KR101235100B1 - Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof - Google Patents

Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof Download PDF

Info

Publication number
KR101235100B1
KR101235100B1 KR1020100128748A KR20100128748A KR101235100B1 KR 101235100 B1 KR101235100 B1 KR 101235100B1 KR 1020100128748 A KR1020100128748 A KR 1020100128748A KR 20100128748 A KR20100128748 A KR 20100128748A KR 101235100 B1 KR101235100 B1 KR 101235100B1
Authority
KR
South Korea
Prior art keywords
compound
formula
group
scheme
copper catalyst
Prior art date
Application number
KR1020100128748A
Other languages
Korean (ko)
Other versions
KR20120067258A (en
Inventor
지대윤
이병세
이재학
김선미
정운정
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to KR1020100128748A priority Critical patent/KR101235100B1/en
Publication of KR20120067258A publication Critical patent/KR20120067258A/en
Application granted granted Critical
Publication of KR101235100B1 publication Critical patent/KR101235100B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는, 두 개의 서로 다른 알킨 작용기와 하나의 트리아졸 연결체의 말단에 아민 또는 카르복실산 작용기를 갖는 3차 아민 화합물, 이의 제조방법 및 응용에 관한 것이다. 본 발명에 따르면, 3차 아민에서 아민 또는 카르복실산 및 선택적인 클릭화학과 탈보호기화를 단계적으로 수행함으로써 세 가지의 각각 기능을 갖는 다기능성 화합물의 높은 수율과 손쉬운 합성을 가능하도록 한다. 본 발명은 의약화학, 약물전달 시스템, 신약개발 및 분자영상분야에서 다기능성 또는 다중영상, 이합체 또는 삼합체 화합물 등이 신물질 합성에 보편적으로 적용될 수 있다.
[화학식 1]

Figure 112010082856262-pat00050
The present invention relates to a tertiary amine compound having an amine or a carboxylic acid functional group at the terminal of two different alkyne functional groups and one triazole linkage represented by the following Chemical Formula 1, a method for preparing the same, and an application thereof. According to the present invention, stepwise amine or carboxylic acid and selective click chemistry and deprotection in tertiary amines enable high yield and easy synthesis of multifunctional compounds having three respective functions. In the present invention, medicinal chemistry, drug delivery system, new drug development, and molecular imaging, multi-functional or multi-image, dimer or trimer compounds may be universally applied to synthesis of new substances.
[Formula 1]
Figure 112010082856262-pat00050

Description

트리아졸을 포함하는 삼중연결고리 3차 아민 화합물, 이의 제조방법 및 응용 {TERTIARY AMINE COMPOUND COMPRISING TRIAZOLE AS TRIPODAL LINKERS, PREPARATION METHOD AND APPLICATION THEREOF}Triple-linked tertiary amine compound containing triazole, preparation method and application thereof {TERTIARY AMINE COMPOUND COMPRISING TRIAZOLE AS TRIPODAL LINKERS, PREPARATION METHOD AND APPLICATION THEREOF}

본 발명은 생명과학 분야에 응용되는 다기능성 화합물 제조에 용이한 삼중연결고리 화합물의 제조방법 및 응용에 관한 것으로서, 특히 트리아졸을 포함하는 삼중연결고리 3차 아민 화합물, 이의 제조방법 및 용도에 관한 것이다. The present invention relates to a method for preparing a tricyclic compound that is easy to prepare a multifunctional compound applied to the life science field, and an application thereof, and more particularly, to a tricyclic tertiary amine compound including triazole, and a method and a use thereof. will be.

효과적인 질병치료를 위해 복잡한 인체내의 생물학적 기능들을 이해하고, 질병에 관련된 특이적 바이오마커를 탐색하여 이를 선택적으로 표지하는 물질을 개발함으로써 질병의 초기단계에서 진단 및 치료가 가능하도록 발전하고 있다. 이를 위해서 다양한 기능을 할 수 있는 분자들의 조합의 형태인 화합물의 설계 및 합성이 필요하다. 그러므로, 한 분자 내에 여러 기능을 할 수 있는 다기능성 화합물을 이용하여 보다 진보적인 질병 치료제 및 진단의약품 연구에 이바지 할 수 있다.In order to effectively treat the disease, it is being developed to enable the diagnosis and treatment at the early stage of the disease by understanding the biological functions in the human body, searching for specific biomarkers related to the disease, and developing a substance that selectively labels the disease. To this end, it is necessary to design and synthesize a compound in the form of a combination of molecules capable of various functions. Therefore, multifunctional compounds that can function in a single molecule can be used to contribute to the research of more advanced disease treatment and diagnostic drugs.

상기 목적에 이용할 수 있는 화합물을 기능별로 분류하면, 1) 특정 단백질과 강한 결합력 및 선택성을 갖는 질병-표적 화합물 2) 독성이 없으며 인체내 면역반응이나 효소에 의한 분해가 일어나지 않도록 안정성을 주는 화합물 3) 광학/형광색소, 방사성 동위원소, 양자점 및 자성 화합물과 같이 분자의 위치를 파악할 수 있는 리포터 화합물 4) 극성을 조절하여 인체 내 흡수, 분포, 대사, 배출을 용이하게 하는 화합물 5) 질병이 발생한 곳으로 약물을 효과적으로 싣고 갈 수 있는 운반체 화합물등으로 구분할 수 있다. 상기 열거된 화합물을 연구 분야의 목적에 맞게 설계 및 제조할 수 있는 연결고리화합물의 개발 및 응용이 요구되고 있는 실정이다.Compounds that can be used for this purpose are classified by function: 1) disease-target compounds having strong binding and selectivity with specific proteins 2) compounds that are non-toxic and stable to prevent immune reactions or degradation by enzymes in the human body 3 ) Reporter compounds capable of locating molecules such as optical / fluorescent dyes, radioactive isotopes, quantum dots and magnetic compounds 4) Compounds that facilitate absorption, distribution, metabolism and release in the human body by controlling polarity 5) Diseases occur Carrier compounds that can effectively carry the drug to the place can be classified. There is a demand for the development and application of a linking compound capable of designing and manufacturing the compounds listed above for the purpose of research.

현재까지 연구되어온 다기능성 화합물의 예를 하기와 같이 열거하였다.Examples of multifunctional compounds that have been studied so far are listed as follows.

생체내 면역시스템이나 효소활성으로 인한 생체활성물질의 빠른 분해과정을 효과적으로 늦춰 약물의 효과를 지속시키기 위한 방법으로 사용되는 PEG화(PEGylation)도 이러한 기능성 분자 연구의 결과라 할 수 있으며, 실제로 항바이러스제인 인터페론에 PEG화한 "PEG-INTRON"과 "PEGASYS"는 블럭버스터 의약품으로 판매되고 있다. 또한, 약물전달 시스템에 이용되는 리포좀과 바이러스 캡시드(viral capsid)의 생체내 안정성을 높이기 위해서도 PEG화가 이용되고 있다.PEGylation (PEGylation), which is used as a method to sustain the effect of drugs by effectively slowing down the rapid decomposition of bioactive substances due to in vivo immune system or enzyme activity, is the result of research on functional molecules. PEG-INTRON and PEGASYS PEGylated in inferon are sold as blockbusters. PEGylation is also used to enhance the in vivo stability of liposomes and viral capsids used in drug delivery systems.

또 다른 기능성 화합물로, 질병-특이 단백질에 결합력과 선택성이 큰 화합물을 방사성 동위원소나 형광색소로 표지하여 질병이 진행중인 조직의 영상을 얻는 분자탐침이 있다. 특히, 방사성 동위원소를 표지한 방사성의약품들은 인체 적용 가능한 최첨단 분자영상기술로 주목받고 있으며 반감기가 비교적 짧은 동위원소의 특성상 인체내 약물의 분포 및 축적도가 빨리 이루어지도록 분자 설계되어져야. 최근에는 치료 (therapeutics)와 진단 (diagnosis)의 복합어인 테라그노스틱스 (theragnostics)라는 새로운 연구분야가 개발되었고, 이는 새롭게 얻어진 질병-특이 바이오마커에 대한 선택적인 화합물을 방사선동위원소로 표지하여 초기 질병 진단에 사용할 뿐만 아니라, 같은 화합물로 질병을 치료하는 개념이다. Another functional compound is a molecular probe that labels compounds with high binding and selectivity to disease-specific proteins with radioisotopes or fluorescent dyes to obtain an image of the tissue in progress of the disease. In particular, radiopharmaceuticals that are labeled with radioisotopes are attracting attention as cutting-edge molecular imaging technology applicable to the human body. Molecular designs should be designed so that the distribution and accumulation of drugs in the human body is quick due to the characteristics of isotopes with relatively short half-lives. Recently, a new field of research called theragnostics, which is a combination of therapeutics and diagnostics, has been developed, which is used to label early compounds with radioisotopes for selective compounds for newly obtained disease-specific biomarkers. In addition to use in diagnosis, the concept of treating a disease with the same compound.

RGD(arginine-glycine-aspartic acid)는 종양세포 표면에 많이 분포되어 있는 인테그린 단백질과 강한 결합력을 갖고 있으며 종양 진단용 방사성의약품으로 많은 연구가 진행되고 있다. 최근 PET용 방사성의약품으로 "cRGDyK"에 단당류인 갈락토스(galactose)와 양전자방출 방사성 동위원소인 18F를 결합시킨 "galacto-[18F]cRDGyK" 화합물이 보고되었으며, 추가적인 갈락토스 잔기가 화합물의 약물동태학(pharmacokinetics)적 활성을 향상시켜 보다 좋은 진단 영상을 제공하는 역할을 수행한다고 알려졌다. 하지만, 여러 단계의 복잡한 합성 경로를 가지고 있으며, 각 단계에서의 합성이 어렵고 수율이 낮다는 단점이 있다. Arginine-glycine-aspartic acid (RGD) has a strong binding ability with integrin protein, which is widely distributed on the surface of tumor cells, and many studies are being conducted as radiopharmaceuticals for tumor diagnosis. Was recently for radiopharmaceuticals as "cRGDyK" combines the monosaccharides of galactose (galactose) and positron emitting radioisotopes of 18 F in the "galacto- [18 F] cRDGyK" compound reported PET, additional galactose residue of the drug compound Dynamics It is known to play a role in improving pharmacokinetics activity to provide better diagnostic images. However, it has a complex synthetic route of several stages, and has a disadvantage in that the synthesis in each stage is difficult and the yield is low.

나노입자는 약물 전달 시스템에 새로운 운반체로서 연구되어지고 있는 물질로서, 표면에 여러 가지 기능을 부여하기 위한 노력이 있어왔다. 수동적인 EPR(Enhanced Permeability and Retention) 효과로 인한 약물 전달과는 반대로, 능동형 약물 전달 시스템은 질병-표적(disease-targeting) 리간드 화합물을 나노입자 표면에 도입함으로써 약물을 질병이 발생한 부분에 효과적으로 전달시킨다. 또한, 나노입자의 표면을 PEG화 처리하면 안정성을 높이고 비특이적 결합을 억제하고 독성을 줄이는 효과를 줄 수 있다.Nanoparticles are being studied as new carriers in drug delivery systems, and efforts have been made to impart various functions to the surface. In contrast to drug delivery due to passive EPR (Enhanced Permeability and Retention) effects, active drug delivery systems effectively introduce drugs into diseased areas by introducing disease-targeting ligand compounds onto the nanoparticle surface. . In addition, the PEGylation of the surface of the nanoparticles can increase the stability, inhibit nonspecific binding and reduce the toxicity.

목적단백질에 대한 생체활성분자의 결합력을 높여 약물 효과를 극대화시키기 위한 가장 일반적인 방법으로 약물을 여러 개 결합시킨 이합체(dimer), 삼합체(trimer) 화합물이 사용된다. 이는 동일한 치환기를 갖는 스페이서(spacer) 분자들을 이용하여 비교적 손쉽게 제조할 수 있다. Dimer and trimer compounds in which several drugs are combined are used as the most common method for maximizing drug effects by increasing the binding capacity of bioactive molecules to the target protein. This can be made relatively easily using spacer molecules having the same substituents.

분자 영상 분야에서 현재 가장 주목받고 있는 연구중에 하나는 다중영상(multimodality) 기술이라 할 수 있다. 이는 각 영상기술의 단점을 보완하여 보다 우수한 영상을 얻는 목적을 갖는다. 질병-표적 리간드 화합물에 두 가지 이상의 리포터 화합물을 표지하는 것으로, 광학/형광 색소와 방사성 동위원소를 동시에 표지하여 광학영상과 핵의학영상을 동시에 한 분자를 이용하여 얻을 수도 있으며, 양전자방출 단층촬영술(Positron Emission Tomography, PET)과 핵자기공명(Magnetic Resonance Imaging, MRI) 영상을 동시에 얻기 위한 분자 탐침 연구가 보고된 바 있다. 리포좀을 이용하여 광학영상-MRI 영상, PET 영상-광학영상을 동시에 다채롭게 구현할 수 있는 기술도 연구되었다.One of the researches currently attracting the most attention in the field of molecular imaging is the multimodality technology. This aims to obtain a better image by supplementing the shortcomings of each imaging technology. By labeling two or more reporter compounds on a disease-target ligand compound, an optical / fluorescent dye and a radioisotope can be labeled at the same time to obtain optical and nuclear medical images using a single molecule, and positron emission tomography ( Molecular probe studies have been reported to simultaneously obtain Positron Emission Tomography (PET) and nuclear magnetic resonance (MRI) images. Liposomes have also been studied to realize various optical and MRI images and PET images and optical images at the same time.

상기 열거한 다기능성 화합물은 여러가지 컨쥬게이션 방법으로 제조되었으며, 일반적인 아미드 결합, 옥심 결합, 펩타이드 시스테인 잔기의 ―SH 와의 1,4-첨가반응(thio-ene), Staudinger 아미드 결합등이 사용되고 있다. 또한 2003년 보고된 대표적인 클릭화학인 구리(I)-촉매하의 알킨/아자이드 [3+2]고리화반응(copper(I)-catalyzed alkyne/azide [3+2]cycloaddition, CuAAC)은 현재까지 가장 활발하게 응용되고 있는 바이오컨쥬게이션(bioconjugation) 방법이다. 클릭화학은 상온에서 비교적 빠르게 진행되며, 알킨과 아자이드 작용기에만 반응하는 높은 반응선택성을 갖고 수용액에서도 반응이 잘 진행된다는 장점들이 있기 때문에 기존의 바이오컨쥬게이션 방법을 대체할 수 있는 반응으로 주목받고 있다.The above-mentioned multifunctional compounds have been prepared by various conjugation methods, and common amide bonds, oxime bonds, 1,4-addition reactions with -SH of peptide cysteine residues (thio-ene), Staudinger amide bonds and the like are used. In addition, copper (I) -catalyzed alkyne / azide [3 + 2] cycloaddition (CuAAC), a representative click chemistry reported in 2003, has been reported to date. It is the most widely used bioconjugation method. Click chemistry is attracting attention as an alternative to the conventional bioconjugation method because it has a relatively fast reaction at room temperature, has a high reaction selectivity that reacts only with alkyne and azide functional groups, and the reaction proceeds well in aqueous solution. .

클릭화학을 이용한 여러 화합물간의 컨쥬게이션 방법들이 보고된 바 있으며, 가장 손쉬운 방법으로 동일한 화합물에 대한 이합체, 사합체 합성이 연구되었다. 또한, 단계적인 클릭화학의 반응선택성을 부여하기 위해 펩타이드 화합물 말단에 두 개의 서로 다른 알킨 그룹을 도입하여 선택적으로 두 가지 아자이드 화합물을 차례로 도입하는 화합물 합성 방법이 발표되었다. 하나의 실릴 보호기를 통해 연속된 두 번의 클릭화학을 높은 반응선택성으로 수행할 수 있었지만, 방법적인 활용에 있어 특정 펩타이드에 국한된다는 단점이 있다. 2008년도에는 여러 기능을 갖는 올리고 뉴클레오타이드를 합성하기 위해 서로 다른 알킨기를 갖는 뉴클레오타이드 단량체를 합성하고 세 가지의 서로다른 아자이드 화합물을 단계적으로 도입하는 연구가 보고된 바 있다. 두 개의 서로 다른 실릴 보호기를 통해 세 번의 클릭화학을 높은 반응선택성으로 수행할 수 있었지만, 올리고 뉴클레오타이드 응용에 국한되어, 일반적으로 이용할 수 없다는 단점이 있었다.Conjugation methods between various compounds using click chemistry have been reported, and dimer, tetramer synthesis for the same compound has been studied as the easiest method. In addition, a method of synthesizing a compound in which two different alkane groups are selectively introduced by introducing two different alkyne groups at the end of the peptide compound to impart responsive selectivity of step click chemistry has been disclosed. A single silyl protecting group was able to perform two consecutive click chemistry with high reactivity selectivity, but there is a disadvantage that it is limited to a specific peptide in the method utilization. In 2008, a study was reported on synthesizing nucleotide monomers having different alkyn groups and introducing three different azide compounds step by step to synthesize oligonucleotides having various functions. Three different click chemistries could be performed with high selectivity through two different silyl protecting groups, but were limited to oligonucleotide applications, and were not generally available.

최근에는 구리 촉매를 사용하지 않는 효과적인 알킨/아자이드 [3+2]고리화반응 연구가 보고되었고, 이를 이용하여 구리촉매 없는 알킨/아자이드 [3+2]고리화반응과 구리(I)-촉매하의 알킨/아자이드 [3+2]고리화반응을 차례대로 적용하여 서로 다른 두 화합물을 단백질 표면에 도입한 연구가 보고되었다. 그러나, 현재까지 다기능성 화합물 제조에 보편적으로 사용할 수 있는 연결고리 화합물 및 이를 이용한 다기능성 화합물 제조방법은 보고된 바 없다.Recently, studies of effective alkyne / azide [3 + 2] ring reactions without the use of copper catalysts have been reported. A study has been reported in which two different compounds are introduced onto a protein surface by applying alkyne / azide [3 + 2] ring reaction under a catalyst. However, to date, no linking compound and a method for preparing a multifunctional compound using the same have been reported.

이에, 본 발명자들은 다양한 생명과학 분야에 유용한 다기능성 화합물을 쉽고 다양하게 제조할 수 있는 삼중연결고리 3차 아민 화합물 및 이를 이용한 여러 다기능성 화합물의 제조방법을 구축하고, 본 발명을 완성하였다.Accordingly, the present inventors have constructed a tri-linked tertiary amine compound capable of easily and variously preparing a multifunctional compound useful in various life science fields, and a method for preparing various multifunctional compounds using the same, and completed the present invention.

본 발명의 목적은 다양한 기능의 화합물을 손쉽게 치환할 수 있는 트리아졸을 포함하는 삼중연결고리 3차 아민 화합물을 제공하는 것이다.It is an object of the present invention to provide a tri-linked tertiary amine compound comprising triazoles which can readily substitute compounds of various functions.

본 발명의 다른 목적은 상기 삼중연결고리 3차 아민 화합물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the triple-linked tertiary amine compound.

본 발명의 또 다른 목적은 상기 삼중연결고리 3차 아민 화합물을 이용한 다기능성 화합물의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing a multifunctional compound using the triple-linked tertiary amine compound.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 두 개의 서로 다른 알킨 작용기와 하나의 트리아졸 연결체의 말단에 아민 또는 카르복실산 작용기를 갖는 3차 아민 화합물을 제공한다.In order to achieve the above object, the present invention provides a tertiary amine compound having an amine or carboxylic acid functional group at the terminal of two different alkyne functional groups and one triazole linker represented by the following formula (1).

Figure 112010082856262-pat00001
Figure 112010082856262-pat00001

(상기 화학식 1에서, l, m, n, o, p 및 R, P, X는 명세서에서 정의한 바와 같다.)
(In Formula 1, l, m, n, o, p and R, P, X are as defined in the specification.)

본 발명은 하기 반응식 1로 표시되는 바와 같이,As the present invention is represented by the following Scheme 1,

출발 물질인 화학식 3과 화학식 4로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하는 화학식 1-1의 3차 아민 화합물의 제조방법을 제공한다.Provided is a method for preparing a tertiary amine compound represented by Chemical Formula 1-1 including alkyne / azide [3 + 2] ring reaction of azido compounds represented by Chemical Formula 3 and Chemical Formula 4 as starting materials under a copper catalyst. .

[반응식 1][Reaction Scheme 1]

Figure 112010082856262-pat00002
Figure 112010082856262-pat00002

(상기 반응식 1에서, l, m, n, o, p 및 P, X, Y는 명세서에서 정의한 바와 같다)
(In Scheme 1, l, m, n, o, p and P, X, Y are as defined in the specification)

나아가, 본 발명은 하기 반응식 2로 표시되는 바와 같이,Furthermore, the present invention is represented by the following scheme 2,

출발 물질인 화학식 3으로 표시되는 3차 아민 화합물과 화학식 5로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하는 화학식 1-2의 3차 아민 화합물의 제조방법을 제공한다.Tertiary amine of Formula 1-2 comprising the step of alkyne / azide [3 + 2] ring reaction of a tertiary amine compound represented by Formula 3 as a starting material and an azido compound represented by Formula 5 under a copper catalyst Provided are methods for preparing the compounds.

[반응식 2][Reaction Scheme 2]

Figure 112010082856262-pat00003
Figure 112010082856262-pat00003

(상기 반응식 2에서, l, m, n, o, p 및 P, Z는 명세서에서 정의한 바와 같다.)
(In Scheme 2, l, m, n, o, p and P, Z are as defined in the specification.)

나아가, 본 발명은 화학식 1로 표시되는 3차 아민 화합물로부터 A, B, C의 세 가지 화합물이 결합된 화학식 2의 삼중 다기능성 화합물을 제조하는 방법을 제공한다.
Furthermore, the present invention provides a method for preparing a trifunctional compound of Formula 2 in which three compounds A, B, and C are combined from a tertiary amine compound represented by Formula 1.

하기 반응식 3으로 표시되는 바와 같이,As represented by Scheme 3 below,

출발물질인 화학식 1의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 1);Subjecting the compound of Formula 1, which is a starting material, to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 1);

화합물의 P 보호기를 탈보호기화하는 단계 (단계 2);Deprotecting the P protecting group of the compound (step 2);

화학식 8의 화합물을 화학식 6-2의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 3); 및Subjecting the compound of Formula 8 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-2 under a reaction solvent and a copper catalyst (step 3); And

화학식 9의 화합물과 화학식 10의 화합물을 유기용매하에서 반응시키는 단계(단계 4)를 포함하는 화학식 2의 화합물 제조방법을 제공한다.It provides a method of preparing a compound of Formula 2 comprising the step (step 4) of reacting a compound of Formula 9 and a compound of Formula 10 in an organic solvent.

[반응식 3]Scheme 3

Figure 112010082856262-pat00004
Figure 112010082856262-pat00004

(상기 반응식 3에서, l, m, n, o, p 및 R1, R2, X, W, A, B, C는 명세서에서 정의한 바와 같다)
(In Scheme 3, l, m, n, o, p and R 1 , R 2 , X, W, A, B, C are as defined in the specification)

나아가, 본 발명은 하기 반응식 4로 표시되는 바와 같이,Furthermore, the present invention is represented by the following Scheme 4,

출발물질인 화학식 1과 화학식 10의 화합물을 유기용매하에서 반응시켜 화학식 11의 화합물을 제조하는 단계 (단계 1);Preparing a compound of Chemical Formula 11 by reacting a starting compound of Chemical Formula 1 with a compound of Chemical Formula 10 in an organic solvent (Step 1);

화학식 11의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 2);Subjecting the compound of Formula 11 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 2);

화합물의 P 보호기를 탈보호기화하는 단계 (단계 3) 및 Deprotecting the P protecting group of the compound (step 3) and

화학식 13의 화합물을 화학식 6-2의 아지도 화합물과 함께 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 4)를 포함하는 화학식 2의 화합물 제조방법을 제공한다.It provides a compound of formula 2 comprising the step (step 4) of the compound of formula 13 and the azido compound of formula 6-2 in combination with the azido compound of formula 6-2 under a copper catalyst.

[반응식 4][Reaction Scheme 4]

Figure 112010082856262-pat00005
Figure 112010082856262-pat00005

(상기 반응식 4에서, l, m, n, o, p 및 R1, R2, X, W, A, B, C는 명세서에서 정의한 바와 같다) (In Scheme 4, l, m, n, o, p and R 1 , R 2 , X, W, A, B, C are as defined in the specification)

또한, 상기 반응식 3과 반응식 4의 화학식 2의 화합물을 제조하는 데 있어서, A, B, C 화합물을 도입하는 합성순서는 상기 반응식 3와 반응식 4의 순서에 국한되지 않으며 경우에 따라 바뀔 수 있다.In addition, in preparing the compounds of Formula 2 of Scheme 3 and Scheme 4, the synthetic sequence for introducing A, B, C compounds is not limited to the order of Scheme 3 and Scheme 4, and may be changed in some cases.

또한, 상기 반응식 3과 반응식 4에서 R1이 ―NH2일 경우 화합물의 극성과 물성을 좋게 하기 위해 카바메이트(―NH(CO2-tBu) 또는 ―NH(CO2-CH2Ph)) 화합물을 사용할 수도 있다.In addition, when R 1 is —NH 2 in Schemes 3 and 4, carbamate (-NH (CO 2 -t Bu) or -NH (CO 2 -CH 2 Ph)) may be used to improve the polarity and physical properties of the compound. Compounds can also be used.

