과 같은 반응을 이용한다.In general, as the reaction for producing methane, a reaction such as the following Chemical Formula 1 is used.

[화학식 1][Formula 1]

CO + 3H2 → CH4 + H2O
CO + 3H 2 - > CH 4 + H 2 O

상기 화학식 1은 일산화탄소와 수소를 이용하여 메탄을 생성시킨다. 그러나 상기 반응은 일산화탄소에 비해 과량의 수소를 사용해야 하므로 그 효율이 낮고, 실제로 석탄을 가스화 시키면 일산화탄소의 몰수보다 많은 과량의 수소를 얻기가 힘들기 때문에 상기 반응을 통한 메탄의 제조는 적합하지 않다.
Formula 1 generates methane using carbon monoxide and hydrogen. However, since the reaction has to use an excess of hydrogen compared to carbon monoxide, its efficiency is low, and the production of methane through the reaction is not suitable because it is difficult to obtain excess hydrogen more than the number of moles of carbon monoxide.

이러한 문제를 극복하기 위해서, 하기 화학식 2와 같은 메탄화 반응을 이용하는 기술이 등장하였다.In order to overcome this problem, a technique using a methanation reaction such as the following Formula 2 has emerged.

[화학식 2][Formula 2]

2CO + 2H2 → CH4 + CO2
2CO + 2H 2 → CH 4 + CO 2

상기 화학식 2는 상기 화학식 1에 수성가스전환반응(CO + H2O → H2 + CO2)을 합친 직접 메탄화 반응이다. 이러한 반응을 이용한 기술은 미국특허 4177202호에 개시되어 있다.
Formula 2 is a direct methanation reaction of combining the water gas shift reaction (CO + H 2 O → H 2 + CO 2 ) to the formula (1). Techniques using this reaction are disclosed in US Pat. No. 4,177,202.

상기 화학식 2를 이용한 메탄화 반응은 반응 이후 생성물이 물이 아닌 이산화탄소가 생성되기 때문에 공정의 안정성이 더욱 확보되다. 상기 반응이 가장 잘 일어날 수 있도록 촉매 활성을ㄹ 높여 일산화탄소의 전화율 및 메탄의 선택도를 높일 필요가 있다.
In the methanation reaction using Chemical Formula 2, since the product produces carbon dioxide instead of water after the reaction, stability of the process is further secured. In order for the reaction to occur best, it is necessary to increase the catalytic activity to increase the conversion rate of carbon monoxide and the selectivity of methane.

한편, 상기 메탄화 반응으로는 촉매가 이용되고 있으며, 일반적으로 니켈계 촉매를 사용한다. 상기 니켈계 촉매는 메탄화 반응에서 활성은 우수하지만 석탄 가스와시 발생하는 황계열 화합물이 있는 조건에서 피독되어 활성이 저하된다. 또한 코발트계 촉매와 더불어 피셔-트롭시 반응에서 여러가지 탄화수소 화합물을 생성하는데 이용되어 왔다.
On the other hand, a catalyst is used as the methanation reaction, and generally a nickel-based catalyst is used. The nickel-based catalyst has excellent activity in the methanation reaction, but poisoned under conditions in which sulfur-based compounds are generated with coal gas and the activity is reduced. It has also been used to produce various hydrocarbon compounds in Fischer-Tropsch reactions with cobalt-based catalysts.

그러나 지금까지 알려진 니켈계 촉매의 경우, 황으로 인한 피독으로 인해 그 활성이 황이 없는 조건과 비교하여 만족할 만한 수준에 도달하지 못한 실정이다. 따라서, 메탄화 반응시 황 계열의 황화물에 내구성을 갖는 내황성 촉매의 개발이 절실히 요구되고 있는 실정이다.
However, in the case of nickel-based catalysts known so far, due to sulfur poisoning, its activity has not reached a satisfactory level compared to sulfur-free conditions. Therefore, there is an urgent need for the development of sulfur-resistant catalysts having durability for sulfur-based sulfides during the methanation reaction.

본 발명의 일측면은 메탄화 반응시 내황성이 우수하고, 메탄의 선택도를 높일 수 있는 몰리브데늄 촉매와 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a molybdenum catalyst and a method for producing the same that is excellent in sulfur resistance during the methanation reaction, and can increase the selectivity of methane.

