KR101236471B1 - Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof - Google Patents

Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof Download PDF

Info

Publication number
KR101236471B1
KR101236471B1 KR1020110007092A KR20110007092A KR101236471B1 KR 101236471 B1 KR101236471 B1 KR 101236471B1 KR 1020110007092 A KR1020110007092 A KR 1020110007092A KR 20110007092 A KR20110007092 A KR 20110007092A KR 101236471 B1 KR101236471 B1 KR 101236471B1
Authority
KR
South Korea
Prior art keywords
lining
exchange resin
ion exchange
tower
etfe
Prior art date
Application number
KR1020110007092A
Other languages
Korean (ko)
Other versions
KR20120085952A (en
Inventor
이한철
한유리
이요섭
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020110007092A priority Critical patent/KR101236471B1/en
Publication of KR20120085952A publication Critical patent/KR20120085952A/en
Application granted granted Critical
Publication of KR101236471B1 publication Critical patent/KR101236471B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 원자력발전소 수처리실의 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 사용되는 알칼리용액에 내약품성을 가지는 라이닝 재료 및 그 방법에 관한 것으로, 음이온교환수지탑과 혼상수지탑 내부에 에틸렌-테트라플루오로에틸렌(ETFE)으로 라이닝함에 따라 상기 탑의 충전제인 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용하여도 탄소강이 부식되지 않으며, 이온교환수지와 탑과의 마찰을 억제하여 이온교환수지의 마모를 방지할 수 있는 효과가 있다. The present invention relates to a lining material and a method having chemical resistance to an alkali solution used for regeneration of an ion exchange resin in an anion exchange resin tower and a mixed bed resin tower in a water treatment chamber of a nuclear power plant. By lining with ethylene-tetrafluoroethylene (ETFE) inside the mixed bed, the carbon steel does not corrode even when alkaline solution is used for regeneration of the ion exchange resin, which is a filler of the tower, and the ion exchange resin and the tower. Suppression of friction with the effect of preventing the wear of the ion exchange resin.

Description

알카리성 환경에서 탄소강의 부식을 방지할 수 있는 라이닝 재료 및 그 방법{MATERIAL OF LINING FOR PRENVENTING OF CORRISION OF CARBON STEEL IN ALKALINE ENVIRONMENT AND METHOD THEREOF} Lining material and method for preventing corrosion of carbon steel in alkaline environment {MATERIAL OF LINING FOR PRENVENTING OF CORRISION OF CARBON STEEL IN ALKALINE ENVIRONMENT AND METHOD THEREOF}

본 발명은 알카리성 환경에서 탄소강의 부식을 방지할 수 있는 라이닝 재료 및 그 방법에 관한 것으로, 더욱 상세하게는 원자력발전소 수처리실의 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 사용되는 알칼리용액에 내약품성을 가지는 라이닝 재료 및 그 방법에 관한 것이다.The present invention relates to a lining material and a method for preventing the corrosion of carbon steel in an alkaline environment, and more particularly, to regeneration for the performance recovery of the ion exchange resin in the anion exchange resin tower and mixed bed of a nuclear power plant water treatment chamber The present invention relates to a lining material having a chemical resistance to an alkaline solution used in the process and a method thereof.

원자력발전소의 수처리실(순수생산설비 및 복수탈염설비) 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 사용되는 알칼리용액은 탑 내부에 라이닝 되어 있는 천연 고무를 파손시키며, 탑재질인 탄소강(Carbon steel)에 부식현상을 일으킨다.Water treatment room (pure production facility and multiple desalination facility) of nuclear power plant Alkaline solution used for regeneration for recovery of ion exchange resin in anion exchange resin tower and mixed bed resin tower breaks the natural rubber lining inside the tower. It causes corrosion on carbon steel, a payload.