또한, 상기 반응식 3과 반응식 4에서 R1이 ―CO2H일 경우 화합물의 극성과 물성을 좋게 하기 위해 에스터(―CO2-tBu 또는 ―CO2-CH2Ph) 화합물을 사용할 수도 있다.In addition, when R 1 is —CO 2 H in Schemes 3 and 4, ester (—CO 2 -t Bu or —CO 2 —CH 2 Ph) compounds may be used to improve the polarity and physical properties of the compound.

본 발명에 따른, 상기 화학식 1의 3차 아민 화합물은 서로 다른 반응 선택성을 갖는 세 개의 작용기를 갖고 있으며, 클릭화학을 통해 기능성 화합물을 도입할 수 있는 2개의 말단 알킨기와 추가적인 기능성 화합물을 도입할 수 있는 아민 또는 카르복실산 작용기를 갖고 있다. 또한, 두개의 말단 알킨기는 그 중 하나를 실릴 보호기화시킬 수 있어 클릭화학에 대한 반응 선택성을 갖도록 한 특징이 있다. 본 발명에 따른 화학식 1의 3차 아민 화합물은 세 가지의 독립적인 기능을 갖는 다기능성 화합물을 손쉽게 높은 수율로 합성할 수 있도록 한다. 따라서 본 발명은 의약화학, 약물전달 시스템, 신약개발 및 분자영상분야에서 다기능성 또는 다중영상, 이합체 또는 삼합체 화합물 등의 신물질 합성에 보편적으로 적용될 수 있다. According to the present invention, the tertiary amine compound of Formula 1 has three functional groups having different reaction selectivity, and can introduce two terminal alkyne groups and additional functional compounds capable of introducing functional compounds through click chemistry. Have amine or carboxylic acid functionality. In addition, the two terminal alkyne groups are characterized by being capable of silyl protecting one of them to have reaction selectivity for click chemistry. The tertiary amine compound of formula (1) according to the present invention makes it easy to synthesize multifunctional compounds having three independent functions in high yield. Therefore, the present invention can be universally applied to the synthesis of new materials such as multifunctional or multi-image, dimer or trimer compounds in the fields of medicinal chemistry, drug delivery system, new drug development and molecular imaging.

도 1은 본 발명의 화학식 1의 3차 아민 화합물로부터 단계적인 클릭화학과 아마이드 축합반응을 통해 세 가지 독립적인 기능을 갖는 다기능성 화합물을 제조하는 방법의 개요도이다.1 is a schematic diagram of a method for preparing a multifunctional compound having three independent functions through step click chemistry and amide condensation reaction of the tertiary amine compound of Chemical Formula 1 of the present invention.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 두 개의 서로 다른 알킨 작용기와 하나의 트리아졸 연결체의 말단에 아민 또는 카르복실산 작용기를 갖는 3차 아민 화합물을 제공한다.The present invention provides a tertiary amine compound having an amine or carboxylic acid functional group at the terminal of two different alkyne functional groups and one triazole linker represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112010082856262-pat00006
Figure 112010082856262-pat00006

상기 화학식 1에서,In Formula 1,

P는 수소, 트라이C1-C4알킬 실릴기, 다이C1-C4알킬C3-C8아릴 실릴기, 또는 다이C3-C8아릴C1-C4알킬 실릴기이고,P is hydrogen, triC 1 -C 4 alkyl silyl group, diC 1 -C 4 alkylC 3 -C 8 aryl silyl group, or diC 3 -C 8 arylC 1 -C 4 alkyl silyl group,

l, m, n, o 및 p는 각각 독립적으로 1 내지 5의 정수이고,l, m, n, o and p are each independently an integer from 1 to 5,

X는 독립적으로 단일결합, 카보닐(C=O), ―NHCO- 또는 ―CONH-이고, X is independently a single bond, carbonyl (C═O), —NHCO— or —CONH—,

R은 ―NH-Y, 또는 ―CO2-Z이고, R is —NH—Y, or —CO 2 —Z,

Y는 수소, ―CO2-tBu, ―CO2-CH2Ph, 또는 ―CO2-t-C(Ph)3)이고,Y is hydrogen, —CO 2 -t Bu, —CO 2 -CH 2 Ph, or —CO 2 -tC (Ph) 3 ),

Z는 수소, ―tBu,―CH2Ph 또는 ―CO2-t-C(Ph)3이다.Z is hydrogen, —t Bu, —CH 2 Ph or —CO 2 —tC (Ph) 3 .

바람직하게는,Preferably,

P는 수소 트라이메틸실릴(trimethylsilyl, TMS); 트라이에틸실릴 (triethylsilyl, TES); 트라이이소프로필실릴(triisopropylsilyl, TIPS); t-부틸다이메틸실릴(t-butyldimethylsilyl, TBDMS); t-부틸다이페닐실릴(t-butyldiphenylsilyl, TBDPS) 또는 트라이페닐실릴(triphenylsilyl, TPS)이고,P is hydrogen trimethylsilyl (TMS); Triethylsilyl (TES); Triisopropylsilyl (TIPS); t - butyl-dimethyl-silyl (t -butyldimethylsilyl, TBDMS); t - butyl and diphenyl silyl (t -butyldiphenylsilyl, TBDPS) or triphenyl silyl (triphenylsilyl, TPS),

l, m, n, o 및 p는 각각 독립적으로 1 내지 3의 정수이고,l, m, n, o and p are each independently an integer of 1 to 3,

X는 단일결합, 카보닐(C=O), ―NHCO- 또는 ―CONH-이고,X is a single bond, carbonyl (C═O), —NHCO— or —CONH—,

R은 ―NH2, ―NH(CO2-tBu), ―NH(CO2-CH2Ph), ―CO2H, ―CO2-tBu, 또는 ―CO2-CH2Ph이다.
R is —NH 2 , —NH (CO 2 —t Bu), —NH (CO 2 —CH 2 Ph), —CO 2 H, —CO 2 -t Bu, or —CO 2 —CH 2 Ph.

본 발명에 따른 상기 화학식 1로 표시되는 새로운 구조의 3차 아민의 바람직한 예는 하기 표 1과 같다.Preferred examples of the tertiary amine of the novel structure represented by Chemical Formula 1 according to the present invention are shown in Table 1 below.

구분division 화합물compound 1One

Figure 112010082856262-pat00007
Figure 112010082856262-pat00007
22
Figure 112010082856262-pat00008
Figure 112010082856262-pat00008
33
Figure 112010082856262-pat00009
Figure 112010082856262-pat00009
44
Figure 112010082856262-pat00010
Figure 112010082856262-pat00010
55
Figure 112010082856262-pat00011
Figure 112010082856262-pat00011
66
Figure 112010082856262-pat00012
Figure 112010082856262-pat00012
77
Figure 112010082856262-pat00013
Figure 112010082856262-pat00013
88
Figure 112010082856262-pat00014
Figure 112010082856262-pat00014
99
Figure 112010082856262-pat00015
Figure 112010082856262-pat00015
1010
Figure 112010082856262-pat00016
Figure 112010082856262-pat00016

상기 표 1의 화학식 1로 표시되는 새로운 구조의 3차 아민의 화합물명은 하기와 같다:The compound name of the tertiary amine of the novel structure represented by Formula 1 of Table 1 is as follows:

(1a) t-부틸-3-(4-(((N-3-(t-부틸다이메틸실릴)프로프-2-인일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필카바메이트,(1a) t-butyl-3- (4-(((N-3- (t-butyldimethylsilyl) prop-2-ynyl) -N-propazyl) amino) methyl) -1H-1,2 , 3-triazol-1-yl) propylcarbamate,

(1b) N-((1-(3-아미노프로필)-1H-1,2,3-트리아졸-4-일)메틸)―N-(3-(t-부틸다이메틸실릴)프로프-2-인일)―N-프로파질아민, (1b) N-((1- (3-aminopropyl) -1H-1,2,3-triazol-4-yl) methyl) -N- (3- ( t -butyldimethylsilyl) prop- 2-ynyl) -N-propazylamine,

(1c) t-부틸-3-(4-(((N-3-(트라이아이소프로필실릴)프로프-2-인일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필카바메이트,(1c) t-butyl-3- (4-((((N-3- (triisopropylsilyl) prop-2-ynyl) -N-propazyl) amino) methyl) -1H-1,2,3 -Triazol-1-yl) propylcarbamate,

(1d) N-((1-(3-아미노프로필)-1H-1,2,3-트리아졸-4-일)메틸)―N-(3-(트라이아이소프로필실릴)프로프-2-인일)―N-프로파질아민,(1d) N-((1- (3-aminopropyl) -1H-1,2,3-triazol-4-yl) methyl) -N- (3- (triisopropylsilyl) prop-2- Phosphorus) -N-propazylamine,

(1e) 4-(3-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필아미노)-옥소부타노익산,(1e) 4- (3- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2, 3-triazol-1-yl) propylamino) -oxobutanoic acid,

(1f) 4-(3-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필아미노)-옥소부타노익산,(1f) 4- (3- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3- Triazol-1-yl) propylamino) -oxobutanoic acid,

(1g) t-부틸-2-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세테이트,(1 g) t-butyl-2- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2 , 3-triazol-1-yl) acetate,

(1h) 2-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세트산,(1h) 2- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3-tria Zol-1-yl) acetic acid,

(1i) t-부틸-2-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세테이트, 및(1i) t-butyl-2- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3 -Triazol-1-yl) acetate, and

(1j) 2-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세트산.
(1j) 2- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3-triazole- 1-yl) acetic acid.

또한, 본 발명은 상기 화학식 1의 3차 아민 화합물(화학식 1-1의 화합물 및 화학식 1-2의 화합물)의 제조방법을 제공한다.
In addition, the present invention provides a method for preparing a tertiary amine compound of Formula 1 (compound of Formula 1-1 and compound of Formula 1-2).

제법 1:Method 1:

하기 반응식 1로 표시되는 바와 같이,As represented by Scheme 1 below,

출발 물질인 화학식 3과 화학식 4로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하는 화학식 1-1의 3차 아민 화합물의 제조방법.A method for preparing a tertiary amine compound of Chemical Formula 1-1, comprising alkyne / azide [3 + 2] ring reaction of azido compounds represented by Chemical Formula 3 and Chemical Formula 4 as starting materials under a copper catalyst.

[반응식 1][Reaction Scheme 1]

Figure 112010082856262-pat00017
Figure 112010082856262-pat00017

상기 반응식 1에서, l, m, n, o, p 및 P, X는 상기 화학식 1에서 정의한 바와 같고,In Scheme 1, l, m, n, o, p and P, X are as defined in Formula 1,

Y는 수소, ―CO2-tBu, ―CO2-CH2Ph, 또는 ―CO2-t-C(Ph)3이다.
Y is hydrogen, —CO 2 —tBu, —CO 2 —CH 2 Ph, or —CO 2 —tC (Ph) 3 .

상기 제법 1에서 얻어지는 화학식 1-1의 화합물에서 Y가 ―CO2-tBu, ―CO2-CH2Ph 또는 ―CO2-t-C(Ph)3인 경우 통상적인 탈보호기화 반응을 통해 Y를 수소로 치환하여 사용할 수 있다.
When Y is —CO 2 —t Bu, —CO 2 —CH 2 Ph or —CO 2 —tC (Ph) 3 in the compound of Formula 1-1 obtained in Preparation Method 1 , Y may be obtained through a conventional deprotection reaction. It can be used by substituting with hydrogen.

제법 2:Recipe 2:

하기 반응식 2로 표시되는 바와 같이,As represented by Scheme 2 below,

출발 물질인 화학식 3으로 표시되는 3차 아민 화합물과 화학식 5로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하는 화학식 1-2의 3차 아민 화합물의 제조방법.Tertiary amine of Formula 1-2 comprising the step of alkyne / azide [3 + 2] ring reaction of a tertiary amine compound represented by Formula 3 as a starting material and an azido compound represented by Formula 5 under a copper catalyst Method for preparing the compound.

[반응식 2][Reaction Scheme 2]

Figure 112010082856262-pat00018
Figure 112010082856262-pat00018

상기 반응식 2에서 l, m, n, o, p 및 P, X는 상기 화학식 1에서 정의한 바와 같고,In Scheme 2, l, m, n, o, p and P, X are as defined in Formula 1,

Z는 수소, -tBu, -CH2Ph 또는 t-C(Ph)3이다.
Z is hydrogen, -t Bu, -CH 2 Ph or tC (Ph) 3 .

본 발명에 따른 상기 제법 1과 2에 있어서, 상기 반응식 1과 2에서 사용되는 반응용매는 테트라하이드로퓨란, 1,4-다이옥산, 다이클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄(1,2-dichloroethane), 벤젠, 톨루엔, 아세토나이트릴, 다이메틸포름아미드 (N,N-dimethylformamide), 다이메틸설폭사이드, 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 및 이들의 혼합용매를 사용할 수 있다.In the above Preparation 1 and 2 according to the present invention, the reaction solvent used in Schemes 1 and 2 is tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane (1, 2-dichloroethane), benzene, toluene, acetonitrile, dimethylformamide (N, N-dimethylformamide), dimethyl sulfoxide, methanol, ethanol, isopropanol, t -butanol, water and mixed solvents thereof may be used. .

또한, 본 발명에 따른 상기 제법 1과 2에 있어서, 상기 반응식 1과 2에서 사용되는 구리 촉매는 CuI, CuBr, CuCl 등의 산화수가 1인 구리 촉매 또는 CuSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2, CuO 등의 산화수가 2인 구리 촉매를 사용할 수 있다.In addition, in the above production methods 1 and 2 according to the present invention, the copper catalyst used in the reaction schemes 1 and 2 is a copper catalyst having a number of oxidation 1 such as CuI, CuBr, CuCl or CuSO 4 , Cu (OAc) 2 , Cu ( A copper catalyst having an oxidation number of 2, such as NO 3 ) 2 , Cu (OTf) 2 , or CuO, can be used.

본 발명에 따른 상기 제법 1과 2에 있어서, 상기 반응식 1과 2에서 사용되는 구리 촉매의 산화수가 1인 경우 중탄산 이온의 알칼리 금속염, 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 다이이소프로필에틸아민, 피리딘, 루티딘, 콜리딘 등과 같은 염기를 추가로 사용할 수 있다.In the production methods 1 and 2 according to the present invention, when the oxidation number of the copper catalyst used in the reaction schemes 1 and 2 is 1, the alkali metal salt of bicarbonate ions, the alkali metal salt of carbonate ions, or triethylamine, diisopropylethylamine Bases such as, pyridine, lutidine, collidine and the like can be further used.

본 발명에 따른 상기 제법 1과 2에 있어서, 상기 반응식 1과 2에서 사용되는 구리 촉매의 산화수가 2인 경우 Na-아스코베이트(ascorbate), 소듐 설파이트(Na2SO3), 디티오트레이톨(dithiothreitol)등과 같은 환원제를 추가로 사용할 수 있다. In the above Preparation 1 and 2 according to the present invention, when the oxidation number of the copper catalyst used in Schemes 1 and 2 is 2, Na-ascorbate, sodium sulfite (Na 2 SO 3 ), dithiothreitol Reducing agents such as (dithiothreitol) can be further used.

또한, 상기 제법 2에서 얻어지는 화학식 1-2의 화합물에서 Z가 tBu, -CH2Ph, 또는 t-C(Ph)3인 경우 통상적인 탈보호기화 반응을 통해 Z를 수소로 치환하여 사용할 수 있다.
In addition, when Z is tBu, —CH 2 Ph, or tC (Ph) 3 in the compound of Formula 1-2 obtained in Preparation Method 2 , Z may be substituted with hydrogen through a conventional deprotection reaction.

또한, 본 발명은 화학식 1로 표시되는 3차 아민 화합물로부터 반응식 3 또는 4와 같이 A, B, C의 세 가지 화합물이 결합된 화학식 2의 삼중 다기능성 화합물을 제조하는 방법을 제공한다.
The present invention also provides a method for preparing a triple multifunctional compound of formula (2) in which three compounds of A, B, and C are combined, as in Scheme 3 or 4, from the tertiary amine compound represented by formula (1).

제법 3:Recipe 3:

하기 반응식 3으로 표시되는 바와 같이,As represented by Scheme 3 below,

출발물질인 화학식 1의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 1);Subjecting the compound of Formula 1, which is a starting material, to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 1);

화합물의 P 보호기를 탈보호기화하는 단계 (단계 2);Deprotecting the P protecting group of the compound (step 2);

화학식 8의 화합물을 화학식 6-2의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 3); 및Subjecting the compound of Formula 8 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-2 under a reaction solvent and a copper catalyst (step 3); And

화학식 9의 화합물과 화학식 10의 화합물을 유기용매하에서 반응시키는 단계(단계 4)를 포함하는 화학식 2의 화합물 제조방법.A process for preparing a compound of formula 2 comprising reacting a compound of formula 9 with a compound of formula 10 in an organic solvent (step 4).

[반응식 3]Scheme 3

Figure 112010082856262-pat00019
Figure 112010082856262-pat00019

상기 반응식 3에서,In Scheme 3,

l, m, n, o, p및 P, X는 상기 화학식 1에서 정의한 바와 같고,l, m, n, o, p and P, X are as defined in Formula 1,

R1은 상기 화학식 1에서 정의한 R과 같고,R 1 is the same as R defined in Chemical Formula 1,

R2는 ―CO2H; -COF -COCl; -COBr;

Figure 112010082856262-pat00020
-OCOCl; ―NCO; ―NCS; -SO2Cl; 또는 ―NH2이고, R 2 is —CO 2 H; -COF -COCl; -COBr;
Figure 112010082856262-pat00020
-OCOCl; -NCO; -NCS; -SO 2 Cl; Or —NH 2 ,

W는 ―NHCO-; ―NHCOO-; ―NHCONH-; ―NHCSNH-; ―NHSO2-; 또는 ―CONH- 이고,W is —NHCO—; -NHCOO-; -NHCONH-; -NHCSNH-; -NHSO 2- ; Or —CONH-,

A, B, C는 각각 독립적으로A, B, and C are each independently

생체내 특정 단백질 및 생체고분자 화합물, 생체 조직에 선택적인 결합력을 갖는 유기화합물 군으로부터 선택되는 어느 하나(그룹 1);Certain proteins and biopolymer compounds in vivo, any one selected from the group of organic compounds having selective binding to biological tissues (Group 1);

생체내 특정 단백질 및 생체고분자 화합물, 생체 조직에 선택적인 결합력을 갖는 펩타이드, 당, 지질, 뉴클레오타이드 또는 이들로 구성된 유도체 군으로부터 선택되는 어느 하나(그룹 2);Any one selected from the group of specific proteins and biopolymer compounds in vivo, peptides having a selective binding ability to biological tissues, sugars, lipids, nucleotides or derivatives thereof (group 2);

생체내 분자영상 진단을 위한 형광색소 근적외선 형광색소 광학색소 양자점(quantum dots) 유도체 군으로부터 선택되는 어느 하나(그룹 3);Any one selected from the group of fluorescent dye near infrared fluorescent dye optical dye quantum dots derivatives for in vivo molecular imaging diagnosis (group 3);

생체내 분자영상 진단을 위한 방사성 동위원소를 포함하는 착물 방사성 동위원소가 포함된 보결그룹으로부터 선택되는 어느 하나(그룹 4);Any one selected from the group consisting of a complex containing a radioactive isotope comprising a radioisotope for diagnosis of molecular imaging in vivo (group 4);

생체내 분자영상 진단을 위한 자성 및 초자성을 갖는 가돌리늄(gadolinium), 산화철(iron oxide), 망간(manganese) 금속의 유도체 군으로부터 선택되는 어느 하나(그룹 5);Any one selected from the group of derivatives of gadolinium, iron oxide, and manganese metal having magnetic and supermagnetism for in vivo molecular imaging diagnosis (group 5);

생체내 분자영상 진단을 위한 바이오틴(biotin)유도체 군으로부터 선택되는 어느 하나(그룹 6);Any one selected from the group of biotin derivatives for in vivo molecular imaging (group 6);

생체내 안정성을 위한 올리고 에틸렌글리콜 유도체 군으로부터 선택되는 어느 하나(그룹 7);Any one selected from the group of oligo ethylene glycol derivatives for in vivo stability (group 7);

생체내 약물동태학을 위한 단당류(saccharide) 또는 다당류(oligo-saccharide) 군으로부터 선택되는 어느 하나(그룹 8); 및Any one selected from the group of monosaccharides or polysaccharides (oligo-saccharides) for in vivo pharmacokinetics (group 8); And

생체내 약물 운반을 위한 유기고분자 덴드리머(dendrimer); 바이러스 캡시드 키토산 나노입자 군으로부터 선택되는 어느 하나(그룹 9)이다.
Organic polymer dendrimers for drug delivery in vivo; Viral capsid chitosan nanoparticle group (group 9).

제법 4:Preparation 4:

나아가, 본 발명은 하기 반응식 4로 표시되는 바와 같이,Furthermore, the present invention is represented by the following Scheme 4,

출발물질인 화학식 1과 화학식 10의 화합물을 유기용매하에서 반응시켜 화학식 11의 화합물을 제조하는 단계(단계 1);Preparing a compound of Chemical Formula 11 by reacting a starting compound of Chemical Formula 1 with a compound of Chemical Formula 10 in an organic solvent (Step 1);

화학식 11의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 2);Subjecting the compound of Formula 11 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 2);

화합물의 P 보호기를 탈보호기화하는 단계 (단계 3); 및 Deprotecting the P protecting group of the compound (step 3); And

화학식 13의 화합물을 화학식 6-2의 아지도 화합물과 함께 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 4)를 포함하는 화학식 2의 화합물 제조방법.
A process for preparing a compound of formula (2) comprising the step of subjecting a compound of formula (13) to an alkyne / azide [3 + 2] ring reaction with azido compound of formula (6-2) under a copper catalyst.

[반응식 4][Reaction Scheme 4]

Figure 112010082856262-pat00021
Figure 112010082856262-pat00021

상기 반응식 4에서,In Scheme 4,

l, m, n, o, p및 P, X는 상기 화학식 1에서 정의한 바와 같고,l, m, n, o, p and P, X are as defined in Formula 1,

R1, R2, X, W 및 A, B, C는 상기 반응식 3에서 정의한 바와 같다.
R 1 , R 2 , X, W and A, B, C are as defined in Scheme 3 above.

본 발명에 따른 상기 제법 3과 4에 있어서, 상기 반응식 3의 단계 4와 반응식 4의 단계 1에서 요구되는 반응은 아민과 카르복실산 유도체인 ―CO2H; ―COF; ―COCl; ―COBr;

Figure 112010082856262-pat00022
와의 통상적인 아미드화 반응; 아민과 클로로포메이트 (-OCOCl) 와의 통상적인 카바메이트화 반응; 아민과 아이소시아네이트 (―NCO)와의 통상적인 유레아화 반응; 아민과 아이소싸이오시아네이트 (―NCS)와의 통상적인 싸이오유레아화 반응; 아민과 술포닐 할라이드 (-SO2Cl) 또는 무수 술포닐 산((-SO2)O)과의 통상적인 술폰아미드화 반응중에서 선택하여 사용할 수 있다.In the above Preparation 3 and 4 according to the present invention, the reaction required in Step 4 of Scheme 3 and Step 1 of Scheme 4 is -CO 2 H which is an amine and a carboxylic acid derivative; —COF; —COCl; —COBr;
Figure 112010082856262-pat00022
Conventional amidation reactions with; Conventional carbamatelation of amines with chloroformate (-OCOCl); Conventional urealation of amines with isocyanates (-NCO); Conventional thiourealation reactions of amines with isothiocyanates (-NCS); It can be selected and used in the conventional sulfonation reaction of amine with sulfonyl halide (-SO 2 Cl) or sulfonyl anhydride ((-SO 2 ) O).

또한, 본 발명에 따른 상기 제법 3과 4에 있어서, 상기 반응식 3의 단계 1과 3 및 반응식 4의 단계 2과 단계 4에서 사용되는 반응용매는 테트라하이드로퓨란, 1,4-다이옥산, 다이클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄(1,2-dichloroethane), 벤젠, 톨루엔, 아세토나이트릴, 다이메틸포름아미드(N,N-dimethylformamide), 다이메틸설폭사이드, 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 및 이들의 혼합용매를 사용할 수 있다.In addition, in the preparation methods 3 and 4 according to the present invention, the reaction solvent used in steps 1 and 3 of Scheme 3 and steps 2 and 4 of Scheme 4 is tetrahydrofuran, 1,4-dioxane, dichloromethane , Chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetonitrile, dimethylformamide (N, N-dimethylformamide), dimethylsulfoxide, methanol, ethanol, isopropanol, t -butanol, water and mixed solvents thereof may be used.

또한, 본 발명에 따른 상기 제법 3과 4에 있어서, 상기 반응식 3의 단계 1과 3 및 반응식 4의 단계 2와 단계 4에서 사용되는 구리촉매는 CuI, CuBr, CuCl 등의 산화수가 1인 구리 촉매 또는 CuSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2, CuO 등의 산화수가 2인 구리 촉매를 사용할 수 있다.In addition, in the preparation methods 3 and 4 according to the present invention, the copper catalyst used in steps 1 and 3 of Scheme 3 and steps 2 and 4 of Scheme 4 is a copper catalyst having an oxidation number of 1, such as CuI, CuBr, CuCl, etc. Alternatively, a copper catalyst having an oxidation number of 2, such as CuSO 4 , Cu (OAc) 2 , Cu (NO 3 ) 2 , Cu (OTf) 2 , CuO, or the like can be used.

산화수가 1인 구리촉매를 사용할 경우 중탄산 이온의 알칼리 금속염, 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 다이이소프로필에틸아민, 피리딘, 루티딘, 콜리딘 등과 같은 염기를 추가로 사용할 수 있다.When using a copper catalyst having 1 oxidation number, an alkali metal salt of bicarbonate ions, an alkali metal salt of carbonate ions, or a base such as triethylamine, diisopropylethylamine, pyridine, lutidine, collidine, or the like may be additionally used.