본 발명의 또다른 측면은 상기 촉매를 이용하여 메탄을 제조하는 방법을 제공하고자 하는 것이다.Another aspect of the present invention is to provide a method for producing methane using the catalyst.

본 발명은 메탄제조시 사용되는 촉매에 있어서, 담체에 몰리브데늄이 담지된 몰리브데늄 촉매를 제공한다.
The present invention provides a molybdenum catalyst in which a molybdenum is supported on a catalyst used in the production of methane.

또한, 본 발명은 몰리브데늄 전구체를 탈이온수에 용해하여 용액을 제조하는 단계;In addition, the present invention comprises the steps of dissolving molybdenum precursor in deionized water to prepare a solution;

상기 용액에 담체를 혼합하여, 몰리브데늄이 담지된 촉매를 제조하는 단계;Mixing a carrier with the solution to prepare a molybdenum-supported catalyst;

상기 제조된 촉매를 건조하는 단계; 및Drying the prepared catalyst; And

소성하는 단계를 포함하는 몰리브데늄 촉매의 제조방법을 제공한다.
It provides a method for producing a molybdenum catalyst comprising the step of firing.

또한, 본 발명은 메탄 제조방법에 있어서,In addition, the present invention in the methane production method,

황화 수소가 포함된 반응가스를 담체에 몰리브데늄이 담지된 몰리브데늄 촉매에 흘려 메탄을 형성하는 메탄 제조방법.A method for producing methane by flowing a reaction gas containing hydrogen sulfide to a molybdenum catalyst having molybdenum supported on a carrier.

본 발명의 몰리브데늄 촉매는 황화수소가 포함된 조건에서도 높은 메탄 생성율과 일산화탄소 전화율을을 가질 수 있어, 황을 포함한 분위기에서도 유용하게 메탄을 제조할 수 있다.The molybdenum catalyst of the present invention can have a high methane production rate and a carbon monoxide conversion rate even under conditions containing hydrogen sulfide, and thus can be usefully produced in an atmosphere containing sulfur.

또한, 상기 몰리브데늄 촉매는 다른 귀금속류 촉매에 비해 제조단가가 저렴해 경제적인 이점이 있다.In addition, the molybdenum catalyst has an economical advantage compared to other precious metal catalysts because the manufacturing cost is low.

도 1은 실시예 촉매에 대한 X선 회절 시험 결과를 나타낸 그래프임.
도 2는 실시예 촉매에 대한 메탄화 반응을 행하고 그 결과를 나타낸 그래프임.
도 3은 실시예 촉매에 대한 메탄화 반응을 행하고 그 결과를 나타낸 그래프임.
1 is a graph showing the results of the X-ray diffraction test for the Example catalyst.
2 is a graph showing the results of the methanation reaction for the Example catalyst.
Figure 3 is a graph showing the results of the methanation reaction for the Example catalyst.

이하, 본 발명에 대하여 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명에서, 메탄화반응 또는 일산화탄소의 수소화반응은 일산화탄소와 수소를 반응시켜 메탄을 제조하는 과정을 말한다.
In the present invention, methanation or hydrogenation of carbon monoxide refers to a process for producing methane by reacting carbon monoxide and hydrogen.

먼저, 본 발명의 몰리브데늄 촉매에 대하여 상세히 설명한다.First, the molybdenum catalyst of the present invention will be described in detail.

본 발명의 몰리브데늄 촉매는 지르코니아를 포함하는 담체에 몰리브데늄이 담지되어 있다.In the molybdenum catalyst of the present invention, molybdenum is supported on a carrier containing zirconia.

상기 담지된 몰리브데늄은 순수 몰리브데늄 뿐만 아니라, 몰리브데늄 산화물 또는 몰리브데늄 화합물의 형태일 수 있다.
The supported molybdenum may be in the form of not only pure molybdenum but also molybdenum oxide or molybdenum compound.

상기 몰리브데늄 촉매는 전체 촉매 100중량부에 대하여 몰리브데늄 1~90중량부인 것이 바람직하다. 상기 몰리브데늄 함량은 담체위에 충분히 몰리브데늄이 담지되어 몰리브데늄 촉매로서의 특성을 나타내기 위한 함량이며, 상기 몰리브데늄이 담지될 담체의 종류에 따라서 최적 함량은 각기 다르다.
The molybdenum catalyst is preferably 1 to 90 parts by weight of molybdenum based on 100 parts by weight of the total catalyst. The molybdenum content is a content sufficient to support the molybdenum on the carrier to exhibit the characteristics as a molybdenum catalyst, the optimum content is different depending on the type of the carrier on which the molybdenum is to be supported.