일반적으로 가성소다를 사용하는 배관 및 탑은 스테인레스 스틸을 사용하며, 특히 가성소다탱크는 SUS304를 사용하고 있으나, 스테인레스 스틸은 고가이면서 고장 수리시 어려움이 있기 때문에 원자력발전소 2차계통 및 수처리실 관련 용기는 탄소강을 사용한다.
In general, pipes and towers using caustic soda are made of stainless steel. Especially caustic soda tanks are made of SUS304. However, since stainless steel is expensive and difficult to troubleshoot, vessels related to nuclear power plant secondary system and water treatment chamber Uses carbon steel.

또한, 이온교환수지를 사용하는 이온교환수지탑은 재생시 공기를 주입하여 이온교환수지 간의 마찰을 일으켜 이물질을 제거하는 역세공정 및 기타 다른 공정에서 탑의 표면의 금속재질과 마찰을 일으킬 수 있다. 이러한 이온교환수지의 마모를 방지하기 위하여 라이닝을 실시하는데, 일반적으로 천연고무를 사용한다.In addition, ion exchange resin towers using ion exchange resins may cause friction with metal materials on the surface of the tower in backwashing and other processes in which air is injected during regeneration to cause friction between the ion exchange resins to remove foreign substances. Lining is performed to prevent wear of such ion exchange resins, and natural rubber is generally used.

그러나, 천연고무는 오랜 기간 동안 사용하면 경년열화(aging)에 의해 손상되기 때문에 고무 라이닝 역시 이중결합 때문에 노화현상을 유발한다. 게다가 천연고무는 주로 황을 이용하는 가황작용을 실시하여 합성하므로 범용 등급의 천연고무는 산성에는 강하나 알칼리에는 매우 취약하다.However, since natural rubber is damaged by aging after long use, rubber lining also causes aging due to double bonds. In addition, natural rubber is synthesized mainly by vulcanization using sulfur, so general grade natural rubber is resistant to acidity but very vulnerable to alkali.

따라서, 이온교환수지 재생 중 고무 라이닝은 산성용액을 사용하는 경우, 문제가 없지만 알칼리성 용액을 사용하는 경우에만 문제가 발생된다.Therefore, rubber lining during ion exchange resin regeneration does not have a problem when an acidic solution is used, but a problem occurs only when an alkaline solution is used.

상기와 같은 문제점을 해결하기 위하여 여러 가지 고분자 물질을 사용하여 라이닝을 실시하고 있으나 여전히 천연고무와 같은 문제점을 내포하고 있다.
In order to solve the above problems, lining is carried out using various polymer materials, but still contains problems such as natural rubber.

이에 본 발명자들은 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 사용되는 알칼리용액에 내약품성을 가지는 라이닝 재료를 찾고자 예의 노력한 결과, 불소수지를 이용하여 라이닝할 때 탑재질인 탄소강의 부식을 억제하고 충전물인 이온교환수지의 마모를 억제하는 것을 확인하고 본 발명은 완성하였다. Accordingly, the present inventors have diligently tried to find a lining material having chemical resistance to alkaline solutions used for regeneration of ion exchange resins in anion exchange resin towers and mixed-phase resin towers. The present invention was completed by suppressing corrosion of phosphorus carbon steel and suppressing abrasion of the ion exchange resin as a filler.

결국, 본 발명의 주된 목적은 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용할 때 탄소강의 부식 및 이온교환수지의 마모를 억제할 수 있는 라이닝 재료를 제공하는데 있다.After all, the main object of the present invention is to suppress corrosion of carbon steel and wear of ion exchange resin when using alkaline solution for regeneration of ion exchange resin in water treatment chamber anion exchange resin tower and mixed bed resin tower of nuclear power plant. To provide a lining material.

또한, 본 발명은 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용할 때 탄소강의 부식 및 이온교환수지의 마모를 억제할 수 있는 라이닝 방법을 제공하는데 다른 목적이 있다.In addition, the present invention is a lining method that can suppress corrosion of carbon steel and wear of ion exchange resin when using alkaline solution for regeneration of ion exchange resin in water treatment chamber anion exchange resin tower and mixed bed resin tower of nuclear power plant There is another purpose to provide.