산화수가 2인 구리촉매를 사용할 경우 쓰이는 환원제로 Na-아스코베이트, 소듐 설파이트(Na2SO3), 디티오트레이톨(dithiothreitol) 등과 같은 환원제를 추가로 사용할 수 있다. When using a copper catalyst having 2 oxidation number, a reducing agent such as Na-ascorbate, sodium sulfite (Na 2 SO 3 ), dithiothreitol, etc. may be additionally used.

또한, 본 발명에 따른 상기 제법 3과 4에 있어서, 상기 반응식 3의 단계 2 및 반응식 4의 단계 3 에서 요구되는 탈보호기화 반응은 통상적으로 알려져 있는 디실릴레이션 (desilyation) 방법을 이용할 수 있다.
In addition, in the above-mentioned preparation methods 3 and 4 according to the present invention, the deprotection gasification reaction required in step 2 of scheme 3 and step 3 of scheme 4 may use a conventionally known desilylation method.

이하, 본 발명을 제조예와 실시예에 의해 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Production Examples and Examples. However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited thereto.

<< 제조예Manufacturing example 1> N,N- 1> N, N- 다이프로파질Dipropazol ―N-(3-(t--N- (3- (t- 부틸다이메틸실릴Butyldimethylsilyl )) 프로프Prof -2-인일)아민 (3a)의 제조Preparation of 2-ynyl) amine (3a)

Figure 112010082856262-pat00023
Figure 112010082856262-pat00023

트라이프로파질 아민 14a (10.75 mL, 76 mmol)을 무수 테트라하이드로퓨란(200 mL)에 녹이고 질소하에서 -78℃에서 2.5 M 부틸리튬/헥산 용액(18 mL, 91.2 mmol)을 방울방울 가하였다. 반응물을 30분 간 -78℃에서 교반하고 tert-부틸다이메틸실릴 클로라이드(TBDMS-Cl, 15a, 5.7 g, 37.5 mmol)를 무수 테트라하이드로퓨란(100 mL)에 녹인 용액을 방울방울 가하였다. 반응물을 2 시간 동안 상온에서 교반하고 포화 염화암모늄 수용액을 가한 다음 에틸 아세테이트로 추출하고 유기층을 합하여 무수 황산 나트륨으로 탈수하고 여과한 뒤 감압증류하여 농축하였다. 농축물을 컬럼 크로마토그래피 (5% 에틸아세테이트/헥산)를 수행하여 목적 화합물 3a (5.5 g, 60%)를 얻었다.Tripropazyl amine 14a (10.75 mL, 76 mmol) was dissolved in anhydrous tetrahydrofuran (200 mL) and 2.5 M butyllithium / hexane solution (18 mL, 91.2 mmol) was added dropwise at −78 ° C. under nitrogen. The reaction was stirred for 30 minutes at −78 ° C. and a solution of tert -butyldimethylsilyl chloride (TBDMS-Cl, 15a , 5.7 g, 37.5 mmol) in anhydrous tetrahydrofuran (100 mL) was added dropwise. The reaction was stirred at room temperature for 2 hours, saturated aqueous ammonium chloride solution was added, extracted with ethyl acetate, the organic layers were combined, dehydrated with anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The concentrate was subjected to column chromatography (5% ethyl acetate / hexane) to give the title compound 3a (5.5 g, 60%).

1H NMR (400 MHz, CDCl3) δ 0.10 (s, 6H), 0.93 (s, 9H), 2.25 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.50 (s, 2H); 13C NMR (100 MHz, CDCl3) δ -4.6, 16.5, 26.1, 41.7, 43.0, 73.3 78.5, 88.6, 100.8.
1 H NMR (400 MHz, CDCl 3 ) δ 0.10 (s, 6H), 0.93 (s, 9H), 2.25 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.50 (s, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ −4.6, 16.5, 26.1, 41.7, 43.0, 73.3 78.5, 88.6, 100.8.

<< 제조예Manufacturing example 2> N,N- 2> N, N- 다이프로파질Dipropazol ―N-(3-(-N- (3- ( 트라이아이소프로필실릴Triisopropylsilyl )) 프로프Prof -2-인일)아민 (3b)의 제조Preparation of 2-ynyl) amine (3b)

Figure 112010082856262-pat00024
Figure 112010082856262-pat00024

tert-부틸다이메틸실릴 클로라이드 (15a) 대신에 트라이아이소프로필실릴 클로라이드 (15b)를 사용하는 것을 제외하고, 제조예 1과 동일한 방법으로 목적화합물 3b(oil, 65%)를 얻었다.Except for using triisopropylsilyl chloride ( 15b ) instead of tert -butyldimethylsilyl chloride ( 15a ) to give the target compound 3b (oil, 65%) in the same manner as in Preparation Example 1.

1H NMR (400 MHz, CDCl3) δ 0.10 (s, 6H), 1.06 (S, 18H), 1.07 (S, 3H), 2.50 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.55 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 11.1, 18.6, 41.7, 43.0, 73.2, 78.6, 86.5, 101.7.
1 H NMR (400 MHz, CDCl 3 ) δ 0.10 (s, 6H), 1.06 (S, 18H), 1.07 (S, 3H), 2.50 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.55 (s, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 11.1, 18.6, 41.7, 43.0, 73.2, 78.6, 86.5, 101.7.

<< 제조예Manufacturing example 3> N,N- 3> N, N- 다이프로파질Dipropazol ―N-(3-(-N- (3- ( 트라이에틸실릴Triethylsilyl )) 프로프Prof -2-인일)아민 (3c)의 제조Preparation of 2-ynyl) amine (3c)

Figure 112010082856262-pat00025
Figure 112010082856262-pat00025

tert-부틸다이메틸실릴 클로라이드 (15a) 대신에 트라이에틸실릴 클로라이드 (15c)를 사용하는 것을 제외하고, 제조예 1과 동일한 방법으로 목적화합물 3c(54%)를 얻었다. The target compound 3c (54%) was obtained by the same method as Preparation Example 1, except that triethylsilyl chloride ( 15c ) was used instead of tert -butyldimethylsilyl chloride ( 15a ).

1H NMR (400 MHz, CDCl3) δ 2.25 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.51 (s, 2H), 0.98 (t, J = 8.0 Hz, 8H), 0.59 (q, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 4.3, 7.4, 42.1, 43.4, 73.2, 78.6, 87.7, 101.2.
1 H NMR (400 MHz, CDCl 3 ) δ 2.25 (t, J = 2.4 Hz, 1H), 3.48 (d, J = 2.4 Hz, 4H), 3.51 (s, 2H), 0.98 (t, J = 8.0 Hz , 8H), 0.59 (q, J = 8.0 Hz, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 4.3, 7.4, 42.1, 43.4, 73.2, 78.6, 87.7, 101.2.

<< 제조예Manufacturing example 4> N,N- 4> N, N- 다이프로파질Dipropazol ―N-(3-(-N- (3- ( 트라이페닐Triphenyl )) 프로프Prof -2-인일)아민 (3d)의 제조Preparation of 2-ynyl) amine (3d)

Figure 112010082856262-pat00026
Figure 112010082856262-pat00026

tert-부틸다이메틸실릴 클로라이드 (15a) 대신에 트라이페닐실릴 클로라이드 (15d)를 사용하는 것을 제외하고, 제조예 1과 동일한 방법으로 목적화합물 3d(30%)를 얻었다. The target compound 3d (30%) was obtained by the same method as Preparation Example 1, except that triphenylsilyl chloride ( 15d ) was used instead of tert -butyldimethylsilyl chloride ( 15a ).

1H NMR (400 MHz, CDCl3) δ 2.26 (t, J = 2.4 Hz, 1H), 3.54 (d, J = 2.4 Hz, 4H), 3.69 (s, 2H), 7.32-7.46 (m, 9H), 7.63-7.68 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 42.0, 43.3, 73.5, 78.5, 85.7, 105.3, 128.0, 130.0, 133.3, 135.5.
1 H NMR (400 MHz, CDCl 3 ) δ 2.26 (t, J = 2.4 Hz, 1H), 3.54 (d, J = 2.4 Hz, 4H), 3.69 (s, 2H), 7.32-7.46 (m, 9H) , 7.63-7.68 (m, 6 H); 13 C NMR (100 MHz, CDCl 3 ) δ 42.0, 43.3, 73.5, 78.5, 85.7, 105.3, 128.0, 130.0, 133.3, 135.5.

<< 실시예Example 1> 화합물 1a와 1b의 제조 1> Preparation of Compounds 1a and 1b

Figure 112010082856262-pat00027

Figure 112010082856262-pat00027

단계 1: 화합물 1a의 제조Step 1: Preparation of Compound 1a

상기 제조예 1에서 얻은 화합물 3a (4.42 g, 18.0 mmol)를 아세토나이트릴 (110 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요요드화구리 용액 (12.0 mL, 1.2 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (6.0 mL, 1.2 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (73.0 mL)에 녹인 아지도 화합물 4a (1.2 g, 6.0 mmol)를 넣고, 상온에서 3시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (3% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 1a (1.37 g, 51%)를 얻었다.Compound 3a (4.42 g, 18.0 mmol) obtained in Preparation Example 1 was dissolved in acetonitrile (110 mL), and dissolved in acetonitrile in 0.1 M copper iodide solution (12.0 mL, 1.2 mmol) and acetonitrile. 0.2 M triethylamine solution (6.0 mL, 1.2 mmol) was added. Azido compound 4a (1.2 g, 6.0 mmol) dissolved in acetonitrile (73.0 mL) was added to the reaction mixture, which was stirred for 3 hours at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (3% methanol / dichloromethane) was performed to give the title compound 1a (1.37 g, 51%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.10 (S, 6H), 0.94 (S, 9H), 1.43 (S, 9H), 2.06 (p, J = 6.4 Hz, 2H), 2.25 (t, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 3.44 (d, J = 2.0 Hz, 2H), 3.49 (s, 2H), 3.84 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.74 (brs, 1H) 7.57 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.6, 16.5, 26.1, 28.3, 30.7, 37.3, 41.9, 43.2, 47.5, 47.9, 73.2, 78.7, 79.5, 88.5, 101.0, 123.2, 144.7, 156.0.
1 H NMR (400 MHz, CDCl 3 ) δ 0.10 (S, 6H), 0.94 (S, 9H), 1.43 (S, 9H), 2.06 (p, J = 6.4 Hz, 2H), 2.25 (t, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 3.44 (d, J = 2.0 Hz, 2H), 3.49 (s, 2H), 3.84 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.74 (brs, 1 H) 7.57 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ −4.6, 16.5, 26.1, 28.3, 30.7, 37.3, 41.9, 43.2, 47.5, 47.9, 73.2, 78.7, 79.5, 88.5, 101.0, 123.2, 144.7, 156.0.

단계 2: 화합물 1b의 제조Step 2: Preparation of Compound 1b

상기 단계 1에서 얻은 1a (1.1 g, 2.47 mmol)에 20% 테트라플루오로아세트산/다이클로로메탄 용액 (175 ml)을 넣은 후 상온에서 1시간 교반시켰다. 반응물을 감압하에서 농축한 후 정제 과정 없이 액체인 목적화합물 1b (845 mg, 99%)을 얻었다.20% tetrafluoroacetic acid / dichloromethane solution (175 ml) was added to 1a (1.1 g, 2.47 mmol) obtained in step 1, followed by stirring at room temperature for 1 hour. The reaction was concentrated under reduced pressure to give the title compound 1b (845 mg, 99%) as a liquid without purification.

1H NMR (400 MHz, acetone-d 6) δ 0.10 (S, 6H), 0.94 (S, 9H), 2.29 (p, J = 6.4 Hz, 2H), 2.74 (t, J = 2.0 Hz, 1H), 3.40-3.48 (m, 4H), 3.50 (s, 2H), 3.80 (s, 2H), 4.54 (t, J = 6.8 Hz, 2H), 7.89 (s, 1H); MS (ESI) m/z 346.4 (M+H)+.
1 H NMR (400 MHz, acetone- d 6 ) δ 0.10 (S, 6H), 0.94 (S, 9H), 2.29 (p, J = 6.4 Hz, 2H), 2.74 (t, J = 2.0 Hz, 1H) , 3.40-3.48 (m, 4H), 3.50 (s, 2H), 3.80 (s, 2H), 4.54 (t, J = 6.8 Hz, 2H), 7.89 (s, 1H); MS (ESI) m / z 346.4 (M + H) + .

<< 실시예Example 2> 화합물 1c와 1d의 제조 2> Preparation of Compounds 1c and 1d

Figure 112010082856262-pat00028
Figure 112010082856262-pat00028

단계 1: 화합물 1c의 제조Step 1: Preparation of Compound 1c

화합물 3a 대신 상기 제조예 2에서 얻은 화합물 3b를 사용하는 것을 제외하고는 상기 실시예 1의 단계 1과 동일한 방법으로 목적화합물 1c(oil, 1.4 g, 48%)를 얻었다.A target compound 1c (oil, 1.4 g, 48%) was obtained by the same method as Step 1 of Example 1, except that compound 3b, which was obtained in Preparation Example 2, was used instead of compound 3a .

1H NMR (400 MHz, CDCl3) δ 1.07 (s, 18H), 1.08 (s, 3H), 1.43 (s, 9H), 2.08 (p, J = 6.8 Hz, 2H), 2.28 (t, J = 2.0 Hz, 1H), 3.13 (q, J = 6.8 Hz, 2H), 3.46 (d, J = 2.0 Hz, 2H), 3.53 (s, 2H), 3.87 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.76 (brs, 1H) 7.57 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 11.2, 18.6, 28.4, 30.7, 37.3, 42.0, 43.3, 47.6, 47.9, 73.2, 79.0, 79.5, 86.5, 102.0, 123.2, 145.0, 156.2.
1 H NMR (400 MHz, CDCl 3 ) δ 1.07 (s, 18H), 1.08 (s, 3H), 1.43 (s, 9H), 2.08 (p, J = 6.8 Hz, 2H), 2.28 (t, J = 2.0 Hz, 1H), 3.13 (q, J = 6.8 Hz, 2H), 3.46 (d, J = 2.0 Hz, 2H), 3.53 (s, 2H), 3.87 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.76 (brs, 1 H) 7.57 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 11.2, 18.6, 28.4, 30.7, 37.3, 42.0, 43.3, 47.6, 47.9, 73.2, 79.0, 79.5, 86.5, 102.0, 123.2, 145.0, 156.2.

단계 2: 화합물 1d의 제조Step 2: Preparation of Compound 1d

화합물 1a 대신 상기 단계 1에서 얻은 화합물 1c를 사용하는 것을 제외하고는 상기 실시예 1의 단계 2과 동일한 방법으로 목적화합물 1d(oil, 1.19 g, 99%)를 얻었다.A target compound 1d (oil, 1.19 g, 99%) was obtained by the same method as step 2 of Example 1, except that compound 1c, which was obtained in step 1, was used instead of compound 1a .

1H NMR (400 MHz, acetone) δ 0.10 (S, 6H), 0.94 (S, 9H), 2.20-2.40 (m, 2H), 2.74 (t, J = 2.0 Hz, 1H), 3.24-3.50 (m, 4H), 3.55 (s, 2H), 3.83 (s, 2H), 4.53 (t, J = 5.2 Hz, 2H), 7.86 (s, 1H); MS (ESI) m/z 388.5(M+H)+.
1 H NMR (400 MHz, acetone) δ 0.10 (S, 6H), 0.94 (S, 9H), 2.20-2.40 (m, 2H), 2.74 (t, J = 2.0 Hz, 1H), 3.24-3.50 (m , 4H), 3.55 (s, 2H), 3.83 (s, 2H), 4.53 (t, J = 5.2 Hz, 2H), 7.86 (s, 1H); MS (ESI) m / z 388.5 (M + H) + .

<< 실시예Example 3> 화합물 1e의 제조 3> Preparation of Compound 1e

Figure 112010082856262-pat00029

Figure 112010082856262-pat00029

화합물 4a 대신에 화합물 5a (1.1 g, 4.5 mmol)를 사용하는 것을 제외하고 상기 실시예 1의 단계 1과 동일한 방법으로 고체인 목적화합물 1e (77.5 mg, 12%)를 얻었다.Except for using compound 5a (1.1 g, 4.5 mmol) instead of compound 4a in the same manner as in Step 1 of Example 1 to obtain the target compound 1e (77.5 mg, 12%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.09 (s, 6H), 0.92 (s, 9H), 2.10 (p, J = 6.4 Hz, 2H), 2.29 (t, J = 2.4 Hz, 1H), 2.45 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H), 3.25 (q, J = 6.0 Hz, 2H), 3.47 (d, J = 2.4 Hz, 2H), 3.51 (s, 2H), 3.84 (s, 2H), 4.40 (t, J = 6.4 Hz, 2H), 7.02 (t, J = 5.6 Hz, 1H), 7.67 (s, 1H), 9.27 (brs, 1H); 13C NMR (100 MHz, CDCl3) δ -4.3, 16.4, 26.0, 29.8, 30.0, 30.9, 36.5, 41.4, 42.8, 47.5, 47.8, 74.0, 77.8, 89.3, 100.0, 123.9, 143.6, 173.0, 176.1.
1 H NMR (400 MHz, CDCl 3 ) δ 0.09 (s, 6H), 0.92 (s, 9H), 2.10 (p, J = 6.4 Hz, 2H), 2.29 (t, J = 2.4 Hz, 1H), 2.45 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H), 3.25 (q, J = 6.0 Hz, 2H), 3.47 (d, J = 2.4 Hz, 2H), 3.51 (s , 2H), 3.84 (s, 2H), 4.40 (t, J = 6.4 Hz, 2H), 7.02 (t, J = 5.6 Hz, 1H), 7.67 (s, 1H), 9.27 (brs, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ −4.3, 16.4, 26.0, 29.8, 30.0, 30.9, 36.5, 41.4, 42.8, 47.5, 47.8, 74.0, 77.8, 89.3, 100.0, 123.9, 143.6, 173.0, 176.1.

<< 실시예Example 4> 화합물 1f의 제조 4> Preparation of Compound 1f

Figure 112010082856262-pat00030
Figure 112010082856262-pat00030

화합물 4a 대신 화합물 5a를 사용하는 것을 제외하고 상기 실시예 2의 단계 1과 동일한 방법으로 고체인 목적화합물 1f(130 mg, 18%)를 얻었다.Except for using the compound 5a instead of compound 4a in the same manner as in Step 1 of Example 2 to obtain the target compound 1f (130 mg, 18%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.07 (s, 18H), 1.08 (s, 3H), 2.15 (p, J = 6.8 Hz, 2H), 2.31 (t, J = 2.0 Hz, 1H), 2.45 (t, J = 6.0 Hz, 2H), 2.63 (t, J = 5.6 Hz, 2H), 3.33 (q, J = 6.0 Hz, 2H), 3.58 (d, J = 2.0 Hz, 2H), 3.63 (s, 2H), 3.90 (s, 2H), 4.44 (t, J = 6.0 Hz, 2H), 6.35 (brs, 1H), 7.62 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 11.1, 18.6, 30.0 (2C), 30.9, 36.5, 41.4, 42.9, 47.6, 47.9, 74.1, 77.9, 87.4, 101.0, 124.0, 143.5, 173.1, 175.9.
1 H NMR (400 MHz, CDCl 3 ) δ 1.07 (s, 18H), 1.08 (s, 3H), 2.15 (p, J = 6.8 Hz, 2H), 2.31 (t, J = 2.0 Hz, 1H), 2.45 (t, J = 6.0 Hz, 2H), 2.63 (t, J = 5.6 Hz, 2H), 3.33 (q, J = 6.0 Hz, 2H), 3.58 (d, J = 2.0 Hz, 2H), 3.63 (s , 2H), 3.90 (s, 2H), 4.44 (t, J = 6.0 Hz, 2H), 6.35 (brs, 1H), 7.62 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 11.1, 18.6, 30.0 (2C), 30.9, 36.5, 41.4, 42.9, 47.6, 47.9, 74.1, 77.9, 87.4, 101.0, 124.0, 143.5, 173.1, 175.9.

<< 실시예Example 5> 화합물 1g와 1h의 제조 5> Preparation of Compound 1g and 1h

Figure 112010082856262-pat00031
Figure 112010082856262-pat00031

단계 1: 화합물 1g의 제조Step 1: Preparation of 1 g of Compound

화합물 4a 대신 화합물 5b를 사용하는 것을 제외하고, 상기 실시예 1의 단계 1과 동일한 방법으로 목적화합물 1g (560 mg, 55%)를 얻었다.Except for using the compound 5b instead of compound 4a in the same manner as in Step 1 of Example 1 to obtain the target compound 1g (560 mg, 55%).

1H NMR (400 MHz, CDCl3) δ 0.11 (s, 6H), 0.94 (s, 9H), 2.28 (t, J = 2.4 Hz, 1H), 3.45 (d, J = 2.4 Hz, 2H), 3.49 (s, 2H), 3.89 (s, 2H), 5.05 (s, 2H), 7.65 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.6, 16.5, 26.1, 27.9, 41.9, 43.2, 47.9, 51.6, 73.3, 78.8, 83.8, 88.6, 101.1, 124.2, 144.9, 165.2.
1 H NMR (400 MHz, CDCl 3 ) δ 0.11 (s, 6H), 0.94 (s, 9H), 2.28 (t, J = 2.4 Hz, 1H), 3.45 (d, J = 2.4 Hz, 2H), 3.49 (s, 2H), 3.89 (s, 2H), 5.05 (s, 2H), 7.65 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ −4.6, 16.5, 26.1, 27.9, 41.9, 43.2, 47.9, 51.6, 73.3, 78.8, 83.8, 88.6, 101.1, 124.2, 144.9, 165.2.

단계 2: 화합물 1h의 제조Step 2: Preparation of Compound 1h

상기 단계 1에서 얻은 화합물 1g (400 mg, 1 mmol)을 상온에서 20% 테트라플루오로아세트산/다이클로로메탄 용액 (70 ml)에 녹인 후 상온에서 1시간 동안 교반시켰다. 반응물을 감압하에서 농축한 후 다이클로로메탄에 녹이고, 포화 중탄산 나트륨 수용액으로 세척하였다. 수용액층을 다시 다이클로로메탄으로 추출하고 유기층을 무수 황산나트륨으로 탈수하고, 여과한 뒤 농축하였다. 정제 과정 없이 고체인 목적 화합물 1h (263 mg, 76%)를 얻었다.1 g (400 mg, 1 mmol) of the compound obtained in step 1 was dissolved in 20% tetrafluoroacetic acid / dichloromethane solution (70 ml) at room temperature, and then stirred at room temperature for 1 hour. The reaction was concentrated under reduced pressure and then dissolved in dichloromethane and washed with saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted again with dichloromethane and the organic layer was dehydrated with anhydrous sodium sulfate, filtered and concentrated. The desired compound 1h (263 mg, 76%) was obtained as a solid without purification.

1H NMR (400 MHz, CDCl3) δ0.13 (s, 6H), 0.93 (s, 9H), 2.69 (s, 1H), 4.06 (s, 2H), 4.10 (s, 2H), 4.50 (s, 2H), 5.14 (s, 2H), 8.15 (s, 1H) 13C NMR (100 MHz, CDCl3) δ-5.1, 16.4, 25.9, 41.3, 42.8, 47.2, 51.3, 71.5, 79.4, 92.7, 96.2, 128.4, 136.9, 169.2.
1 H NMR (400 MHz, CDCl 3 ) δ0.13 (s, 6H), 0.93 (s, 9H), 2.69 (s, 1H), 4.06 (s, 2H), 4.10 (s, 2H), 4.50 (s , 2H), 5.14 (s, 2H), 8.15 (s, 1H) 13 C NMR (100 MHz, CDCl 3 ) δ-5.1, 16.4, 25.9, 41.3, 42.8, 47.2, 51.3, 71.5, 79.4, 92.7, 96.2 , 128.4, 136.9, 169.2.

<< 실시예Example 6> 화합물 1i와 1j의 제조 6> Preparation of Compounds 1i and 1j

Figure 112010082856262-pat00032
Figure 112010082856262-pat00032

단계 1: 화합물 1i의 제조Step 1: Preparation of Compound 1i

화합물 4a 대신 화합물 5b를 사용하는 것을 제외하고, 상기 실시예 2의 단계 1과 동일한 방법으로 액체인 목적화합물 1i (580 mg, 51%)를 얻었다.A target compound 1i (580 mg, 51%) was obtained in the same manner as in Example 1, except that compound 5b was used instead of compound 4a .

1H NMR (400 MHz, CDCl3) δ 1.07 (S, 18H), 1.08 (s, 3H), 1,47 (s, 9H), 2.30 (t, J = 2.4 Hz, 1H), 3.47 (d, J= 2.4 Hz, 2H), 3.53 (s, 2H), 3.90 (s, 2H), 5.04 (s, 2H), 7.64 (s, 1H) 13C NMR (100 MHz, CDCl3) δ 11.2, 18.6, 27.9, 42.0, 43.2, 47.9, 51.5, 73.3, 79.1, 83.8, 86.5, 102.0, 124.2, 145.0, 165.1.
1 H NMR (400 MHz, CDCl 3 ) δ 1.07 (S, 18H), 1.08 (s, 3H), 1,47 (s, 9H), 2.30 (t, J = 2.4 Hz, 1H), 3.47 (d, J = 2.4 Hz, 2H), 3.53 (s, 2H), 3.90 (s, 2H), 5.04 (s, 2H), 7.64 (s, 1H) 13 C NMR (100 MHz, CDCl 3 ) δ 11.2, 18.6, 27.9, 42.0, 43.2, 47.9, 51.5, 73.3, 79.1, 83.8, 86.5, 102.0, 124.2, 145.0, 165.1.