이때, 상기 몰리드데늄 촉매에는 추가로 니켈이 함께 담지될 수 있고, 이때 니켈은 니켈 단독 또는 산화물 내지 화합물의 형태로 담지될 수 있다.In this case, the molybdenum catalyst may be further supported with nickel, in which case nickel may be supported in the form of nickel alone or an oxide to a compound.

이때 니켈의 함량은 전체 촉매 100중량부에 대하여 0.05~20 중량부인 것이 바람직하고, 10~20 중량부가 보다 바람직하다.At this time, the content of nickel is preferably 0.05 to 20 parts by weight, more preferably 10 to 20 parts by weight based on 100 parts by weight of the total catalyst.

상기 함량이 0.05 중량부에 미치지 못하면, 촉매의 활성이 나타나지 않고, 20중량부를 초과하면 내황성이 저하되어 촉매 활성점이 피독되므로 바람직하지 못하다.
If the content is less than 0.05 parts by weight, the activity of the catalyst does not appear, and if it exceeds 20 parts by weight, sulfur resistance is lowered and the catalyst active point is poisoned, which is not preferable.

상기 담체는 그 종류를 특별히 제한하는 것은 아니며, 금속산화물을 포함한다. 상기 담체로는 지르코니아, YSZ(Yttria-stabilized zirconia), 세리아-지르코니아, 알루미나, 세리아, 타이타니아, 실리카, 실리카-알루미나 등이 적용될 수 있다. 이 중 지르코니아가 가장 바람직하다.The carrier is not particularly limited in kind and includes a metal oxide. The carrier may be zirconia, Yttria-stabilized zirconia (YSZ), ceria-zirconia, alumina, ceria, titania, silica, silica-alumina, or the like. Of these, zirconia is most preferred.

상기 담체는 1㎡/gcat.이상의 표면적을 갖는 것이 바람직하다. 상기 표면적이 1㎡/gcat. 미만으로 너무 작으면, 몰리브데늄이 담지될 단면적이 너무 작아지게 되어, 담체의 표면적은 1㎡/gcat.이상이 바람직하다.
The carrier is 1 m 2 / g cat. It is preferable to have the above surface area. The surface area of 1 m 2 / g cat. If it is too small, the cross-sectional area on which molybdenum will be supported becomes too small, so that the surface area of the carrier is 1 m 2 / g cat. The above is preferable.

상기 몰리브데늄 촉매는 내황성을 확보하여 황계열 화합물이 존재하는 조건에서도 운전이 가능한 특징이 있다. 상기 몰리브데늄 촉매를 이용함으로서, 탈황공정 없이 바로 메탄화 반응을 시킬 수 있기 때문에 석탄을 가스화하여 바로 합성천연가스를 만드는데 적합하다.
The molybdenum catalyst is characterized in that it can be operated even in the presence of sulfur-based compounds to ensure sulfur resistance. By using the molybdenum catalyst, since it can be methanation reaction immediately without desulfurization process, it is suitable for making synthetic natural gas directly by gasification of coal.

이하, 본 발명의 몰리브데늄 촉매의 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method of the molybdenum catalyst of this invention is demonstrated in detail.

먼저, 몰리브데늄 전구체를 탈이온수에 용해하여 용액을 제조한다. 상기 몰리브데늄 전구체는 그 종류를 특별히 한정하지는 않는다. 대표적으로는 암모늄 몰리브데이트, 소듐 몰리브데이트 등이 사용될 수 있다.First, the molybdenum precursor is dissolved in deionized water to prepare a solution. The molybdenum precursor is not particularly limited in kind. Typically, ammonium molybdate, sodium molybdate and the like can be used.

상기 몰리브데늄 전구체는 전체 촉매 중량비의 1~100배 정도의 증류수 용해하는 것이 바람직하다. 그 중량비가 1 미만일 경우에는 용해도에 문제가 있으며, 100배를 초과하는 경우에는 비경제적으로 많은 양의 탈이온수를 사용하게 되므로, 바람직하지 않다.
The molybdenum precursor is preferably dissolved in distilled water of about 1 to 100 times the total catalyst weight ratio. If the weight ratio is less than 1, there is a problem in solubility, and if it exceeds 100 times, it is not preferable because a large amount of deionized water is used economically.