상기 목적을 달성하기 위하여, 본 발명은 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑의 탄소강의 부식 및 이온교환수지의 마모를 억제할 수 있는 라이닝 재료를 제공한다.In order to achieve the above object, the present invention provides a lining material that can suppress the corrosion of the carbon steel and the wear of the ion exchange resin of the anion exchange resin tower and the mixed bed resin tower in the water treatment chamber of a nuclear power plant.

본 발명에 있어서, 상기 라이닝 재료는 불소수지에서 선택될 수 있으며, 바람직하게는 에틸렌-테트라플루오로에틸렌(Ethylene-tetrafluoroethylene; ETFE)인 것을 특징으로 한다.In the present invention, the lining material may be selected from a fluorine resin, preferably characterized in that the ethylene-tetrafluoroethylene (Ethylene-tetrafluoroethylene; ETFE).

본 발명은 또한 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑의 탄소강의 부식 및 이온교환수지의 마모를 억제할 수 있는 라이닝 방법을 제공한다.The present invention also provides a lining method capable of suppressing corrosion of carbon steel and abrasion of ion exchange resin in an anion exchange resin tower and a mixed bed resin tower in a water treatment chamber of a nuclear power plant.

본 발명에 있어서, 상기 라이닝 방법은 음이온교환수지탑과 혼상수지탑의 탑재를 불소수지를 이용하여 라이닝하는 방법을 특징으로 하며, 바람직하게는 상기 불소수지로 라이닝 후 피막을 열처리하는 단계를 더 포함한다.In the present invention, the lining method is characterized in that the method of lining the mounting of the anion exchange resin tower and the mixed resin tower using a fluorine resin, preferably further comprising the step of heat-treating the film after lining with the fluorine resin do.

또한, 상기 불소수지는 테트라플루오르에틸렌 폴리머(Tetrafluoroethylene polymer; TFE), 플루오로화된 에틸렌 프로필렌 수지(Fluorinated Ethylene Propylene Resin; FEP), 퍼플루오로알콕시 수지(Perfluoroalkoxy Resin; PFA), 에틸렌-테트라플루오로에틸렌(Ethylene-tetrafluoroethylene; ETFE) 등의 테플론(Teflon) 수지 중에서 선택되는 1종 이상인 것을 특징으로 하며, 더욱 바람직하게는 에틸렌-테트라플루오로에틸렌(ETFE)인 것이 좋다.Further, the fluororesin is tetrafluoroethylene polymer (TFE), fluorinated ethylene propylene resin (FEP), perfluoroalkoxy resin (PFA), ethylene-tetrafluoro It is characterized in that at least one selected from Teflon (Teflon) resin, such as ethylene (Ethylene-tetrafluoroethylene; ETFE), more preferably ethylene-tetrafluoroethylene (ETFE).

또한, 본 발명에 있어서, 상기 라이닝은 100~800 ㎛, 바람직하게는 300~500 ㎛의 피막 두께로 실시하는 것을 특징으로 하며, 상기 열처리는 100~500℃ 온도 범위, 바람직하게는 300~400℃에서 실시하는 것이 특징이다.In addition, in the present invention, the lining is characterized in that it is carried out with a film thickness of 100 ~ 800 ㎛, preferably 300 ~ 500 ㎛, the heat treatment is 100 ~ 500 ℃ temperature range, preferably 300 ~ 400 ℃ It is characteristic to carry out in.

상기와 같은 본 발명에 따르면, 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑 내부에 에틸렌-테트라플루오로에틸렌(ETFE)으로 라이닝함에 따라 상기 탑의 충전제인 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용하여도 탄소강이 부식되지 않으며, 이온교환수지와 탑과의 마찰을 억제하여 이온교환수지의 마모를 방지할 수 있는 효과가 있다. 그 결과, 음이온교환수지탑과 혼상수지탑의 수명을 연장시키는 것이 가능하다. According to the present invention as described above, by lining with ethylene-tetrafluoroethylene (ETFE) inside the water treatment chamber anion exchange resin tower and the mixed-phase resin tower of the nuclear power plant for the recovery of the performance of the ion exchange resin as a filler of the tower Carbon steel does not corrode even when alkaline solution is used, and the friction between the ion exchange resin and the tower can be suppressed to prevent wear of the ion exchange resin. As a result, it is possible to extend the life of the anion exchange resin tower and the interphase resin tower.