단계 2: 화합물 1j의 제조Step 2: Preparation of Compound 1j

화합물 1g 대신 상기 단계 1에서 얻은 화합물 1i 를 사용하는 것을 제외하고, 상기 실시예 5의 단계 2와 동일한 방법으로 액체인 목적화합물 1j (294 mg, 76%)를 얻었다.A target compound 1j (294 mg, 76%) was obtained in the same manner as step 2 of Example 5, except that compound 1i obtained in step 1 was used instead of compound 1g .

1H NMR (400 MHz, CDCl3) δ 1.07 (m, 21H), 2.45 (s, 1H), 3.78 (s, 2H), 3.82 (s, 2H), 4.13 (s, 2H), 5.07 (s, 2H), 7.88 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 11.1, 18.5, 40.9, 42.3, 47.0, 51.9, 75.0, 76.3, 90.3 97.8, 126.3, 140.4, 169.7.
1 H NMR (400 MHz, CDCl 3 ) δ 1.07 (m, 21H), 2.45 (s, 1H), 3.78 (s, 2H), 3.82 (s, 2H), 4.13 (s, 2H), 5.07 (s, 2H), 7.88 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 11.1, 18.5, 40.9, 42.3, 47.0, 51.9, 75.0, 76.3, 90.3 97.8, 126.3, 140.4, 169.7.

본 발명은 상기 실시예 1-6에서 얻어진 새로운 삼중연결고리 화합물 1a-1j를 이용하여 세 가지 화합물을 도입하는 제조방법을 제공한다. 이를 위해 하기 열거된 아지도 화합물, 카르복실산 유도체 화합물, 아민 유도체 화합물을 사용하였다.The present invention provides a method for introducing three compounds using the new triple-linked compound 1a - 1j obtained in Example 1-6. For this purpose, the azido compounds, carboxylic acid derivative compounds, and amine derivative compounds listed below were used.

아지도Azido 화합물 compound

Figure 112010082856262-pat00033

Figure 112010082856262-pat00033

카르복실산Carboxylic acid 유도체 화합물 Derivative compounds

Figure 112010082856262-pat00034

Figure 112010082856262-pat00034

아민 유도체 화합물Amine derivative compounds

Figure 112010082856262-pat00035

Figure 112010082856262-pat00035

<< 실시예Example 7> 화합물 2a의 제조 7> Preparation of Compound 2a

Figure 112010082856262-pat00036
Figure 112010082856262-pat00036

단계 1: 화합물 7a의 제조Step 1: Preparation of Compound 7a

상기 실시예 1의 단계 2에서 얻은 화합물 1b (124.4 mg, 0.360 mmol)를 테트라하이드로퓨란 (4.5 mL)에 녹이고, 황산 구리 (7.50 mg, 0.030 mmol)와 소듐 아스코베이트 (Na-Asc., 11.9 mg, 0.060 mmol)을 가했다. 반응혼합물에 벤질 아자이드 6c (0.037 mL, 0.300 mmol)와 물 (4.5 mL)을 넣고, 12 시간 동안 상온에서 교반시킨 다음 물을 가한 뒤 다이클로로메탄으로 유기화합물을 추출하고 유기층을 무수 황산 나트륨으로 탈수한 다음 감압하에 농축한 후 컬럼 크로마토그래피 (4% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 7a (70 mg, 49%)를 얻었다. Compound 1b (124.4 mg, 0.360 mmol) obtained in step 2 of Example 1 was dissolved in tetrahydrofuran (4.5 mL), and copper sulfate (7.50 mg, 0.030 mmol) and sodium ascorbate (Na-Asc., 11.9 mg) , 0.060 mmol) was added. Benzyl azide 6c (0.037 mL, 0.300 mmol) and water (4.5 mL) were added to the reaction mixture, which was stirred for 12 hours at room temperature. After adding water, the organic compound was extracted with dichloromethane and the organic layer was dried with anhydrous sodium sulfate. After dehydration and concentration under reduced pressure, column chromatography (4% methanol / dichloromethane) was performed to obtain the target compound 7a (70 mg, 49%) as a liquid.

1H NMR (400 MHz, CDCl3) δ 0.11 (s, 6H), 0.95 (s, 9H), 2.01 (p, J = 6.8 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 3.38 (s, 2H), 3.83 (s, 2H), 3.84 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H), 7.49 (s, 1H), 7.58 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.6, 16.7, 26.3, 33.6, 38.7, 43.5, 47.8, 48.0, 48.1, 54.3, 89.0, 101.3, 123.1, 123.3, 128.2, 128.9, 129.3, 134.8, 144.8, 145.3.
1 H NMR (400 MHz, CDCl 3 ) δ 0.11 (s, 6H), 0.95 (s, 9H), 2.01 (p, J = 6.8 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 3.38 (s, 2H), 3.83 (s, 2H), 3.84 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H), 7.49 ( s, 1 H), 7.58 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ -4.6, 16.7, 26.3, 33.6, 38.7, 43.5, 47.8, 48.0, 48.1, 54.3, 89.0, 101.3, 123.1, 123.3, 128.2, 128.9, 129.3, 134.8, 144.8, 145.3.

단계 2: 화합물 8a의 제조Step 2: Preparation of Compound 8a

상기 단계 1에서 얻은 7a (60.5 mg, 0.126 mmol)를 테트라하이드로퓨란 (1.5 mL)에 녹인 후, 0℃에서 1 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.32 mL, 0.320 mmol)를 가한 다음 상온에서 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 컬럼 크로마토그래피 (3% 메탄올/다이클로로메탄)를 수행하여 액체 인 목적 화합물 8a (38.0 mg, 83%)를 얻었다. 7a (60.5 mg, 0.126 mmol) obtained in step 1 was dissolved in tetrahydrofuran (1.5 mL), and then 1M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.32 mL, 0.320 mmol) was added at 0 ° C. Then stirred at room temperature for 1 hour. The solution of the reaction was concentrated under reduced pressure and then subjected to column chromatography (3% methanol / dichloromethane) to give the title compound 8a (38.0 mg, 83%) as a liquid.

1H NMR (400 MHz, CDCl3) δ 2.01 (p, J = 6.8 Hz, 2H), 2.27 (t, J = 2.0 Hz, 1H), 2.71 (t, J = 6.8 Hz, 2H), 3.35 (d, J = 2.0 Hz, 2H), 3.84 (s, 2H), 3.85 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H), 7.52 (s, 1H), 7.61 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 33.5, 38.6, 42.0, 47.0, 47.6, 47.7, 54.1, 73.7, 78.4, 123.1, 123.2, 128.0, 128.7, 129.1,134.6, 144.2, 144.8.
1 H NMR (400 MHz, CDCl 3 ) δ 2.01 (p, J = 6.8 Hz, 2H), 2.27 (t, J = 2.0 Hz, 1H), 2.71 (t, J = 6.8 Hz, 2H), 3.35 (d , J = 2.0 Hz, 2H), 3.84 (s, 2H), 3.85 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H) , 7.52 (s, 1 H), 7.61 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 33.5, 38.6, 42.0, 47.0, 47.6, 47.7, 54.1, 73.7, 78.4, 123.1, 123.2, 128.0, 128.7, 129.1,134.6, 144.2, 144.8.

단계 3: 화합물 9a의 제조Step 3: Preparation of Compound 9a

상기 단계 2에서 얻은 화합물 8a (29.2 mg, 0.08 mmol)를 테트라하이드로퓨란 (1.2 mL)에 녹이고, 황산 구리 (2.0 mg, 0.008 mmol)와 소듐 아스코베이트 (Na-Asc., 3.17 mg, 0.016 mmol)을 가했다. 반응혼합물에 4-메톡시벤질 아자이드 6d (10.88 mg, 0.067 mmol)와 물 (1.2 mL)을 넣고, 12 시간 동안 상온에서 교반시킨 다음 물을 가한 뒤 다이클로로메탄으로 유기화합물을 추출하고 유기층을 무수 황산 나트륨으로 탈수하고 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 9a (12.0 mg, 34%)를 얻었다.Compound 8a (29.2 mg, 0.08 mmol) obtained in step 2 was dissolved in tetrahydrofuran (1.2 mL), copper sulfate (2.0 mg, 0.008 mmol) and sodium ascorbate (Na-Asc., 3.17 mg, 0.016 mmol) Added. 4-methoxybenzyl azide 6d (10.88 mg, 0.067 mmol) and water (1.2 mL) were added to the reaction mixture. The mixture was stirred at room temperature for 12 hours. After adding water, the organic compound was extracted with dichloromethane. After dehydration with anhydrous sodium sulfate and concentration, column chromatography (5% methanol / dichloromethane) was performed to obtain the target compound 9a (12.0 mg, 34%) as a liquid.

1H NMR (400 MHz, CDCl3) δ 2.02 (p, J = 6.8 Hz, 2H), 2.27 (t, J = 2.0 Hz, 1H), 2.71 (t, J = 6.8 Hz, 2H), 3.35 (d, J = 2.0 Hz, 2H), 3.84 (s, 2H), 3.85 (s, 2H), 4.45 (t, J= 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H), 7.52 (s, 1H), 7.61 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 33.5, 38.6, 42.0, 47.0, 47.6, 47.7, 54.1, 73.7, 78.4, 123.1, 123.2, 128.0, 128.7, 129.1, 134.6, 144.2, 144.8
1 H NMR (400 MHz, CDCl 3 ) δ 2.02 (p, J = 6.8 Hz, 2H), 2.27 (t, J = 2.0 Hz, 1H), 2.71 (t, J = 6.8 Hz, 2H), 3.35 (d , J = 2.0 Hz, 2H), 3.84 (s, 2H), 3.85 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.52 (s, 2H), 7.22-7.40 (m, 5H) , 7.52 (s, 1 H), 7.61 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 33.5, 38.6, 42.0, 47.0, 47.6, 47.7, 54.1, 73.7, 78.4, 123.1, 123.2, 128.0, 128.7, 129.1, 134.6, 144.2, 144.8

단계 4: 화합물 2a의 제조Step 4: Preparation of Compound 2a

상기 단계 3에서 얻은 화합물 9a (25.0 mg, 0.052 mmol)를 테트라하이드로 퓨란 (4.0 mL)에 녹이고, 테트라하이드로퓨란 (0.2 mL)에 녹인 페닐 아이소시아네이트 10a (7.46 mg, 0.063 mmol) 용액을 적가하였다. 상온에서 1시간 교반한 후, 용매를 감압하에 농축시켰다. 농축물의 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적화합물 2a (70 mg, 49%)를 얻었다.Compound 9a (25.0 mg, 0.052 mmol) obtained in step 3 was dissolved in tetrahydrofuran (4.0 mL), and a solution of phenyl isocyanate 10a (7.46 mg, 0.063 mmol) dissolved in tetrahydrofuran (0.2 mL) was added dropwise. After stirring for 1 hour at room temperature, the solvent was concentrated under reduced pressure. Column chromatography of the concentrate (5% methanol / dichloromethane) was carried out to afford the desired compound 2a (70 mg, 49%) as a liquid.

1H NMR (400 MHz, CDCl3) δ (s, 6H), 0.95 (s, 9H), 2.01 (p, J = 6.8 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 2.72 (t, J= 6.8 Hz, 2H), 3.69 (s, 2H), 3.70 (s, 2H), 3.82 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.45 (s, 2H), 5.52 (s, 2H), 6.86-6.92 (m, 2H),7.20-7.40 (m, 7H), 7.63 (s, 1H), 7.68 (s, 1H), 7.77 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 33.5, 38.6, 46.9, 47.0, 47.1, 47.6, 47.8, 53.7, 54.1, 55.3, 114.4, 123.5, 123.8, 124.0, 126.7, 128.0, 128.7, 129.1, 129.6, 134.7,143.7, 144.2, 144.3, 159.8.
1 H NMR (400 MHz, CDCl 3) δ (s, 6H), 0.95 (s, 9H), 2.01 (p, J = 6.8 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 2.72 (t , J = 6.8 Hz, 2H), 3.69 (s, 2H), 3.70 (s, 2H), 3.82 (s, 2H), 4.45 (t, J = 6.8 Hz, 2H), 5.45 (s, 2H), 5.52 (s, 2H), 6.86-6.92 (m, 2H), 7.20-7.40 (m, 7H), 7.63 (s, 1H), 7.68 (s, 1H), 7.77 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 33.5, 38.6, 46.9, 47.0, 47.1, 47.6, 47.8, 53.7, 54.1, 55.3, 114.4, 123.5, 123.8, 124.0, 126.7, 128.0, 128.7, 129.1, 129.6, 134.7 , 143.7, 144.2, 144.3, 159.8.

<< 실시예Example 8> 화합물 2b의 제조 8> Preparation of Compound 2b

Figure 112010082856262-pat00037
Figure 112010082856262-pat00037

단계 1: 화합물 7b의 제조Step 1: Preparation of Compound 7b

상기 제조예 1에서 얻은 화합물 1a (500 mg, 1.12 mmol)를 아세토나이트릴 (7 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (2.2 mL, 0.22 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (1.1 mL, 0.22 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (4.7 mL)에 녹인 벤질 아자이드 5c (179 mg, 1.34 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 7b (384 mg, 59%)를 얻었다.Compound 1a (500 mg, 1.12 mmol) obtained in Preparation Example 1 was dissolved in acetonitrile (7 mL), and 0.1 M copper iodide solution (2.2 mL, 0.22 mmol) dissolved in acetonitrile and 0.2 dissolved in acetonitrile M triethylamine solution (1.1 mL, 0.22 mmol) was added. Benzyl azide 5c (179 mg, 1.34 mmol) dissolved in acetonitrile (4.7 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was performed to give the title compound 7b (384 mg, 59%) as a liquid.

1H NMR (400 MHz, CDCl3) δ 0.12 (s, 6H), 0.95 (s, 9H), 1.44 (s, 9H), 2.10 (p, J = 6.0 Hz, 2H), 3.11 (q, J = 6.0 Hz, 2H), 3.70-4.00 (m, 4H), 4.40 (t, J = 6.0 Hz, 2H), 4.90 (brs, 1H), 5.52 (s, 2H), 7.20-7.40 (m, 5H), 7.53 (s, 1H), 7.65 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.5, 16.4, 26.1, 28.3, 30.6, 37.3, 43.3, 47.6 (3C), 54.1, 79.4, 88.9, 101.0, 123.0, 123.3, 128.0, 128.7, 129.0, 134.5, 144.7, 144.9, 156.0.
1 H NMR (400 MHz, CDCl 3 ) δ 0.12 (s, 6H), 0.95 (s, 9H), 1.44 (s, 9H), 2.10 (p, J = 6.0 Hz, 2H), 3.11 (q, J = 6.0 Hz, 2H), 3.70-4.00 (m, 4H), 4.40 (t, J = 6.0 Hz, 2H), 4.90 (brs, 1H), 5.52 (s, 2H), 7.20-7.40 (m, 5H), 7.53 (s, 1 H), 7.65 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ -4.5, 16.4, 26.1, 28.3, 30.6, 37.3, 43.3, 47.6 (3C), 54.1, 79.4, 88.9, 101.0, 123.0, 123.3, 128.0, 128.7, 129.0, 134.5 , 144.7, 144.9, 156.0.

단계 2: 화합물 8b의 제조Step 2: Preparation of Compound 8b

상기 단계 1에서 얻은 7b (348.3 mg, 0.6 mmol)를 테트라하이드로퓨란 (8.0 mL)에 녹인 후, 0℃에서 1 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (1.5 mL, 1.5 mmol)를 가한 다음 1시간 동안 교반시켰다. 반응혼합물을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 8b (260 mg, 93%)를 얻었다. 7b (348.3 mg, 0.6 mmol) obtained in step 1 was dissolved in tetrahydrofuran (8.0 mL), and then 1M solution of tetrabutylammonium fluoride / tetrahydrofuran (1.5 mL, 1.5 mmol) was added at 0 ° C. Stir for the next 1 hour. The reaction mixture was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to obtain the title compound 8b (260 mg, 93%) as a liquid.

1H NMR (400 MHz, CDCl3) δ 1.44 (s, 9H), 2.08 (p, J = 6.4 Hz, 2H), 2.30 (t, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 3.53 (d, J = 2.0 Hz, 2H), 3.85 (s, 2H), 3.86 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.90 (brs, 1H), 5.52 (s, 2H), 7.20-7.40 (m, 5H), 7.54 (s, 1H), 7.68 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 28.2, 30.6, 37.2, 42.0, 47.4, 47.6 (2C), 54.0, 73.7, 78.3, 79.3, 122.9, 123.3, 127.9, 128.6, 129.0, 134.6, 144.3, 144.7, 156.0.
1 H NMR (400 MHz, CDCl 3 ) δ 1.44 (s, 9H), 2.08 (p, J = 6.4 Hz, 2H), 2.30 (t, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz , 2H), 3.53 (d, J = 2.0 Hz, 2H), 3.85 (s, 2H), 3.86 (s, 2H), 4.40 (t, J = 6.8 Hz, 2H), 4.90 (brs, 1H), 5.52 (s, 2H), 7.20-7.40 (m, 5H), 7.54 (s, 1H), 7.68 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 28.2, 30.6, 37.2, 42.0, 47.4, 47.6 (2C), 54.0, 73.7, 78.3, 79.3, 122.9, 123.3, 127.9, 128.6, 129.0, 134.6, 144.3, 144.7, 156.0.

단계 3: 화합물 9b의 제조Step 3: Preparation of Compound 9b

상기 단계 2에서 얻은 화합물 8b (97 mg, 0.209 mmol)를 아세토나이트릴 (1.3 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.58 mL, 0.058 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.29 mL, 0.058 mmol)을 가했다. 반응혼합물에 아세토나이트릴(0.88 mL)에 녹인 아지도 화합물 6a (93.5 mg, 0.251 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 9b (142 mg, 81%)을 얻었다.Compound 8b (97 mg, 0.209 mmol) obtained in step 2 was dissolved in acetonitrile (1.3 mL), and 0.1 M copper iodide solution (0.58 mL, 0.058 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.29 mL, 0.058 mmol) was added. Azido compound 6a (93.5 mg, 0.251 mmol) dissolved in acetonitrile (0.88 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was carried out to give target compound 9b (142 mg, 81%) as a solid.

1H NMR (400 MHz, CDCl3) δδ 1.44 (s, 9H), 1.82 (s, 3H), 2.03 (s, 3H), 2.08 (s, 3H), 2.10 (s, 3H), 2.04-2.12 (m, 2H), 3.13 (q, J = 6.0 Hz, 2H), 3.63-3.74 (m, 4H), 3.77 (s, 2H), 4.03-4.06 (m, 1H), 4.17 (dd, J = 12.6, 1.6 Hz, 1H), 4,32 (dd, J = 12.6, 4.8 Hz, 1H), 4.42 (t, J = 6.0 Hz, 2H), 4.94 (brs, 1H), 5.26 (t, J = 9.6 Hz, 1H), 5.43 (t, J = 9.6 Hz, 1H), 5.47 (t, J = 9.6 Hz, 1H), 5.54 (s, 2H), 5.89 (d, J = 8.4 Hz, 1H), 7.20-7.40 (m, 5H), 7.73 (s, 1H), 7.85 (s, 1H), 8.04 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ 20.1, 20.4, 20.5, 20.7, 28.3, 30.5, 37.3, 47.0, 47.1, 47.6, 52.4, 54.1, 61.4, 67.6, 70.4, 72.5, 75.0, 79.4, 85.7, 122.4, 123.8, 124.1, 128.0, 128.7, 129.0, 134.6, 143.7, 144.2, 144.6, 156.0, 168.8, 169.3, 169.9, 170.5.
1 H NMR (400 MHz, CDCl 3 ) δδ 1.44 (s, 9H), 1.82 (s, 3H), 2.03 (s, 3H), 2.08 (s, 3H), 2.10 (s, 3H), 2.04-2.12 ( m, 2H), 3.13 (q, J = 6.0 Hz, 2H), 3.63-3.74 (m, 4H), 3.77 (s, 2H), 4.03-4.06 (m, 1H), 4.17 (dd, J = 12.6, 1.6 Hz, 1H), 4,32 (dd, J = 12.6, 4.8 Hz, 1H), 4.42 (t, J = 6.0 Hz, 2H), 4.94 (brs, 1H), 5.26 (t, J = 9.6 Hz, 1H), 5.43 (t, J = 9.6 Hz, 1H), 5.47 (t, J = 9.6 Hz, 1H), 5.54 (s, 2H), 5.89 (d, J = 8.4 Hz, 1H), 7.20-7.40 ( m, 5H), 7.73 (s, 1 H), 7.85 (s, 1 H), 8.04 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ 20.1, 20.4, 20.5, 20.7, 28.3, 30.5, 37.3, 47.0, 47.1, 47.6, 52.4, 54.1, 61.4, 67.6, 70.4, 72.5, 75.0, 79.4, 85.7, 122.4 , 123.8, 124.1, 128.0, 128.7, 129.0, 134.6, 143.7, 144.2, 144.6, 156.0, 168.8, 169.3, 169.9, 170.5.

단계 4: 화합물 9c의 제조Step 4: Preparation of Compound 9c

상기 단계 3에서 얻은 화합물 9b (111.4 mg, 0.133 mmol)를 다이클로로메탄 (9.3 mL)에 녹이고 20% 트라이플루오로아세트산/다이클로로메탄 (9.3 mL)를 가하였다. 반응혼합물을 1시간 교반하고 강압하에서 농축한 뒤 다이클로로메탄에 녹이고 포화 중탄산 나트륨 수용액으로 세척하였다. 물층을 다시 다이클로로메탄으로 추출하고 유기층을 합하여 무수 황산 나트륨으로 탈수한 뒤, 감압하에서 농축하여 고체인 목적화합물 9c (98.2 mg, 99%)을 얻었다.Compound 9b (111.4 mg, 0.133 mmol) obtained in step 3 was dissolved in dichloromethane (9.3 mL) and 20% trifluoroacetic acid / dichloromethane (9.3 mL) was added. The reaction mixture was stirred for 1 hour, concentrated under reduced pressure, dissolved in dichloromethane and washed with saturated aqueous sodium bicarbonate solution. The water layer was extracted again with dichloromethane, the organic layers were combined, dehydrated with anhydrous sodium sulfate, and concentrated under reduced pressure to obtain the title compound 9c (98.2 mg, 99%) as a solid.

MS (ESI): m/z = 738 [M+1]+.
MS (ESI): m / z = 738 [M + l] + .

단계 5: 화합물 2b의 제조Step 5: Preparation of Compound 2b

상기 단계 4에서 얻어진 화합물 9c (17.50 mg, 0.024 mmol)를 테트라하이드로퓨란 (1.1 mL)에 녹인 반응 용기에, 플로레신 아이소싸이오시아네이트 (Fluoroscein isothiocyanate, 10b, 9.24 mg, 0.024 mmol)의 용액을 적가하였다. 상온에서 2시간 교반한 후, 용매를 감압하에 농축시켰다. 정제과정 없이 고체인 목적화합물 2b (26 mg, 99%)를 얻었다.To a reaction vessel obtained by dissolving compound 9c (17.50 mg, 0.024 mmol) obtained in step 4 in tetrahydrofuran (1.1 mL), a solution of fluorescein isothiocyanate ( 10b , 9.24 mg, 0.024 mmol) was added dropwise. It was. After stirring for 2 hours at room temperature, the solvent was concentrated under reduced pressure. The desired compound 2b (26 mg, 99%) was obtained as a solid without purification.

MS (ESI): m/z = 1127 [M+1]+.
MS (ESI): m / z = 1127 [M + l] + .

<< 실시예Example 9> 화합물 2c의 제조 9> Preparation of Compound 2c

Figure 112010082856262-pat00038

Figure 112010082856262-pat00038

단계 1: 화합물 7c의 제조Step 1: Preparation of Compound 7c

상기 실시예 1의 단계 1에서 얻은 화합물 1a (200 mg, 0.449 mmol)를 아세토나이트릴 (2.8 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화구리 용액 (0.9 mL, 0.09 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.45 mL, 0.09 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (1.9 mL)에 녹인 아자이드 화합물 6a (201.0 mg, 0.539 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 7c (304 mg, 83%)를 얻었다.Compound 1a (200 mg, 0.449 mmol) obtained in step 1 of Example 1 was dissolved in acetonitrile (2.8 mL), and 0.1 M copper iodide solution (0.9 mL, 0.09 mmol) and acetonitrile dissolved in acetonitrile. To 0.2 M triethylamine solution (0.45 mL, 0.09 mmol) was added. The azide compound 6a (201.0 mg, 0.539 mmol) dissolved in acetonitrile (1.9 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was performed to give the title compound 7c (304 mg, 83%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.11 (s, 6H), 0.94 (s, 9H), 1.41 (s, 9H), 1.83 (s, 3H), 2.00 (s, 3H), 2.04 (s, 3H), 2.06 (s, 3H), 2.00-2.12 (m, 2H), 3.10 (q, J= 6.0 Hz, 2H), 3.37 (s, 2H), 3.81 (s, 2H), 3.83 (s, 2H), 3.96-4.20 (m, 1H), 4.12 (d, J = 12.4 Hz, 1H), 4.28 (dd, J = 12.8, 4.8 Hz, 1H), 4.38 (t, J = 6.8 Hz, 2H), 4.86 (brs, 1H), 5.18-5.24 (m, 1H), 5.30-5.42 (m, 2H), 5.80-5.88 (m, 1H), 7.62 (s, 1H), 7.80 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.5, 16.4, 20.1, 20.4, 20.5, 20.6, 26.1, 28.3, 30.6, 37.2, 43.2, 47.5, 47.6, 47.8, 61.4, 67.6, 70.3, 72.4, 75.0, 79.4, 85.7, 88.9, 100.9, 121.3, 123.1, 144.7, 145.5, 156.0, 168.8, 169.3, 169.8, 170.4.
1 H NMR (400 MHz, CDCl 3 ) δ 0.11 (s, 6H), 0.94 (s, 9H), 1.41 (s, 9H), 1.83 (s, 3H), 2.00 (s, 3H), 2.04 (s, 3H), 2.06 (s, 3H), 2.00-2.12 (m, 2H), 3.10 (q, J = 6.0 Hz, 2H), 3.37 (s, 2H), 3.81 (s, 2H), 3.83 (s, 2H ), 3.96-4.20 (m, 1H), 4.12 (d, J = 12.4 Hz, 1H), 4.28 (dd, J = 12.8, 4.8 Hz, 1H), 4.38 (t, J = 6.8 Hz, 2H), 4.86 (brs, 1 H), 5.18-5.24 (m, 1 H), 5.30-5.42 (m, 2 H), 5.80-5.88 (m, 1 H), 7.62 (s, 1 H), 7.80 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ -4.5, 16.4, 20.1, 20.4, 20.5, 20.6, 26.1, 28.3, 30.6, 37.2, 43.2, 47.5, 47.6, 47.8, 61.4, 67.6, 70.3, 72.4, 75.0, 79.4, 85.7, 88.9, 100.9, 121.3, 123.1, 144.7, 145.5, 156.0, 168.8, 169.3, 169.8, 170.4.