상기 용액에 담체를 혼합하여, 몰리브데늄이 담지된 촉매를 제조한다. 상기 담체는 전술한 담체이다. 담체이다. 이때 담체와 탈이온수가 충분히 혼합될 수 있도록 10~90℃ 정도에서 1시간 이상 잘 교반되어야 한다. 10℃ 이하의 경우 용해도에 문제가 생기며 90℃ 이상의 경우 가압상태로 교반을 해야하므로 바람직하지 않다.
The carrier is mixed with the solution to prepare a catalyst carrying molybdenum. The carrier is the carrier described above. Carrier. At this time, the carrier and deionized water should be well stirred at about 10 ~ 90 ° C. for at least 1 hour to be sufficiently mixed. If it is below 10 ℃ solubility problem occurs and if it is above 90 ℃ it is not preferable because the stirring under pressure.

추가적으로, 니켈을 포함하는 몰리브데늄 촉매를 제조하는 경우에는 니켈 전구체를 탈이온수에 용해시킨 후, 몰리브데늄이 담지된 촉매를 첨가한다. 상기 니켈 전구체는 니켈 아세테이트, 니켈 질화물, 니켈 염화물 등이 사용될 수 있고, 탈이온수의 함량은 니켈 전구체를 기준으로 1~20 중량비인 것이 바람직하다.
In addition, when preparing a molybdenum catalyst containing nickel, the nickel precursor is dissolved in deionized water, and then a catalyst supported on molybdenum is added. Nickel acetate, nickel nitride, nickel chloride and the like may be used as the nickel precursor, and the content of deionized water is preferably 1 to 20 weight ratio based on the nickel precursor.

상기 제조된 촉매를 건조한다. 상기 촉매의 건조시에 건조 분위기는 특별히 제한이 없으며, 산소 등이 포함된 산화분위기나 수소 등이 포함된 환원분위기에서도 진행이 가능하다. The prepared catalyst is dried. The drying atmosphere is not particularly limited at the time of drying the catalyst, and it is possible to proceed even in a reducing atmosphere containing oxygen or an oxidizing atmosphere containing oxygen.

상기 건조온도는 특별히 한정하지는 않으나, 통상 50~150℃에서 실시하는 것이 바람직하다. 상기 건조시 압력은 특별히 한정하지 않으나, 통상적으로 상압 내지 상압 미만의 감압하에서 실시한다.
Although the said drying temperature is not specifically limited, Usually, it is preferable to carry out at 50-150 degreeC. Although the pressure at the time of drying is not specifically limited, Usually, it carries out under reduced pressure of normal pressure-less than normal pressure.

상기 건조후 소성하는 단계를 포함한다. 소성처리를 통해 활성점을 산화물 촉매의 형태로 전환시킨다. 상기 소성처리는 100~1400℃에서 행하고, 바람직하게는 350~600℃로 행한다. 상기 온도가 100℃ 미만이면 활성화가 원활히 진해되지 않고, 그 온도가 1400℃를 초과하면, 니켈이 함유한 몰리브데늄 촉매에서 니켈의 소실이 발생하게 되는 문제가 있다.
And firing after the drying. The calcining process converts the active site into the form of an oxide catalyst. The baking treatment is performed at 100 to 1400 ° C, preferably at 350 to 600 ° C. If the temperature is less than 100 ° C, activation does not increase smoothly. If the temperature exceeds 1400 ° C, there is a problem that the loss of nickel occurs in the molybdenum catalyst containing nickel.

이하, 본 발명의 촉매를 이용한 메탄의 제조방법에 대하여 상세히 설명한다. 황화 수소가 포함된 반응 가스를 본 발명 몰리브데늄 촉매에 흘려 메탄을 제조한다.Hereinafter, the method for producing methane using the catalyst of the present invention will be described in detail. Methane is produced by flowing a reaction gas containing hydrogen sulfide to the molybdenum catalyst of the present invention.

상기 몰리브데늄 촉매는 수소화 반응과 동시에 황화처리를 하여 몰리브데늄 황화물로 변하여 반응활성을 나타나게 된다. 이렇게 몰리브데늄 황화물이 생성되어 황계열 화합물이 포함된 메탄화 반응에서도 일정한 촉매 활성을 갖고, 이를 통해 메탄의 제조가 가능하다.
The molybdenum catalyst is sulfided at the same time as the hydrogenation reaction to turn into molybdenum sulfide to show the reaction activity. As such, molybdenum sulfide is produced to have a constant catalytic activity even in a methanation reaction including a sulfur-based compound, thereby allowing the production of methane.