도 1은 본 발명에 따른 부식실험의 순서를 나타낸 흐름도이다.
도 2는 본 발명의 실시예에 따른 아크릴로니트릴 부타디엔 스티렌(ABS) 코팅의 10% NaOH(w/w) 용액에서의 부식실험 결과를 나타낸 것이다.
도 3은 본 발명의 실시예에 따른 에틸렌-테트라플루오로에틸렌(ETFE) 코팅의 10% NaOH(w/w) 용액에서의 부식실험 결과를 나타낸 것이다.
도 4는 본 발명의 실시예에 따른 에틸렌-테트라플루오로에틸렌(ETFE) 코팅의 10% H2SO4(w/w) 용액에서의 부식실험 결과를 나타낸 것이다.
1 is a flow chart showing the procedure of the corrosion test according to the present invention.
Figure 2 shows the corrosion test results in 10% NaOH (w / w) solution of acrylonitrile butadiene styrene (ABS) coating according to an embodiment of the present invention.
Figure 3 shows the corrosion test results in a 10% NaOH (w / w) solution of the ethylene-tetrafluoroethylene (ETFE) coating according to an embodiment of the present invention.
Figure 4 shows the corrosion test results in 10% H 2 SO 4 (w / w) solution of the ethylene-tetrafluoroethylene (ETFE) coating according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용할 때 탑재질인 탄소강의 부식과 이온교환수지의 마모를 억제할 수 있는 라이닝 재료를 제공한다.The present invention is lining that can suppress corrosion of carbon steel and wear of ion exchange resin when using alkaline solution for regeneration of ion exchange resin in water treatment chamber anion exchange resin tower and mixed bed resin tower of nuclear power plant Provide the material.

본 발명에서, 상기 라이닝 재료는 불소수지에서 선택되는 것이 바람직다. 더욱 바람직하게는 테트라플루오로에틸렌 폴리머(Tetrafluoroethylene polymer; TFE), 플루오로화된 에틸렌 프로필렌 수지(Fluorinated Ethylene Propylene Resin; FEP), 퍼플루오로알콕시 수지(Perfluoroalkoxy Resin; PFA), 에틸렌-테트라플루오로에틸렌(Ethylene-tetrafluoroethylene; ETFE) 등의 테플론(Teflon) 수지에서 선택되는 1종 이상인 것이 좋으며, 가장 바람직하게는 에틸렌-테트라플루오로에틸렌(ETFE)인 것이 좋다.
In the present invention, the lining material is preferably selected from fluororesins. More preferably, tetrafluoroethylene polymer (TFE), fluorinated ethylene propylene resin (FEP), perfluoroalkoxy resin (PFA), ethylene-tetrafluoroethylene It is preferable that it is at least one selected from Teflon resins such as (Ethylene-tetrafluoroethylene; ETFE), and most preferably ethylene-tetrafluoroethylene (ETFE).

본 발명은 또한 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑에서 이온교환수지의 성능회복을 위한 재생시 알칼리용액을 사용할 때 탑재질인 탄소강의 부식과 이온교환수지의 마모를 억제할 수 있는 라이닝 방법을 제공한다.The present invention can also suppress corrosion of carbonaceous material and abrasion of ion exchange resin when using alkaline solution for regeneration of ion exchange resin in water treatment chamber anion exchange resin tower and mixed bed resin tower of nuclear power plant. Provide a lining method.

구체적으로 본 발명은, 원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑을 라이닝하는데 있어서, 상기 음이온교환수지탑과 혼상수지탑의 탑재를 불소수지를 이용하여 라이닝하는 방법을 제공한다.Specifically, the present invention provides a method of lining the anion exchange resin tower and the mixed resin tower in a water treatment chamber of a nuclear power plant using fluorine resin.