단계 2: 화합물 8c의 제조Step 2: Preparation of Compound 8c

상기 단계 1에서 얻은 7c (243.3 mg, 0.297 mmol)를 테트라하이드로퓨란 (4.0 mL)에 녹인 후, 0℃에서 1 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.74 mL, 0.743 mmol)을 가한 다음 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 8c (145.0 mg, 69%)를 얻었다. 7c (243.3 mg, 0.297 mmol) obtained in step 1 was dissolved in tetrahydrofuran (4.0 mL), and then 1M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.74 mL, 0.743 mmol) was added at 0 ° C. Stir for the next 1 hour. The solution of the reaction was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give target compound 8c (145.0 mg, 69%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.43 (s, 9H), 1.85 (s, 3H), 2.02 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 2.02-2.12 (m, 2H), 2.32 (d, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 3.34 (d, J = 2.0 Hz, 2H), 3.85 (s, 2H), 3.87 (s, 2H), 3.96-4.20 (m, 1H), 4.14 (dd, J = 12.8, 2.0 Hz, 1H), 4.30 (dd, J = 12.8, 4.8 Hz, 1H), 4.41 (t, J = 6.8 Hz, 2H), 4.82 (brs, 1H), 5.18-5.26 (m, 1H), 5.38-5.44 (m, 2H), 5.82-5.90 (m, 1H), 7.66 (s, 1H), 7.84 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 20.2, 20.49, 20.52, 20.7, 28.3, 30.7, 37.3, 42.0, 47.5, 47.6, 47.8, 61.5, 67.6, 70.4, 72.5, 73.9, 75.1, 78.3, 79.5, 85.7, 121.5, 123.3, 144.5, 145.3, 156.1, 168.9, 169.3, 169.9, 170.5.
1 H NMR (400 MHz, CDCl 3 ) δ 1.43 (s, 9H), 1.85 (s, 3H), 2.02 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 2.02-2.12 ( m, 2H), 2.32 (d, J = 2.0 Hz, 1H), 3.12 (q, J = 6.4 Hz, 2H), 3.34 (d, J = 2.0 Hz, 2H), 3.85 (s, 2H), 3.87 ( s, 2H), 3.96-4.20 (m, 1H), 4.14 (dd, J = 12.8, 2.0 Hz, 1H), 4.30 (dd, J = 12.8, 4.8 Hz, 1H), 4.41 (t, J = 6.8 Hz , 2H), 4.82 (brs, 1H), 5.18-5.26 (m, 1H), 5.38-5.44 (m, 2H), 5.82-5.90 (m, 1H), 7.66 (s, 1H), 7.84 (s, 1H ); 13 C NMR (100 MHz, CDCl 3 ) δ 20.2, 20.49, 20.52, 20.7, 28.3, 30.7, 37.3, 42.0, 47.5, 47.6, 47.8, 61.5, 67.6, 70.4, 72.5, 73.9, 75.1, 78.3, 79.5, 85.7 , 121.5, 123.3, 144.5, 145.3, 156.1, 168.9, 169.3, 169.9, 170.5.

단계 3: 화합물 9d의 제조Step 3: Preparation of Compound 9d

상기 단계 2에서 얻어진 화합물 8c (100 mg, 0.142 mmol)를 아세토나이트릴 (0.88 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화구리 용액 (0.28 mL, 0.028 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.14 mL, 0.028 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.6 mL)에 녹인 아자이드 화합물 6e (86.4 mg, 0.17 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 9d (112.1 mg, 65%)을 얻었다.Compound 8c (100 mg, 0.142 mmol) obtained in step 2 was dissolved in acetonitrile (0.88 mL), and 0.1 M copper iodide solution (0.28 mL, 0.028 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.14 mL, 0.028 mmol) was added. The azide compound 6e (86.4 mg, 0.17 mmol) dissolved in acetonitrile (0.6 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was performed to give the desired compound 9d (112.1 mg, 65%) as a solid.

1H NMR (400 MHz, CDCl3) δδ 1.43 (s, 9H), 1.47 (s, 9H), 1.83 (s, 3H), 2.02 (s, 3H), 2.07 (s, 3H), 2.08 (s, 3H), 1.92-2.22 (m, 6H), 2.31-2.38 (m, 2H), 3.11-3.16 (m, 2H), 3.17-3.24 (m, 2H), 3.62-3.76 (m, 4H), 3.77 (s, 2H), 3.39-4.10 (m, 1H), 4.14-4.17 (m, 1H), 4,21 (t, J = 6.0 Hz, 2H), 4.28-4.40 (m, 7H), 4.98 (brs, 1H), 5.26 (t, J = 9.6 Hz, 1H), 5.43 (t, J = 9.6 Hz, 1H), 5.48 (t, J = 9.6 Hz, 1H), 5.88 (d, J = 8.4 Hz, 1H), 5.90 (brs, 1H), 6.81 (brs, 1H), 7.28-7.32 (m, 2H), 7.37-7.41 (m, 2H), 7.59-7.62 (m, 2H), 7.75 (d, J = 7.6 Hz, 2H), 7.84 (s, 1H), 7.90 (s, 1H), 8.05 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ 20.0, 20.40, 20.41, 20.6, 27.9, 28.2, 28.5, 29.5, 29.8, 30.5, 32.4, 36.2, 37.2, 46.8, 47.0, 47.6, 54.0, 61.4, 66.8, 67.5, 70.3, 72.4, 74.9, 79.3, 82.2, 85.6, 119.8, 122.5, 124.1, 124.4, 125.0, 125.1, 126.9, 127.6, 141.1, 143.6, 143.8, 144.6, 156.0, 156.3, 168.7, 169.2, 169.8, 170.4, 171.1, 172.6.
1 H NMR (400 MHz, CDCl 3 ) δδ 1.43 (s, 9H), 1.47 (s, 9H), 1.83 (s, 3H), 2.02 (s, 3H), 2.07 (s, 3H), 2.08 (s, 3H), 1.92-2.22 (m, 6H), 2.31-2.38 (m, 2H), 3.11-3.16 (m, 2H), 3.17-3.24 (m, 2H), 3.62-3.76 (m, 4H), 3.77 ( s, 2H), 3.39-4.10 (m, 1H), 4.14-4.17 (m, 1H), 4,21 (t, J = 6.0 Hz, 2H), 4.28-4.40 (m, 7H), 4.98 (brs, 1H), 5.26 (t, J = 9.6 Hz, 1H), 5.43 (t, J = 9.6 Hz, 1H), 5.48 (t, J = 9.6 Hz, 1H), 5.88 (d, J = 8.4 Hz, 1H) , 5.90 (brs, 1H), 6.81 (brs, 1H), 7.28-7.32 (m, 2H), 7.37-7.41 (m, 2H), 7.59-7.62 (m, 2H), 7.75 (d, J = 7.6 Hz , 2H), 7.84 (s, 1 H), 7.90 (s, 1 H), 8.05 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ 20.0, 20.40, 20.41, 20.6, 27.9, 28.2, 28.5, 29.5, 29.8, 30.5, 32.4, 36.2, 37.2, 46.8, 47.0, 47.6, 54.0, 61.4, 66.8, 67.5 , 70.3, 72.4, 74.9, 79.3, 82.2, 85.6, 119.8, 122.5, 124.1, 124.4, 125.0, 125.1, 126.9, 127.6, 141.1, 143.6, 143.8, 144.6, 156.0, 156.3, 168.7, 169.2, 169.8, 170.4, 171.1 , 172.6.

단계 4: 화합물 9e의 제조Step 4: Preparation of Compound 9e

상기 단계 3에서 얻은 9d (91.3 mg, 0.075 mmol)를 20% 트라이플루오로아세트산/다이클로로메탄 (5.3 mL)에 넣은 후, 상온에서 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 다이클로로메탄으로 녹였다. 유기용액을 포화 중탄산 나트륨 수용액으로 세척하고, 수용액층을 다시 다이클로로메탄으로 추출한 다음 무수 황산 나트륨으로 탈수하고 감압하에 농축시켜 정제 과정 없이 고체인 목적 화합물 9e (91 mg, 100%)를 얻었다. 9d (91.3 mg, 0.075 mmol) obtained in step 3 was added to 20% trifluoroacetic acid / dichloromethane (5.3 mL), followed by stirring at room temperature for 1 hour. The solution of the reaction was concentrated under reduced pressure and then dissolved in dichloromethane. The organic solution was washed with saturated aqueous sodium bicarbonate solution, the aqueous layer was extracted again with dichloromethane, dehydrated with anhydrous sodium sulfate and concentrated under reduced pressure to give the title compound 9e (91 mg, 100%) as a solid without purification.

MS (ESI): m/z = 1078 [M+Na]+.
MS (ESI): m / z = 1078 [M + Na] + .

단계 5: 화합물 2c의 제조Step 5: Preparation of Compound 2c

상기 단계 4에서 얻어진 화합물 9e (25.50 mg, 0.0242 mmol)와 화합물 10c (13.53 mg, 0.0242 mmol)를 0.1 M 탄산 나트륨 수용액에 녹인 후 상온에서 20시간 동안 교반시켰다. 감압하에 물을 제거한 후, 분리정제 없이 고체인 목적화합물 9d (36.1 mg, 99%)를 얻었다.Compound 9e (25.50 mg, 0.0242 mmol) and compound 10c (13.53 mg, 0.0242 mmol) obtained in step 4 were dissolved in 0.1 M aqueous sodium carbonate solution and stirred at room temperature for 20 hours. After removing water under reduced pressure, the title compound 9d (36.1 mg, 99%) was obtained as a solid without separation purification.

MS (ESI): m/z = 1507 [M+H]+.
MS (ESI): m / z = 1507 [M + H] + .

<< 실시예Example 10> 화합물 2d의 제조 10> Preparation of Compound 2d

Figure 112010082856262-pat00039

Figure 112010082856262-pat00039

단계 1: 화합물 11a의 제조Step 1: Preparation of Compound 11a

N-(t-부톡시카보닐)-L-페닐알라닌 (10d, 69.85 mg, 0.263 mmol)를 다이클로로메탄 (5 mL)에 녹인 후, 1-하이드록시벤조트리아졸 (HOBt, 53.4 mg, 0.395 mmol)과 N,N,N',N'-테트라메틸-O-(벤조트리아졸-1-일)유로늄 테트라플루오로보레이트 (TBTU, 126.8 mg, 0.395 mmol)을 가하였다. 반응물에 다이클로로메탄 (1.6 mL)에 녹인 화합물 1b (91 mg, 0.263 mmol)와 다이아이소프로필에틸아민 (0.13 mL, 0.79 mmol)을 적가한 후 상온에서 1시간 교반시켰다. 포화 중탄산 나트륨으로 반응물을 세척하고 다시 0.1 M 염산 수용액으로 세척한 다음 무수 황산 나트륨으로 탈수한 뒤 농축하고 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 11a (129 mg, 83%)를 얻었다.N- ( t -butoxycarbonyl) -L-phenylalanine ( 10d , 69.85 mg, 0.263 mmol) was dissolved in dichloromethane (5 mL) and then 1-hydroxybenzotriazole (HOBt, 53.4 mg, 0.395 mmol ) And N, N, N ', N'-tetramethyl-O- (benzotriazol-1-yl) uronium tetrafluoroborate (TBTU, 126.8 mg, 0.395 mmol) were added. Compound 1b (91 mg, 0.263 mmol) and diisopropylethylamine (0.13 mL, 0.79 mmol) dissolved in dichloromethane (1.6 mL) were added dropwise to the reaction, followed by stirring at room temperature for 1 hour. The reaction was washed with saturated sodium bicarbonate, washed again with 0.1 M aqueous hydrochloric acid solution, dehydrated with anhydrous sodium sulfate, concentrated and subjected to column chromatography (5% methanol / dichloromethane) to give the target compound 11a as a liquid (129 mg, 83%).

1H NMR (400 MHz, CDCl3) δδ 0.12 (s, 6H), 0.95 (s, 9H), 1.41 (s, 9H), 1.98 (p, J = 6.8 Hz, 2H), 2.26 (t, J = 2.4 Hz, 1H), 3.00-3.16 (m, 3H), 3.20-3.28 (m, 1H), 3.45 (d, J = 2.4 Hz, 2H), 3.50 (s, 2H), 3.84 (s, 2H), 4.14-4.24 (m, 2H), 4.26-4.38 (m, 1H), 5.09 (d, J = 6.8 Hz, 1H), 6.28 ( t, J = 6.0 Hz, 1H), 7.20-7.32 (m, 5H), 7.54 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ -4.4, 16.6, 26.4, 28.4, 30.1, 36.2, 38.6, 42.0, 43.4, 47.3, 48.1, 56.3, 73.4, 78.9, 80.3, 88.7, 101.2, 123.3, 127.2, 128.9, 129.4, 136.8, 144.9, 155.4, 171.8.
1 H NMR (400 MHz, CDCl 3 ) δδ 0.12 (s, 6H), 0.95 (s, 9H), 1.41 (s, 9H), 1.98 (p, J = 6.8 Hz, 2H), 2.26 (t, J = 2.4 Hz, 1H), 3.00-3.16 (m, 3H), 3.20-3.28 (m, 1H), 3.45 (d, J = 2.4 Hz, 2H), 3.50 (s, 2H), 3.84 (s, 2H), 4.14-4.24 (m, 2H), 4.26-4.38 (m, 1H), 5.09 (d, J = 6.8 Hz, 1H), 6.28 (t, J = 6.0 Hz, 1H), 7.20-7.32 (m, 5H) , 7.54 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ -4.4, 16.6, 26.4, 28.4, 30.1, 36.2, 38.6, 42.0, 43.4, 47.3, 48.1, 56.3, 73.4, 78.9, 80.3, 88.7, 101.2, 123.3, 127.2, 128.9, 129.4, 136.8, 144.9, 155.4, 171.8.

단계 2: 화합물 12a의 제조Step 2: Preparation of Compound 12a

상기 단계 1에서 얻은 화합물 11a (99.6 mg, 0.168 mmol)를 아세토나이트릴 (1.0 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화구리 용액 (0.34 mL, 0.034 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.17 mL, 0.034 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.6 mL)에 녹인 벤질 아자이드 6c (24.6 mg, 0.185 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (4% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 12a (75 mg, 61%)을 얻었다.Compound 11a (99.6 mg, 0.168 mmol) obtained in step 1 was dissolved in acetonitrile (1.0 mL), and 0.1 M copper iodide solution (0.34 mL, 0.034 mmol) dissolved in acetonitrile and 0.2 M in acetonitrile. Triethylamine solution (0.17 mL, 0.034 mmol) was added. Benzyl azide 6c (24.6 mg, 0.185 mmol) dissolved in acetonitrile (0.6 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then subjected to column chromatography (4% methanol / dichloromethane) to give the title compound 12a (75 mg, 61%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 0.12 (s, 6H), 0.95 (s, 9H), 1.40 (s, 9H), 1.98 (p, J = 6.4 Hz, 2H), 3.00-3.10 (m, 3H), 3.14-3.24 (m, 1H), 3.38 (s, 2H), 3.81 (s, 2H), 3.84 (s, 2H), 4.12-4.23 (m, 2H), 4.32-4.36 (m, 1H), 5.09 (d, J = 7.6 Hz, 1H), 5.51 (s, 2H), 6.36 (t, J = 6.0 Hz, 1H), 7.18-7.40 (m, 10H), 7.50 (s, 1H), 7.59 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ -4.5, 16.5, 26.1, 28.2, 29.7, 36.3, 38.4, 43.5, 47.0, 47.5, 48.1, 54.2, 56.1, 80.2, 88.9, 101.1, 122.9, 123.5, 127.0, 128.1, 128.7 (2C), 129.1, 129.3, 134.6, 136.7, 144.5, 145.1, 155.4, 171.7.
1 H NMR (400 MHz, CDCl 3 ) δδ 0.12 (s, 6H), 0.95 (s, 9H), 1.40 (s, 9H), 1.98 (p, J = 6.4 Hz, 2H), 3.00-3.10 (m, 3H), 3.14-3.24 (m, 1H), 3.38 (s, 2H), 3.81 (s, 2H), 3.84 (s, 2H), 4.12-4.23 (m, 2H), 4.32-4.36 (m, 1H) , 5.09 (d, J = 7.6 Hz, 1H), 5.51 (s, 2H), 6.36 (t, J = 6.0 Hz, 1H), 7.18-7.40 (m, 10H), 7.50 (s, 1H), 7.59 ( s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ -4.5, 16.5, 26.1, 28.2, 29.7, 36.3, 38.4, 43.5, 47.0, 47.5, 48.1, 54.2, 56.1, 80.2, 88.9, 101.1, 122.9, 123.5, 127.0, 128.1, 128.7 (2C), 129.1, 129.3, 134.6, 136.7, 144.5, 145.1, 155.4, 171.7.

단계 3: 화합물 13a의 제조Step 3: Preparation of Compound 13a

상기 단계 2에서 얻은 12a (70 mg, 0.096 mmol)를 테트라하이드로퓨란 (1.2 mL)에 녹인 후, 0℃에서 1.0 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.24 mL, 0.24 mmol)를 가한 다음 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 13a (53.8 mg, 91%)를 얻었다. 12a (70 mg, 0.096 mmol) obtained in step 2 was dissolved in tetrahydrofuran (1.2 mL), and then 1.0M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.24 mL, 0.24 mmol) was added at 0 ° C. Stir for the next 1 hour. The solution of the reaction was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give the title compound 13a (53.8 mg, 91%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 1.40 (s, 9H), 2.00 (p, J = 6.4 Hz, 2H), 2.27 (t, J = 2.4 Hz, 1H), 3.00-3.10 (m, 3H), 3.18-3.24 (m, 1H), 3.35 (d, J = 2.4 Hz, 2H), 3.81 (s, 2H), 3.84 (s, 2H), 4.10-4.23 (m, 2H), 4.30-4.38 (m, 1H), 5.07 (brs, 1H), 5.52 (s, 2H), 6.27 (t, J = 6.0 Hz, 1H), 7.20-7.40 (m, 10H), 7.52 (s, 1H), 7.59 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ 28.2, 29.8, 36.1, 38.4, 42.2, 47.0, 47.6, 47.8, 54.1, 56.1, 80.3, 73.7, 78.4, 123.0, 123.6, 127.0, 128.0, 128.7 (2C), 129.1, 129.3, 134.6, 136.6, 144.4, 144.9, 155.4, 171.7.
1 H NMR (400 MHz, CDCl 3 ) δδ 1.40 (s, 9H), 2.00 (p, J = 6.4 Hz, 2H), 2.27 (t, J = 2.4 Hz, 1H), 3.00-3.10 (m, 3H) , 3.18-3.24 (m, 1H), 3.35 (d, J = 2.4 Hz, 2H), 3.81 (s, 2H), 3.84 (s, 2H), 4.10-4.23 (m, 2H), 4.30-4.38 (m , 1H), 5.07 (brs, 1H), 5.52 (s, 2H), 6.27 (t, J = 6.0 Hz, 1H), 7.20-7.40 (m, 10H), 7.52 (s, 1H), 7.59 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δδ 28.2, 29.8, 36.1, 38.4, 42.2, 47.0, 47.6, 47.8, 54.1, 56.1, 80.3, 73.7, 78.4, 123.0, 123.6, 127.0, 128.0, 128.7 (2C), 129.1, 129.3, 134.6, 136.6, 144.4, 144.9, 155.4, 171.7.

단계 4: 화합물 2c의 제조Step 4: Preparation of Compound 2c

상기 단계 3에서 얻은 화합물 13a (46 mg, 0.075 mmol)을 아세토나이트릴 (0.5 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.15 mL, 0.015 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.075 mL, 0.015 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.32 mL)에 녹인 아지도 화합물 6b (19.96 mg, 0.09 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 반응혼합물을 감압하에 농축시킨 후 컬럼 크로마토그래피 (6% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 2c (51.8 mg, 83%)을 얻었다.Compound 13a (46 mg, 0.075 mmol) obtained in step 3 was dissolved in acetonitrile (0.5 mL), and 0.1 M copper iodide solution (0.15 mL, 0.015 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.075 mL, 0.015 mmol) was added. Azido compound 6b (19.96 mg, 0.09 mmol) dissolved in acetonitrile (0.32 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The reaction mixture was concentrated under reduced pressure and then subjected to column chromatography (6% methanol / dichloromethane) to obtain the target compound 2c (51.8 mg, 83%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 1.39 (s, 9H), 2.01 (p, J = 6.4 Hz, 2H), 2.98-3.10 (m, 3H), 3.12-3.24 (m, 1H), 3.61-3.76 (m, 16H), 3.88 (t, J = 4.8 Hz, 2H), 4.08-4.30 (m, 2H), 4.30-4.42 (m, 1H), 4.53 (t, J = 5.2 Hz, 2H), 4.54 (dt, J = 48.0, 4.0 Hz, 2H), 5.21 (brs, 1H), 5.53 (s, 2H), 6.57 (t, J = 6.0 Hz, 1H), 7.18-7.40 (m, 10H), 7.71 (s, 1H), 7.74 (s, 1H), 7.87 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ 28.2, 29.5, 36.0, 38.5, 46.9, 47.0, 47.1, 47.2, 50.2, 54.1, 56.0, 69.4, 70.3 (d, J = 19.8Hz, 1C), 70.48, 70.50, 70.54, 70.7, 80.1, 83.1 (d, J= 168 Hz, 1C) 123.7, 124.5, 124.7, 126.9, 127.9, 128.6 (2C), 129.1, 129.3, 134.7, 136.7, 143.7, 143.8, 144.3, 155.3, 171.8.
1 H NMR (400 MHz, CDCl 3 ) δδ 1.39 (s, 9H), 2.01 (p, J = 6.4 Hz, 2H), 2.98-3.10 (m, 3H), 3.12-3.24 (m, 1H), 3.61- 3.76 (m, 16H), 3.88 (t, J = 4.8 Hz, 2H), 4.08-4.30 (m, 2H), 4.30-4.42 (m, 1H), 4.53 (t, J = 5.2 Hz, 2H), 4.54 (dt, J = 48.0, 4.0 Hz, 2H), 5.21 (brs, 1H), 5.53 (s, 2H), 6.57 (t, J = 6.0 Hz, 1H), 7.18-7.40 (m, 10H), 7.71 ( s, 1 H), 7.74 (s, 1 H), 7.87 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ 28.2, 29.5, 36.0, 38.5, 46.9, 47.0, 47.1, 47.2, 50.2, 54.1, 56.0, 69.4, 70.3 (d, J = 19.8 Hz, 1C), 70.48, 70.50 , 70.54, 70.7, 80.1, 83.1 (d, J = 168 Hz, 1C) 123.7, 124.5, 124.7, 126.9, 127.9, 128.6 (2C), 129.1, 129.3, 134.7, 136.7, 143.7, 143.8, 144.3, 155.3, 171.8 .