이하, 본 발명을 하기 실시예를 들어 본 발명을 보다 상세하게 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것을 의미하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but does not mean that the present invention is limited only to the following examples.

(실시예)(Example)

1. 촉매의 제조1. Preparation of Catalyst

먼저 담지할 몰리브데늄 전구체로서 암모늄 몰리브데이트의 일종인 암모늄 헵타몰리브데이트 약 3.5 g을 탈이온수 50 g에 넣고 용해하였다. 상기 용액에 담체로서, 지르코니아 약 5 g을 넣고 이를 혼합하여 몰리브데늄이 담지된 담체를 제조하였다.First, about 3.5 g of ammonium heptamolybdate, a kind of ammonium molybdate, was dissolved in 50 g of deionized water as a molybdenum precursor to be supported. As a carrier, about 5 g of zirconia was added to the solution and mixed to prepare a carrier supporting molybdenum.

니켈 전구체로서, 니켈 화합물(니켈 나이트레이트) 약 0.5 g을 탈이온수 50 g에 넣고 용해하였다.As the nickel precursor, about 0.5 g of nickel compound (nickel nitrate) was added to 50 g of deionized water and dissolved.

상기 용액에 몰리브데늄이 담지된 담체를 약 5 g을 넣고 이를 혼합하여 니켈-몰리브데늄 촉매를 제조하고, 건조 및 소성과정을 거쳐 촉매 1을 제조하였다.
About 5 g of molybdenum-supported carrier was added to the solution and mixed to prepare a nickel-molybdenum catalyst, and catalyst 1 was prepared by drying and calcining.

한편, 몰리브데늄 전구체로서 암모늄 몰리브데이트의 일종인 암모늄 헵타몰리브데이트 약 3.5 g을 탈이온수 50 g에 넣고 용해하였다. 상기 용액에 담체로서, 지르코니아 약 5 g을 넣고 이를 혼합하여 몰리브데늄이 담지된 담체를 건조 및 소성하여 촉매 2를 제조하였다.
On the other hand, about 3.5 g of ammonium heptamolybdate, a kind of ammonium molybdate, was added to 50 g of deionized water as a molybdenum precursor and dissolved. About 5 g of zirconia was added as a carrier to the solution, and the catalyst was mixed by drying and calcining the carrier on which molybdenum was loaded.

촉매 2의 제조과정에서 담체로서 YSZ를 사용하여 촉매 3을 제조하고, 담체로서 세리아-지르코니아를 사용하여 촉매 4를 제조하였다.
Catalyst 3 was prepared using YSZ as a carrier in the preparation of catalyst 2, and catalyst 4 was prepared using ceria-zirconia as a carrier.

또한, 촉매 1의 제조과정에서 담체로서 YSZ를 사용하여 촉매 5를 제조하고, 세리아-지르코니아를 사용하여 촉매 6을 제조하고, 알루미나를 사용하여 촉매 7을 제조하고, 세리아를 사용하여 촉매 8을 제조하고, 타이타니아를 사용하여 촉매 9를 제조하고, 실리카를 사용하여 촉매 10을 제조하고, 실리카-알루미나를 사용하여 촉매 11을 제조하였다.
In the preparation of Catalyst 1, catalyst 5 was prepared using YSZ as a carrier, catalyst 6 was prepared using ceria-zirconia, catalyst 7 was prepared using alumina, and catalyst 8 was prepared using ceria. Then, catalyst 9 was prepared using titania, catalyst 10 was prepared using silica, and catalyst 11 was prepared using silica-alumina.

또한, 촉매 2의 제조과정에서 담체로서 알루미나를 사용하여 촉매 12을 제족하고, 세리아를 사용하여 촉매 13를 제조하고, 타이타니아를 사용하여 촉매 14를 제조하고, 실리카를 사용하여 촉매 15을 제조하고, 실리카-알루미나를 사용하여 촉매 16을 제조하였다.
In addition, using alumina as a carrier in the manufacture of a catalyst 2 and jejok the catalyst 12, by using a ceria preparing the catalyst 13, and use the titania to produce a catalyst 14, the use of silica to prepare a catalyst 15, Catalyst 16 was prepared using silica-alumina.