또한. 본 발명은 상기 불소수지로 라이닝 후 피막을 열처리하는 단계를 더 포함할 수 있다.Also. The invention may further comprise the step of heat-treating the film after lining with the fluorine resin.

본 발명에 있어서, 상기 불소수지는 테트라플루오로에틸렌 폴리머( Tetrafluoroethylene polymer; TFE), 플루오로화된 에틸렌 프로필렌 수지(Fluorinated Ethylene Propylene Resin; FEP), 퍼플루오로알콕시 수지(Perfluoroalkoxy Resin; PFA), 에틸렌-테트라플루오로에틸렌(Ethylene-tetrafluoroethylene; ETFE) 등의 테플론(Teflon) 수지 중에서 선택되는 1종 이상인 것이 바람직하며, 더욱 바람직하게는 에틸렌-테트라플루오로에틸렌(ETFE)인 것이 좋다.In the present invention, the fluororesin Tetrafluoroethylene polymer (TFE), Fluorinated Ethylene Propylene Resin (FEP), Perfluoroalkoxy Resin (PFA), Ethylene It is preferably at least one selected from Teflon resins such as tetrafluoroethylene (ETFE), and more preferably ethylene-tetrafluoroethylene (ETFE).

또한, 본 발명에 있어서, 상기 라이닝은 100~800 ㎛, 바람직하게는 300~500 ㎛의 피막 두께로 실시하는 것이 바람직하며, 상기 열처리는 100~500℃ 온도 범위, 바람직하게는 300~400℃에서 실시하는 것이 좋다.In addition, in the present invention, the lining is preferably carried out in a film thickness of 100 ~ 800 ㎛, preferably 300 ~ 500 ㎛, the heat treatment is in the temperature range of 100 ~ 500 ℃, preferably 300 ~ 400 ℃ It is good to carry out.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 라이닝 시편 제조Example 1 Lining Specimen Preparation

각 라이닝을 도포한 시편제조를 위해, 50 ㎜ × 80 ㎜ 크기의 탄소강(carbon steel)을 준비하고, 시편의 전처리로서 샌드 블라스트(sand blasting) 및 탈지하였다. For the preparation of the specimens coated with each lining, carbon steel of 50 mm × 80 mm size was prepared and sand blasted and degreased as a pretreatment of the specimen.

이어서, 프라이머 코팅을 10~25 ㎛ 두께로 실시하였으며, 중도 코팅은 분체 코팅을 하고 300~400℃에서 열처리 하여 최종 두께를 300 ㎛ 및 500 ㎛로 하였다. 이때 150℃까지 열을 내린 후에는 자연냉각을 실시하였으며, 탄소강의 고분자 코팅은 각각 아크릴로니트릴 부타디엔 스티렌(Acrylonitril Butadien Stylene; ABS)과 Teflon 수지로서 테트라플루오로에틸렌 폴리머(TFE), 플루오로화된 에틸렌 프로필렌 수지(FEP), 퍼플루오로알콕시 수지(PFA), 에틸렌-테트라플루오로에틸렌(ETFE)를 이용하였다.
Subsequently, primer coating was performed at a thickness of 10 to 25 μm, and the intermediate coating was powder coated and heat treated at 300 to 400 ° C. to obtain final thicknesses of 300 μm and 500 μm. At this time, after cooling to 150 ℃ natural cooling was carried out, and the polymer coating of carbon steel is acrylonitrile butadiene styrene (Acrylonitril Butadien Stylene; ABS) and Teflon resin as a tetrafluoroethylene polymer (TFE), fluorinated Ethylene propylene resin (FEP), perfluoroalkoxy resin (PFA), and ethylene-tetrafluoroethylene (ETFE) were used.