<< 실시예Example 11> 화합물 2e의 제조 11> Preparation of Compound 2e

Figure 112010082856262-pat00040
Figure 112010082856262-pat00040

단계 1: 화합물 11b의 제조Step 1: Preparation of Compound 11b

상기 실시예 1의 단계 2에서 얻은 화합물 1b (100 mg, 0.289 mmol)를 테트라하이드로퓨란 (2 mL)에 녹인 용액에, 페닐 아이소시아네이트 10a (37.7 mg, 0.317 mmol)를 녹인 테트라하이드로퓨란 용액 (1 mL)을 적가하였다. 상온에서 1시간 교반한 후, 용매를 감압하에 농축시켰다. 농축물의 컬럼 크로마토그래피 (80% 에틸아세테이트/n-헥산)를 수행하여 액체인 목적화합물 11b (73.7 mg, 55%)을 얻었다.Tetrahydrofuran solution in which 1b (100 mg, 0.289 mmol) obtained in step 2 of Example 1 was dissolved in tetrahydrofuran (2 mL), and phenyl isocyanate 10a (37.7 mg, 0.317 mmol) was dissolved (1 mL) was added dropwise. After stirring for 1 hour at room temperature, the solvent was concentrated under reduced pressure. Column chromatography (80% ethyl acetate / n -hexane) of the concentrate was carried out to obtain the title compound 11b (73.7 mg, 55%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 0.10 (s, 6H), 0.94 (s, 9H), 2.14 (p, J = 6.8 Hz, 2H), 2.24 (t, J = 2.0 Hz, 1H), 3.30 (q, J = 6.0 Hz, 2H), 3.43 (d, J = 2.0 Hz, 2H), 3.46 (s, 2H), 3.83 (s, 2H), 4.46 (t, J = 6.8 Hz, 2H), 5.77 (t, J = 6.0 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 7.22-7.30 (m, 2H), 7.38-7.42 (m, 2H), 7.46 (s, 1H), 7.59 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ -4.4, 16.7, 26.3, 30.9, 37.2, 42.1, 43.4, 47.9, 48.3, 73.7, 78.6, 89.0, 101.0, 120.1, 123.1, 123.6, 129.2, 139.4, 144.9, 156.4.
1 H NMR (400 MHz, CDCl 3 ) δδ 0.10 (s, 6H), 0.94 (s, 9H), 2.14 (p, J = 6.8 Hz, 2H), 2.24 (t, J = 2.0 Hz, 1H), 3.30 (q, J = 6.0 Hz, 2H), 3.43 (d, J = 2.0 Hz, 2H), 3.46 (s, 2H), 3.83 (s, 2H), 4.46 (t, J = 6.8 Hz, 2H), 5.77 (t, J = 6.0 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 7.22-7.30 (m, 2H), 7.38-7.42 (m, 2H), 7.46 (s, 1H), 7.59 ( s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ -4.4, 16.7, 26.3, 30.9, 37.2, 42.1, 43.4, 47.9, 48.3, 73.7, 78.6, 89.0, 101.0, 120.1, 123.1, 123.6, 129.2, 139.4, 144.9, 156.4.

단계 2: 화합물 12b의 제조Step 2: Preparation of Compound 12b

상기 단계 1에서 얻은 화합물 11b (64 mg, 0.138 mmol)를 아세토나이트릴 (0.8 mL)에 녹이고, 아세토나이트릴에 녹인 요오드화구리 용액 (0.1 M, 0.27 mL, 0.027 mmol)와 아세토나이트릴에 녹인 트라이에틸아민 용액 (0.2 M, 0.13 mL, 0.027 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.6 mL)에 녹인 벤질 아자이드 6c (0.019 mL, 0.152 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 12b (67 mg, 81%)을 얻었다.Compound 11b (64 mg, 0.138 mmol) obtained in step 1 was dissolved in acetonitrile (0.8 mL), and copper iodide solution (0.1 M, 0.27 mL, 0.027 mmol) dissolved in acetonitrile was dissolved in acetonitrile. Ethylamine solution (0.2 M, 0.13 mL, 0.027 mmol) was added. Benzyl azide 6c (0.019 mL, 0.152 mmol) dissolved in acetonitrile (0.6 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was carried out to give target compound 12b (67 mg, 81%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 0.12 (s, 6H), 0.94 (s, 9H), 2.19 (p, J = 6.4 Hz, 2H), 3.14 (q, J = 6.0 Hz, 2H), 3.41 (s, 2H), 3.75 (s, 2H), 3.86 (s, 2H), 4.45 (t, J = 6.4 Hz, 2H), 5.51 (s, 2H), 6.08 (t, J = 6.0 Hz, 1H), 7.0 (t, J = 7.2 Hz, 1H), 7.24-7.27 (m, 4H), 7.37-7.42 (m, 5H), 7.47 (s, 1H), 7.60 (s, 1H), 7.68 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ -4.3, 16.7, 26.3, 30.0, 36.9, 44.0, 46.9, 47.8, 49.1, 54.5, 89.4, 100.8, 119.6, 128.3, 129.1, 129.3, 129.4, 134.4, 139.7, 145.2, 145.3, 156.4
1 H NMR (400 MHz, CDCl 3 ) δδ 0.12 (s, 6H), 0.94 (s, 9H), 2.19 (p, J = 6.4 Hz, 2H), 3.14 (q, J = 6.0 Hz, 2H), 3.41 (s, 2H), 3.75 (s, 2H), 3.86 (s, 2H), 4.45 (t, J = 6.4 Hz, 2H), 5.51 (s, 2H), 6.08 (t, J = 6.0 Hz, 1H) , 7.0 (t, J = 7.2 Hz, 1H), 7.24-7.27 (m, 4H), 7.37-7.42 (m, 5H), 7.47 (s, 1H), 7.60 (s, 1H), 7.68 (s, 1H ); 13 C NMR (100 MHz, CDCl 3 ) δδ -4.3, 16.7, 26.3, 30.0, 36.9, 44.0, 46.9, 47.8, 49.1, 54.5, 89.4, 100.8, 119.6, 128.3, 129.1, 129.3, 129.4, 134.4, 139.7, 145.2, 145.3, 156.4

단계 3: 화합물 13b의 제조Step 3: Preparation of Compound 13b

상기 단계 2에서 얻은 12b (67 mg, 0.11 mmol)를 테트라하이드로퓨란 (2 mL)에 녹인 후, 0℃에서 1.0 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.28 mL, 0.28 mmol)를 가한 다음 1시간 동안 교반시켰다. 반응혼합물을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 13b (50.5 mg, 95%)를 얻었다. 12b (67 mg, 0.11 mmol) obtained in step 2 was dissolved in tetrahydrofuran (2 mL), and then 1.0 M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.28 mL, 0.28 mmol) was added at 0 ° C. Stir for the next 1 hour. The reaction mixture was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to obtain the target compound 13b (50.5 mg, 95%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 2.14 (p, J = 6.4 Hz, 2H), 2.26 (t, J = 2.0 Hz, 1H), 3.17 (q, J = 6.0 Hz, 2H), 3.35 (d, J = 2.0 Hz, 2H), 3.77 (s, 2H), 3.84 (s, 2H), 4.42 (t, J = 6.4 Hz, 2H), 5.49 (s, 2H), 6.11 (t, J = 5.6 Hz, 1H), 6.98 (t, J= 7.2 Hz, 1H), 7.22-7.27 (m, 4H), 7.35-7.41 (m, 5H), 7.49 (s, 1H), 7.66 (s, 1H), 7.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ 30.2, 36.8, 42.4, 47.2, 47.7, 48.3, 54.3, 74.0, 78.0, 119.4, 122.6, 123.2, 124.1, 128.1, 128.9, 129.0, 129.2, 134.4, 139.5, 144.6, 144.9, 156.3
1 H NMR (400 MHz, CDCl 3 ) δδ 2.14 (p, J = 6.4 Hz, 2H), 2.26 (t, J = 2.0 Hz, 1H), 3.17 (q, J = 6.0 Hz, 2H), 3.35 (d , J = 2.0 Hz, 2H), 3.77 (s, 2H), 3.84 (s, 2H), 4.42 (t, J = 6.4 Hz, 2H), 5.49 (s, 2H), 6.11 (t, J = 5.6 Hz , 1H), 6.98 (t, J = 7.2 Hz, 1H), 7.22-7.27 (m, 4H), 7.35-7.41 (m, 5H), 7.49 (s, 1H), 7.66 (s, 1H), 7.81 ( s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δδ 30.2, 36.8, 42.4, 47.2, 47.7, 48.3, 54.3, 74.0, 78.0, 119.4, 122.6, 123.2, 124.1, 128.1, 128.9, 129.0, 129.2, 134.4, 139.5, 144.6 , 144.9, 156.3

단계 4: 화합물 2e의 제조Step 4: Preparation of Compound 2e

상기 단계 3에서 얻은 화합물 13b (30 mg, 0.06 mmol)을 아세토나이트릴 (0.3 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.12 mL, 0.012 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.06 mL, 0.012 mmol)을 가했다. 반응혼합물에 아세토나이트릴(0.26 mL)에 녹인 4-메톡시벤질 아자이드 6d (10.8 mg, 0.006 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 액체인 목적 화합물 2e (31.8 mg, 82%)을 얻었다.Compound 13b (30 mg, 0.06 mmol) obtained in step 3 was dissolved in acetonitrile (0.3 mL), and 0.1 M copper iodide solution (0.12 mL, 0.012 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.06 mL, 0.012 mmol) was added. 4-methoxybenzyl azide 6d (10.8 mg, 0.006 mmol) dissolved in acetonitrile (0.26 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was performed to give the desired compound 2e (31.8 mg, 82%) as a liquid.

1H NMR (400 MHz, CDCl3) δδ 0.12 (s, 6H), 0.94 (s, 9H), 2.19 (p, J = 6.4 Hz, 2H), 3.14 (q, J = 6.0 Hz, 2H), 3.41 (s, 2H), 3.75 (s, 2H), 3.86 (s, 2H), 4.45 (t, J = 6.4 Hz, 2H), 5.51 (s, 2H), 6.08 (t, J = 6.0 Hz, 1H), 7.0 (t, J = 7.2 Hz, 1H), 7.24-7.27 (m, 4H), 7.37-7.42 (m, 5H), 7.47 (s, 1H), 7.60 (s, 1H), 7.68 (s, 1H); 13C NMR (100 MHz, CDCl3) δδ -4.3, 16.7, 26.3, 30.0, 36.9, 44.0, 46.9, 47.8, 49.1, 54.5, 89.4, 100.8, 119.6, 128.3, 129.1, 129.3, 129.4, 134.4, 139.7, 145.2, 145.3, 156.4
1 H NMR (400 MHz, CDCl 3 ) δδ 0.12 (s, 6H), 0.94 (s, 9H), 2.19 (p, J = 6.4 Hz, 2H), 3.14 (q, J = 6.0 Hz, 2H), 3.41 (s, 2H), 3.75 (s, 2H), 3.86 (s, 2H), 4.45 (t, J = 6.4 Hz, 2H), 5.51 (s, 2H), 6.08 (t, J = 6.0 Hz, 1H) , 7.0 (t, J = 7.2 Hz, 1H), 7.24-7.27 (m, 4H), 7.37-7.42 (m, 5H), 7.47 (s, 1H), 7.60 (s, 1H), 7.68 (s, 1H ); 13 C NMR (100 MHz, CDCl 3 ) δδ -4.3, 16.7, 26.3, 30.0, 36.9, 44.0, 46.9, 47.8, 49.1, 54.5, 89.4, 100.8, 119.6, 128.3, 129.1, 129.3, 129.4, 134.4, 139.7, 145.2, 145.3, 156.4

<< 실시예Example 12> 화합물 2f의 제조 12> Preparation of Compound 2f

Figure 112010082856262-pat00041
Figure 112010082856262-pat00041

단계 1: 화합물 11c의 제조Step 1: Preparation of Compound 11c

상기 실시예 5의 단계 2에서 얻은 화합물 1h (100 mg, 0.289 mmol)를 다이클로로메탄 (1.5 mL)에 녹인 후, 1-하이드록시벤조트리아졸 (HOBt, 58.5 mg, 0.433 mmol)과 N,N,N',N'-테트라메틸-O-(벤조트리아졸-1-일)유로늄 테트라플루오로보레이트 (TBTU, 139 mg, 0.433 mmol)을 가하였다. 반응물에 다이클로로메탄 (1.8 mL)에 녹인 화합물 10g (81.3 mg, 0.289 mmol)과 다이아이소프로필에틸아민 (0.15 mL, 0.866 mmol)을 적가한 후 상온에서 1시간 교반하시켰다. 포화 중탄산 나트륨으로 반응물을 세척하고 다시 0.1 M 염산 수용액으로 세척한 다음 무수 황산 나트륨으로 탈수한 뒤 농축하고 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 11c (106.3 mg, 64%)를 얻었다.Compound 1h (100 mg, 0.289 mmol) obtained in step 2 of Example 5 was dissolved in dichloromethane (1.5 mL), and then 1-hydroxybenzotriazole (HOBt, 58.5 mg, 0.433 mmol) and N, N , N ', N'-tetramethyl-O- (benzotriazol-1-yl) uronium tetrafluoroborate (TBTU, 139 mg, 0.433 mmol) was added. 10 g (81.3 mg, 0.289 mmol) and diisopropylethylamine (0.15 mL, 0.866 mmol) dissolved in dichloromethane (1.8 mL) were added dropwise to the reaction, followed by stirring at room temperature for 1 hour. The reaction was washed with saturated sodium bicarbonate, washed again with 0.1 M aqueous hydrochloric acid solution, dehydrated with anhydrous sodium sulfate, concentrated and subjected to column chromatography (5% methanol / dichloromethane) to give the target compound 11c as a solid (106.3 mg, 64%).

1H NMR (400 MHz, CDCl3) δδ 0.09 (s, 6H), 0.93 (s, 9H), 1.40 (s, 9H), 1.42 (s, 9H), 2.24 (t, J = 2.4 Hz, 1H), 2.66 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.44 (d, J = 2.8 Hz, 2H), 3.48 (s, 2H), 3.88 (s, 2H), 4.65 (p, J = 4.4 Hz, 1H), 5.08 (s, 2H), 6.85 (d, J = 8.4 Hz, 1H), 7.67 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.5, 16.4, 26.4, 27.9, 37.0, 41.8, 43.2, 47.8, 49.2, 52.6, 73.2, 78.7, 81.9, 82.7, 88.4, 101.1, 124.3, 145.2, 164.8, 168.9, 169.9.
1 H NMR (400 MHz, CDCl 3 ) δδ 0.09 (s, 6H), 0.93 (s, 9H), 1.40 (s, 9H), 1.42 (s, 9H), 2.24 (t, J = 2.4 Hz, 1H) , 2.66 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.44 (d, J = 2.8 Hz, 2H), 3.48 (s, 2H), 3.88 ( s, 2H), 4.65 (p, J = 4.4 Hz, 1H), 5.08 (s, 2H), 6.85 (d, J = 8.4 Hz, 1H), 7.67 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ -4.5, 16.4, 26.4, 27.9, 37.0, 41.8, 43.2, 47.8, 49.2, 52.6, 73.2, 78.7, 81.9, 82.7, 88.4, 101.1, 124.3, 145.2, 164.8, 168.9, 169.9.

단계 2: 화합물 12c의 제조Step 2: Preparation of Compound 12c

상기 단계 1에서 얻은 화합물 11c (101 mg, 0.176 mmol)를 아세토나이트릴 (1.1 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.35 mL, 0.035 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.17 mL, 0.035 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.74 mL)에 녹인 벤질 아자이드 6c (28.1 mg, 0.211 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 12c (84 mg, 68%)를 얻었다.Compound 11c (101 mg, 0.176 mmol) obtained in step 1 was dissolved in acetonitrile (1.1 mL), and 0.1 M copper iodide solution (0.35 mL, 0.035 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.17 mL, 0.035 mmol) was added. Benzyl azide 6c (28.1 mg, 0.211 mmol) dissolved in acetonitrile (0.74 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was carried out to give target compound 12c (84 mg, 68%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.11 (s, 6H), 0.95 (s, 9H), 1.40 (s, 9H), 1.42 (s, 9H), 2.66 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.40 (s, 2H), 3.85 (s, 2H), 3.87 (s, 2H), 4.65 (p, J = 4.4 Hz, 1H), 5.07 (s, 2H), 5.52 (s, 2H), 6.91 (d, J = 8.4 Hz, 1H), 7.20-7.40 (m, 5H), 7.50 (s, 1H), 7.71 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.5, 16.5, 26.1, 27.8, 28.0, 37.0, 43.4, 47.8, 47.9, 49.3, 52.7, 54.1, 82.0, 82.8, 88.9, 101.1, 122.9, 124.6, 128.1, 128.7, 129.1, 134.6, 145.2, 145.1, 164.8, 168.9, 169.9.
1 H NMR (400 MHz, CDCl 3 ) δ 0.11 (s, 6H), 0.95 (s, 9H), 1.40 (s, 9H), 1.42 (s, 9H), 2.66 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.40 (s, 2H), 3.85 (s, 2H), 3.87 (s, 2H), 4.65 (p, J = 4.4 Hz, 1H), 5.07 (s, 2H), 5.52 (s, 2H), 6.91 (d, J = 8.4 Hz, 1H), 7.20-7.40 (m, 5H), 7.50 (s, 1H), 7.71 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ -4.5, 16.5, 26.1, 27.8, 28.0, 37.0, 43.4, 47.8, 47.9, 49.3, 52.7, 54.1, 82.0, 82.8, 88.9, 101.1, 122.9, 124.6, 128.1, 128.7, 129.1, 134.6, 145.2, 145.1, 164.8, 168.9, 169.9.

단계 3: 화합물 13c의 제조Step 3: Preparation of Compound 13c

상기 단계 2에서 얻은 화합물 12c (71.7 mg, 0.1 mmol)를 테트라하이드로퓨란 (1.3 mL)에 녹인 후, 0℃에서 1.0 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.25 mL, 0.25 mmol)를 가한 다음 상온에서 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 13c (40 mg, 69%)를 얻었다.Compound 12c (71.7 mg, 0.1 mmol) obtained in step 2 was dissolved in tetrahydrofuran (1.3 mL), and then 1.0M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.25 mL, 0.25 mmol) was added at 0 ° C. It was then stirred at room temperature for 1 hour. The solution of the reaction was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give target compound 13c (40 mg, 69%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.31 (s, 9H), 1.33 (s, 9H), 2.18 (t, J = 2.4 Hz, 1H), 2.59 (dd, J = 17.2, 4.4 Hz, 1H), 2.79 (dd, J = 17.2, 4.4 Hz, 1H), 3.27 (s, 2H), 3.76 (s, 2H), 3.78 (s, 2H), 4.57 (p, J = 4.4 Hz, 1H), 5.0 (s, 2H), 5.43 (s, 2H), 6.84 (d, J = 8.0 Hz, 1H), 7.17-7.30 (m, 5H), 7.44 (s, 1H), 7.65 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 27.8, 28.0, 37.0, 42.1, 47.6, 47.9, 49.3, 52.6, 54.1, 73.7, 78.4, 82.0, 82.8, 123.0, 124.6, 128.0, 128.7, 129.1, 134.7, 144.9, 145.0, 164.8, 168.9, 170.0.
1 H NMR (400 MHz, CDCl 3 ) δ 1.31 (s, 9H), 1.33 (s, 9H), 2.18 (t, J = 2.4 Hz, 1H), 2.59 (dd, J = 17.2, 4.4 Hz, 1H) , 2.79 (dd, J = 17.2, 4.4 Hz, 1H), 3.27 (s, 2H), 3.76 (s, 2H), 3.78 (s, 2H), 4.57 (p, J = 4.4 Hz, 1H), 5.0 ( s, 2H), 5.43 (s, 2H), 6.84 (d, J = 8.0 Hz, 1H), 7.17-7.30 (m, 5H), 7.44 (s, 1H), 7.65 (s, 1H); 13 C NMR (100 MHz, CDCl 3 ) δ 27.8, 28.0, 37.0, 42.1, 47.6, 47.9, 49.3, 52.6, 54.1, 73.7, 78.4, 82.0, 82.8, 123.0, 124.6, 128.0, 128.7, 129.1, 134.7, 144.9 , 145.0, 164.8, 168.9, 170.0.

단계 4: 화합물 2f의 제조Step 4: Preparation of Compound 2f

상기 단계 3에서 얻은 화합물 13c (30 mg, 0.05 mmol)를 아세토나이트릴 (0.4 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.1 mL, 0.01 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.05 mL, 0.01 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.3 mL)에 녹인 아자이드 화합물 6b (13.4 mg, 0.06 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 2f (23 mg, 57%)을 얻었다.Compound 13c (30 mg, 0.05 mmol) obtained in step 3 was dissolved in acetonitrile (0.4 mL), and 0.1 M copper iodide solution (0.1 mL, 0.01 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.05 mL, 0.01 mmol) was added. The azide compound 6b (13.4 mg, 0.06 mmol) dissolved in acetonitrile (0.3 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give the title compound 2f (23 mg, 57%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.39 (s, 9H), 1.42 (s, 9H), 2.70 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.60-3.70 (m, 10H), 3.72-3.82 (m, 6H), 3.88 (t, J = 4.8 Hz, 2H), 4.53 (t, J = 4.8 Hz, 2H), 4.54 (dt, J = 48.0, 4.0 Hz, 2H), 4.67 (p, J = 4.4 Hz, 1H), 5.13 (s, 2H), 5.53 (s, 2H), 7.05 (d, J = 6.0 Hz, 1H), 7.27-7.38 (m, 5H), 7.74 (s, 1H), 7.89 (s, 1H), 7.93 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 37.0, 47.0 (2C), 47.2, 49.2, 50.1, 52.5, 54.0, 69.3, 70.2 (d, J = 19.4 Hz, 1C), 70.39, 70.41, 70.45, 70.6, 81.7, 82.5, 83.0 (d, J = 167.6 Hz, 1C), 123.8, 124.7, 125.4, 127.9, 128.5, 128.9, 134.7, 143.6, 144.3 (2C), 164.8, 168.9, 169.8.
1 H NMR (400 MHz, CDCl 3 ) δ 1.39 (s, 9H), 1.42 (s, 9H), 2.70 (dd, J = 17.2, 4.4 Hz, 1H), 2.87 (dd, J = 17.2, 4.4 Hz, 1H), 3.60-3.70 (m, 10H), 3.72-3.82 (m, 6H), 3.88 (t, J = 4.8 Hz, 2H), 4.53 (t, J = 4.8 Hz, 2H), 4.54 (dt, J = 48.0, 4.0 Hz, 2H), 4.67 (p, J = 4.4 Hz, 1H), 5.13 (s, 2H), 5.53 (s, 2H), 7.05 (d, J = 6.0 Hz, 1H), 7.27-7.38 (m, 5H), 7.74 (s, 1 H), 7.89 (s, 1 H), 7.93 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 37.0, 47.0 (2C), 47.2, 49.2, 50.1, 52.5, 54.0, 69.3, 70.2 (d, J = 19.4 Hz, 1C), 70.39, 70.41, 70.45, 70.6, 81.7, 82.5, 83.0 (d, J = 167.6 Hz, 1C), 123.8, 124.7, 125.4, 127.9, 128.5, 128.9, 134.7, 143.6, 144.3 (2C), 164.8, 168.9, 169.8.

<< 실시예Example 13> 화합물 2g의 제조 13> Preparation of Compound 2g

Figure 112010082856262-pat00042
Figure 112010082856262-pat00042

단계 1: 화합물 11d의 제조Step 1: Preparation of Compound 11d

상기 실시예 5의 단계 2에서 얻은 화합물 1h (100 mg, 0.289 mmol)를 다이클로로메탄 (1.5 mL)에 녹인 후, 1-하이드록시벤조트리아졸 (HOBt, 58.5 mg, 0.433 mmol)과 N,N,N',N'-테트라메틸-O-(벤조트리아졸-1-일)유로늄 테트라플루오로보레이트 (TBTU, 139 mg, 0.433 mmol)을 가하였다. 반응물에 다이클로로메탄 (1.8 mL)에 녹인 벤질 아민 10e (31 mg, 0.289 mmol)와 다이아이소프로필에틸아민 (0.15 mL, 0.866 mmol)을 가한 후 상온에서 1시간 교반하시켰다. 포화 중탄산 나트륨으로 반응물을 세척하고 다시 0.1 M 염산 수용액으로 세척한 다음 무수 황산 나트륨으로 탈수한 뒤 농축하고 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 11d (82 mg, 65%)를 얻었다.Compound 1h (100 mg, 0.289 mmol) obtained in step 2 of Example 5 was dissolved in dichloromethane (1.5 mL), and then 1-hydroxybenzotriazole (HOBt, 58.5 mg, 0.433 mmol) and N, N , N ', N'-tetramethyl-O- (benzotriazol-1-yl) uronium tetrafluoroborate (TBTU, 139 mg, 0.433 mmol) was added. Benzyl amine 10e (31 mg, 0.289 mmol) and diisopropylethylamine (0.15 mL, 0.866 mmol) dissolved in dichloromethane (1.8 mL) were added to the reaction, followed by stirring at room temperature for 1 hour. The reaction was washed with saturated sodium bicarbonate, washed again with 0.1 M aqueous hydrochloric acid solution, dehydrated with anhydrous sodium sulfate and concentrated, followed by column chromatography (5% methanol / dichloromethane) to give the target compound 11d as a solid (82 mg, 65%).

1H NMR (400 MHz, CDCl3) δ 0.12 (s, 6H), 0.95 (s, 9H), 2.25 (t, J = 2.4 Hz, 1H), 3.42 (d, J = 2.4 Hz, 2H), 3.47 (s, 2H), 3.86 (s, 2H), 4.43 (d, J = 5.6 Hz, 2H), 5.06 (s, 2H), 6.60-6.64 (m, 1H), 7.19-7.37 (m, 5H), 7.68 (s, 1H); 13C NMR (100 MHz, CDCl3) δ -4.6, 16.5, 26.1, 41.9, 43.3, 43.7, 47.7, 53.1, 73.4, 78.6, 88.7, 100.8, 124.5, 127.7, 127.8, 128.8, 137.0, 145.4, 164.9.
1 H NMR (400 MHz, CDCl 3 ) δ 0.12 (s, 6H), 0.95 (s, 9H), 2.25 (t, J = 2.4 Hz, 1H), 3.42 (d, J = 2.4 Hz, 2H), 3.47 (s, 2H), 3.86 (s, 2H), 4.43 (d, J = 5.6 Hz, 2H), 5.06 (s, 2H), 6.60-6.64 (m, 1H), 7.19-7.37 (m, 5H), 7.68 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ −4.6, 16.5, 26.1, 41.9, 43.3, 43.7, 47.7, 53.1, 73.4, 78.6, 88.7, 100.8, 124.5, 127.7, 127.8, 128.8, 137.0, 145.4, 164.9.