2. X선 회절 실험2. X-ray Diffraction Experiment

상기 촉매 1, 촉매 5 내지 11에 대하여 X선 회절 실험을 행하고 그 결과를 도 1에 나타내었다. 도 1의 촉매는 메탄화 실험 후의 촉매이며 반응이 일어나면서, 몰리브데늄이 황화물을 형성하였는지를 확인할 수 있다. 도 1을 보면, 강한 피크인 14.4도 지점에서 황화물 형성이 뚜렷이 나타나며, 약한 피크인 32.7도 지점에도 조금이나마 나타나는 것을 알 수 있다.
X-ray diffraction experiments were performed on the catalysts 1 and 5 to 11, and the results are shown in FIG. The catalyst of FIG. 1 is a catalyst after a methanation experiment, and it can be confirmed whether or not molybdenum formed sulfides as the reaction occurred. 1, it can be seen that sulfide formation is clearly seen at a strong peak of 14.4 degrees, and even slightly at a weak peak of 32.7 degrees.

3. 메탄화 실험3. Methanation Experiment

상기 촉매 1 내지 16에 대하여 다음과 같이, 메탄화 반응을 행하고 그 결과를 도 2 및 3에 나타내었다. 상기 메탄화 반응은 상기 촉매를 펠렛화하여 고정상 관형 반응기에 충진하고, 여기에 몰 수 기준으로 일산화탄소 40%, 수소 40%, 황화수소 1%, 헬륨 19%의 조성을 갖는 기체를 상압에서 흘린 후, 온도를 500 ℃로 유지시키면서 출구에서의 기체흐름의 조성을 분석하였다. 반응물의 총유량은 분당 10 ㎖로 고정하였으며 사용된 촉매량은 0.1g으로 고정하였다.
The catalysts 1 to 16 were subjected to methanation reaction as follows, and the results are shown in FIGS. 2 and 3. The methanation reaction is pelletized by the catalyst and filled in a fixed-bed tubular reactor, in which a gas having a composition of 40% carbon monoxide, 40% hydrogen, 1% hydrogen sulfide, 19% helium at a molar number is flowed at atmospheric pressure, and then The composition of the gas flow at the outlet was analyzed while maintaining the temperature at 500 ° C. The total flow rate of the reaction was fixed at 10 ml per minute and the amount of catalyst used was fixed at 0.1 g.

도 2 및 3의 결과에서 알 수 있듯이, 담체로서 지르코니아를 포함하고 있는 경우가 메탄의 생성 속도가 가장 높은 편임을 알 수 있다. 특히, 타이타니아와 실리카를 담체로 사용한 경우 반응이 진행될수록 촉매 비활성화가 나타나는 것을 알 수 있다. 다만, 가장 활성이 좋은 지르코니아의 경우 비활성화 현상이 없이 안정적인 반응활성을 보이는 것을 알 수 있다.
As can be seen from the results of Figs. 2 and 3, it can be seen that the case of containing zirconia as a carrier has the highest rate of methane production. In particular, it can be seen that catalyst deactivation appears as the reaction proceeds when using titania and silica as a carrier. However, it can be seen that the most active zirconia shows stable reaction activity without inactivation.

또한, 니켈이 없는 몰리브데늄 촉매가 각각의 담체별로 활성이 더 좋음을 알 수 있고, 몰리브데늄 촉매도 지르코니아 계열인 YSZ, 지르코니아, 세리아-지르코니아를 담체로 사용한 경우가 메탄의 생성 속도가 높은 편임을 알 수 있다.In addition, it can be seen that the nickel-free molybdenum catalyst has better activity for each carrier, and the molybdenum catalyst also uses zirconia-based YSZ, zirconia, and ceria-zirconia as carriers. You can see the side.