실시예 2. 부식실험Example 2 Corrosion Test

상기와 같이 라이닝 된 시편의 부식실험을 위해, 1,000 ㎖의 비이커에 부식성 용액을 주입하였다.For the corrosion test of the specimen lined as described above, a caustic solution was injected into a 1,000 ml beaker.

부식성 용액의 기준용액은 20 ㎲/㎝의 증류수를 기준으로 하고, 각 부식성 용액으로는 10%(w/w) 수산화나트륨(NaOH)과 10%(w/w) 황산(H2SO4)을 이용하였다.The caustic solution is based on 20 mW / cm distilled water, and 10% (w / w) sodium hydroxide (NaOH) and 10% (w / w) sulfuric acid (H 2 SO 4 ) are used for each caustic solution. Was used.

시편을 부식성 용액에 침지하기 전에 무게를 측정하고(W o ), 시편을 부식성 용액이 담긴 비이커에 침지한 다음 15~50℃의 항온조에서 보관하여 온도를 유지하였다.The specimen was weighed before immersion in the corrosive solution (W o ), the specimen was immersed in a beaker containing the corrosive solution, and then kept in a thermostat at 15-50 ° C. to maintain temperature.

일정기간(10일, 240시간) 동안 침지시킨 시편을 수세하고 건조하여 무게를 측정하여(W i ), 부식율을 계산하였다.The specimens immersed for a period of time (10 days, 240 hours) were washed with water, dried and weighed (W i ) to calculate the corrosion rate.

Figure 112011005808333-pat00001
Figure 112011005808333-pat00001

여기에서 gmd는 gram per square meter per day, W i 는 부식실험 후 최종 무게(g), W o 는 부식실험 전 최초 무게(g) 및 day는 부식실험일수를 의미한다.
Where gmd is gram per square meter per day, W i is the final weight after the corrosion test (g), W o is the initial weight (g) before the corrosion test, and day is the corrosion test days.

또한, 부식된 시편의 표면은 비디오 현미경 시스템(Video microscope system; ICANSCOPE, SV 32, SMETHECH, 한국)을 사용하여 금속표면의 결합정도는 200배로 확인하였으며, 결과는 도 2 내지 도 4에 나타내었다.In addition, the surface of the corroded specimen was confirmed to be 200 times the bonding degree of the metal surface using a video microscope system (ICANSCOPE, SV 32, SMETHECH, Korea), the results are shown in FIGS.

공학적 측면에서 고려할 때 침투율이나 두께 감소율은 설비의 수명을 예측하는데 mpy가 주로 사용되고 있다. 두께 감소율을 mpy 단위로 표현할 때 다음의 식으로 표현된다.From the engineering point of view, the penetration rate and thickness reduction rate are mainly used to predict the lifetime of a plant. When the thickness reduction rate is expressed in mpy, the following expression is expressed.

Figure 112011005808333-pat00002
Figure 112011005808333-pat00002

여기에서, W는 무게 변화량(㎎), D는 시편의 밀도(g/㎤), A는 시편의 면적(in2), 및 T는 노출시간(hr)을 의미한다.
Here, W is the weight change amount (mg), D is the density of the specimen (g / cm 3), A is the area of the specimen (in 2 ), and T means the exposure time (hr).

테플론 수지 중 테트라플루오로에틸렌 폴리머(TFE)는 융점이 327℃이고 연속가능온도는 260℃이며, 플루오로화된 에틸렌 프로필렌 수지(FEP)는 융점이 260℃이고 연속가능온도는 200℃이다. 또한, 퍼플루오로알콕시 수지(PFA)는 융점이 305℃이고 연속가능온도는 260℃이다.Among the Teflon resins, the tetrafluoroethylene polymer (TFE) has a melting point of 327 ° C. and a continuous feasible temperature of 260 ° C., and the fluorinated ethylene propylene resin (FEP) has a melting point of 260 ° C. and a continuous feasible temperature of 200 ° C. In addition, the perfluoroalkoxy resin (PFA) has a melting point of 305 ° C and a continuous possible temperature of 260 ° C.