단계 2: 화합물 12d의 제조Step 2: Preparation of Compound 12d

상기 단계 1에서 얻은 화합물 11d (61.9 mg, 0.142 mmol)를 아세토나이트릴 (0.88 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.28 mL, 0.028 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.14 mL, 0.028 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.6 mL)에 녹인 화합물 6c (22.7 mg, 0.171 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 12d (60 mg, 74%)을 얻었다.Compound 11d (61.9 mg, 0.142 mmol) obtained in step 1 was dissolved in acetonitrile (0.88 mL), and 0.1 M copper iodide solution (0.28 mL, 0.028 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.14 mL, 0.028 mmol) was added. Compound 6c (22.7 mg, 0.171 mmol) dissolved in acetonitrile (0.6 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give the title compound 12d (60 mg, 74%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.11 (s, 6H), 0.94 (s, 9H), 3.37 (s, 2H), 3.81 (s, 2H), 3.85 (s, 2H), 4.42 (d J = 5.6 Hz, 2H), 5.07 (s, 2H), 5.47 (s, 2H), 6.82 (brs, 1H), 7.19-7.40 (m, 10H), 7.45 (s, 1H), 7.71 (s, 1H); 13C NMR(100 MHz, CDCl3) δ -4.5, 16.4, 26.1, 38.5, 43.6, 47.7, 47.8, 52.9, 54.1, 89.0, 100.8, 122.9, 124.7, 127.5, 127.7, 128.0, 128.6, 128.7, 129.1, 134.5, 137.4, 144.9, 145.1, 165.1.
1 H NMR (400 MHz, CDCl 3 ) δ 0.11 (s, 6H), 0.94 (s, 9H), 3.37 (s, 2H), 3.81 (s, 2H), 3.85 (s, 2H), 4.42 (d J = 5.6 Hz, 2H), 5.07 (s, 2H), 5.47 (s, 2H), 6.82 (brs, 1H), 7.19-7.40 (m, 10H), 7.45 (s, 1H), 7.71 (s, 1H) ; 13 C NMR (100 MHz, CDCl 3 ) δ -4.5, 16.4, 26.1, 38.5, 43.6, 47.7, 47.8, 52.9, 54.1, 89.0, 100.8, 122.9, 124.7, 127.5, 127.7, 128.0, 128.6, 128.7, 129.1, 134.5, 137.4, 144.9, 145.1, 165.1.

단계 3: 화합물 13d의 제조Step 3: Preparation of Compound 13d

상기 단계 2에서 얻은 12d (42.8 mg, 0.075 mmol)를 테트라하이드로퓨란 (1.0 mL)에 녹인 후, 0℃에서 1.0 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.19 mL, 0.19 mmol)를 가한 다음 상온에서 1시간 동안 교반시켰다. 반응혼합물을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 13d (28.6 mg, 84%)를 얻었다. 12d (42.8 mg, 0.075 mmol) obtained in step 2 was dissolved in tetrahydrofuran (1.0 mL), and then 1.0M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.19 mL, 0.19 mmol) was added at 0 ° C. Then stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give target compound 13d (28.6 mg, 84%) as a solid.

1H NMR (400 MHz, CDCl3) δ 2.45 (t, J = 2.4 Hz, 1H), 3.31 (d, J = 1.6 Hz, 2H), 3.79 (s, 2H), 3.83 (s, 2H), 4.42 (d, J = 6.0 Hz, 2H), 5.06 (s, 2H), 5.48 (s, 2H), 6.94 (t, J = 5.6 Hz, 1H), 7.18-7.40 (m, 10H), 7.48 (s, 1H), 7.73 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 42.2, 43.6, 47.7, 47.8, 52.9, 54.1, 73.9, 78.2, 123.0, 124.9, 127.6, 127.7, 128.0, 128.6, 128.7, 129.1, 134.5, 137.3, 144.8, 144.9, 165.1.
1 H NMR (400 MHz, CDCl 3 ) δ 2.45 (t, J = 2.4 Hz, 1H), 3.31 (d, J = 1.6 Hz, 2H), 3.79 (s, 2H), 3.83 (s, 2H), 4.42 (d, J = 6.0 Hz, 2H), 5.06 (s, 2H), 5.48 (s, 2H), 6.94 (t, J = 5.6 Hz, 1H), 7.18-7.40 (m, 10H), 7.48 (s, 1H), 7.73 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 42.2, 43.6, 47.7, 47.8, 52.9, 54.1, 73.9, 78.2, 123.0, 124.9, 127.6, 127.7, 128.0, 128.6, 128.7, 129.1, 134.5, 137.3, 144.8, 144.9 , 165.1.

단계 4: 화합물 2g의 제조Step 4: Preparation of 2g

상기 단계 3에서 얻은 화합물 13d (28.5 mg, 0.063 mmol)를 아세토나이트릴 (0.4 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.12 mL, 0.013 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.06 mL, 0.013 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.3 mL)에 녹인 화합물 6a (22.7 mg, 0.171 mmol)을 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 2g (44 mg, 85%)을 얻었다.Compound 13d (28.5 mg, 0.063 mmol) obtained in step 3 was dissolved in acetonitrile (0.4 mL), and 0.1 M copper iodide solution (0.12 mL, 0.013 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.06 mL, 0.013 mmol) was added. Compound 6a (22.7 mg, 0.171 mmol) dissolved in acetonitrile (0.3 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was carried out to give 2 g (44 mg, 85%) of the title compound as a solid.

1H NMR (400 MHz, CDCl3) δ 1.80 (s, 3H), 2.03 (s, 3H), 2.07 (s, 6H), 3.68-3.80 (m, 4H), 3.98-4.04 (m, 1H), 4.14-4.18 (m, 1H), 4.31 (dd, J = 12.8, 4.8 Hz, 1H), 4.42 (d, J = 4.4 Hz, 2H), 5.13 (s, 2H), 5.26 (t, J = 9.6 Hz, 1H), 5.38-5.48 (m, 2H), 5.50 (s, 2H), 5.80-5.88 (m, 1H), 7.18-7.37 (m, 10H), 7.67 (s, 1H), 7.93 (s, 1H), 7.99 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 20.1, 20.4, 20.5, 20.7, 43.5, 47.0 (3C), 53.0, 54.2, 61.4, 67.6, 70.4, 72.5, 75.1, 85.7, 122.4, 123.7, 125.6, 127.5, 127.7, 128.1, 128.4, 128.6, 128.7, 129.0, 134.5, 137.4, 144.2 (2C), 144.6, 165.1, 168.9, 169.3, 169.9, 170.5.
1 H NMR (400 MHz, CDCl 3 ) δ 1.80 (s, 3H), 2.03 (s, 3H), 2.07 (s, 6H), 3.68-3.80 (m, 4H), 3.98-4.04 (m, 1H), 4.14-4.18 (m, 1H), 4.31 (dd, J = 12.8, 4.8 Hz, 1H), 4.42 (d, J = 4.4 Hz, 2H), 5.13 (s, 2H), 5.26 (t, J = 9.6 Hz , 1H), 5.38-5.48 (m, 2H), 5.50 (s, 2H), 5.80-5.88 (m, 1H), 7.18-7.37 (m, 10H), 7.67 (s, 1H), 7.93 (s, 1H ), 7.99 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ 20.1, 20.4, 20.5, 20.7, 43.5, 47.0 (3C), 53.0, 54.2, 61.4, 67.6, 70.4, 72.5, 75.1, 85.7, 122.4, 123.7, 125.6, 127.5, 127.7, 128.1, 128.4, 128.6, 128.7, 129.0, 134.5, 137.4, 144.2 (2C), 144.6, 165.1, 168.9, 169.3, 169.9, 170.5.

<< 실시예Example 14> 화합물 2h의 제조 14> Preparation of Compound 2h

Figure 112010082856262-pat00043

Figure 112010082856262-pat00043

단계 1: 화합물 11e의 제조Step 1: Preparation of Compound 11e

상기 실시예 5의 단계 2에서 얻은 화합물 1h (100 mg, 0.289 mmol)을 다이클로로메탄 (1.5 mL)에 녹인 후, 1-하이드록시벤조트리아졸 (HOBt, 58.5 mg, 0.433 mmol)과 N,N,N',N'-테트라메틸-O-(벤조트리아졸-1-일)유로늄 테트라플루오로보레이트 (TBTU, 139 mg, 0.433 mmol)을 가하였다. 반응물에 다이클로로메탄 (1.8 mL)에 녹인 트립트아민 10f (46.2 mg, 0.289 mmol)와 다이아이소프로필에틸아민 (0.15 mL, 0.866 mmol)을 가한 후 상온에서 1시간 교반하시켰다. 포화 중탄산 나트륨으로 반응물을 세척하고 다시 0.1 M 염산 수용액으로 세척한 다음 무수 황산 나트륨으로 탈수한 뒤 농축하고 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 11e (109 mg, 77%)를 얻었다.Compound 1h (100 mg, 0.289 mmol) obtained in step 2 of Example 5 was dissolved in dichloromethane (1.5 mL), and then 1-hydroxybenzotriazole (HOBt, 58.5 mg, 0.433 mmol) and N, N , N ', N'-tetramethyl-O- (benzotriazol-1-yl) uronium tetrafluoroborate (TBTU, 139 mg, 0.433 mmol) was added. Trypamine 10f (46.2 mg, 0.289 mmol) and diisopropylethylamine (0.15 mL, 0.866 mmol) dissolved in dichloromethane (1.8 mL) were added to the reaction, followed by stirring at room temperature for 1 hour. The reaction was washed with saturated sodium bicarbonate, washed again with 0.1 M aqueous hydrochloric acid solution, dehydrated with anhydrous sodium sulfate, concentrated and subjected to column chromatography (5% methanol / dichloromethane) to give the target compound 11e as solid (109 mg, 77%).

1H NMR 400 MHz, CDCl3) δ 0.12 (s, 6H), 0.95 (s, 9H), 2.30 (t, J = 2.4 Hz, 1H), 2.94 (t, J = 6.4 Hz, 2H), 3.46 (d, J = 6.4 Hz, 2H), 3.49 (s, 2H), 3.55 (q, J = 6.4 Hz, 2H), 3.81 (s, 2H), 4.93 (s, 2H), 5.92-5.97 (m, 1H), 6.84 (d, J = 2.0 Hz, 1H), 7.11 (td, J = 8.0, 1.2 Hz, 1H), 7.19 (td, J = 8.0, 1.2, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 8.41 (s, 1H); 13C NMR (400 MHz, CDCl3) δ -4.6, 16.5, 24.6, 26.1, 39.5, 42.1, 43.3, 47.7, 53.1, 73.6, 78.6, 89.0, 100.9, 111.4, 111.8, 118.5, 119.4, 122.2, 122.4, 124.3, 126.9, 136.4, 145.2, 164.9. 1 H NMR 400 MHz, CDCl 3 ) δ 0.12 (s, 6H), 0.95 (s, 9H), 2.30 (t, J = 2.4 Hz, 1H), 2.94 (t, J = 6.4 Hz, 2H), 3.46 ( d, J = 6.4 Hz, 2H), 3.49 (s, 2H), 3.55 (q, J = 6.4 Hz, 2H), 3.81 (s, 2H), 4.93 (s, 2H), 5.92-5.97 (m, 1H ), 6.84 (d, J = 2.0 Hz, 1H), 7.11 (td, J = 8.0, 1.2 Hz, 1H), 7.19 (td, J = 8.0, 1.2, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.40 (s, 1 H), 7.53 (d, J = 8.0 Hz, 1 H), 8.41 (s, 1 H); 13 C NMR (400 MHz, CDCl 3 ) δ -4.6, 16.5, 24.6, 26.1, 39.5, 42.1, 43.3, 47.7, 53.1, 73.6, 78.6, 89.0, 100.9, 111.4, 111.8, 118.5, 119.4, 122.2, 122.4, 124.3, 126.9, 136.4, 145.2, 164.9.

단계 2: 화합물 12e의 제조Step 2: Preparation of Compound 12e

상기 단계 1에서 얻은 화합물 11e (103 mg, 0.211 mmol)를 아세토나이트릴 (1.25 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.42 mL, 0.042 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.21 mL, 0.042 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.88 mL)에 녹인 아자이드 화합물 6a (94.5 mg, 0.253 mmol)를 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 12e (88.3 mg, 49%)를 얻었다.Compound 11e (103 mg, 0.211 mmol) obtained in step 1 was dissolved in acetonitrile (1.25 mL), and 0.1 M copper iodide solution (0.42 mL, 0.042 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.21 mL, 0.042 mmol) was added. The azide compound 6a (94.5 mg, 0.253 mmol) dissolved in acetonitrile (0.88 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was carried out to give target compound 12e (88.3 mg, 49%) as a solid.

1H NMR (400 MHz, CDCl3) δ 0.15 (s, 6H), 0.98 (s, 9H), 1.83 (s, 3H), 2.03 (s, 3H), 2.08 (s, 6H), 2.94 (t, J = 6.4 Hz, 2H), 3.39 (s, 2H), 3.48-3.60 (m, 2H), 3.79 (s, 2H), 3.87 (s, 2H), 4.01 (ddd, J = 10.2, 4.8, 2.0 Hz, 1H), 4.17 (dd, J = 12.8, 2.0 Hz, 1H), 4.32 (dd, J = 12.6, 4.8 Hz, 1H), 4.94 (s, 2H), 5.25 (t, J = 9.6 Hz, 1H), 5.39 (t, J = 9.2 Hz, 1H), 5.44 (t, J = 9.6 Hz, 1H), 5.86 (d, J = 8.8 Hz, 1H), 5.92-5.98 (m, 1H), 6.81 (d, J = 2.0 Hz, 1H), 7.08 (t, J = 7.2Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.41 (s, 1H), 7.52 (d, J = 8.0Hz, 1H), 7.81 (s, 1H), 8.99 (s, 1H); 13C NMR (100 MHz, CDCl3) δ-4.5, 16.5, 20.1, 20.50, 20.53, 20.7, 24.5, 26.1, 39.4, 43.3, 47.5, 47.9, 53.1, 61.4,67.6, 70.5, 72.4, 75.2, 85.8, 89.4, 100.7, 111.47, 111.49, 118.4, 119.2, 121.4, 122.0, 122.6, 124.4, 126.9, 136.5, 145.3, 145.5, 165.0, 169.2, 169.4, 169.9, 170.5.
1 H NMR (400 MHz, CDCl 3 ) δ 0.15 (s, 6H), 0.98 (s, 9H), 1.83 (s, 3H), 2.03 (s, 3H), 2.08 (s, 6H), 2.94 (t, J = 6.4 Hz, 2H), 3.39 (s, 2H), 3.48-3.60 (m, 2H), 3.79 (s, 2H), 3.87 (s, 2H), 4.01 (ddd, J = 10.2, 4.8, 2.0 Hz , 1H), 4.17 (dd, J = 12.8, 2.0 Hz, 1H), 4.32 (dd, J = 12.6, 4.8 Hz, 1H), 4.94 (s, 2H), 5.25 (t, J = 9.6 Hz, 1H) , 5.39 (t, J = 9.2 Hz, 1H), 5.44 (t, J = 9.6 Hz, 1H), 5.86 (d, J = 8.8 Hz, 1H), 5.92-5.98 (m, 1H), 6.81 (d, J = 2.0 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.41 (s, 1H) , 7.52 (d, J = 8.0 Hz, 1 H), 7.81 (s, 1 H), 8.99 (s, 1 H); 13 C NMR (100 MHz, CDCl 3 ) δ-4.5, 16.5, 20.1, 20.50, 20.53, 20.7, 24.5, 26.1, 39.4, 43.3, 47.5, 47.9, 53.1, 61.4, 67.6, 70.5, 72.4, 75.2, 85.8, 89.4, 100.7, 111.47, 111.49, 118.4, 119.2, 121.4, 122.0, 122.6, 124.4, 126.9, 136.5, 145.3, 145.5, 165.0, 169.2, 169.4, 169.9, 170.5.

단계 3: 화합물 13e의 제조Step 3: Preparation of Compound 13e

상기 단계 2에서 얻은 화합물 12e (64.4 mg, 0.075 mmol)를 테트라하이드로퓨란 (1.0 mL)에 녹인 후, 0℃에서 1.0 M 용액의 테트라부틸암모늄 플루오라이드/테트라하이드로퓨란 (0.19 mL, 0.19 mmol)을 가한 다음 상온에서 1시간 동안 교반시켰다. 반응물의 용액을 감압하에 농축한 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 13e (15 mg, 27%)를 얻었다.Compound 12e (64.4 mg, 0.075 mmol) obtained in step 2 was dissolved in tetrahydrofuran (1.0 mL), and then 1.0M solution of tetrabutylammonium fluoride / tetrahydrofuran (0.19 mL, 0.19 mmol) was added at 0 ° C. It was then stirred at room temperature for 1 hour. The solution of the reaction was concentrated under reduced pressure and then subjected to column chromatography (5% methanol / dichloromethane) to give target compound 13e (15 mg, 27%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.84 (s, 3H), 2.03 (s, 3H), 2.08 (s, 6H), 2.34 (t, J = 2.4 Hz, 1H), 2.94 (t, J = 6.4 Hz, 2H), 3.35 (s, 2H), 3.55 (q, J = 6.4 Hz, 2H), 3.80 (s, 2H), 3.87 (s, 2H), 3.98-4.04 (m, 2H), 4.17 (dd, J = 12.8, 2.0 Hz, 1H), 4.32 (dd, J = 12.6, 4.4 Hz, 1H), 4.96 (s, 2H), 5.25 (t, J = 9.2, 1H), 5.40 (t, J = 9.2, 1H), 5.44 (t, J = 9.2, 1H), 5.82 (t, J = 5.2 Hz, 1H), 5.86 (d, J = 8.0 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 8.94 (s, 1H); MS (ESI): m/z =770 [M+Na]+.
1 H NMR (400 MHz, CDCl 3 ) δ 1.84 (s, 3H), 2.03 (s, 3H), 2.08 (s, 6H), 2.34 (t, J = 2.4 Hz, 1H), 2.94 (t, J = 6.4 Hz, 2H), 3.35 (s, 2H), 3.55 (q, J = 6.4 Hz, 2H), 3.80 (s, 2H), 3.87 (s, 2H), 3.98-4.04 (m, 2H), 4.17 ( dd, J = 12.8, 2.0 Hz, 1H), 4.32 (dd, J = 12.6, 4.4 Hz, 1H), 4.96 (s, 2H), 5.25 (t, J = 9.2, 1H), 5.40 (t, J = 9.2, 1H), 5.44 (t, J = 9.2, 1H), 5.82 (t, J = 5.2 Hz, 1H), 5.86 (d, J = 8.0 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H ), 7.09 (t, J = 8.0 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.40 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 8.94 (s, 1H); MS (ESI): m / z = 770 [M + Na] + .

단계 4: 화합물 2h의 제조Step 4: Preparation of Compound 2h

상기 단계 3에서 얻은 화합물 13e (9.7 mg, 0.013 mmol)를 아세토나이트릴 (0.2 mL)에 녹이고, 아세토나이트릴에 녹인 0.1 M 요오드화 구리 용액 (0.026 mL, 0.026 mmol)와 아세토나이트릴에 녹인 0.2 M 트라이에틸아민 용액 (0.013 mL, 0.003 mmol)을 가했다. 반응혼합물에 아세토나이트릴 (0.1 mL)에 녹인 아자이드 화합물 6e (7.9 mg, 0.016 mmol)를 넣고, 상온에서 1시간 동안 교반시켰다. 용매를 감압하에 농축시킨 후 컬럼 크로마토그래피 (5% 메탄올/다이클로로메탄)를 수행하여 고체인 목적 화합물 2h (5 mg, 31%)를 얻었다.Compound 13e (9.7 mg, 0.013 mmol) obtained in step 3 was dissolved in acetonitrile (0.2 mL), and 0.1 M copper iodide solution (0.026 mL, 0.026 mmol) dissolved in acetonitrile and 0.2 M dissolved in acetonitrile. Triethylamine solution (0.013 mL, 0.003 mmol) was added. The azide compound 6e (7.9 mg, 0.016 mmol) dissolved in acetonitrile (0.1 mL) was added to the reaction mixture, which was stirred for 1 hour at room temperature. The solvent was concentrated under reduced pressure and then column chromatography (5% methanol / dichloromethane) was performed to give the title compound 2h (5 mg, 31%) as a solid.

1H NMR (400 MHz, CDCl3) δ 1.49 (s, 9H), 1.83 (s, 3H), 1.85-1.94 (m, 1H), 2.03 (s, 3H), 2.07 (s, 6H), 2.10-2.16 (m, 2H), 2.20-2.30 (m, 3H), 2.94 (t, J = 6.4 Hz, 2H), 3.12-3.28 (m, 2H), 3.55 (q, J = 6.0 Hz, 2H), 3.66 (s, 2H), 3.72 (s, 2H), 3.74 (s, 2H), 3.96-4.02 (m, 1H), 4.12-4.24 (m, 3H), 4.30 (dd, J = 12.8, 5.2, Hz, 1H), 4.34-4.42 (m, 4H), 4.95 (s, 2H), 5.24-5.28 (m, 1H), 5.41-5.47 (m, 2H), 5.71 (d, J = 7.6 Hz, 1H), 5.83-5.90 (m, 2H), 6.45-6.50 (m, 1H), 6.80-6.83 (m, 1H), 7.05 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.27-7.34 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 7.45-7.54 (m, 2H), 7.56-7.61 (m, 2H), 7.71-7.79 (m, 2H), 7.76 (s, 1H), 7.96 (s, 1H), 9.46 (s, 1H); MS (ESI): m/z 1255.7 (M+H)+, 1278.0 (M+Na)+.
1 H NMR (400 MHz, CDCl 3 ) δ 1.49 (s, 9H), 1.83 (s, 3H), 1.85-1.94 (m, 1H), 2.03 (s, 3H), 2.07 (s, 6H), 2.10- 2.16 (m, 2H), 2.20-2.30 (m, 3H), 2.94 (t, J = 6.4 Hz, 2H), 3.12-3.28 (m, 2H), 3.55 (q, J = 6.0 Hz, 2H), 3.66 (s, 2H), 3.72 (s, 2H), 3.74 (s, 2H), 3.96-4.02 (m, 1H), 4.12-4.24 (m, 3H), 4.30 (dd, J = 12.8, 5.2, Hz, 1H), 4.34-4.42 (m, 4H), 4.95 (s, 2H), 5.24-5.28 (m, 1H), 5.41-5.47 (m, 2H), 5.71 (d, J = 7.6 Hz, 1H), 5.83 -5.90 (m, 2H), 6.45-6.50 (m, 1H), 6.80-6.83 (m, 1H), 7.05 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.27-7.34 (m, 3H), 7.40 (t, J = 7.6 Hz, 2H), 7.45-7.54 (m, 2H), 7.56-7.61 (m, 2H), 7.71-7.79 (m, 2H), 7.76 ( s, 1 H), 7.96 (s, 1 H), 9.46 (s, 1 H); MS (ESI): m / z 1255.7 (M + H) + , 1278.0 (M + Na) + .