Claims (15)

메탄제조시 사용되는 촉매에 있어서,
지르코니아 담체에 몰리브데늄이 담지된 몰리브데늄 촉매.
In the catalyst used in the manufacture of methane,
Molybdenum catalyst in which molybdenum is supported on a zirconia carrier.
삭제delete 청구항 1에 있어서,
상기 몰리브데늄 촉매는 촉매 전체 100 중량부에 대하여 몰리브데늄 1~90중량부인 몰리브데늄 촉매.
The method according to claim 1,
The molybdenum catalyst is a molybdenum catalyst of 1 to 90 parts by weight of molybdenum with respect to 100 parts by weight of the total catalyst.
청구항 1에 있어서,
상기 담체에 니켈이 추가로 담지된 몰리브데늄 촉매.
The method according to claim 1,
A molybdenum catalyst further supporting nickel on the carrier.
청구항 5에 있어서,
상기 니켈의 함량은 전체 촉매 100 중량부에 대하여 0.05~20 중량부인 몰리브데늄 촉매.
The method according to claim 5,
The content of the nickel molybdenum catalyst is 0.05 to 20 parts by weight based on 100 parts by weight of the total catalyst.
청구항 1에 있어서,
상기 담체는 1㎡/gcat.이상의 표면적을 갖는 몰리브데늄 촉매.
The method according to claim 1,
The carrier is 1 m 2 / g cat. Molybdenum catalyst having the above surface area.
몰리브데늄 전구체를 탈이온수에 용해하여 용액을 제조하는 단계;
상기 용액에 지르코니아 담체를 혼합하여, 몰리브데늄이 담지된 촉매를 제조하는 단계;
상기 제조된 촉매를 건조하는 단계; 및
소성하는 단계
를 포함하는 몰리브데늄 촉매의 제조방법.
Dissolving the molybdenum precursor in deionized water to prepare a solution;
Mixing a zirconia carrier with the solution to prepare a molybdenum-supported catalyst;
Drying the prepared catalyst; And
Firing step
Method for producing a molybdenum catalyst comprising a.
청구항 7에 있어서,
상기 몰리브데늄 전구체는 암모늄 몰리브데이트 또는 소듐 몰리브데이트인 몰리브데늄 촉매의 제조방법.
The method of claim 7,
The molybdenum precursor is ammonium molybdate or sodium molybdate method of producing a molybdenum catalyst.
청구항 7에 있어서,
상기 몰리브데늄 전구체는 전체 촉매 중량비의 1~100배 정도의 탈이온수에 용해되는 몰리브데늄 촉매의 제조방법.
The method of claim 7,
The molybdenum precursor is a method for producing a molybdenum catalyst is dissolved in deionized water of about 1 to 100 times the total catalyst weight ratio.
청구항 7에 있어서,
상기 용액에 담체를 혼합하는 단계는 10~90℃에서 1시간 이상 혼합되는 몰리브데늄 촉매의 제조방법.
The method of claim 7,
Mixing the carrier to the solution is a method for producing a molybdenum catalyst is mixed for at least 1 hour at 10 ~ 90 ℃.
청구항 7에 있어서,
상기 몰리브데늄이 담지된 촉매를 제조한 후,
니켈 전구체를 탈이온수에 용해한 후 상기 몰리브데늄 촉매를 첨가하여 니켈-몰리브데늄 촉매를 제조하는 단계를 추가로 포함하는 몰리브데늄 촉매의 제조방법.
The method of claim 7,
After preparing the molybdenum-supported catalyst,
Dissolving a nickel precursor in deionized water and then adding the molybdenum catalyst to produce a nickel-molybdenum catalyst.
청구항 11에 있어서,
상기 니켈 전구체는 니켈 아세테이트, 니켈 질화물 및 니켈 염화물 중 1종인 몰리브데늄 촉매의 제조방법.
The method of claim 11,
The nickel precursor is a method of producing a molybdenum catalyst is one of nickel acetate, nickel nitride and nickel chloride.
청구항 7에 있어서,
상기 건조는 50~150℃의 온도로 행하는 몰리브데늄 촉매의 제조방법.
The method of claim 7,
The said drying is a manufacturing method of the molybdenum catalyst performed at the temperature of 50-150 degreeC.
청구항 7에 있어서,
상기 소성은 100~1400℃에서 행하는 몰리브데늄 촉매의 제조방법.
The method of claim 7,
The said firing is a manufacturing method of the molybdenum catalyst performed at 100-1400 degreeC.
메탄 제조방법에 있어서,
황화 수소가 포함된 반응가스를 지르코니아 담체에 몰리브데늄이 담지된 몰리브데늄 촉매에 흘려 메탄을 형성하는 메탄 제조방법.
In the methane production method,
A method for producing methane by flowing a reaction gas containing hydrogen sulfide into a molybdenum catalyst having molybdenum supported on a zirconia carrier.
KR1020100093915A 2010-09-28 2010-09-28 Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst KR101242852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100093915A KR101242852B1 (en) 2010-09-28 2010-09-28 Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100093915A KR101242852B1 (en) 2010-09-28 2010-09-28 Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst

Publications (2)

Publication Number Publication Date
KR20120032323A KR20120032323A (en) 2012-04-05
KR101242852B1 true KR101242852B1 (en) 2013-03-12

Family

ID=46135459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100093915A KR101242852B1 (en) 2010-09-28 2010-09-28 Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst

Country Status (1)

Country Link
KR (1) KR101242852B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487386B1 (en) * 2013-10-24 2015-01-29 한국에너지기술연구원 Preparation Method of Metal Carbide Syngas Direct Methanation Catalyst by Adjusting pH in Wet Impregnation and Syngas Direct Methanation Catalyst Prepared by the Method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108538A (en) 1980-02-01 1981-08-28 Agency Of Ind Science & Technol Catalyst for preparing methane and preparation thereof
JPS61161228A (en) 1984-12-28 1986-07-21 ガーズ・ド・フランス Manufacture of methane with thioresistant catalyst and catalyst therefor
KR20100037343A (en) * 2008-10-01 2010-04-09 한국화학연구원 Method for preparing ni-mo/silica-alumina catalyst and method for producing middle distillate using said catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108538A (en) 1980-02-01 1981-08-28 Agency Of Ind Science & Technol Catalyst for preparing methane and preparation thereof
JPS61161228A (en) 1984-12-28 1986-07-21 ガーズ・ド・フランス Manufacture of methane with thioresistant catalyst and catalyst therefor
US4774261A (en) * 1984-12-28 1988-09-27 Gaz De France Process of methane production by means of a thioresistant catalyst and catalyst for carrying out this process
KR20100037343A (en) * 2008-10-01 2010-04-09 한국화학연구원 Method for preparing ni-mo/silica-alumina catalyst and method for producing middle distillate using said catalyst

Also Published As

Publication number Publication date
KR20120032323A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
Roy et al. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges
Younas et al. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2
Visconti et al. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts
De la Osa et al. Fischer–Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions
RU2599719C2 (en) Improved cobalt-molybdenum carbon-based catalyst, as well as its use for producing lower alcohols
CN112174764B (en) Application of iron-based catalyst in catalyzing carbon dioxide hydrogenation to synthesize low-carbon olefin
CN101678329A (en) Catalytic hydrogenation of carbon dioxide is become syngas mixture
Garbarino et al. Improvement of Ni/Al2O3 catalysts for low-temperature CO2 methanation by vanadium and calcium oxide addition
Haryanto High temperature water gas shift reaction over nickel catalysts for hydrogen production: effect of supports, GHSV, metal loading, and dopant materials
WO2021042874A1 (en) Nickel-based catalyst for carbon dioxide methanation, preparation method therefor and application thereof
Ail et al. Fuel-rich combustion synthesized Co/Al2O3 catalysts for wax and liquid fuel production via Fischer–tropsch reaction
US20230303391A1 (en) Process for the production of hydrogen-enriched synthesis gas
KR101242852B1 (en) Molybdenum catalyst and method for manufacturing the same, and method for manufacturing methane using said catalyst
CN110871075B (en) Iron-cobalt-potassium-loaded zirconium dioxide catalyst, preparation method and application thereof
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
Meng et al. Enhanced dry reforming of methane over NixCoy-HAP catalysts: Insights into the effect of Co species on carbon deposition and RWGS
CN101193845B (en) Process for the conversion of synthesis gas to oxygenates
ES2788715T3 (en) Fischer-Tropsch process using a reduction activated cobalt catalyst
CN112237926B (en) Metal supported catalyst and preparation method thereof
CN102351641A (en) Preparation method and application of molybdenum sulfide catalyst using SBA-15 as carrier for producing low-carbon alcohols from synthetic gas
WO2011089279A1 (en) Catalysts for the oxidative reforming of alcohols
Phung et al. Recent advances in the steam reforming of bioethanol for the production of biohydrogen fuels
Chuang et al. Conversion of Syngas with Carbon Dioxide to Fuels
JP2002161280A (en) Method for producing hydrocarbons in the presence of carbon dioxide
US20130289145A1 (en) Catalyst for fischer-tropsch synthesis, production method therefor, and production method using fischer-tropsch synthesis catalyst

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160307

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190307

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200305

Year of fee payment: 8