에틸렌-테트라플루오로에틸렌(ETFE)는 통상 -65℃에서 +150℃에 이르는 넓고 편리한 온도범위를 지니며, 매우 낮은 온도에서는 놀랄만한 경도를 보유하고, 기계적 성질 간의 우수한 균형을 갖추고 있을 뿐만 아니라 뛰어난 내구성을 지니고 있는 것으로 알려져 있어 수처리용 이온교환수지탑의 라이닝으로 매우 유용하다.Ethylene-Tetrafluoroethylene (ETFE) has a wide and convenient temperature range, typically from -65 ° C to + 150 ° C, has amazing hardness at very low temperatures, excellent balance between mechanical properties as well as excellent It is known to have durability and is very useful as lining of ion exchange resin tower for water treatment.

본 발명에서는 이를 바탕으로 아크릴로니트릴 부타디엔 스티렌(ABS)과 에틸렌-테트라플루오로에틸렌(ETFE)의 온도별 부식실험 결과를 비교하고 그 결과를 하기 표 1 내지 표 3에 나타내었다.In the present invention, based on this, the results of the temperature-specific corrosion test of acrylonitrile butadiene styrene (ABS) and ethylene-tetrafluoroethylene (ETFE) are compared and the results are shown in Tables 1 to 3 below.

부식율 비교(온도: 상온(15~20℃))Corrosion rate comparison (temperature: room temperature (15 ~ 20 ℃)) 부식제caustic coating polymer
(thickness)
coating polymer
(thickness)
부식율(mpy)Corrosion rate (mpy)
증류수Distilled water rarerare 1.0651.065 10% NaOH10% NaOH ABS(300 ㎛)ABS (300 μm) 0.4540.454 ABS(500 ㎛)ABS (500 μm) 0.4440.444 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change 10% H2SO4 10% H 2 SO 4 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change

부식율 비교(온도: 30℃)Corrosion rate comparison (temperature: 30 ℃) 부식제caustic coating polymer
(thickness)
coating polymer
(thickness)
부식율(mpy)Corrosion rate (mpy)
증류수Distilled water rarerare 0.9900.990 10% NaOH10% NaOH ABS(300 ㎛)ABS (300 μm) 0.5000.500 ABS(500 ㎛)ABS (500 μm) 0.4800.480 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change 10% H2SO4 10% H 2 SO 4 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change

부식율 비교(온도: 50℃)Corrosion rate comparison (temperature: 50 ℃) 부식제caustic coating polymer
(thickness)
coating polymer
(thickness)
부식율(mpy)Corrosion rate (mpy)
증류수Distilled water rarerare 0.7920.792 10% NaOH10% NaOH ABS(300 ㎛)ABS (300 μm) 0.7090.709 ABS(500 ㎛)ABS (500 μm) 0.5370.537 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change 10% H2SO4 10% H 2 SO 4 ETFE(300 ㎛)ETFE (300 μm) 변화없음No change ETFE(500 ㎛)ETFE (500 μm) 변화없음No change

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

원자력발전소의 수처리실 음이온교환수지탑과 혼상수지탑의 탑재를 에틸렌-테트라플루오로에틸렌(ETFE)을 이용하여 100~800 ㎛ 피막 두께로 라이닝 후 상기 피막을 300~400℃에서 열처리하는 것을 특징으로 하는 라이닝 방법.
After the lining of the anion exchange resin tower and the mixed resin tower in the water treatment chamber of a nuclear power plant using ethylene-tetrafluoroethylene (ETFE) is lined to a thickness of 100 to 800 µm, the film is heat-treated at 300 to 400 ° C. Lining method.
삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 라이닝은 300~500 ㎛ 피막 두께로 실시하는 것을 특징으로 하는 라이닝 방법.
The method of claim 1,
Lining method characterized in that the lining is carried out with a film thickness of 300 ~ 500 ㎛.
삭제delete 삭제delete
KR1020110007092A 2011-01-25 2011-01-25 Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof KR101236471B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110007092A KR101236471B1 (en) 2011-01-25 2011-01-25 Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110007092A KR101236471B1 (en) 2011-01-25 2011-01-25 Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof

Publications (2)

Publication Number Publication Date
KR20120085952A KR20120085952A (en) 2012-08-02
KR101236471B1 true KR101236471B1 (en) 2013-02-22

Family

ID=46871899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110007092A KR101236471B1 (en) 2011-01-25 2011-01-25 Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof

Country Status (1)

Country Link
KR (1) KR101236471B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270353A (en) * 1993-03-18 1994-09-27 Nippon Valqua Ind Ltd Lining structure
KR970058886A (en) * 1996-01-17 1997-08-12 김진태 Manufacturing method of fluorine resin pipe lining (PTFE PIPE LINING)
JP2000237682A (en) * 1999-02-24 2000-09-05 Du Pont Mitsui Fluorochem Co Ltd Rotary lining method
JP2005007841A (en) * 2003-06-18 2005-01-13 Nittetu Chemical Engineering Ltd Method for fluororesin lining having good corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270353A (en) * 1993-03-18 1994-09-27 Nippon Valqua Ind Ltd Lining structure
KR970058886A (en) * 1996-01-17 1997-08-12 김진태 Manufacturing method of fluorine resin pipe lining (PTFE PIPE LINING)
JP2000237682A (en) * 1999-02-24 2000-09-05 Du Pont Mitsui Fluorochem Co Ltd Rotary lining method
JP2005007841A (en) * 2003-06-18 2005-01-13 Nittetu Chemical Engineering Ltd Method for fluororesin lining having good corrosion resistance

Also Published As

Publication number Publication date
KR20120085952A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP6970199B2 (en) Surface CTS anticorrosion treatment method for stainless steel parts
CN101525514B (en) Resin anti-corrosive paint
JP5160981B2 (en) Aluminum alloy material with excellent corrosion resistance and plate heat exchanger
JP2008156748A (en) Aluminum alloy material with high corrosion resistance, and plate-fin heat exchanger and plate heat exchanger
CN112552727A (en) Preparation method and application of boron nitride-based composite material anti-corrosion auxiliary agent
JPS59193284A (en) Corrosion preventive tape
KR101236471B1 (en) Material of lining for prenventing of corrision of carbon steel in alkaline environment and method thereof
US9771482B2 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
CN103980576B (en) Sea water conveying pipelines corrosion protective lining chloroprene rubber plate
CN101392377A (en) Aluminium alloy material having an excellent sea water corrosion resistance and plate heat exchanger
CN103709898B (en) The heavy thick-slurry type protective system of anti-electrostatic hollow glass micropearl
Arukalam et al. The inhibition of aluminium corrosion in hydrochloric acid solution by Hydroxyethylcellulose
KR101617677B1 (en) Composite steel sheet including metallic thin film and ceramic coated layer having excellent corrosion resistance at high temperature and preparation method thereof
Quale et al. Cathodic protection by distributed sacrificial anodes–A new cost-effective solution to prevent corrosion of subsea structures
JP5651912B2 (en) Method for producing resin-coated steel
Ryen et al. Cathodic protection by distributed sacrificial anodes–Performance at Elevated Temperature and in Mud
JP2013103196A (en) Method of manufacturing heavy duty coated steel material
CN111155662A (en) Concrete surface corrosion prevention method and large-scale pump station
WO2015087011A1 (en) Anti-corrosion treatment of a metal substrate and resulting substrate
CN219242694U (en) Corrosion-resistant metal diaphragm valve
CN109988989B (en) Alkaline iron oxide anticorrosive coating and preparation method thereof
Ibrahim Effect of different sodium chloride (nacl) concentration on corrosion of coated steel
JP5651911B2 (en) Method for producing resin-coated steel
Trisnanto et al. Fabrication of superhydrophobic CuO coating on steel by electrodeposition modified with stearic acid
CN1287005C (en) Submarine surface anticorrosive process scheme

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160217

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170206

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180126

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190219

Year of fee payment: 7