Claims (20)

하기 화학식 1로 표시되는 3차 아민 화합물:
[화학식 1]
Figure 112010082856262-pat00044

(상기 화학식 1에서,
P는 수소, 트라이C1-C4알킬 실릴기, 다이C1-C4알킬C3-C8아릴 실릴기, 또는 다이C3-C8아릴C1-C4알킬 실릴기이고,
l, m, n, o 및 p는 각각 독립적으로 1 내지 5의 정수이고,
X는 독립적으로 단일결합, 카보닐(C=O), ―NHCO- 또는 ―CONH-이고,
R은 ―NH-Y, 또는 ―CO2-Z이고,
Y는 수소, ―CO2-tBu, ―CO2-CH2Ph, 또는 ―CO2-t-C(Ph)3)이고,
Z는 수소, ―tBu,―CH2Ph 또는 ―CO2-t-C(Ph)3이다.
Tertiary amine compound represented by the following formula (1):
[Formula 1]
Figure 112010082856262-pat00044

(In Formula 1,
P is hydrogen, triC 1 -C 4 alkyl silyl group, diC 1 -C 4 alkylC 3 -C 8 aryl silyl group, or diC 3 -C 8 arylC 1 -C 4 alkyl silyl group,
l, m, n, o and p are each independently an integer from 1 to 5,
X is independently a single bond, carbonyl (C═O), —NHCO— or —CONH—,
R is —NH—Y, or —CO 2 —Z,
Y is hydrogen, —CO 2 -t Bu, —CO 2 -CH 2 Ph, or —CO 2 -tC (Ph) 3 ),
Z is hydrogen, —t Bu, —CH 2 Ph or —CO 2 —tC (Ph) 3 .
제1항에 있어서,
P는 수소, 트라이메틸실릴(TMS), 트라이에틸실릴(TES), 트라이이소프로필실릴(TIPS), t-부틸다이메틸실릴(TBS), 트라이이소프로필실릴(TIPS), t-부틸다이페닐실릴(TBDPS), 또는 트리페닐실릴(TPS)이고,
l, m, n, o 및 p는 각각 독립적으로 1 내지 3의 정수이고,
X는 단일결합, 카보닐(C=O), ―NHCO- 또는 ―CONH-이고,
R은 ―NH2, ―NH(CO2-tBu), ―NH(CO2-CH2Ph), -CO2H, -CO2-tBu, 또는 -CO2-CH2Ph인 것을 특징으로 하는 3차 아민 화합물.
The method of claim 1,
P is hydrogen, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), t -butyldimethylsilyl (TBS), triisopropylsilyl (TIPS), t -butyldiphenylsilyl (TBDPS), or triphenylsilyl (TPS),
l, m, n, o and p are each independently an integer of 1 to 3,
X is a single bond, carbonyl (C═O), —NHCO— or —CONH—,
R is —NH 2 , —NH (CO 2 —t Bu), —NH (CO 2 —CH 2 Ph), —CO 2 H, —CO 2 —t Bu, or —CO 2 —CH 2 Ph Tertiary amine compound made into.
제1항에 있어서,
상기 3차 아민 화합물이
(1a) t-부틸-3-(4-(((N-3-(t-부틸다이메틸실릴)프로프-2-인일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필카바메이트;
(1b) N-((1-(3-아미노프로필)-1H-1,2,3-트리아졸-4-일)메틸)―N-(3-(t-부틸다이메틸실릴)프로프-2-인일)―N-프로파질아민;
(1c) t-부틸-3-(4-(((N-3-(트라이아이소프로필실릴)프로프-2-인일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필카바메이트;
(1d) N-((1-(3-아미노프로필)-1H-1,2,3-트리아졸-4-일)메틸)―N-(3-(트라이아이소프로필실릴)프로프-2-인일)―N-프로파질아민;
(1e) 4-(3-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필아미노)-옥소부타노익산;
(1f) 4-(3-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)프로필아미노)-옥소부타노익산;
(1g) t-부틸-2-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세테이트;
(1h) 2-(4-(((N-3-(t-부틸다이메틸실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세트산;
(1i) t-부틸-2-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세테이트; 및
(1j) 2-(4-(((N-3-(트라이아이소프로필실릴)프로핀-2-일)―N-프로파질)아미노)메틸)-1H-1,2,3-트리아졸-1-일)아세트산으로 구성되는 군으로부터 선택되는 하나인 것을 특징으로 하는 3차 아민 화합물.
The method of claim 1,
The tertiary amine compound is
(1a) t-butyl-3- (4-(((N-3- (t-butyldimethylsilyl) prop-2-ynyl) -N-propazyl) amino) methyl) -1H-1,2 , 3-triazol-1-yl) propylcarbamate;
(1b) N-((1- (3-aminopropyl) -1H-1,2,3-triazol-4-yl) methyl) -N- (3- ( t -butyldimethylsilyl) prop- 2-ynyl) -N-propazylamine;
(1c) t-butyl-3- (4-((((N-3- (triisopropylsilyl) prop-2-ynyl) -N-propazyl) amino) methyl) -1H-1,2,3 -Triazol-1-yl) propylcarbamate;
(1d) N-((1- (3-aminopropyl) -1H-1,2,3-triazol-4-yl) methyl) -N- (3- (triisopropylsilyl) prop-2- Phosphoryl) -N-propazylamine;
(1e) 4- (3- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2, 3-triazol-1-yl) propylamino) -oxobutanoic acid;
(1f) 4- (3- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3- Triazol-1-yl) propylamino) -oxobutanoic acid;
(1 g) t-butyl-2- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2 , 3-triazol-1-yl) acetate;
(1h) 2- (4-(((N-3- ( t -butyldimethylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3-tria Zol-1-yl) acetic acid;
(1i) t-butyl-2- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3 -Triazol-1-yl) acetate; And
(1j) 2- (4-(((N-3- (triisopropylsilyl) propyn-2-yl) -N-propazyl) amino) methyl) -1H-1,2,3-triazole- Tertiary amine compound, characterized in that one selected from the group consisting of 1-yl) acetic acid.
하기 반응식 1로 표시되는 바와 같이,
출발 물질인 화학식 3과 화학식 4로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하되,

하기 반응식 1에 사용되는 반응용매는 테트라하이드로퓨란, 1,4-디옥산, 디클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄, 벤젠, 톨루엔, 아세토니트릴, 디메틸포름아미드, 디메틸설폭사이드(DMSO), 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이고,

하기 반응식 1에 사용되는 구리촉매는 CuI, CuBr, 및 CuCl로 이루어지는 군으로부터 선택되는 산화수가 1인 구리 촉매 또는 CuSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2, 및 CuO로 이루어지는 군으로부터 선택되는 산화수가 2인 구리 촉매인 것을 특징으로 하는 화학식 1-1의 3차 아민 화합물의 제조방법.
[반응식 1]
Figure 112012097504361-pat00045

(상기 반응식 1에서,
l, m, n, o, p 및 P, X는 제1항의 화학식 1에서 정의한 바와 같고,
Y는 수소, ―CO2-tBu, ―CO2-CH2Ph, 또는 ―CO2-t-C(Ph)3이다)
As represented by Scheme 1 below,
And alkyne / azide [3 + 2] ring reaction of the azido compound represented by Formula 3 and Formula 4, which are starting materials, under a copper catalyst,

Reaction solvents used in Scheme 1 are tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetonitrile, dimethylformamide, dimethyl sulfoxide (DMSO ), Methanol, ethanol, isopropanol, t -butanol, water and combinations thereof,

The copper catalyst used in Scheme 1 may be a copper catalyst having an oxidation number of 1 selected from the group consisting of CuI, CuBr, and CuCl or CuSO 4 , Cu (OAc) 2 , Cu (NO 3 ) 2 , Cu (OTf) 2 , And a copper catalyst having an oxidation number of 2 selected from the group consisting of CuO.
[Reaction Scheme 1]
Figure 112012097504361-pat00045

(In Scheme 1,
l, m, n, o, p and P, X are as defined in Formula 1 of claim 1,
Y is hydrogen, —CO 2 -tBu, —CO 2 —CH 2 Ph, or —CO 2 -tC (Ph) 3 )
삭제delete 삭제delete 제4항에 있어서,
반응식 1 에서 산화수가 1인 구리촉매인 경우,
중탄산 이온의 알칼리 금속염, 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 다이이소프로필에틸아민, 피리딘, 루티딘 및 콜리딘으로부터 선택되는 염기를 사용하는 것을 특징으로 하는 화학식 1-1의 3차 아민 화합물의 제조방법.
5. The method of claim 4,
In the case of the copper catalyst of oxidation number 1 in Scheme 1,
Tertiary amine compound of formula 1-1 characterized by using an alkali metal salt of bicarbonate ion, an alkali metal salt of carbonate ion, or a base selected from triethylamine, diisopropylethylamine, pyridine, lutidine and collidine Manufacturing method.
제4항에 있어서,
반응식 1 에서 산화수가 2인 구리촉매인 경우,
Na-아스코베이트, 소듐 설파이트(Na2SO3), 또는 디티오트레이톨(dithiothreitol)인 환원제를 사용하는 것을 특징으로 하는 화학식 1-1의 3차 아민 화합물의 제조방법.
5. The method of claim 4,
In the case of the copper catalyst of oxidation number 2 in Scheme 1,
A method for preparing a tertiary amine compound of formula 1-1, wherein a reducing agent is Na-ascorbate, sodium sulfite (Na 2 SO 3 ), or dithiothreitol.
하기 반응식 2로 표시되는 바와 같이,
출발 물질인 화학식 3으로 표시되는 3차 아민 화합물과 화학식 5로 표시되는 아지도 화합물을 구리촉매하에서 알킨/아자이드 [3+2]고리화 반응시키는 단계를 포함하되,

하기 반응식 1에 사용되는 반응용매는 테트라하이드로퓨란, 1,4-디옥산, 디클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄, 벤젠, 톨루엔, 아세토니트릴, 디메틸포름아미드, 디메틸설폭사이드(DMSO), 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것이고,

하기 반응식 1에 사용되는 구리촉매는 CuI, CuBr, 및 CuCl로 이루어지는 군으로부터 선택되는 산화수가 1인 구리 촉매 또는 CuSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2, 및 CuO로 이루어지는 군으로부터 선택되는 산화수가 2인 구리 촉매인 것을 특징으로 하는 화학식 1-2의 3차 아민 화합물의 제조방법.
[반응식 2]
Figure 112012097504361-pat00046

(상기 반응식 2에서,
l, m, n, o, p 및 P, X는 제1항의 화학식 1에서 정의한 바와 같고,
Z는 수소, -tBu, -CH2Ph 또는 t-C(Ph)3이다)
As represented by Scheme 2 below,
And alkyne / azide [3 + 2] ring reaction of the tertiary amine compound represented by Chemical Formula 3, which is a starting material, and the azido compound represented by Chemical Formula 5, under a copper catalyst,

Reaction solvents used in Scheme 1 are tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetonitrile, dimethylformamide, dimethyl sulfoxide (DMSO ), Methanol, ethanol, isopropanol, t -butanol, water and combinations thereof,

The copper catalyst used in Scheme 1 may be a copper catalyst having an oxidation number of 1 selected from the group consisting of CuI, CuBr, and CuCl or CuSO 4 , Cu (OAc) 2 , Cu (NO 3 ) 2 , Cu (OTf) 2 , And a copper catalyst having an oxidation number of 2 selected from the group consisting of CuO.
[Reaction Scheme 2]
Figure 112012097504361-pat00046

(In Scheme 2,
l, m, n, o, p and P, X are as defined in Formula 1 of claim 1,
Z is hydrogen, -t Bu, -CH 2 Ph or tC (Ph) 3 )
삭제delete 삭제delete 제9항에 있어서,
반응식 2에서 산화수가 1인 구리촉매인 경우,
중탄산 이온의 알칼리 금속염, 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 다이이소프로필에틸아민, 피리딘, 루티딘 및 콜리딘으로부터 선택되는 염기를 사용하는 것을 특징으로 하는 화학식 1-2의 3차 아민 화합물의 제조방법.
10. The method of claim 9,
In the case of the copper catalyst of oxidation number 1 in Scheme 2,
Tertiary amine compounds of formula 1-2 characterized by using an alkali metal salt of bicarbonate ions, an alkali metal salt of carbonate ions, or a base selected from triethylamine, diisopropylethylamine, pyridine, lutidine and collidine Manufacturing method.
제9항에 있어서,
반응식 1 에서 산화수가 2인 구리촉매인 경우,
Na-아스코베이트, 소듐 설파이트(Na2SO3), 또는 디티오트레이톨(dithiothreitol)인 환원제를 사용하는 것을 특징으로 하는 화학식 1-2의 3차 아민 화합물의 제조방법.
10. The method of claim 9,
In the case of the copper catalyst of oxidation number 2 in Scheme 1,
A method for preparing a tertiary amine compound of Chemical Formula 1-2, using a reducing agent that is Na-ascorbate, sodium sulfite (Na 2 SO 3 ), or dithiothreitol.
하기 반응식 3으로 표시되는 바와 같이,
출발물질인 화학식 1의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 1);
화합물의 P 보호기를 탈보호기화하는 단계 (단계 2);
화학식 8의 화합물을 화학식 6-2의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 3); 및
화학식 9의 화합물과 화학식 10의 화합물을 유기용매하에서 반응시키는 단계(단계 4)를 포함하되,

하기 반응식 3의 클릭화학 단계에서 사용되는 반응용매는 테트라하이드로퓨란, 1,4-다이옥산, 다이클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄(1,2-dichloroethane), 벤젠, 톨루엔, 아세토나이트릴, 다이메틸포름아미드(N,N-dimethylformamide), 다이메틸설폭사이드, 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 또는 이들의 혼합용매이고,

하기 반응식 3의 클릭화학 단계에서 사용되는 구리촉매는 CuI, CuBr 및 CuCl로 이루어지는 군으로부터 선택되는 산화수가 1인 구리 촉매 또는 C uSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2 및 CuO로 이루어지는 군으로부터 선택되는 산화수가 2인 구리 촉매이고,

상기 탈보호기화하는 단계는 디실릴레이션 (desilyation) 방법으로 수행하는 것을 특징으로 하는 화학식 2의 화합물 제조방법.
[반응식 3]
Figure 112012097504361-pat00047

상기 반응식 3에서,
l, m, n, o, p는 제1항의 화학식 1에서 정의한 바와 같고,
R1은 제1항의 화학식 1에서 정의한 R과 같고,
R2는 ―CO2H; ―COF; ―COCl; ―COBr;
Figure 112012097504361-pat00048
―OCOCl; ―NCO; ―NCS; ―SO2Cl; 또는 ―NH2이고,
W는 ―NHCO-; ―NHCOO-; ―NHCONH-; ―NHCSNH-; ―NHSO2-; 또는 ―CONH-이고,
A, B, C는 각각 독립적으로
생체내 특정 단백질 및 생체고분자 화합물, 생체 조직에 선택적인 결합력을 갖는 유기화합물 군으로부터 선택되는 어느 하나(그룹 1);
생체내 특정 단백질 및 생체고분자 화합물, 생체 조직에 선택적인 결합력을 갖는 펩타이드, 당, 지질, 뉴클레오타이드 또는 이들로 구성된 유도체 군으로부터 선택되는 어느 하나(그룹 2);
생체내 분자영상 진단을 위한 형광색소 근적외선 형광색소 광학색소 양자점(quantum dots) 유도체 군으로부터 선택되는 어느 하나(그룹 3);
생체내 분자영상 진단을 위한 방사성 동위원소를 포함하는 착물 방사성 동위원소가 포함된 보결그룹으로부터 선택되는 어느 하나(그룹 4);
생체내 분자영상 진단을 위한 자성 및 초자성을 갖는 가돌리늄(gadolinium), 산화철(iron oxide), 망간(manganese) 금속의 유도체 군으로부터 선택되는 어느 하나(그룹 5);
생체내 분자영상 진단을 위한 바이오틴(biotin)유도체 군으로부터 선택되는 어느 하나(그룹 6);
생체내 안정성을 위한 올리고 에틸렌글리콜 유도체 군으로부터 선택되는 어느 하나(그룹 7);
생체내 약물동태학을 위한 단당류(saccharide) 또는 다당류(oligo-saccharide) 군으로부터 선택되는 어느 하나(그룹 8); 및
생체내 약물 운반을 위한 유기고분자 덴드리머(dendrimer); 바이러스 캡시드 키토산 나노입자 군으로부터 선택되는 어느 하나(그룹 9) 구성되는 군으로부터 선택된다.
As represented by Scheme 3 below,
Subjecting the compound of Formula 1, which is a starting material, to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 1);
Deprotecting the P protecting group of the compound (step 2);
Subjecting the compound of Formula 8 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-2 under a reaction solvent and a copper catalyst (step 3); And
Reacting the compound of formula 9 and the compound of formula 10 in an organic solvent (step 4),

The reaction solvent used in the click chemistry step of Scheme 3 is tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, aceto Nitrile, dimethylformamide (N, N-dimethylformamide), dimethyl sulfoxide, methanol, ethanol, isopropanol, t -butanol, water or a mixed solvent thereof,

The copper catalyst used in the click chemistry step of Scheme 3 may be a copper catalyst having an oxidation number of 1 selected from the group consisting of CuI, CuBr, and CuCl, or C uSO 4 , Cu (OAc) 2 , Cu (NO 3 ) 2 , Cu ( OTf) 2 and CuO, a copper catalyst having an oxidation number of 2 selected from the group consisting of

The deprotecting step is a method for preparing a compound of formula (2), characterized in that carried out by a disylation (desilyation) method.
[Reaction Scheme 3]
Figure 112012097504361-pat00047

In Scheme 3,
l, m, n, o, p are as defined in formula 1 of claim 1,
R 1 is the same as R defined in Formula 1 of claim 1,
R 2 is —CO 2 H; —COF; —COCl; —COBr;
Figure 112012097504361-pat00048
-OCOCl; -NCO; -NCS; —SO 2 Cl; Or —NH 2 ,
W is —NHCO—; -NHCOO-; -NHCONH-; -NHCSNH-; -NHSO 2- ; Or —CONH-,
A, B, and C are each independently
Certain proteins and biopolymer compounds in vivo, any one selected from the group of organic compounds having selective binding to biological tissues (Group 1);
Any one selected from the group of specific proteins and biopolymer compounds in vivo, peptides having a selective binding ability to biological tissues, sugars, lipids, nucleotides or derivatives thereof (group 2);
Any one selected from the group of fluorescent dye near infrared fluorescent dye optical dye quantum dots derivatives for in vivo molecular imaging diagnosis (group 3);
Any one selected from the group consisting of a complex containing a radioactive isotope comprising a radioisotope for diagnosis of molecular imaging in vivo (group 4);
Any one selected from the group of derivatives of gadolinium, iron oxide, and manganese metal having magnetic and supermagnetism for in vivo molecular imaging diagnosis (group 5);
Any one selected from the group of biotin derivatives for in vivo molecular imaging (group 6);
Any one selected from the group of oligo ethylene glycol derivatives for in vivo stability (group 7);
Any one selected from the group of monosaccharides or polysaccharides (oligo-saccharides) for in vivo pharmacokinetics (group 8); And
Organic polymer dendrimers for drug delivery in vivo; Viral capsid chitosan nanoparticles are selected from the group consisting of any one selected from the group (group 9).
하기 반응식 4로 표시되는 바와 같이,
출발물질인 화학식 1과 화학식 10의 화합물을 유기용매하에서 반응시켜 화학식 11의 화합물을 제조하는 단계 (단계 1);
화학식 11의 화합물을 화학식 6-1의 아지도 화합물과 함께 반응용매 및 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 2);
화합물의 P 보호기를 탈보호기화하는 단계 (단계 3) 및
화학식 13의 화합물을 화학식 6-2의 아지도 화합물과 함께 구리촉매하에서 알킨/아자이드 [3+2]고리화반응을 시키는 단계(단계 4)를 포함하되,

하기 반응식 4의 클릭화학 단계에서 사용되는 반응용매는 테트라하이드로퓨란, 1,4-다이옥산, 다이클로로메탄, 클로로포름, 사염화탄소, 1,2-디클로로에탄(1,2-dichloroethane), 벤젠, 톨루엔, 아세토나이트릴, 다이메틸포름아미드(N,N-dimethylformamide), 다이메틸설폭사이드, 메탄올, 에탄올, 이소프로판올, t-부탄올, 물 또는 이들의 혼합용매이고,

하기 반응식 4의 클릭화학 단계에서 사용되는 구리촉매는 CuI, CuBr 및 CuCl로 이루어지는 군으로부터 선택되는 산화수가 1인 구리 촉매 또는 CuSO4, Cu(OAc)2, Cu(NO3)2, Cu(OTf)2 및 CuO로 이루어지는 군으로부터 선택되는 산화수가 2인 구리 촉매이고,

상기 탈보호기화하는 단계는 디실릴레이션 (desilyation) 방법으로 수행하는 것을 특징으로 하는 화학식 2의 화합물 제조방법.
[반응식 4]
Figure 112012097504361-pat00049

(상기 반응식 4에서,
l, m, n, o, 및 p는 제1항의 화학식 1에서 정의한 바와 같고,
R1, R2, X, W 및 A, B, C는 제14항의 반응식 3에서 정의한 바와 같다)
As represented by Scheme 4 below,
Preparing a compound of Chemical Formula 11 by reacting a starting compound of Chemical Formula 1 with a compound of Chemical Formula 10 in an organic solvent (Step 1);
Subjecting the compound of Formula 11 to the alkyne / azide [3 + 2] ring reaction with the azido compound of Formula 6-1 under a reaction solvent and a copper catalyst (step 2);
Deprotecting the P protecting group of the compound (step 3) and
A compound of Formula 13 is subjected to an alkyne / azide [3 + 2] ring reaction with azido compound of Formula 6-2 under a copper catalyst (Step 4),

The reaction solvent used in the click chemistry step of Scheme 4 is tetrahydrofuran, 1,4-dioxane, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, aceto Nitrile, dimethylformamide (N, N-dimethylformamide), dimethyl sulfoxide, methanol, ethanol, isopropanol, t -butanol, water or a mixed solvent thereof,

The copper catalyst used in the click chemistry step of Scheme 4 may be a copper catalyst having an oxidation number of 1 selected from the group consisting of CuI, CuBr, and CuCl, or CuSO 4 , Cu (OAc) 2 , Cu (NO 3 ) 2 , Cu (OTf). ) Is a copper catalyst having an oxidation number of 2 selected from the group consisting of 2 and CuO,

The deprotecting step is a method for preparing a compound of formula (2), characterized in that carried out by a disylation (desilyation) method.
[Reaction Scheme 4]
Figure 112012097504361-pat00049

(In Scheme 4,
l, m, n, o, and p are as defined in Formula 1 of claim 1,
R 1 , R 2 , X, W and A, B, C are as defined in Scheme 3 of claim 14)
삭제delete 삭제delete 제14항 또는 제15항에 있어서,
클릭화학 단계에서 산화수가 1인 구리촉매를 사용하는 경우, 사용되는 염기는 중탄산 이온의 알칼리 금속염, 탄산 이온의 알칼리 금속염, 또는 트리에틸아민, 다이이소프로필에틸아민, 피리딘, 루티딘, 또는 콜리딘인 것을 특징으로 하는 화학식 2의 3차 아민 화합물의 제조방법.
16. The method according to claim 14 or 15,
When using a copper catalyst having 1 oxidation number in the click chemistry step, the base used may be an alkali metal salt of bicarbonate ions, an alkali metal salt of carbonate ions, or triethylamine, diisopropylethylamine, pyridine, rutidine, or collidine. Method for producing a tertiary amine compound of formula 2, characterized in that.
제14항 또는 제15항에 있어서,
클릭화학 단계에서 산화수가 2인 구리촉매를 사용하는 경우 환원제로는 Na-아스코베이트, 소듐 설파이트(Na2SO3), 또는 디티오트레이톨(dithiothreitol)인 것을 특징으로 하는 화학식 2의 3차 아민 화합물의 제조방법.
16. The method according to claim 14 or 15,
In the case of using a copper catalyst having an oxidation number of 2 in the click chemistry step, the reducing agent may be Na-ascorbate, sodium sulfite (Na 2 SO 3 ), or dithiothreitol. Method for producing an amine compound.
제14항 또는 제15항에 있어서,
탈보호기화 단계에서, 디실릴레이션(desilyation) 방법을 사용하는 것을 특징으로 하는 화학식 2의 3차 아민 화합물의 제조방법.
16. The method according to claim 14 or 15,
In the deprotection step, a method of preparing a tertiary amine compound of formula (2), characterized in that it uses a disylation method.
KR1020100128748A 2010-12-15 2010-12-15 Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof KR101235100B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100128748A KR101235100B1 (en) 2010-12-15 2010-12-15 Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100128748A KR101235100B1 (en) 2010-12-15 2010-12-15 Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof

Publications (2)

Publication Number Publication Date
KR20120067258A KR20120067258A (en) 2012-06-25
KR101235100B1 true KR101235100B1 (en) 2013-02-20

Family

ID=46686371

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100128748A KR101235100B1 (en) 2010-12-15 2010-12-15 Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof

Country Status (1)

Country Link
KR (1) KR101235100B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027504A (en) * 2004-02-18 2007-03-09 아스트라제네카 아베 Tetrazole compounds and their use as metabotropic glutamate receptor antagonists

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027504A (en) * 2004-02-18 2007-03-09 아스트라제네카 아베 Tetrazole compounds and their use as metabotropic glutamate receptor antagonists

Also Published As

Publication number Publication date
KR20120067258A (en) 2012-06-25

Similar Documents

Publication Publication Date Title
JP4855924B2 (en) Radiofluorination of biologically active vectors
US11167277B2 (en) Cu(I)-catalyzed azide-alkyne cycloadditions (CuAAC) ligands and methods for carrying out Cu(I)-catalyzed azide-alkyne cycloaddition reactions
AU2015349390B2 (en) New type of cytidine derivative and application thereof
US20070077198A1 (en) Method for preparing radiolabeled thymidine having low chromophoric byproducts
CN102911252B (en) Cationic lipid containing peptide dendrimer, transgenic carrier and preparation method and application of transgenic carrier
JP6153116B2 (en) Triazole-linked cyclic dinucleotide analogs
WO2019189867A1 (en) Use of bis-iminobiotin compound for drug delivery purposes
Banerjee et al. A new bifunctional amino acid chelator targeting the glucose transporter
KR101235100B1 (en) Tertiary amine compound comprising triazole as tripodal linkers, preparation method and application thereof
US6884882B1 (en) 2′-deoxyuridine derivatives and hydrogels formed therewith
JPH01275581A (en) Antitumor substance sf2582 derivative
JP5594742B2 (en) 18F labeled azide compound, 18F labeling reagent, and 18F labeling method for alkyne compound using the same
CN109415383A (en) Prepare the method and its intermediate of eribulin
KR101298736B1 (en) Tertiary amine compounds as tripodal linker, preparation method and application thereof
WO2023016528A1 (en) Class of benzomorpholine compounds, and preparation method therefor and use thereof
KR101217685B1 (en) Tripodal linkers having three different alkyne groups, preparation method and application thereof
US8551447B2 (en) Bifunctional compound with monosaccharide and N2S2 ligand, and preparation and use thereof
WO2021193951A1 (en) Sugar compound having polyethylene glycol chain, and precursor of antibody-drug complex
KR20020092818A (en) New imaging agents, precursors thereof and methods of manufacture
Wang et al. Facile synthesis of chiral N-glycosylated amino acids
KR20120066550A (en) Apopep-1 labeled with f-18 for positron emission tomography imaging of apoptotic cell, preparation and application thereof
CN117343125B (en) Synthesis method of antibody-coupled drug linker
US11497821B2 (en) Method for labeling radioisotope, radiolabeling compounds using quinone compound and kit comprising the same for labeling radioisotope
WO2005063263A1 (en) Novel derivatives of morphine-6-glucuronide, pharmaceutical compositions containing said derivatives, preparation method thereof and uses of same
EP4357336A1 (en) Benzoxazinone derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191224

Year of fee payment: 8